[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006183133A - Method for producing steel sheet for high strength steam piping having excellent weld heat affected zone toughness - Google Patents

Method for producing steel sheet for high strength steam piping having excellent weld heat affected zone toughness Download PDF

Info

Publication number
JP2006183133A
JP2006183133A JP2005284198A JP2005284198A JP2006183133A JP 2006183133 A JP2006183133 A JP 2006183133A JP 2005284198 A JP2005284198 A JP 2005284198A JP 2005284198 A JP2005284198 A JP 2005284198A JP 2006183133 A JP2006183133 A JP 2006183133A
Authority
JP
Japan
Prior art keywords
less
affected zone
weld heat
toughness
heat affected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005284198A
Other languages
Japanese (ja)
Other versions
JP5055736B2 (en
Inventor
Ryuji Muraoka
隆二 村岡
Mitsuhiro Okatsu
光浩 岡津
Shigeru Endo
茂 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005284198A priority Critical patent/JP5055736B2/en
Publication of JP2006183133A publication Critical patent/JP2006183133A/en
Application granted granted Critical
Publication of JP5055736B2 publication Critical patent/JP5055736B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a steel sheet having excellent weld heat affected zone toughness which has a yield strength of ≥550 MPa in a medium temperature region, and is suitable for a high strength welded steel pipe for steam piping. <P>SOLUTION: A steel having a composition comprising, by mass, 0.05 to 0.09% C, 0.05 to 0.20% Si, 1.5 to 2.0% Mn, ≤0.020% P, ≤0.002% S, 0.05 to 0.3% Mo, 0.005 to 0.05% Nb, 0.005 to 0.02% Ti and 0.01 to 0.04% Al, satisfying Ti/N of 2.0 to 4.0, and, if required, comprising one or more kinds selected from Cu, Ni, Cr, V, Ca and rare earth metals, and the balance Fe with inevitable impurities is heated at 1,000 to 1,200°C, is thereafter hot-rolled at a cumulative draft of ≥50% in ≤900°C and also at a rolling finishing temperature of ≤850°C, and is subsequently subjected to accelerated cooling to 400 to 550°C at a cooling rate of ≥5°C/s. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、中温域において降伏強さが550MPa以上の鋼板の製造方法に関し、蒸気配管用高強度高靭性溶接鋼管用途に好適なものに関する。   The present invention relates to a method for producing a steel sheet having a yield strength of 550 MPa or more in an intermediate temperature range, and relates to a method suitable for high strength and high toughness welded steel pipe use for steam piping.

カナダ等に埋蔵されている油層からオイルサンドを回収する方法として、露天堀による方法と高温・高圧の蒸気を鋼管により挿入するスチームインジェクション法がある。しかし、露天掘りが適用可能な地域は少なく、多くの地域ではスチームインジェクション法が適用されている。   There are two methods for recovering oil sand from oil reservoirs buried in Canada, etc .: an open-pit method and a steam injection method in which high-temperature and high-pressure steam is inserted through a steel pipe. However, there are few areas where surface mining is applicable, and the steam injection method is applied in many areas.

スチームインジェクション法にて油層内へ送入される蒸気は300〜350℃の温度域(以下、中温域という)であり、13MPa前後の高圧にて送り込まれる。近年、エネルギー需要の増加に伴う重質油の回収率の向上ならびに敷設コストの低減を目的として、鋼管の大径化ならびに高強度化が要望されている。   The steam fed into the oil layer by the steam injection method is in a temperature range of 300 to 350 ° C. (hereinafter referred to as an intermediate temperature range), and is fed at a high pressure of about 13 MPa. In recent years, there has been a demand for an increase in diameter and strength of a steel pipe for the purpose of improving the recovery rate of heavy oil accompanying the increase in energy demand and reducing the laying cost.

さらに、カナダのような寒冷地にて使用される場合、−20℃以下の外気に触れる地上部分では操業時には300℃以上に加熱され、非操業時には−20℃以下に冷却されるため低温域から中温域において優れた靭性が鋼管特性として要求される。   Furthermore, when used in a cold region such as Canada, the ground part that is exposed to the outside air of −20 ° C. or lower is heated to 300 ° C. or higher during operation and is cooled to −20 ° C. or lower during non-operation. Excellent toughness is required as a steel pipe characteristic in the middle temperature range.

従来、この中温・高圧の蒸気に耐えうるスチームインジェクション用の蒸気輸送鋼管としては、従来技術として特許文献1、特許文献2、特許文献3に示されるAPIX65、70グレード相当の継目無管が使用されており、鋼管外形が最大で16インチであった。   Conventionally, as a steam transporting steel pipe for steam injection that can withstand this medium temperature and high pressure steam, a seamless pipe corresponding to APIX 65, 70 grade shown in Patent Document 1, Patent Document 2, and Patent Document 3 is used as a conventional technique. The maximum outer diameter of the steel pipe was 16 inches.

従来技術においては、更なる大径化が困難である上に、APIX80グレードの高強度が得られていない。一方、大径化が可能な高強度溶接鋼管の製造技術 に関しては、特許文献4がある。   In the prior art, it is difficult to further increase the diameter, and the high strength of APIX80 grade has not been obtained. On the other hand, there is Patent Document 4 regarding a manufacturing technique of a high-strength welded steel pipe capable of increasing the diameter.

しかしながら、中温域における高温特性が記載されておらず蒸気配管用鋼管として使用可能かどうかは疑問である。このように、従来技術では大径でX80グレード以上の強度を有する溶接熱影響部靭性に優れた蒸気配管用高強度溶接鋼管を安定して製造することは困難であった。
特許1393876号公報 特許1930910号公報 特開2000−290728号公報 特開2000-355729号公報
However, the high temperature characteristics in the middle temperature range are not described, and it is doubtful whether it can be used as a steel pipe for steam piping. As described above, it has been difficult to stably produce a high-strength welded steel pipe for steam piping having a large diameter and strength of X80 grade or more and excellent in weld heat affected zone toughness.
Japanese Patent No. 1393876 Japanese Patent No. 1930910 JP 2000-290728 A JP 2000-355729 A

本発明は、APIグレードX80以上の蒸気輸送用高強度溶接鋼管に要求される、中温域においても降伏強さ550MPa以上(APIグレードX80以上)で優れた溶接熱影響部靭性が得られる鋼板を安価に提供することを目的とする。尚、溶接熱影響部靭性は鋼管のシーム溶接に用いる溶接を対象とする。   The present invention is a low cost steel sheet that is required for high-strength welded steel pipes for steam transport of API grade X80 or higher, and that provides excellent weld heat affected zone toughness at a yield strength of 550 MPa or higher (API grade X80 or higher) even in the intermediate temperature range. It is intended to provide to. The weld heat affected zone toughness is intended for welding used for seam welding of steel pipes.

