[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006177883A - Device and method for inspecting surface contamination - Google Patents

Device and method for inspecting surface contamination Download PDF

Info

Publication number
JP2006177883A
JP2006177883A JP2004373690A JP2004373690A JP2006177883A JP 2006177883 A JP2006177883 A JP 2006177883A JP 2004373690 A JP2004373690 A JP 2004373690A JP 2004373690 A JP2004373690 A JP 2004373690A JP 2006177883 A JP2006177883 A JP 2006177883A
Authority
JP
Japan
Prior art keywords
measured
radiation
measurement
conveyor
surface contamination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004373690A
Other languages
Japanese (ja)
Other versions
JP4455312B2 (en
Inventor
Koichiro Inohara
康一郎 猪原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004373690A priority Critical patent/JP4455312B2/en
Publication of JP2006177883A publication Critical patent/JP2006177883A/en
Application granted granted Critical
Publication of JP4455312B2 publication Critical patent/JP4455312B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently and automatically determine existence of radiation contamination of a measuring object while moving it, and to accurately and efficiently measure the contamination of the measuring object with a high reliability as circumstances demand. <P>SOLUTION: The device for inspecting surface contamination measures the discharge radiation dose from the measured object while moving the measuring object on a conveyer. The device 10 comprises a radiation detecting means 23 for measuring discharge radiation dose while changing the measuring part according to the movement of the measuring object 11, a monitoring and determining means 20 for monitoring the increase trend of the measurement value from the radiation detecting means 23, and a motor speed control means 18 for controlling a motor for driving the conveyer to reduce or change the conveyer speed or stop the conveyer when the increase trend of the measurement value is recognized by the monitoring and determining means 20. When the increase trend of the measurement value is recognized by the monitoring and determining means 20, the discharge radiation dose from the measuring object 11 is measured by reducing the conveyer speed or stopping the conveyer, and the existence of the radiation contamination of the measured object is determined. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被測定物をコンベアに搭載し、連続移動させながら被測定物の汚染検査を行なう放射線検査技術に係り、特に、移動中の被測定物を放射線検出手段により測定し、汚染検査を行なう表面汚染検査装置およびその検査方法に関する。   The present invention relates to a radiation inspection technique in which an object to be measured is mounted on a conveyor and continuously inspected for contamination while the object to be measured is subjected to contamination inspection. The present invention relates to a surface contamination inspection apparatus and an inspection method thereof.

従来、この種の表面汚染検査装置として、原子力施設等の放射線管理区域から搬出される物品等の被測定物をコンベアに搭載し、連続移動させながら汚染測定を行なう搬出モニタ装置がある。   2. Description of the Related Art Conventionally, as this type of surface contamination inspection apparatus, there is an unloading monitor apparatus that performs measurement of contamination while an object to be measured such as an article unloaded from a radiation control area such as a nuclear facility is mounted on a conveyor.

この搬出モニタ装置では、最近の放射線管理区域から持ち出される物品等の被測定物に対する放射線管理強化から、放射線検出感度を向上させることが要求されている。   In this carry-out monitor device, it is required to improve the radiation detection sensitivity in order to strengthen radiation management for an object to be measured such as an article taken out from a recent radiation management area.

この放射線検出感度を向上させるために、特開平6−148334号公報(特許文献1参照)および特開平6−64714号公報(特許文献2参照)に記載したように、バックグラウンドレベルの変動に応じて最適な汚染計数時間を自動的に設定したり、被測定物の搬送速度を調整して汚染検査の作業性を向上させた放射線モニタがある。
特開平6−148334号公報 特開平6−64714号公報
In order to improve the radiation detection sensitivity, as described in JP-A-6-148334 (see Patent Document 1) and JP-A-6-64714 (see Patent Document 2), it responds to changes in the background level. There is a radiation monitor that automatically sets the optimum contamination counting time and adjusts the conveyance speed of the object to be measured to improve the workability of contamination inspection.
JP-A-6-148334 JP-A-6-64714

従来の放射線モニタに用いられる表面汚染検査装置において、被測定物の放射線検出感度を向上させ、高い検出感度を得るには、コンベアの速度を落とす必要があり、コンベア速度を落とすと測定時間が長くなり、被測定物の汚染測定に長時間を要する問題がある。   In conventional surface contamination inspection equipment used for radiation monitors, it is necessary to reduce the speed of the conveyor in order to improve the radiation detection sensitivity of the object to be measured and to obtain high detection sensitivity. If the conveyor speed is reduced, the measurement time becomes longer. Therefore, there is a problem that it takes a long time to measure the contamination of the object to be measured.

また、高い放射線検出感度を得るために、バックグラウンド放射線レベルの影響を下げるために、鉛遮蔽物を追設することも考えられるが、鉛遮蔽物の追加は装置重量増を招き、設置が容易でない。   In addition, in order to obtain high radiation detection sensitivity, it may be possible to install a lead shield to reduce the influence of the background radiation level. However, the addition of a lead shield increases the weight of the device and facilitates installation. Not.

本発明は、上述した事情を考慮してなされたもので、移動させながら被測定物の放射線汚染の有無を効率的かつ自動的に判断し、被測定物の汚染測定を臨機応変に高い信頼性を保って精度よく能率的に測定可能な表面汚染検査装置およびその検査方法を提供することを目的とする。   The present invention has been made in consideration of the above-mentioned circumstances, and efficiently and automatically determines the presence or absence of radiation contamination of the object to be measured while moving it, and the contamination measurement of the object to be measured is highly reliable and flexible. It is an object of the present invention to provide a surface contamination inspection apparatus and an inspection method thereof that can accurately and efficiently measure while maintaining the above.

本発明は、被測定物の放射線汚染測定中に、放射線計数率の上昇傾向により汚染の有無を判断し、上昇傾向時に被測定物を精密にかつ念入りに検査可能な能率的で合理的な表面汚染検査装置およびその検査方法を提供するにある。   The present invention determines the presence or absence of contamination from the rising tendency of the radiation count rate during the measurement of radiation contamination of the object to be measured. It is in providing a contamination inspection apparatus and its inspection method.