本発明者等は高強度大径溶接管における中温域での特性について鋭意検討し、成分組成と製造条件を適宜選定し、室温ならびに中温域においてX80グレード以上の強度を有する鋼板を用いると、室温ならびに中温域においてX80グレード以上の強度ならびに溶接熱影響部が高靭性を有する高強度溶接管が安定して製造できることを見出した。   The inventors of the present invention diligently studied the characteristics in the medium temperature range of the high-strength large-diameter welded pipe, appropriately selected the component composition and production conditions, and using a steel sheet having a strength of X80 grade or higher at room temperature and medium temperature range, In addition, the present inventors have found that a high-strength welded pipe having a strength of X80 grade or higher and a weld heat-affected zone having high toughness in the middle temperature range can be produced stably.

本発明は得られた知見に更に検討を加えてなされたものであり、すなわち、本発明は、
1.質量%で、C:0.05〜0.09%、Si:0.05〜0.20%、Mn:1.5〜2.0%、P:0.020%以下、S:0.002%以下、Mo:0. 05〜0.3%、Nb:0.005〜0.05%、Ti:0.005〜0.02%、Al:0.01〜0.04%、N:0.004〜0.006%を含有し、残部がFe及び不可避的不純物からなり、Ti/Nが2.0〜4.0である鋼を、1000〜1200℃に加熱後、900℃以下での累積圧下率が50%以上、かつ圧延終了温度が850℃以下で熱間圧延後、5℃/秒以上の冷却速度にて400〜550℃まで加速冷却することを特徴とする溶接熱影響部靭性に優れた降伏強度550MPa以上の鋼板の製造方法。
The present invention has been made by further studying the obtained knowledge, that is, the present invention,
1. In mass%, C: 0.05 to 0.09%, Si: 0.05 to 0.20%, Mn: 1.5 to 2.0%, P: 0.020% or less, S: 0.002 % Or less, Mo: 0. 05-0.3%, Nb: 0.005-0.05%, Ti: 0.005-0.02%, Al: 0.01-0.04%, N: 0.004-0.006% And the balance is made of Fe and inevitable impurities, and the steel having Ti / N of 2.0 to 4.0 is heated to 1000 to 1200 ° C., and the cumulative rolling reduction at 900 ° C. or less is 50% or more. And, after hot rolling at a rolling end temperature of 850 ° C. or lower, accelerated cooling to 400 to 550 ° C. at a cooling rate of 5 ° C./second or higher yield strength 550 MPa or more excellent in weld heat affected zone toughness Steel plate manufacturing method.

2.更に、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、V:0.08%以下、Ca:0.0005〜0.004%、 REM:0.0005〜0.01%のうち1種または2種以上を含有する1に記載の溶接熱影響部靭性に優れた降伏強度550MPa以上の鋼板の製造方法。   2. Furthermore, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, V: 0.08% or less, Ca: 0.0005 to 0.004%, REM: 0.0005 The manufacturing method of the steel plate of yield strength 550 Mpa or more excellent in the weld heat affected zone toughness of 1 containing 1 type or 2 types or more among -0.01%.

3.1または2記載の鋼板を管状に冷間成形しその突合せ部を溶接することを特徴とする、降伏強度550MPa以上の母材を有する溶接熱影響部靭性に優れた蒸気輸送用高強度溶接鋼管の製造方法。   3.1 High-strength welding for steam transport with excellent weld heat affected zone toughness having a base material with a yield strength of 550 MPa or more, characterized in that the steel plate described in 3.1 or 2 is cold-formed into a tubular shape and the butt portion is welded Steel pipe manufacturing method.

本発明によれば、操業の効率化が達成できる、中温域において降伏強さが550MPa以上を有し、かつ溶接熱影響部靭性が優れた大径の蒸気輸送用高強度溶接鋼管の製造可能な原板が安定して得られ、産業上極めて有益である。   According to the present invention, it is possible to manufacture a high-strength welded steel pipe for steam transport having a large diameter, which has an yield strength of 550 MPa or more in an intermediate temperature range and excellent weld heat-affected zone toughness, which can achieve efficient operation. The original plate can be obtained stably, which is extremely useful for industry.

本発明に係る鋼板は、厚板ミルや熱延ミルにて製造され、UOE成形、プレスベンド成形、ロール成形などにより冷間成形され、サブマージドアーク溶接などの溶接法により溶接接合されて、高温・高圧の蒸気を輸送するための鋼管として利用される。   The steel plate according to the present invention is manufactured by a thick plate mill or a hot rolling mill, is cold formed by UOE forming, press bend forming, roll forming, etc., and is welded and joined by a welding method such as submerged arc welding.・ Used as a steel pipe for transporting high-pressure steam.

以下に、成分組成の限定理由を示す。 Below, the reason for limitation of a component composition is shown.

C:0.05〜0.09%
Cは固溶強化ならびに析出強化により鋼の強度を確保するために必要な元素であり、特に固溶C量の増加と析出物の形成は中温域での強度確保に重要である。 0.09%を超える過剰なCの添加は溶接熱影響部靭性の劣化を招くため添加量の上限を0.09%とした。
C: 0.05-0.09%
C is an element necessary for ensuring the strength of the steel by solid solution strengthening and precipitation strengthening. In particular, the increase in the amount of solid solution C and the formation of precipitates are important for securing the strength in the intermediate temperature range. Addition of excess C exceeding 0.09% causes deterioration of the weld heat-affected zone toughness, so the upper limit of the addition amount was set to 0.09%.

一方、0.05%未満では室温ならびに中温域において所定の強度を確保することが難しくなるため、Cの含有量は0.05〜0.09%とした。   On the other hand, if it is less than 0.05%, it becomes difficult to ensure a predetermined strength at room temperature and in the middle temperature range, so the C content is set to 0.05 to 0.09%.

Si:0.05〜0.20%
Siは脱酸のために添加され、0.05%未満では充分な脱酸効果が得られず、一方、0.20%を超えると溶接熱影響部靱性の劣化を招くため、Siの含有量は0.05〜0.20%とした。
Si: 0.05-0.20%
Si is added for deoxidation. If it is less than 0.05%, a sufficient deoxidation effect cannot be obtained. On the other hand, if it exceeds 0.20%, the weld heat-affected zone toughness is deteriorated. Was 0.05 to 0.20%.

Mn:1.5〜2.0%
Mnは鋼の強度および靱性の向上に有効な元素で、1.5%未満ではその効果が小さく、また2.0%を超えると溶接熱影響部靱性が著しく劣化するため、Mnの含有量は1.5〜2.0%とした。
Mn: 1.5 to 2.0%
Mn is an element effective in improving the strength and toughness of steel. If the content is less than 1.5%, the effect is small, and if it exceeds 2.0%, the weld heat affected zone toughness deteriorates significantly. 1.5 to 2.0%.

P:0.020%以下
Pは不純物元素であり靱性を劣化させるため、極力低減することが望ましいが、過度のP低減は製造コストの上昇を招くため、Pの含有量を0.020%以下とした。
P: 0.020% or less P is an impurity element and deteriorates toughness, so it is desirable to reduce it as much as possible. However, excessive P reduction causes an increase in manufacturing cost, so the content of P is 0.020% or less. It was.

S:0.002%以下
Sは不純物元素であり靭性を劣化させるため、極力低減することが望ましい。また、Caを添加してMnSからCaS系の介在物に形態制御を行ったとしても、X80グレードの高強度材の場合には微細に分散したCaS系介在物も靱性低下の要因となり得るため、Sの含有量を0.002%以下とした。
S: 0.002% or less Since S is an impurity element and deteriorates toughness, it is desirable to reduce it as much as possible. In addition, even when Ca is added to control the form of MnS to CaS inclusions, in the case of X80 grade high strength materials, finely dispersed CaS inclusions can also cause toughness reduction. The S content was 0.002% or less.

Mo:0.05〜0.3%
Moは固溶強化ならびに炭化物の析出強化により強度の上昇、特に中温域での強度の上昇に有効な元素の1つであるが、0.05%未満ではその効果が小さく十分な強度が得られない。一方、0.3%を超えて添加すると効果が飽和すると共に、溶接熱影響部靭性を劣化させるため、Moの添加量を0.05〜0.3%とした。
Mo: 0.05-0.3%
Mo is one of the elements effective for increasing the strength by solid solution strengthening and precipitation strengthening of carbide, especially in the middle temperature range, but if it is less than 0.05%, the effect is small and sufficient strength is obtained. Absent. On the other hand, when the addition exceeds 0.3%, the effect is saturated and the weld heat affected zone toughness is deteriorated. Therefore, the addition amount of Mo is set to 0.05 to 0.3%.

Nb:0.005〜0.05%
Nbはスラブ加熱時と圧延時の結晶粒の成長を抑制することによりミクロ組織を微細化し、充分な強度と靱性を付与するために必要な成分である。また、炭化物 を形成し中温域での強度確保に必要な成分でもある。その効果は0.005%以上で顕著であり、0.05%を超えるとその効果がほぼ飽和して溶接熱影響部靱性を劣化させるため、Nbの含有量を0.005〜0.05%とした。
Nb: 0.005 to 0.05%
Nb is a component necessary to refine the microstructure by imparting sufficient strength and toughness by suppressing the growth of crystal grains during slab heating and rolling. It is also a component that forms carbides and is necessary for securing strength in the middle temperature range. The effect is remarkable at 0.005% or more, and when it exceeds 0.05%, the effect is almost saturated and the weld heat affected zone toughness is deteriorated. Therefore, the Nb content is 0.005 to 0.05%. It was.

Ti:0.005〜0.02%
TiはNと共にTiNを形成して1350℃以上に達する溶接熱影響部の高温域においてオーステナイト粒の成長を抑制し、−20℃以下での低温域ならびに300℃以上での中温域における溶接熱影響部靭性の改善に有効である。その効果 は0.005%以上で顕著で、0.02%を超えると析出物の粗大化により靱性の劣化を引き起こすため、Tiの含有量を0.005〜0.02%とした。
Ti: 0.005-0.02%
Ti forms TiN together with N and suppresses the growth of austenite grains in the high temperature range of the weld heat affected zone reaching 1350 ° C. or higher, and influence of welding heat in the low temperature range of −20 ° C. or lower and in the intermediate temperature range of 300 ° C. or higher. Effective for improving toughness. The effect is remarkable at 0.005% or more, and if it exceeds 0.02%, the precipitates become coarse and cause toughness deterioration. Therefore, the Ti content is set to 0.005 to 0.02%.

Al:0.01〜0.04%
Alは脱酸剤として添加され0.01%以上でその効果が顕著であり、0.04%を超えると靱性の劣化を引き起こすため、Alの含有量を0.01〜0.04%とする。
Al: 0.01-0.04%
Al is added as a deoxidizer and the effect is remarkable at 0.01% or more. If it exceeds 0.04%, the toughness is deteriorated, so the Al content is set to 0.01 to 0.04%. .

N:0.004〜0.006%
NはTiと共にTiNを形成し、1350℃以上に達する溶接熱影響部の高温域において微細分散することにより、溶接熱影響部の旧オーステナイト粒を細粒化し、−20℃以下での低温域ならびに300℃以上での中温域における溶接熱影響部の靭性向上に大きく寄与する。
N: 0.004 to 0.006%
N forms TiN together with Ti and finely disperses in the high temperature region of the weld heat affected zone reaching 1350 ° C. or higher, thereby refining the old austenite grains in the weld heat affected zone, and the low temperature range at −20 ° C. or lower and This greatly contributes to the improvement of the toughness of the weld heat affected zone in the medium temperature range above 300 ° C.