本発明に係る表面汚染検査装置は、上述した課題を解決するために、被測定物をコンベア上で移動させながら被測定物からの放出放射線量を測定する表面汚染検査装置において、前記被測定物の移動に応じて測定部位を変えながら放出放射線量を測定する放射線検出手段と、この放射線検出手段からの測定値の上昇傾向を監視する監視判定手段と、この監視判定手段で測定値の上昇傾向が認められるとき、コンベア速度を減速あるいは切換えまたは停止させるようにコンベア駆動用モータを制御するモータ速度制御手段とを有し、前記監視判定手段で前記測定値の上昇傾向が認められるとき、コンベア速度を減速あるいは切換えまたは停止制御し、被測定物からの放出放射線量を測定して被測定物の汚染の有無を判断するように設定したものである。   In order to solve the above-described problems, a surface contamination inspection apparatus according to the present invention is a surface contamination inspection apparatus that measures the amount of radiation emitted from a measurement object while moving the measurement object on a conveyor. The radiation detection means for measuring the radiation dose while changing the measurement site according to the movement of the monitor, the monitoring judgment means for monitoring the rising tendency of the measurement value from the radiation detection means, and the rising tendency of the measurement value by this monitoring judgment means Motor speed control means for controlling the motor for driving the conveyor so as to decelerate, change over or stop the conveyor speed, and when the monitoring judgment means shows an increase in the measured value, the conveyor speed Is set to decelerate, switch or stop control, and measure the amount of radiation emitted from the object to be measured to determine the presence or absence of contamination of the object to be measured. A.

また、本発明に係る表面汚染検査方法は、上述した課題を解決するために、被測定物をコンベア上で移動させながら被測定物からの放出放射線量を測定する表面汚染検査方法において、前記被測定物の移動に応じて測定部位を変えながら被測定物からの放出放射線量を測定するステップと、測定される被測定物からの測定信号の上昇傾向を監視するステップと、上記測定信号の上昇傾向が認められるとき、コンベア速度を減速あるいは切換えまたは停止させるようにモータ制御するステップとを有し、前記被測定物から測定信号の上昇傾向が認められるとき、コンベア速度を減速あるいは切換えまたは停止制御させて被測定物からの放出放射線量を測定し、被測定物の汚染の有無を判断する方法である。   Further, the surface contamination inspection method according to the present invention is the surface contamination inspection method for measuring the radiation dose emitted from the object to be measured while moving the object to be measured on the conveyor in order to solve the above-described problem. Measuring the radiation dose emitted from the measurement object while changing the measurement site in accordance with the movement of the measurement object, monitoring the rising trend of the measurement signal from the measurement object to be measured, and increasing the measurement signal A motor control to decelerate, switch or stop the conveyor speed when a trend is recognized, and to decelerate, switch or stop the conveyor speed when a rising trend of the measurement signal is recognized from the object to be measured In this method, the amount of radiation emitted from the object to be measured is measured to determine whether the object to be measured is contaminated.

本発明に係る表面汚染検査装置およびその検査方法においては、物品等の被測定物の移動に応じ測定部位を変えながら放出放射線量を測定する放射線検出手段からの測定値の上昇傾向を監視し、この上昇傾向が認められる場合、コンベア速度を減速あるいは停止させて精密測定し、被測定物の汚染の有無の判断を正確かつ効率的に行なうことができる。   In the surface contamination inspection apparatus and the inspection method thereof according to the present invention, the rising trend of the measured value from the radiation detecting means for measuring the emitted radiation dose while changing the measurement site according to the movement of the measurement object such as an article is monitored, When this upward tendency is recognized, the conveyor speed can be reduced or stopped to make a precise measurement, and the presence or absence of contamination of the object to be measured can be accurately and efficiently determined.

本発明に係る表面汚染検査装置およびその検査方法の実施形態について添付図面を参照して説明する。   Embodiments of a surface contamination inspection apparatus and an inspection method thereof according to the present invention will be described with reference to the accompanying drawings.

図1および図2は、本発明に係る表面汚染検査装置の第1実施形態を示す平面図および側断面図である。この表面汚染検査装置10は、放射線管理区域から搬出される物品や部材等の被測定物11をコンベア12に搭載し連続移動させながら放射線汚染検査を行なう物品搬出モニタ装置に適用され、被測定物11の表面汚染測定装置として用いられる。   FIG. 1 and FIG. 2 are a plan view and a side sectional view showing a first embodiment of a surface contamination inspection apparatus according to the present invention. The surface contamination inspection apparatus 10 is applied to an article removal monitor apparatus that performs a radiation contamination inspection while an object to be measured 11 such as an article or member carried out from a radiation control area is mounted on a conveyor 12 and continuously moved. 11 is used as a surface contamination measuring device.

表面汚染検査装置10は、原子力施設等の放射線管理区域から被測定物を搬出する物品搬送路13に設けられる被測定物搬出用のコンベア12を有する。このコンベア12には駆動ローラ14と従動ローラ15との間に可撓性を有する無端状のコンベアベルト16が巻き掛けられ、このコンベアベルト16上に被測定物11が載置されて搬送される。   The surface contamination inspection apparatus 10 has a conveyor 12 for carrying out the object to be measured provided in an article conveyance path 13 for carrying out the object to be measured from a radiation management area such as a nuclear facility. A flexible endless conveyor belt 16 is wound around the conveyor 12 between the driving roller 14 and the driven roller 15, and the object to be measured 11 is placed on the conveyor belt 16 and conveyed. .

コンベア12の駆動ローラ14は、モータ速度制御手段としてのモータ速度制御器18により加減速(可変)制御される駆動モータ19により回転駆動され、この駆動モータ19のモータ駆動によりコンベアベルト16の搬送速度が制御される。モータ速度制御器18は、監視判定手段である処理制御表示装置20からの制御信号により作動制御される。駆動モータ19は、例えば可逆回転可能なモータが用いられる。   The drive roller 14 of the conveyor 12 is rotationally driven by a drive motor 19 that is controlled by acceleration / deceleration (variable) by a motor speed controller 18 as a motor speed control means, and the conveying speed of the conveyor belt 16 is driven by the motor of the drive motor 19. Is controlled. The operation of the motor speed controller 18 is controlled by a control signal from the process control display device 20 which is a monitoring determination unit. As the drive motor 19, for example, a reversible motor is used.