0.004%未満ではその効果が十分でなく、0.006%を超えて添加すると、析出物の粗大化に伴う旧オーステナイト粒の粗大化を招くと共に固溶Nが増加し、溶接熱影響部靭性が劣化するため、Nの含有量は0.004〜0.006%とする。   If less than 0.004%, the effect is not sufficient. If added over 0.006%, the prior austenite grains are coarsened along with the coarsening of precipitates, and the solute N increases, resulting in a weld heat affected zone. Since toughness deteriorates, the N content is set to 0.004 to 0.006%.

Ti/N:2.0〜4.0
Ti/Nを適正な範囲に規定することにより、TiNが微細に分散し、溶接熱影響部での旧オーステナイト粒の微細化が達成され、−20℃以下での低温域ならびに300℃以上での中温域における溶接熱影響部の靭性が向上する。
Ti / N: 2.0 to 4.0
By defining Ti / N within an appropriate range, TiN is finely dispersed, and refinement of prior austenite grains in the weld heat-affected zone is achieved, and a low temperature range of −20 ° C. or lower and a temperature of 300 ° C. or higher are achieved. The toughness of the weld heat affected zone in the middle temperature range is improved.

Ti/Nが2.0未満の場合、その効果が十分ではなく、4.0を超えると析出物の粗大化に伴う旧オーステナイト粒の粗大化を招き、溶接熱影響部の靭性が劣化するため、Ti/Nの値を2.0〜4.0に規定する。   When Ti / N is less than 2.0, the effect is not sufficient, and when it exceeds 4.0, the coarsening of the prior austenite grains accompanying the coarsening of the precipitate is caused, and the toughness of the heat affected zone is deteriorated. , Ti / N is defined to be 2.0 to 4.0.

本発明は以上の成分組成で優れた特性が得られるが、更に特性を向上させる場合、Cu,Ni,Cr,V,Ca,REMの1種または2種以上を添加する。   In the present invention, excellent characteristics can be obtained with the above component composition, but when further improving the characteristics, one or more of Cu, Ni, Cr, V, Ca, and REM are added.

Cu:0.50%以下
Cuは靭性の改善と強度の上昇に有効な元素の1つであるが、 0.50%を超えるCuの含有は溶接性を阻害するため、Cuを添加する場合は0.50%以下とした。
Cu: 0.50% or less Cu is one of the elements effective for improving toughness and increasing strength. However, if Cu is added in excess of 0.50%, weldability is impaired. It was set to 0.50% or less.

Ni:0.50%以下
Niは靭性の改善と強度の上昇に有効な元素の1つであるが、0.50%を超えると効果が飽和し製造コストの上昇を招くため、Niを添加する場合は0.50%以下とした。
Ni: 0.50% or less Ni is one of elements effective for improving toughness and increasing strength. However, if it exceeds 0.50%, the effect is saturated and the manufacturing cost is increased, so Ni is added. In the case, it was 0.50% or less.

Cr:0.50%以下
Crは強度の上昇に有効な元素の一つであるが、0.50%を超えて添加すると溶接性に悪影響を与えるため、Crを添加する場合は0.50%以下とした。
Cr: 0.50% or less Cr is one of the elements effective in increasing the strength, but if added over 0.50%, the weldability is adversely affected, so when adding Cr, 0.50% It was as follows.

V:0.08%以下
VはTiと共に複合析出物を形成し、強度上昇に寄与する。しかし、0.08%を超えると溶接熱影響部の靭性が劣化するため、V含有量は0.08%以下に規定する。
V: 0.08% or less V forms a composite precipitate with Ti and contributes to an increase in strength. However, if it exceeds 0.08%, the toughness of the weld heat affected zone deteriorates, so the V content is specified to be 0.08% or less.

Ca:0.0005〜0.0040%
Caは硫化物系介在物の形態を制御し靱性を改善するが、0.0005%以上でその効果が現われ、0.0030%を超えると効果が飽和し、逆に清浄度を低下させて靱性を劣化させるため、Caを添加する場合は0.0005〜0.0040%とした。
Ca: 0.0005 to 0.0040%
Ca improves the toughness by controlling the form of sulfide inclusions, but its effect appears at 0.0005% or more, and when it exceeds 0.0030%, the effect is saturated, and conversely, the cleanliness is lowered and the toughness is reduced. When Ca is added, the content is made 0.0005 to 0.0040%.

REM:0.0005〜0.01%
REMは鋼中の硫化物の形態制御に有効な元素であり、添加することで靱性に有害なMnSの生成を抑制する。Sの効果は0.0005%以上で顕著であり、0.02%を超えて添加すると清浄性が低下し靭性が劣化するため、REMを添加する場合は0.0005〜0.01%とした。
REM: 0.0005 to 0.01%
REM is an effective element for controlling the form of sulfide in steel, and when added, it suppresses the generation of MnS harmful to toughness. The effect of S is significant at 0.0005% or more, and if added over 0.02%, the cleanliness decreases and the toughness deteriorates. Therefore, when REM is added, the content is set to 0.0005 to 0.01%. .

次に、製造方法の限定理由について説明する。   Next, the reason for limiting the manufacturing method will be described.

加熱温度:1000〜1200℃
熱間圧延に際し、オーステナイト化ならびに炭化物の固溶を十分に進行させ、室温ならびに中温域での十分な強度を得るためには、鋼片の加熱温度を 1000℃以上とする必要がある。一方、加熱温度が1200℃を超えると、オーステナイト粒成長が著しく、母材靱性が劣化するため、加熱温度は 1000〜1200℃とした。
Heating temperature: 1000-1200 ° C
In hot rolling, in order to sufficiently advance austenitization and solid solution of carbides and obtain sufficient strength at room temperature and medium temperature, the heating temperature of the steel slab needs to be 1000 ° C. or higher. On the other hand, when the heating temperature exceeds 1200 ° C., the austenite grain growth is remarkable and the toughness of the base material deteriorates. Therefore, the heating temperature is set to 1000 to 1200 ° C.