処理制御表示装置20には、放射線検出手段として対をなす放射線検出器23(23a,23b)が接続されている。放射線検出器23は、コンベアベルト16上を搬送される被測定物11を撓むように上下に対をなして設置される。放射線検出器23で検出された放射線検出信号は、処理制御表示装置20に入力されて信号処理され、その処理結果は処理制御表示装置20の表示部に放射線計数率値の表示等が行なわれる。   The processing control display device 20 is connected to a pair of radiation detectors 23 (23a, 23b) as radiation detection means. The radiation detectors 23 are installed in pairs so as to bend the object to be measured 11 conveyed on the conveyor belt 16. The radiation detection signal detected by the radiation detector 23 is input to the processing control display device 20 for signal processing, and the processing result is displayed on the display unit of the processing control display device 20 as a radiation count rate value.

また、コンベアベルト16上を搬送される被測定物11は、位置検出センサ25,26により、被測定物11の通過の有無が検出される。位置検出センサ25,26は、例えば光透過型検出センサが用いられるが、反射型検出センサであってもよく、コンベアベルト16の長手方向に所定の間隔をおいて配設される。位置検出センサ25,26は、例えば放射線検出器23a,23bの入口側と出口側にそれぞれ配置される。   Further, the presence or absence of passage of the measurement object 11 is detected by the position detection sensors 25 and 26 in the measurement object 11 conveyed on the conveyor belt 16. As the position detection sensors 25 and 26, for example, a light transmission type detection sensor is used. However, a reflection type detection sensor may be used, and the position detection sensors 25 and 26 are arranged in the longitudinal direction of the conveyor belt 16 at a predetermined interval. The position detection sensors 25 and 26 are disposed, for example, on the entrance side and the exit side of the radiation detectors 23a and 23b, respectively.

コンベアベルト16は可撓性を有する帯状ベルトあるいはチェーンで形成し、被測定物11を載置する部分を金鋼状に形成してもよい。また、コンベアベルト16は、複数本、例えば左右両脇に狭幅の帯状ベルトを巻き掛けることにより形成し、両帯状ベルト間に支持ワイヤを通したり、また、両帯状ベルトに小ローラを複数個配置し、小ローラ上に金網状トレイを載せたものであってもよい。コンベアベルト16に金網状トレイを備えることで、下方設置の放射線検出器23で、被測定物11の下面から透過力の弱い放射線を放出する被測定物11の場合にも、表面汚染の有無を正確に検出することができる。   The conveyor belt 16 may be formed of a flexible belt-like belt or chain, and the portion on which the object to be measured 11 is placed may be formed of a gold steel shape. The conveyor belt 16 is formed by wrapping a plurality of belt belts, for example, narrow belt belts on the left and right sides, passing a support wire between the belt belts, and a plurality of small rollers on the belt belts. It may be arranged and a wire mesh tray placed on a small roller. By providing the conveyor belt 16 with a wire mesh tray, the presence or absence of surface contamination can be detected even in the case of the object to be measured 11 that emits radiation with low transmission power from the lower surface of the object to be measured 11 by the radiation detector 23 installed below. It can be detected accurately.

図1および図2に示された表面汚染検査装置10の作動により、コンベア12上を被測定物11が搬送される。測定開始用の位置検出センサ25の位置に被測定物11の先端が到達すると、被測定物11の表面汚染、すなわち放出放射線量の測定が開始され、各放射線検出器23a,23bから測定信号が出力される。   The object to be measured 11 is conveyed on the conveyor 12 by the operation of the surface contamination inspection apparatus 10 shown in FIGS. When the tip of the object to be measured 11 reaches the position of the position detection sensor 25 for starting measurement, the surface contamination of the object to be measured 11, that is, measurement of the emitted radiation dose is started, and measurement signals are received from the radiation detectors 23 a and 23 b. Is output.

また、測定終了用の位置検出センサ26の位置を被測定物11の後端が通過すると表面汚染検査装置10による放射線測定が終了する。   Further, when the rear end of the object to be measured 11 passes the position of the position detection sensor 26 for measurement completion, the radiation measurement by the surface contamination inspection apparatus 10 is completed.

この表面汚染検査装置10は、被測定物11の一部あるいは全部が、位置検出センサ23a,23b間で区画される測定エリアに存在する間、放射線測定が行なわれ、測定エリアを外れると、放射線測定は中断せしめられる。   The surface contamination inspection apparatus 10 performs radiation measurement while a part or all of the object to be measured 11 exists in a measurement area defined by the position detection sensors 23a and 23b. The measurement is interrupted.

一方、測定開始用の位置検出センサ23aが被測定物11を検出し、測定が開始されると、コンベア12の速度は所定値に初期設定され、コンベアベルト16が走行駆動される。ここに、所定値とは、表面汚染検出装置10による測定開始前のバックグラウンド計数率(BG値)ではなく、放射線の検出感度算出式を表示する次の検出限界式を用いて算出した数値をいう。   On the other hand, when the position detection sensor 23a for starting measurement detects the object to be measured 11 and measurement is started, the speed of the conveyor 12 is initialized to a predetermined value, and the conveyor belt 16 is driven to travel. Here, the predetermined value is not the background count rate (BG value) before the start of measurement by the surface contamination detection device 10, but a numerical value calculated using the following detection limit expression that displays the radiation detection sensitivity calculation expression. Say.

検出感度算出式による検出限界Aは、

Figure 2006177883
The detection limit A based on the detection sensitivity calculation formula is
Figure 2006177883

で表わされる。ここに、単位(cps)はカウント/secのことを表わす。 It is represented by Here, the unit (cps) represents count / sec.

次に、本発明に係る表面汚染検査装置10の作用を説明する。   Next, the operation of the surface contamination inspection apparatus 10 according to the present invention will be described.

この表面汚染検査装置10は、コンベア12のコンベアベルト16上を搬送される物品等の被測定物11の移動に伴ない、被測定物11がコンベア12の測定エリアに入ると、被測定物11の移動に応じ、放射線検出器23(23a,23b)が、被測定物11の測定部位を相対的に変えながら被測定物11からの放出放射線量を測定し、その測定信号(測定値)を監視判定手段としての処理制御表示装置20に出力する。   The surface contamination inspection apparatus 10 moves when the measurement object 11 enters the measurement area of the conveyor 12 as the measurement object 11 such as an article conveyed on the conveyor belt 16 of the conveyor 12 moves. The radiation detector 23 (23a, 23b) measures the radiation dose emitted from the device under test 11 while relatively changing the measurement site of the device under test 11 and moves the measurement signal (measured value). The data is output to the process control display device 20 as a monitoring determination unit.

被測定物11の放出放射線量を測定する放射線検出器23(23a,23b)からの測定信号(放射線計数率値信号)を処理制御表示装置20に入力させると、処理制御表示装置20は、放射線検出器23(23a,23b)からの測定信号(放射線計数率値信号)の上昇傾向を監視し、その上昇傾向が認められる場合には、モータ速度制御器18に制御信号を出力し、このモータ速度制御器18で駆動モータ19のモータ駆動を減速あるいは停止させるようにモータ制御する。   When a measurement signal (radiation count rate value signal) from the radiation detector 23 (23a, 23b) that measures the radiation dose emitted from the object to be measured 11 is input to the processing control display device 20, the processing control display device 20 The rising tendency of the measurement signal (radiation count rate value signal) from the detector 23 (23a, 23b) is monitored, and when the rising tendency is recognized, a control signal is output to the motor speed controller 18, and this motor The speed controller 18 controls the motor so that the motor drive of the drive motor 19 is decelerated or stopped.

この駆動モータ19のモータ制御により、コンベア12のコンベアベルト16はコンベア速度が低下(減速)せしめられ、このコンベア速度を低下させた状態でコンベア12上の被測定物11からの放出放射線量を放射線検出器23で時間をかけて精密測定し、放射線汚染の有無および程度が処理制御表示装置20により判断され、その表示部に表示されるようになっている。   By the motor control of the drive motor 19, the conveyor belt 16 of the conveyor 12 is caused to reduce (decelerate) the conveyor speed, and the amount of radiation emitted from the measurement object 11 on the conveyor 12 is radiated while the conveyor speed is reduced. Precise measurement is performed with the detector 23 over time, and the presence / absence and degree of radiation contamination are judged by the processing control display device 20 and displayed on the display unit.

表面汚染検査装置10では、被測定物11の表面汚染測定中に、放射線検出器23(23a,23b)からの測定信号(測定値:放射線計数率値信号)が上昇傾向を示したとき、この上昇傾向を処理制御表示装置20が監視し、測定信号の上昇傾向が所要値を超えると、モータ速度制御器18を作動制御し、駆動モータ19を減速制御あるいは停止させる。   In the surface contamination inspection apparatus 10, when the measurement signal (measurement value: radiation count rate value signal) from the radiation detector 23 (23a, 23b) shows an upward tendency during the surface contamination measurement of the object 11 to be measured, The process control display device 20 monitors the upward trend, and when the upward trend of the measurement signal exceeds a required value, the motor speed controller 18 is controlled to operate, and the drive motor 19 is controlled to decelerate or stop.

この駆動モータ19の減速・停止制御により、コンベア12はコンベア速度を減速あるいは停止せしめられる。コンベア12のコンベア速度の減速あるいは切換制御または停止により、コンベア12は図3に示すように、通常測定モード運転(例えばコンベア速度が20mm/secを超え200mm/sec程度、好ましくは80mm/secに制御)から汚染測定モード運転(例えば、コンベア速度が0〜20mm/sec、好ましくは20mm/secに制御)に入り、汚染測定モード運転で放射線測定精度の高い時間をかけた精密測定が安定的に行なわれる。   By the deceleration / stop control of the drive motor 19, the conveyor 12 can reduce or stop the conveyor speed. As shown in FIG. 3, the conveyor 12 is controlled in normal measurement mode operation (for example, the conveyor speed exceeds 20 mm / sec and is controlled to about 200 mm / sec, preferably 80 mm / sec, as shown in FIG. 3). ) Enters contamination measurement mode operation (for example, the conveyor speed is controlled to 0 to 20 mm / sec, preferably 20 mm / sec), and precise measurement over time with high radiation measurement accuracy is stably performed in the contamination measurement mode operation. It is.

図3は、表面汚染検査装置10による測定動作を模式的に表わしたタイムチャートである。   FIG. 3 is a time chart schematically showing the measurement operation by the surface contamination inspection apparatus 10.

[通常測定モード]
このタイムチャートから理解できるように、コンベア12上を搬送される被測定物11は、通常測定モードで測定が開始される。通常測定モードでは、コンベア速度vが速く、誤警報が発信される確率が高い信頼度ファクタkが低い状態での汚染測定となる。図3における符号Pは通常測定モード時における計測データであり、この計測データPから通常モード運転時にはデータのバラツキが大きく、信頼性が低いことがわかる。また、符号Qは汚染測定モード時における計測データであり、この計測データQから汚染測定モード時のデータバラツキが小さく、信頼性が高いことを示している。
[Normal measurement mode]
As can be understood from this time chart, the measurement of the object to be measured 11 conveyed on the conveyor 12 is started in the normal measurement mode. In the normal measurement mode, the contamination measurement is performed in a state where the conveyor speed v is high and the probability that a false alarm is transmitted is high and the reliability factor k is low. The symbol P in FIG. 3 is measurement data in the normal measurement mode, and it can be seen from the measurement data P that the data varies greatly during the normal mode operation and the reliability is low. Further, symbol Q is measurement data in the contamination measurement mode, and the data variation in the contamination measurement mode is small from the measurement data Q, indicating that the reliability is high.

表面汚染検査装置10による通常測定モード運転では、例えば信頼度ファクタk=1.5、検出限界A=0.8に設定すると、測定時間Tsは5秒、コンベア速度vは80mm/secとなる。被測定物11の放射線測定を高速で行なうことができる。   In the normal measurement mode operation by the surface contamination inspection apparatus 10, for example, when the reliability factor k = 1.5 and the detection limit A = 0.8 are set, the measurement time Ts is 5 seconds and the conveyor speed v is 80 mm / sec. Radiation measurement of the DUT 11 can be performed at high speed.