900℃以下での累積圧下率≧50%、かつ圧延終了温度:850℃以下
オーステナイト未再結晶域は、Nb添加により900℃程度まで上昇する。900℃以下での温度域において累積にて圧延を行うことにより、オーステナイト粒が伸展し板厚、板幅方向で細粒となると共に、圧延により導入される粒内の転位密度が増加する。
Cumulative rolling reduction at 900 ° C. or less ≧ 50% and rolling end temperature: 850 ° C. or less The austenite non-recrystallized region rises to about 900 ° C. by adding Nb. When rolling is performed cumulatively in a temperature range of 900 ° C. or lower, austenite grains are expanded to become fine grains in the plate thickness and width directions, and the dislocation density in the grains introduced by rolling increases.

900℃以下での累積圧下率が50%以上で圧延終了温度を850℃以下とすることにより、この効果が顕著に発揮され、強度、特に中温域での強度が上昇し 靱性が著しく向上する。   When the cumulative rolling reduction at 900 ° C. or less is 50% or more and the rolling end temperature is 850 ° C. or less, this effect is remarkably exhibited, and the strength, particularly the strength in the middle temperature range, is increased and the toughness is remarkably improved.

900℃以下での累積圧下率が50%未満あるいは圧延終了温度が850℃を超える場合には、オーステナイト粒の細粒化が十分でなく 粒内の転位密度が小さいため、中温域での強度ならびに靭性が劣化する。これより、900℃以下での累積圧下率は50%以上、かつ圧延終了温度は850℃以下とする。   When the cumulative rolling reduction at 900 ° C. or less is less than 50% or the rolling finish temperature exceeds 850 ° C., the austenite grains are not sufficiently refined and the dislocation density in the grains is small. Toughness deteriorates. Accordingly, the cumulative rolling reduction at 900 ° C. or less is 50% or more and the rolling end temperature is 850 ° C. or less.

加速冷却の冷却速度:5℃/s以上
鋼板強度は加速冷却での冷却速度の増加に伴い上昇する傾向を示す。加速冷却時の冷却速度が5℃/s未満の場合、変態組織が高温で変態し、冷却中に転位の 回復も進行するため、室温ならびに中温域にて十分な強度を得ることができない。これより、加速冷却時の冷却速度を5℃/s以上とする。
Cooling rate of accelerated cooling: 5 ° C./s or more The steel sheet strength tends to increase as the cooling rate of accelerated cooling increases. When the cooling rate during accelerated cooling is less than 5 ° C./s, the transformation structure is transformed at a high temperature, and the recovery of dislocation proceeds during cooling, so that sufficient strength cannot be obtained at room temperature and in the middle temperature range. Accordingly, the cooling rate during accelerated cooling is set to 5 ° C./s or more.

加速冷却の冷却停止温度:400〜550℃
鋼板強度は加速冷却の冷却停止温度が低下するに従い上昇する傾向を示すが、加速冷却の冷却停止温度が550℃を超える場合、炭化物の成長を促進させ固溶炭素量が低減するため、十分な強度、特に中温域での十分な強度が得られない。
Cooling stop temperature for accelerated cooling: 400-550 ° C
The strength of the steel sheet tends to increase as the cooling stop temperature for accelerated cooling decreases. However, when the cooling stop temperature for accelerated cooling exceeds 550 ° C, the growth of carbides is promoted and the amount of solute carbon is reduced. The strength, particularly sufficient strength in the middle temperature range cannot be obtained.

一方、冷却停止温度が400℃未満の場合には、低温変態生成物の析出が顕著になり靭性が劣化すると共に、中温域での低温変態生成物の分解により中温域での強度が著しく低下するため、加速冷却の冷却停止温度は400〜550℃とする。   On the other hand, when the cooling stop temperature is less than 400 ° C., the precipitation of the low temperature transformation product becomes remarkable and the toughness is deteriorated, and the strength in the middle temperature region is remarkably lowered due to the decomposition of the low temperature transformation product in the middle temperature region. Therefore, the cooling stop temperature for accelerated cooling is set to 400 to 550 ° C.

なお、鋼の製鋼方法については特に限定しないが、経済性の観点から、転炉法による製鋼プロセスと、連続鋳造プロセスによる鋼片の鋳造を行うことが望ましい。鋼管の成型方法は、冷間にて成形することが好ましく、UOE成形、プレスベンド成形、ロール成形などにより成形し、サブマージドアーク溶接等により溶接接合して、溶接鋼管を製造する。鋼管製造後の熱処理は所望する特性に応じて実施すれば良く、特に規定しない。   In addition, although it does not specifically limit about the steel making method of steel, From a viewpoint of economical efficiency, it is desirable to cast the steel piece by the steelmaking process by a converter method, and the continuous casting process. The method of forming the steel pipe is preferably formed in the cold, and is formed by UOE forming, press bend forming, roll forming, or the like, and welded and joined by submerged arc welding or the like to produce a welded steel pipe. The heat treatment after the production of the steel pipe may be performed according to the desired characteristics and is not particularly defined.

表1に示す化学成分を有する鋼A〜Oを用いて、表2に示す製造条件にて作製した鋼板(板厚15〜25mm)を冷間成形後シーム溶接により、外径610mm×管厚15〜25mmの鋼管を作製した。   Using steels A to O having chemical components shown in Table 1, a steel plate (plate thickness of 15 to 25 mm) produced under the manufacturing conditions shown in Table 2 was subjected to seam welding after cold forming, and an outer diameter of 610 mm × tube thickness of 15 A steel pipe of ˜25 mm was produced.

鋼板特性として、鋼板圧延方向と直角方向に引張り試験片を採取し、室温ならびに350℃での降伏強度(単位MPa)を求めた。室温での引張試験にはAPI矩形試験試験を、350℃では直径8.75mmの丸棒試験片を用い、室温ならびに350℃での降伏強度(単位MPa)が550MPa以上を良好とした。   As steel sheet characteristics, tensile specimens were collected in a direction perpendicular to the rolling direction of the steel sheet, and the yield strength (unit MPa) at room temperature and 350 ° C. was determined. The API rectangular test was used for the tensile test at room temperature, and a round bar test piece having a diameter of 8.75 mm was used at 350 ° C., and the yield strength (unit MPa) at room temperature and 350 ° C. was 550 MPa or more.

鋼管での溶接熱影響部靭性は、シャルピ−衝撃試験によりシャルピー吸収エネルギー(J)を求めて評価した。シャルピ−衝撃試験の試験片は、2mmVノッチのフルサイズ試験片で、管厚の中央部から、ノッチ位置が溶接熱影響部となるように長手を円周方向として3本採取した。シャルピ−衝撃試験は試験温度−30℃ならびに350℃で行い、3本の平均値で評価し、100J以上を良好とした。   The weld heat-affected zone toughness of the steel pipe was evaluated by obtaining Charpy absorbed energy (J) by a Charpy impact test. The Charpy impact test specimens were 2 mm V notch full-size specimens, and three samples were taken from the center of the tube thickness with the longitudinal direction being the circumferential direction so that the notch position became the weld heat affected zone. The Charpy impact test was performed at a test temperature of -30 ° C and 350 ° C, and the average value of the three samples was evaluated.

表2に鋼板の製造条件、得られた特性を示す。化学成分、鋼板製造条件とも本発明範囲内である本発明鋼(No.1〜12)は鋼板、鋼管の室温ならびに350℃での降伏強度(単位MPa)が550MPa以上を有し、かつ良好な溶接熱影響部靭性が得られている。   Table 2 shows the manufacturing conditions of the steel sheet and the obtained characteristics. The present invention steels (Nos. 1 to 12) that are within the scope of the present invention both in terms of chemical composition and steel plate production conditions have a yield strength (unit MPa) of 550 MPa or more at room temperature and 350 ° C. of the steel plate and steel pipe, and are good. The weld heat affected zone toughness is obtained.

一方、化学成分あるいは鋼板製造条件が本発明範囲外である比較鋼(No.13〜17、No.19〜25)は、室温あるいは350℃での強度および/または溶接熱影響部靭性が本発明鋼に対して劣っていた。   On the other hand, comparative steels (No. 13-17, No. 19-25) whose chemical composition or steel plate manufacturing conditions are outside the scope of the present invention have the strength at room temperature or 350 ° C. and / or the weld heat affected zone toughness. It was inferior to steel.

また、製管後、熱処理(Q−T処理)を施した比較鋼18は、350℃での強度が本発明鋼に対して劣っていた。   In addition, the comparative steel 18 subjected to heat treatment (QT treatment) after pipe making was inferior in strength at 350 ° C. to the steel of the present invention.

Figure 2006183133
Figure 2006183133

Figure 2006183133
Figure 2006183133

Figure 2006183133
Figure 2006183133

Claims (3)

質量%で、C:0.05〜0.09%、Si:0.05〜0.20%、Mn:1.5〜2.0%、P:0.020%以下、S:0.002%以下、Mo:0. 05〜0.3%、Nb:0.005〜0.05%、Ti:0.005〜0.02%、Al:0.01〜0.04%、N:0.004〜0.006%を含有し、残部がFe及び不可避的不純物からなり、Ti/Nが2.0〜4.0の鋼を、1000〜1200℃に加熱後、900℃以下での累積圧下率が50%以上、かつ圧延終了温度が850℃以下で熱間圧延後、5℃/秒以上の冷却速度にて400〜550℃まで加速冷却することを特徴とする溶接熱影響部靭性に優れた降伏強度550MPa以上の鋼板の製造方法。   In mass%, C: 0.05 to 0.09%, Si: 0.05 to 0.20%, Mn: 1.5 to 2.0%, P: 0.020% or less, S: 0.002 % Or less, Mo: 0. 05-0.3%, Nb: 0.005-0.05%, Ti: 0.005-0.02%, Al: 0.01-0.04%, N: 0.004-0.006% The balance is made of Fe and inevitable impurities, and the steel with Ti / N of 2.0 to 4.0 is heated to 1000 to 1200 ° C., and the cumulative rolling reduction at 900 ° C. or less is 50% or more, In addition, after hot rolling at a rolling end temperature of 850 ° C. or less, accelerated cooling to 400 to 550 ° C. at a cooling rate of 5 ° C./second or more is performed. A method of manufacturing a steel sheet. 更に、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、V:0.08%以下、Ca:0.0005〜0.004%、 REM:0.0005〜0.01%のうち1種または2種以上を含有する請求項1に記載の溶接熱影響部靭性に優れた降伏強度550MPa以上の鋼板の製造方法。   Furthermore, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, V: 0.08% or less, Ca: 0.0005 to 0.004%, REM: 0.0005 The manufacturing method of the steel plate of yield strength 550 Mpa or more excellent in the weld heat affected zone toughness of Claim 1 containing 1 type or 2 types or more among -0.01%. 請求項1または2記載の鋼板を管状に冷間成形しその突合せ部を溶接することを特徴とする、降伏強度550MPa以上の母材を有する溶接熱影響部靭性に優れた蒸気輸送用高強度溶接鋼管の製造方法。   3. High strength welding for steam transport excellent in weld heat affected zone toughness having a base material with a yield strength of 550 MPa or more, wherein the steel sheet according to claim 1 or 2 is cold-formed into a tubular shape and its butt portion is welded. Steel pipe manufacturing method.
JP2005284198A 2004-12-02 2005-09-29 Manufacturing method of high-strength steam piping steel plate with excellent weld heat-affected zone toughness Active JP5055736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005284198A JP5055736B2 (en) 2004-12-02 2005-09-29 Manufacturing method of high-strength steam piping steel plate with excellent weld heat-affected zone toughness

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004350017 2004-12-02
JP2004350017 2004-12-02
JP2005284198A JP5055736B2 (en) 2004-12-02 2005-09-29 Manufacturing method of high-strength steam piping steel plate with excellent weld heat-affected zone toughness

Publications (2)

Publication Number Publication Date
JP2006183133A true JP2006183133A (en) 2006-07-13
JP5055736B2 JP5055736B2 (en) 2012-10-24

Family

ID=36736458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005284198A Active JP5055736B2 (en) 2004-12-02 2005-09-29 Manufacturing method of high-strength steam piping steel plate with excellent weld heat-affected zone toughness

Country Status (1)