[汚染測定モード]
通常運転モードで測定された放射線検出器23からの測定信号(放射線計数率値信号)に上昇傾向が認められると、この上昇傾向を処理制御表示装置20で自動的に判断処理する。処理制御表示装置20が被測定物11に汚染可能性有りと判断した場合、コンベア速度vは遅いが、信頼度kの高い汚染測定モードに運転が切り換えられる。
[Contamination measurement mode]
When an upward trend is recognized in the measurement signal (radiation count rate value signal) from the radiation detector 23 measured in the normal operation mode, the processing control display device 20 automatically determines and processes this upward trend. When the processing control display device 20 determines that the object to be measured 11 is likely to be contaminated, the operation is switched to the contamination measurement mode with a high reliability k although the conveyor speed v is slow.

この汚染測定モードでは、例えば、信頼度ファクタk=3(3σ)とし、検出限界A=0.8に設定すると、測定時間Tsは約20秒で、コンベア速度vは20mm/secとなる。この汚染測定モードで表面汚染検査装置10を運転させることにより、被測定物11の放射線汚染の有無・程度を高精度に効率よく時間をかけて精密測定することができる。   In this contamination measurement mode, for example, when the reliability factor k = 3 (3σ) and the detection limit A = 0.8 is set, the measurement time Ts is about 20 seconds and the conveyor speed v is 20 mm / sec. By operating the surface contamination inspection apparatus 10 in this contamination measurement mode, it is possible to accurately measure the presence / absence / degree of radiation contamination of the measurement object 11 with high accuracy and efficiency over time.

[放射線検出器からの測定信号が上昇傾向を示すか否かの判断]
放射線検出器23からの測定信号(放射線計数率値信号)が上昇傾向を示すか否かを判定する手法は、放射線検出器23での前回の測定値より今回の測定値の方が上廻り、この上廻る測定結果がN回(N≧2)継続する場合に、図5(A)および(B)に示すように、測定信号(放射線計数率値信号)が上昇傾向にあると判断する。
[Determining whether the measurement signal from the radiation detector shows an upward trend]
The method of determining whether or not the measurement signal (radiation count rate value signal) from the radiation detector 23 shows an upward trend is that the current measurement value exceeds the previous measurement value at the radiation detector 23, When this higher measurement result is continued N times (N ≧ 2), it is determined that the measurement signal (radiation count rate value signal) tends to increase as shown in FIGS.

この計数率上昇傾向の判断とは別に、図5(B)に示す判定手法で放射線検出器23からの測定信号が上昇傾向にあることを判断することもできる。図5(B)に示す判定手法は、放射線計数率が予め定めた予報設定値に達し、この予報設定値に達した状態がN回(N≧2)継続する場合に、計数率上昇傾向にあると判断する。   Apart from the determination of the increasing tendency of the counting rate, it can also be determined that the measurement signal from the radiation detector 23 is increasing with the determination method shown in FIG. In the determination method shown in FIG. 5B, when the radiation count rate reaches a predetermined forecast set value and the state where the forecast set value is reached N times (N ≧ 2), the count rate tends to increase. Judge that there is.

放射線検出器23からの測定信号(放射線計数率値信号)が上昇傾向にあると処理制御表示装置20で自動的に判断されると、モータ速度制御器18に制御信号が出力され、このモータ速度制御器18により駆動モータ19のモータ駆動が減速あるいは停止制御される。この駆動モータ19のモータ駆動制御により、コンベア12のコンベア速度は通常の設定速度から減速あるいは停止制御される。このとき、コンベア12のコンベア速度は、図5(D)に表わされる速度設定式に従って制御される。   When the processing control display device 20 automatically determines that the measurement signal (radiation count rate value signal) from the radiation detector 23 tends to increase, a control signal is output to the motor speed controller 18, and this motor speed. The controller 18 decelerates or stops the motor drive of the drive motor 19. By the motor drive control of the drive motor 19, the conveyor speed of the conveyor 12 is controlled to be reduced or stopped from the normal set speed. At this time, the conveyor speed of the conveyor 12 is controlled in accordance with the speed setting formula shown in FIG.

コンベア12の速度設定式により、コンベア速度vは、

Figure 2006177883
By the speed setting formula of the conveyor 12, the conveyor speed v is
Figure 2006177883

で表わされる。 It is represented by

放射線検出器23(23a,23b)からの測定信号(放射線計数率値信号)の上昇傾向がさらに継続すると、図5(A)のフローチャートに示すように警報を発信したり、表面汚染検査装置10による測定が終了せしめられる。   When the rising trend of the measurement signal (radiation count rate value signal) from the radiation detector 23 (23a, 23b) continues further, an alarm is issued as shown in the flowchart of FIG. The measurement by is completed.

その際、表面汚染検査装置10から最終的な汚染警報は、信頼度ファクタkが高いk=3(3σ)の値に基づいて判断する。3σはガウス分布における偏差値の程度を示す。

Figure 2006177883
At that time, the final contamination warning from the surface contamination inspection apparatus 10 is determined based on the value of k = 3 (3σ), which has a high reliability factor k. 3σ indicates the degree of deviation value in the Gaussian distribution.
Figure 2006177883

信頼度ファクタkを低く設定すれば、安全サイド時に誤警報を発する確率は高くなるが、コンベア速度vを速く設定でき、処理効率を向上させて被測定物11の汚染状態を省時間で効率的に測定することができる。   If the reliability factor k is set low, the probability of issuing a false alarm at the safe side increases, but the conveyor speed v can be set fast, improving the processing efficiency and reducing the contamination state of the DUT 11 in a time-saving and efficient manner. Can be measured.

一方、放射線検出器(23a,23b)からの測定信号(放射線計数率値信号)の上昇傾向が認められた場合には、信頼度ファクタkを高くk=3(3σ)と設定し、より正確で精密な時間をかけた放射線測定を実施することができる。   On the other hand, when an increasing tendency of the measurement signals (radiation count rate value signals) from the radiation detectors (23a, 23b) is recognized, the reliability factor k is set to be high (k = 3 (3σ)) and more accurate. It is possible to carry out radiation measurement with precise time.

この被測定物11の表面汚染検査方法は、被測定物11をコンベア12上で移動させながら被測定物からの放出放射線量を検出し、測定する方法である。   This surface contamination inspection method for the measurement object 11 is a method for detecting and measuring the radiation dose emitted from the measurement object while moving the measurement object 11 on the conveyor 12.

この表面汚染検査方法は、被測定物11の移動に応じて測定部位を変えながら被測定物11からの放出放射線量を測定するステップと、測定される被測定物11からの測定信号の上昇傾向を監視するステップと、測定信号の上昇傾向が認められるとき、コンベア速度を減速あるいは停止させるようにモータ制御するステップとを有し、被測定物11からの測定信号の上昇傾向が認められるとき、コンベア速度を減速あるいは切換制御または停止制御させて被測定物11からの放出放射線量を測定し、被測定物の汚染の有無や程度を判断する測定方法である。   In this surface contamination inspection method, a step of measuring the radiation dose emitted from the measurement object 11 while changing the measurement site in accordance with the movement of the measurement object 11, and a rising tendency of the measurement signal from the measurement object 11 to be measured And a step of controlling the motor so as to decelerate or stop the conveyor speed when a rising trend of the measurement signal is recognized, and when a rising trend of the measurement signal from the object to be measured 11 is recognized, This is a measurement method in which the conveyor speed is decelerated or switched or stopped and the amount of radiation emitted from the object to be measured 11 is measured to determine the presence or degree of contamination of the object to be measured.

また、被測定物11の表面汚染検査装置10およびその検査方法においては、信頼度kを低く設定すれば安全サイドに誤警報を発する確率は高くなるが処理スピードは速くでき、放射線汚染の無いことを確認するために省時間で効率的な測定が実現できる。放射線検出器23からの測定信号に上昇傾向が認められた場合は信頼度kを高く(k=3)3σとし、時間をかけて信頼度の高いより正確な精密検査を安定的に行なうことができる。効率的かつ合理的な表面汚染検査方法を実現するもので商業上メリットは多大である。   Further, in the surface contamination inspection apparatus 10 for the object to be measured 11 and its inspection method, if the reliability k is set low, the probability of issuing a false alarm on the safe side increases, but the processing speed can be increased and there is no radiation contamination. Therefore, it is possible to realize time-saving and efficient measurement. When an upward trend is observed in the measurement signal from the radiation detector 23, the reliability k is set high (k = 3) to 3σ, and it is possible to stably perform more accurate and precise inspection with high reliability over time. it can. It realizes an efficient and rational surface contamination inspection method, and has a great commercial advantage.

この表面汚染検査装置10およびその検査方法によると、被測定物11の汚染検査(放射線測定)を効率的かつ合理的に行なうことができ、効率的かつ合理的な汚染検査方法を実現することで商業上のメリットも大きい。   According to the surface contamination inspection apparatus 10 and the inspection method thereof, the contamination inspection (radiation measurement) of the object to be measured 11 can be performed efficiently and rationally, and by realizing an efficient and rational contamination inspection method. There are also significant commercial advantages.

次に、表面汚染検査装置の第2実施形態については図6を参照して説明する。   Next, a second embodiment of the surface contamination inspection apparatus will be described with reference to FIG.

図6は、本発明に係る表面汚染検査装置による第2実施形態を示すフローチャートであり、この表面汚染検査装置の装置構成は、図1および図2に示された表面汚染検査装置10と異ならないので、同じ構成には同一符号を付して説明を省略する。   FIG. 6 is a flowchart showing a second embodiment of the surface contamination inspection apparatus according to the present invention, and the apparatus configuration of the surface contamination inspection apparatus is not different from the surface contamination inspection apparatus 10 shown in FIGS. 1 and 2. Therefore, the same components are denoted by the same reference numerals and description thereof is omitted.

この表面汚染検査装置は、放射線検出器23で検出された測定信号(放射線検出信号、放射線計数率値信号)の上昇傾向が確認された場合、コンベア12を減速設定する。コンベア12を減速設定しても、さらに、放射線計数率の上昇傾向が継続する場合には、コンベア12を停止させるとともに、被測定物11の汚染検知から確定までの行き過ぎた時間(搬送時間)を算出し、コンベア12を逆転操作し、汚染検知地点(汚染が推定される区間)まで逆転させる。すなわち、コンベア12をその移動速度と遅れ時間で推定される汚染位置まで戻すように処理制御表示装置20から制御信号をモータ速度制御器18に出力する。   This surface contamination inspection apparatus decelerates the conveyor 12 when a rising tendency of the measurement signal (radiation detection signal, radiation count rate value signal) detected by the radiation detector 23 is confirmed. Even if the conveyor 12 is set to decelerate, if the upward trend of the radiation count rate continues, the conveyor 12 is stopped, and the overrun time (conveyance time) from the detection of contamination of the measured object 11 to the determination is determined. Then, the conveyor 12 is reversely operated to reverse the contamination detection point (section where contamination is estimated). That is, a control signal is output from the process control display device 20 to the motor speed controller 18 so as to return the conveyor 12 to the contamination position estimated by the moving speed and the delay time.

このモータ速度制御器18により駆動モータ19のモータ駆動が制御されて逆回転せしめられてコンベア12を逆転操作し、汚染が推定される区間まで被測定物11(コンベア12)を戻した上で、被測定物11からの放出放射線量の再測定が行なわれたり、この再測定を含む被測定物11の放射線測定が継続される。   The motor speed controller 18 controls the motor drive of the drive motor 19 to rotate it reversely to reversely operate the conveyor 12 and return the object to be measured 11 (conveyor 12) to the section where contamination is estimated. The re-measurement of the radiation dose emitted from the device under test 11 is performed, or the radiation measurement of the device under test 11 including this re-measurement is continued.

この表面汚染検査装置では、被測定物11の放射線汚染範囲が狭い場合に有効であり、過去に遡って放射線汚染区間を見逃さない被測定物11の汚染検査を実現できる。   This surface contamination inspection apparatus is effective when the radiation contamination range of the object to be measured 11 is narrow, and it is possible to realize the contamination inspection of the object to be measured 11 so as not to miss the radiation contamination section.