Country Link
JP (1) JP5055736B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065582A1 (en) * 2009-11-25 2011-06-03 Jfeスチール株式会社 Welded steel pipe for linepipe with superior compressive strength and excellent sour resistance, and process for producing same
WO2011065578A1 (en) * 2009-11-25 2011-06-03 Jfeスチール株式会社 Welded steel pipe for linepipe with superior compressive strength and superior toughness, and process for producing same
WO2011065579A1 (en) * 2009-11-25 2011-06-03 Jfeスチール株式会社 Welded steel pipe for linepipe with superior compressive strength, and process for producing same
WO2014002423A1 (en) 2012-06-28 2014-01-03 Jfeスチール株式会社 High-strength electric-resistance-welded steel pipe of excellent long-term softening resistance in intermediate temperature ranges, and method for producing same
WO2016157857A1 (en) * 2015-03-27 2016-10-06 Jfeスチール株式会社 High-strength steel, production method therefor, steel pipe, and production method for steel pipe
WO2016157856A1 (en) * 2015-03-27 2016-10-06 Jfeスチール株式会社 High-strength steel, production method therefor, steel pipe, and production method therefor
KR20170117547A (en) * 2015-03-27 2017-10-23 제이에프이 스틸 가부시키가이샤 High-strength steel, production method therefor, steel pipe, and production method therefor
CN113862580A (en) * 2021-09-08 2021-12-31 唐山不锈钢有限责任公司 Hot-rolled steel strip for 590 MPa-grade cold-rolled dual-phase steel and production method thereof
CN114774787A (en) * 2022-04-25 2022-07-22 包头钢铁(集团)有限责任公司 700 MPa-level microalloyed hot-rolled steel strip for high-strength drill pipe and production method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111342A (en) * 1995-10-12 1997-04-28 Nkk Corp Production of low yield ratio steel pipe
JPH11226738A (en) * 1998-02-13 1999-08-24 Nkk Corp Method for welding high-cr ferritic heat resisting steel and production of its welded steel tube
JP2000063980A (en) * 1998-08-12 2000-02-29 Sumitomo Metal Ind Ltd Steel plate excellent in strength, toughness and weldability, and method for producing the same
JP2001152248A (en) * 1999-11-24 2001-06-05 Nippon Steel Corp Method for producing high-strength steel sheet and steel pipe excellent in low-temperature toughness
JP2005139470A (en) * 2002-11-06 2005-06-02 Tokyo Electric Power Co Inc:The Long-life heat-resistant low alloy steel welded member, and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111342A (en) * 1995-10-12 1997-04-28 Nkk Corp Production of low yield ratio steel pipe
JPH11226738A (en) * 1998-02-13 1999-08-24 Nkk Corp Method for welding high-cr ferritic heat resisting steel and production of its welded steel tube
JP2000063980A (en) * 1998-08-12 2000-02-29 Sumitomo Metal Ind Ltd Steel plate excellent in strength, toughness and weldability, and method for producing the same
JP2001152248A (en) * 1999-11-24 2001-06-05 Nippon Steel Corp Method for producing high-strength steel sheet and steel pipe excellent in low-temperature toughness
JP2005139470A (en) * 2002-11-06 2005-06-02 Tokyo Electric Power Co Inc:The Long-life heat-resistant low alloy steel welded member, and method for producing the same

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9089919B2 (en) 2009-11-25 2015-07-28 Jfe Steel Corporation Welded steel pipe for linepipe with high compressive strength and manufacturing method thereof
WO2011065578A1 (en) * 2009-11-25 2011-06-03 Jfeスチール株式会社 Welded steel pipe for linepipe with superior compressive strength and superior toughness, and process for producing same
WO2011065579A1 (en) * 2009-11-25 2011-06-03 Jfeスチール株式会社 Welded steel pipe for linepipe with superior compressive strength, and process for producing same
JP2011132601A (en) * 2009-11-25 2011-07-07 Jfe Steel Corp Welded steel pipe for linepipe with superior compressive strength and superior toughness, and process for producing the same
JP2011132599A (en) * 2009-11-25 2011-07-07 Jfe Steel Corp Welded steel pipe for linepipe with superior compressive strength, and process for producing same
CN102666899A (en) * 2009-11-25 2012-09-12 杰富意钢铁株式会社 Welded steel pipe for linepipe with superior compressive strength and superior toughness, and process for producing same
EP2505681A1 (en) * 2009-11-25 2012-10-03 JFE Steel Corporation Welded steel pipe for linepipe with superior compressive strength and superior toughness, and process for producing same
EP2505682A1 (en) * 2009-11-25 2012-10-03 JFE Steel Corporation Welded steel pipe for linepipe with superior compressive strength, and process for producing same
EP2505682A4 (en) * 2009-11-25 2013-05-08 Jfe Steel Corp WELDED STEEL PIPE FOR PIPE TUBE HAVING SUPERIOR COMPRESSION STRENGTH, AND PROCESS FOR PRODUCTION THEREOF
EP2505681A4 (en) * 2009-11-25 2013-05-08 Jfe Steel Corp WELDED STEEL PIPE FOR PIPE PIPE HAVING SUPERIOR COMPRESSION STRENGTH AND SUPERIOR TOUGHNESS, AND PROCESS FOR PRODUCTION THEREOF
WO2011065582A1 (en) * 2009-11-25 2011-06-03 Jfeスチール株式会社 Welded steel pipe for linepipe with superior compressive strength and excellent sour resistance, and process for producing same
US9181609B2 (en) 2009-11-25 2015-11-10 Jfe Steel Corporation Welded steel pipe for linepipe having high compressive strength and excellent sour gas resistance and manufacturing method thereof
US9551047B2 (en) 2012-06-28 2017-01-24 Jfe Steel Corporation High-strength electric-resistance-welded steel pipe of excellent long-term softening resistance in intermediate temperature ranges
WO2014002423A1 (en) 2012-06-28 2014-01-03 Jfeスチール株式会社 High-strength electric-resistance-welded steel pipe of excellent long-term softening resistance in intermediate temperature ranges, and method for producing same
KR20150013861A (en) 2012-06-28 2015-02-05 제이에프이 스틸 가부시키가이샤 High-strength electric-resistance-welded steel pipe of excellent long-term softening resistance in intermediate temperature ranges, and method for producing same
CN107429353A (en) * 2015-03-27 2017-12-01 杰富意钢铁株式会社 The manufacture method of high strength steel and its manufacture method and steel pipe and the steel pipe
EP3276033A4 (en) * 2015-03-27 2018-03-14 JFE Steel Corporation High-strength steel, production method therefor, steel pipe, and production method for steel pipe
JPWO2016157857A1 (en) * 2015-03-27 2017-06-22 Jfeスチール株式会社 High strength steel and method for manufacturing the same, steel pipe and method for manufacturing the steel pipe
JPWO2016157856A1 (en) * 2015-03-27 2017-07-13 Jfeスチール株式会社 High strength steel and method for manufacturing the same, steel pipe and method for manufacturing the same
KR20170117523A (en) * 2015-03-27 2017-10-23 제이에프이 스틸 가부시키가이샤 High-strength steel, production method therefor, steel pipe, and production method therefor
KR20170117524A (en) * 2015-03-27 2017-10-23 제이에프이 스틸 가부시키가이샤 High-strength steel, production method therefor, steel pipe, and production method for steel pipe
KR20170117547A (en) * 2015-03-27 2017-10-23 제이에프이 스틸 가부시키가이샤 High-strength steel, production method therefor, steel pipe, and production method therefor
CN107429354A (en) * 2015-03-27 2017-12-01 杰富意钢铁株式会社 High strength steel and its manufacture method and steel pipe and its manufacture method
WO2016157857A1 (en) * 2015-03-27 2016-10-06 Jfeスチール株式会社 High-strength steel, production method therefor, steel pipe, and production method for steel pipe
WO2016157856A1 (en) * 2015-03-27 2016-10-06 Jfeスチール株式会社 High-strength steel, production method therefor, steel pipe, and production method therefor
US20180073095A1 (en) * 2015-03-27 2018-03-15 Jfe Steel Corporation High-strength steel, method for manufacturing high-strength steel, steel pipe and method for manufacturing steel pipe (as amended)
KR102002717B1 (en) * 2015-03-27 2019-07-23 제이에프이 스틸 가부시키가이샤 High-strength steel, method for manufacturing high-strength steel, steel pipe, and method for manufacturing steel pipe
KR102004072B1 (en) * 2015-03-27 2019-07-25 제이에프이 스틸 가부시키가이샤 High-strength steel, method for manufacturing high-strength steel, steel pipe and method for manufacturing steel pipe
KR101997381B1 (en) 2015-03-27 2019-10-01 제이에프이 스틸 가부시키가이샤 High-strength steel, method for manufacturing high-strength steel, steel pipe, and method for manufacturing steel pipe
CN107429353B (en) * 2015-03-27 2019-12-27 杰富意钢铁株式会社 High-strength steel, method for producing same, steel pipe, and method for producing same
US10570477B2 (en) 2015-03-27 2020-02-25 Jfe Steel Corporation High-strength steel, method for manufacturing high-strength steel, steel pipe, and method for manufacturing steel pipe
CN107429354B (en) * 2015-03-27 2020-06-09 杰富意钢铁株式会社 High-strength steel and method for producing same, and steel pipe and method for producing same
CN113862580A (en) * 2021-09-08 2021-12-31 唐山不锈钢有限责任公司 Hot-rolled steel strip for 590 MPa-grade cold-rolled dual-phase steel and production method thereof
CN114774787A (en) * 2022-04-25 2022-07-22 包头钢铁(集团)有限责任公司 700 MPa-level microalloyed hot-rolled steel strip for high-strength drill pipe and production method thereof
CN114774787B (en) * 2022-04-25 2023-09-26 包头钢铁(集团)有限责任公司 Hot rolled steel strip for 700 MPa-level microalloyed high-strength drill rod and production method thereof

Also Published As

Publication number Publication date
JP5055736B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5561119B2 (en) Welded steel pipe for high compressive strength sour line pipe and manufacturing method thereof
JP5561120B2 (en) Welded steel pipe for high compressive strength and high toughness line pipe and manufacturing method thereof
JP4671959B2 (en) Steel sheets and steel pipes for ultra-high-strength line pipes excellent in low-temperature toughness and methods for producing them
JP4833835B2 (en) Steel pipe with small expression of bauschinger effect and manufacturing method thereof
JP5217773B2 (en) High-strength welded steel pipe for low temperature having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness and method for producing the same
CA2980424C (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
KR20120083935A (en) Welded steel pipe for linepipe with superior compressive strength, and process for producing same
JP2007314828A (en) Steel tube for high-strength line pipe excellent in strain aging resistance, steel plate for high-strength line pipe, and production method thereof
CN102639741A (en) Thick welded steel pipe having excellent low-temperature toughness, method for producing thick welded steel pipe having excellent low-temperature toughness, and steel sheet for producing thick welded steel pipe
JP5782828B2 (en) High compressive strength steel pipe and manufacturing method thereof
JP4904774B2 (en) Manufacturing method of high-strength, high-toughness steel with excellent strength in the medium temperature range
JP2009127069A (en) High toughness steel plate for line pipe, and its manufacturing method
JP6241570B2 (en) High strength steel and method for manufacturing the same, steel pipe and method for manufacturing the steel pipe
JP5509654B2 (en) High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same
JP5055736B2 (en) Manufacturing method of high-strength steam piping steel plate with excellent weld heat-affected zone toughness
JP4741528B2 (en) Steel plates and steel pipes for steam transport piping having excellent high temperature characteristics and methods for producing them
CN111655873B (en) Steel material for line pipe, method for producing same, and method for producing line pipe
JP5381234B2 (en) Manufacturing method of line pipe with high compressive strength
JP5157387B2 (en) Method for manufacturing thick-walled, high-strength, high-toughness steel pipe material with high deformability
JP2010222681A (en) Thick and high toughness steel pipe material and method for producing the same
JP4523908B2 (en) Steel sheet for high strength line pipe having excellent tensile strength of 900 MPa class or more excellent in low temperature toughness, line pipe using the same, and production method thereof
JP4904806B2 (en) Manufacturing method of high-strength, high-toughness steel sheet with excellent strength and deformability in the middle temperature range
CN111655872B (en) Steel material for line pipe, method for producing same, and method for producing line pipe
JP6819835B1 (en) Steel materials for line pipes and their manufacturing methods and line pipes and their manufacturing methods
JP2009084599A (en) Steel sheet for ultra-high-strength line pipe excellent in deformability and low-temperature toughness, and method for producing steel pipe

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5055736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250