本発明に係る表面汚染検査装置の第1実施形態を示す概略的な平面図。1 is a schematic plan view showing a first embodiment of a surface contamination inspection apparatus according to the present invention. 図1のA−A線に沿う側断面図。FIG. 2 is a side sectional view taken along line AA in FIG. 1. 本発明に係る表面汚染検査装置による被測定物の汚染測定の概念を示すタイムチャート。The time chart which shows the concept of the contamination measurement of the to-be-measured object by the surface contamination inspection apparatus which concerns on this invention. 本発明に係る表面汚染検査装置を用いた被測定物の汚染測定における信頼度ファクタkによる切り換えの説明図(信頼度ファクタの高いk=3(3σ)設定時と信頼度ファクタの低いk=1.5(1.5σ)設定時におけるNET計数率分布を比較して示す説明図)。Explanatory drawing of the switching by the reliability factor k in the contamination measurement of the to-be-measured object using the surface contamination inspection apparatus which concerns on this invention (When reliability factor k is high and k = 3 (3 (sigma)) setting, reliability factor k is low = 1. (Explanatory diagram showing comparison of NET count rate distributions when .5 (1.5σ) is set). (A)は本発明に係る表面汚染検査装置におけるコンベア速度制御を示すフローチャート、(B)および(C)は放射線検出手段からの測定信号(放射線計数率値信号)の上昇傾向を判定する手法をそれぞれ示す図、(D)は前記コンベア速度設定式を示す図。(A) is a flowchart showing conveyor speed control in the surface contamination inspection apparatus according to the present invention, and (B) and (C) are methods for determining a rising tendency of a measurement signal (radiation count rate value signal) from the radiation detection means. The figure which each shows, (D) is a figure which shows the said conveyor speed setting type | formula. 本発明に係る表面汚染検査装置の第2実施形態を示すフローチャート図。The flowchart figure which shows 2nd Embodiment of the surface contamination inspection apparatus which concerns on this invention.

符号の説明Explanation of symbols

1 表面汚染検査装置
11 被測定物
12 コンベア
13 物品搬送路
14 駆動ローラ
15 従動ローラ
16 コンベアベルト
18 モータ速度制御器(モータ速度制御手段)
19 駆動モータ
20 処理制御表示装置(監視判定手段)
23(23a,23b) 放射線検出器(放射線検出手段)
25 位置検出センサ
26 位置検出センサ
DESCRIPTION OF SYMBOLS 1 Surface contamination inspection apparatus 11 Measured object 12 Conveyor 13 Article conveyance path 14 Drive roller 15 Followed roller 16 Conveyor belt 18 Motor speed controller (motor speed control means)
19 Drive motor 20 Processing control display device (monitoring judgment means)
23 (23a, 23b) Radiation detector (radiation detection means)
25 Position detection sensor 26 Position detection sensor

Claims (6)

被測定物をコンベア上で移動させながら被測定物からの放出放射線量を測定する表面汚染検査装置において、
前記被測定物の移動に応じて測定部位を変えながら放出放射線量を測定する放射線検出手段と、
この放射線検出手段からの測定値の上昇傾向を監視する監視判定手段と、
この監視判定手段で測定値の上昇傾向が認められるとき、コンベア速度を減速あるいは切換えまたは停止させるようにコンベア駆動用モータを制御するモータ速度制御手段とを有し、
前記監視判定手段で前記測定値の上昇傾向が認められるとき、コンベア速度を減速あるいは切換えまたは停止制御し、被測定物からの放出放射線量を測定して被測定物の汚染の有無を判断するように設定したことを特徴とする表面汚染検査装置。
In a surface contamination inspection device that measures the amount of radiation emitted from a measurement object while moving the measurement object on a conveyor,
Radiation detection means for measuring the radiation dose emitted while changing the measurement site according to the movement of the object to be measured;
Monitoring determination means for monitoring the upward trend of the measurement value from the radiation detection means;
A motor speed control means for controlling the conveyor driving motor so as to decelerate, switch or stop the conveyor speed when an upward trend of the measured value is recognized by the monitoring judgment means;
When the monitoring judgment means shows an upward trend in the measured value, the conveyor speed is reduced, switched or stopped, and the radiation dose from the measurement object is measured to determine whether the measurement object is contaminated. Surface contamination inspection device characterized by being set to.
前記監視判定手段は、放射線検出手段からの測定値の上昇傾向を放射線計数率値の変化率で判定し、コンベア速度を可変または停止させる制御信号をモータ制御手段に出力するようにしたことを特徴とする請求項1記載の表面汚染検査装置。 The monitoring judgment means judges the upward trend of the measurement value from the radiation detection means by the rate of change of the radiation count rate value, and outputs a control signal for changing or stopping the conveyor speed to the motor control means. The surface contamination inspection apparatus according to claim 1. 前記監視判定手段は、放射線検出手段からの測定値の上昇傾向を放射線計数率信号が所定の警報設定値を超えた回数で判定し、コンベア速度を可変または停止させる制御信号をモータ制御手段に出力するようにしたことを特徴とする請求項1記載の表面汚染検査装置。 The monitoring judgment means judges the increasing tendency of the measured value from the radiation detection means based on the number of times the radiation count rate signal exceeds a predetermined alarm set value, and outputs a control signal for changing or stopping the conveyor speed to the motor control means. The surface contamination inspection apparatus according to claim 1, characterized in that: 前記監視判定手段は、放射線検出手段からの測定値の上昇傾向により可変制御されるコンベア速度を、所定の放射線検出感度を満足させる統計的確率の信頼度ファクタにより与えられる測定時間が得られる値に設定し、被測定物からの放射線量を継続測定することを特徴とする請求項1または2記載の表面汚染検査装置。 The monitoring determination means sets the conveyor speed, which is variably controlled according to the rising tendency of the measurement value from the radiation detection means, to a value that can obtain a measurement time given by a reliability factor of statistical probability that satisfies a predetermined radiation detection sensitivity. 3. The surface contamination inspection apparatus according to claim 1, wherein the surface contamination inspection device is set and continuously measures the radiation dose from the object to be measured. 前記監視判定手段は、放射線検出手段からの測定値の上昇傾向が認められた場合、コンベアをその移動速度と遅れ時間で推定される汚染位置まで戻すように、制御信号をモータ制御手段に出力し、被測定物の放射線測定を続行させるようにしたことを特徴とする請求項1記載の表面汚染検査装置。 The monitoring judgment means outputs a control signal to the motor control means so as to return the conveyor to the contamination position estimated by the moving speed and the delay time when the upward trend of the measurement value from the radiation detection means is recognized. 2. The surface contamination inspection apparatus according to claim 1, wherein radiation measurement of the object to be measured is continued. 被測定物をコンベア上で移動させながら被測定物からの放出放射線量を測定する表面汚染検査方法において、
前記被測定物の移動に応じて測定部位を変えながら被測定物からの放出放射線量を測定するステップと、
測定される被測定物からの測定値の上昇傾向を監視するステップと、
前記測定値の上昇傾向が認められるとき、コンベア速度を減速あるいは切換えまたは停止させるようにモータ制御するステップとを有し、
前記被測定物から測定値の上昇傾向が認められるとき、コンベア速度を減速あるいは切換えまたは停止制御させて被測定物からの放出放射線量を測定し、被測定物の汚染の有無を判断することを特徴とする表面汚染検査方法。
In the surface contamination inspection method for measuring the radiation dose emitted from the object to be measured while moving the object to be measured on the conveyor,
Measuring the amount of radiation emitted from the measurement object while changing the measurement site according to the movement of the measurement object;
Monitoring the upward trend of measured values from the measured object;
Motor control to reduce or switch or stop the conveyor speed when an upward trend of the measured value is recognized,
When an upward trend of the measured value is recognized from the measured object, the amount of radiation emitted from the measured object is measured by decelerating, switching or stopping the conveyor speed to determine whether the measured object is contaminated or not. A characteristic surface contamination inspection method.
JP2004373690A 2004-12-24 2004-12-24 Surface contamination inspection device and inspection method thereof Expired - Fee Related JP4455312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004373690A JP4455312B2 (en) 2004-12-24 2004-12-24 Surface contamination inspection device and inspection method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004373690A JP4455312B2 (en) 2004-12-24 2004-12-24 Surface contamination inspection device and inspection method thereof

Publications (2)

Publication Number Publication Date
JP2006177883A true JP2006177883A (en) 2006-07-06
JP4455312B2 JP4455312B2 (en) 2010-04-21

Family

ID=36732121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004373690A Expired - Fee Related JP4455312B2 (en) 2004-12-24 2004-12-24 Surface contamination inspection device and inspection method thereof

Country Status (1)

Country Link
JP (1) JP4455312B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270850A (en) * 2008-05-01 2009-11-19 Aloka Co Ltd Radiation measuring device
JP2011257400A (en) * 2010-06-08 2011-12-22 Nucsafe Inc Radiation portal comprising occupancy sensor system
US8106362B2 (en) 2006-10-17 2012-01-31 National Institute Of Radiological Sciences Surface contamination examining device and method
JP2014224779A (en) * 2013-05-17 2014-12-04 清水建設株式会社 Inspection apparatus
KR101837028B1 (en) * 2016-11-22 2018-03-09 현대건설주식회사 Radioactive contamination measuring device using complementary detector combination
JP2018087767A (en) * 2016-11-29 2018-06-07 地方独立行政法人東京都立産業技術研究センター Radiation dosimetry device, radiation dosimetry method and radiation dosimetry system
JP2019158428A (en) * 2018-03-09 2019-09-19 株式会社スリー・アール Inspection device, inspection method for contamination by radioactive material
KR102132195B1 (en) * 2020-03-02 2020-07-09 주식회사 액트알엠티 A device to check for radioactive contamination of steel pipe scaffold used in nuclear facilities
JP7239667B1 (en) 2021-11-29 2023-03-14 北海道電力株式会社 Survey measurement system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8106362B2 (en) 2006-10-17 2012-01-31 National Institute Of Radiological Sciences Surface contamination examining device and method
JP2009270850A (en) * 2008-05-01 2009-11-19 Aloka Co Ltd Radiation measuring device
JP2011257400A (en) * 2010-06-08 2011-12-22 Nucsafe Inc Radiation portal comprising occupancy sensor system
JP2014224779A (en) * 2013-05-17 2014-12-04 清水建設株式会社 Inspection apparatus
KR101837028B1 (en) * 2016-11-22 2018-03-09 현대건설주식회사 Radioactive contamination measuring device using complementary detector combination
JP2018087767A (en) * 2016-11-29 2018-06-07 地方独立行政法人東京都立産業技術研究センター Radiation dosimetry device, radiation dosimetry method and radiation dosimetry system
JP2019158428A (en) * 2018-03-09 2019-09-19 株式会社スリー・アール Inspection device, inspection method for contamination by radioactive material
KR102132195B1 (en) * 2020-03-02 2020-07-09 주식회사 액트알엠티 A device to check for radioactive contamination of steel pipe scaffold used in nuclear facilities
JP7239667B1 (en) 2021-11-29 2023-03-14 北海道電力株式会社 Survey measurement system
JP2023079311A (en) * 2021-11-29 2023-06-08 北海道電力株式会社 Survey measuring system

Also Published As

Publication number Publication date
JP4455312B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
CA2716796C (en) Method and apparatus for monitoring a conveyor belt
EP1464919B1 (en) Chain wear monitoring method and apparatus
JP3934229B2 (en) Elevator hoisting rope, hoisting rope inspection method and inspection device
CN102405186B (en) A device and method for detecting a missing step of a conveyor
JP4455312B2 (en) Surface contamination inspection device and inspection method thereof
JP2008096414A (en) High-speed imaging/inspecting facility and method of moving target
JP2014010002A (en) Vehicle surface contamination monitor and vehicle surface contamination monitoring facility
JP5950015B2 (en) Radiation monitor
CN103818814A (en) Safety protection device and moving sidewalk or escalator equipment comprising same
JPS5978007A (en) Detector for elongation in conveyor driving chain
JP4089057B2 (en) Film edge thickness measuring apparatus and film edge thickness measuring method
JP2020045206A (en) System for monitoring damage to belt conveyor belt
JP2006273549A (en) Elongation sensing device for step chain of man conveyor
JPH0741139A (en) Method for detecting abnormality in long distance transport conveyer apparatus
EP3640185B1 (en) Water detection inside elevator pit
JPH1090416A (en) Article carrying-out monitor
KR100627459B1 (en) An apparatus for detecting defect in a belt conveyer
US8106362B2 (en) Surface contamination examining device and method
JPH0853274A (en) Position inspection device for balance weight
JP7437295B2 (en) Step tread inspection device and step tread inspection method
KR200173415Y1 (en) Detecting device for wafer frame warp
JP2021085659A (en) Inspection equipment and inspection method
JP2016134074A (en) Device and method for counting number of round bar
JPH06123776A (en) Radiation monitor
KR100583955B1 (en) Semiconductor processing equipment having a function of position sensing for transcribing wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4455312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees