[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006172847A - Vacuum switching device - Google Patents

Vacuum switching device Download PDF

Info

Publication number
JP2006172847A
JP2006172847A JP2004362486A JP2004362486A JP2006172847A JP 2006172847 A JP2006172847 A JP 2006172847A JP 2004362486 A JP2004362486 A JP 2004362486A JP 2004362486 A JP2004362486 A JP 2004362486A JP 2006172847 A JP2006172847 A JP 2006172847A
Authority
JP
Japan
Prior art keywords
vacuum
fitting
voltage sharing
side sealing
vacuum insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004362486A
Other languages
Japanese (ja)
Other versions
JP4481808B2 (en
Inventor
Junichi Sato
純一 佐藤
Kunio Yokokura
邦夫 横倉
Satoru Shioiri
哲 塩入
Satoshi Makishima
聡 槙島
Osamu Sakaguchi
修 阪口
Masaru Miyagawa
勝 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004362486A priority Critical patent/JP4481808B2/en
Publication of JP2006172847A publication Critical patent/JP2006172847A/en
Application granted granted Critical
Publication of JP4481808B2 publication Critical patent/JP4481808B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve insulating characteristics of a vacuum bulb to which a voltage sharing element is connected. <P>SOLUTION: The vacuum switching device comprises vacuum insulating containers 2a, 2b connected by an intermediate fitting 3, a fixed side sealing fitting 4 sealed at the opening part on one end of the vacuum insulating containers 2a, 2b, a movable side sealing fitting 5 sealed at the opening part at the other end, a pair of contacts 7, 9 capable of contacting and separating, an arc shield fixed to the intermediate fitting 3, voltage sharing elements 16a, 16b respectively connected between the fixed side sealing fitting 4 and the intermediate fitting 3, and between the intermediate fitting 3 and the movable side sealing fitting 5, and an operating mechanism 19. The voltage sharing elements 16a, 16b are arranged along the surface in axial direction of the vacuum insulating containers 2a, 2b so that the electric field strength between the voltage sharing elements 16a, 16b and the vacuum insulating containers 2a, 2b may be suppressed, and are separated from the vacuum insulating containers 2a, 2b with a prescribed insulating distance. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電圧分担素子を接続した中間電位のアークシールドを有する真空バルブの絶縁特性を向上し得る真空開閉装置に関する。   The present invention relates to a vacuum switchgear that can improve the insulation characteristics of a vacuum valve having an intermediate potential arc shield connected to a voltage sharing element.

接離自在の一対の接点を包囲するように設けられたアークシールドを有する真空バルブにおいては、アークシールドが主回路(電位100%)と対地(電位0%)との中間の中間電位になる。そして、中間電位が中間値のほぼ50%に固定されることにより、絶縁特性および遮断特性の優れた真空バルブとすることができる。   In a vacuum valve having an arc shield provided so as to surround a pair of contactable and separable contacts, the arc shield has an intermediate potential between the main circuit (potential 100%) and the ground (potential 0%). Then, by fixing the intermediate potential to approximately 50% of the intermediate value, a vacuum valve having excellent insulating characteristics and blocking characteristics can be obtained.

従来の真空バルブにおいては、真空バルブ外の一方の主回路とアークシールド間、およびアークシールドと他方の主回路間にそれぞれコンデンサ(電圧分担素子)を接続し、アークシールドの電位をほぼ50%に固定するものが知られている(例えば、特許文献1参照。)。   In a conventional vacuum valve, a capacitor (voltage sharing element) is connected between one main circuit outside the vacuum valve and the arc shield, and between the arc shield and the other main circuit, so that the potential of the arc shield is approximately 50%. What is fixed is known (for example, refer to Patent Document 1).

一方、真空バルブを複数直列に接続した真空開閉装置においては、それぞれの真空バルブの主回路間にコンデンサを接続し、それぞれの真空バルブの電圧分担を均一にするものが知られている(例えば、特許文献2参照。)。
特開平10−12459号公報(第4〜5ページ、図9) 特開平10−224923号公報(第3ページ、図3)
On the other hand, in a vacuum switchgear in which a plurality of vacuum valves are connected in series, a capacitor is connected between the main circuits of the respective vacuum valves to make the voltage sharing of each vacuum valve uniform (for example, (See Patent Document 2).
Japanese Patent Laid-Open No. 10-12459 (pages 4-5, FIG. 9) Japanese Patent Laid-Open No. 10-224923 (third page, FIG. 3)

上記の従来の真空開閉装置においては、次のような問題がある。   The above conventional vacuum switchgear has the following problems.

真空バルブの主回路とアークシールド間にコンデンサを接続すると、アークシールドの電位は固定されるものの、コンデンサの形状や配置によっては各部で電界集中を起こしてしまう。即ち、真空バルブよりもコンデンサが長く突出した状態になると、コンデンサの端部に電界が集中する。逆に、真空バルブよりもコンデンサが短いと、真空バルブの電界分布が乱れてしまう。   If a capacitor is connected between the main circuit of the vacuum valve and the arc shield, the electric potential of the arc shield is fixed, but electric field concentration occurs in each part depending on the shape and arrangement of the capacitor. That is, when the capacitor protrudes longer than the vacuum valve, the electric field concentrates on the end of the capacitor. Conversely, if the capacitor is shorter than the vacuum valve, the electric field distribution of the vacuum valve will be disturbed.

特に、真空バルブよりもコンデンサが短く、真空バルブの電位分布がコンデンサ側に引っ張られると、コンデンサが無いときと比べて電位分布が大幅に乱れてしまう。これにより、真空バルブの端部や一対の接点などの各部で電界集中を起こすことがある。   In particular, when the capacitor is shorter than the vacuum valve and the potential distribution of the vacuum valve is pulled to the capacitor side, the potential distribution is greatly disturbed compared to when there is no capacitor. This may cause electric field concentration at each part such as the end of the vacuum valve or a pair of contacts.

このため、真空バルブをコンデンサから充分に離したり、対地間との距離を大きくしたりしなければならなかった。これは、最近の趨勢である縮小化に逆行するものである。   For this reason, the vacuum valve must be sufficiently separated from the capacitor or the distance from the ground must be increased. This goes against the recent trend of shrinking.

本発明は上記問題を解決するためになされたもので、アークシールドの電位固定を行う電圧分担素子を接続した真空バルブの絶縁特性を向上し得る真空開閉装置を提供することを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a vacuum switchgear that can improve the insulation characteristics of a vacuum valve connected to a voltage sharing element that fixes the potential of an arc shield.

上記目的を達成するために、本発明の真空開閉装置は、中間部が中間金具で気密に直列接続された筒状の真空絶縁容器と、前記真空絶縁容器の一方端の開口部に封着された固定側封着金具と、この真空絶縁容器の他方端の開口部に封着された可動側封着金具と、前記真空絶縁容器内に設けられた接離自在の一対の接点と、前記一対の接点を包囲するように配置されるとともに、前記中間金具に固定された中間電位のアークシールドと、前記固定側封着金具と前記中間金具間および前記中間金具と前記可動側封着金具間にそれぞれ接続された電圧分担素子と、前記一対の接点を開閉する操作機構とを備え、前記電圧分担素子は、この電圧分担素子と前記真空絶縁容器間の電界強度が抑制されるように、前記真空絶縁容器の軸方向の沿面に沿って配置されるとともに、この真空絶縁容器と所定の絶縁距離を保って離間されていることを特徴とする。   In order to achieve the above object, a vacuum switchgear according to the present invention is sealed to a cylindrical vacuum insulating container having an intermediate portion hermetically connected in series with an intermediate fitting, and an opening at one end of the vacuum insulating container. A fixed-side sealing metal fitting, a movable-side sealing metal fitting sealed in the opening at the other end of the vacuum insulating container, a pair of contactable and separable contacts provided in the vacuum insulating container, and the pair And an arc shield at an intermediate potential fixed to the intermediate metal fitting, between the fixed-side sealing metal fitting and the intermediate metal fitting, and between the intermediate metal fitting and the movable-side sealing metal fitting. Each of the voltage sharing elements connected to each other and an operation mechanism that opens and closes the pair of contacts, and the voltage sharing elements are arranged so that the electric field strength between the voltage sharing elements and the vacuum insulating container is suppressed. Along the creeping surface of the insulating container in the axial direction With the location, characterized in that it is spaced apart keeping this vacuum insulating container with a predetermined insulation distance.

本発明によれば、真空バルブの主回路とアークシールド間に接続固定される電圧分担素子を、真空バルブと電圧分担素子との電界分布の相互作用により互いの電界強度が抑制されるようにしているので、真空バルブと電圧分担素子との各部の電界強度が抑制され、絶縁特性を向上させることができる。   According to the present invention, the voltage sharing element connected and fixed between the main circuit of the vacuum valve and the arc shield is configured such that the mutual electric field strength is suppressed by the interaction of the electric field distribution between the vacuum valve and the voltage sharing element. Therefore, the electric field strength of each part of a vacuum valve and a voltage sharing element is suppressed, and an insulation characteristic can be improved.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず、本発明の実施例1に係る真空開閉装置を図1を参照して説明する。図1は、本発明の実施例1に係る真空開閉装置の構成を示す断面図である。   First, a vacuum switchgear according to Embodiment 1 of the present invention will be described with reference to FIG. 1 is a cross-sectional view illustrating a configuration of a vacuum switchgear according to Embodiment 1 of the present invention.

図1に示すように、真空開閉装置は、図示上部の接離自在の一対の接点を有する真空バルブ部1aと、図示下部の一対の接点を開閉する操作機構部1bとから構成されている。   As shown in FIG. 1, the vacuum switching device includes a vacuum valve portion 1a having a pair of contactable contacts at the upper part of the figure and an operation mechanism part 1b for opening and closing the pair of contacts at the lower part of the figure.

真空バルブ部1aには、アルミナ磁器からなる筒状の真空絶縁容器2a、2bが、筒状の中間金具3で気密に直列接続されている。また、真空絶縁容器2a、2bの両端開口部には、それぞれ固定側封着金具4と可動側封着金具5とが封着されている。   Cylindrical vacuum insulating containers 2a and 2b made of alumina porcelain are hermetically connected in series with the vacuum valve portion 1a by a cylindrical intermediate fitting 3. In addition, a fixed-side sealing metal fitting 4 and a movable-side sealing metal fitting 5 are sealed in the opening portions at both ends of the vacuum insulating containers 2a and 2b, respectively.

固定側封着金具4には、固定側通電軸6が気密に貫通固定され、真空絶縁容器2a、2b内の固定側通電軸6端に固定側接点7が設けられている。固定側通電軸6の真空絶縁容器2a、2b外には、一方の電路となる固定部材の上部導体8が接続されている。   A fixed-side energizing shaft 6 is hermetically penetrated and fixed to the fixed-side sealing metal fitting 4, and a fixed-side contact 7 is provided at the end of the fixed-side energizing shaft 6 in the vacuum insulating containers 2a and 2b. An upper conductor 8 of a fixing member serving as one electric circuit is connected to the outside of the vacuum insulating containers 2a and 2b of the fixed side energizing shaft 6.

可動側封着金具5には、固定側接点7と対向して接離自在の可動側接点9を設けた可動側通電軸10が移動自在に中央開口部を貫通している。そして、可動側通電軸10の真空絶縁容器2a、2b内の中間部には、伸縮自在のベローズ11の自由端が気密に固定され、固定端が可動側封着金具5の中央開口部に気密に固定されている。これにより、内部圧力10−2Pa以下の真空を維持しながら、可動側通電軸10を軸方向に移動させることが可能となっている。 A movable energizing shaft 10 provided with a movable contact 9 that can be moved toward and away from the fixed contact 7 is movably penetrated through the central opening of the movable seal 5. The free end of the telescopic bellows 11 is fixed in an airtight manner in the intermediate portion of the vacuum insulating container 2 a, 2 b of the movable side energizing shaft 10, and the fixed end is airtight in the central opening of the movable side sealing fitting 5. It is fixed to. Thereby, it is possible to move the movable-side energizing shaft 10 in the axial direction while maintaining a vacuum with an internal pressure of 10 −2 Pa or less.

また、中間金具3には、両接点7、9を包囲するように設けられた筒状のアークシールド12が固定されている。このアークシールド12により、両接点7、9の電流開閉時に発生する金属蒸気が真空絶縁容器2a、2bの内面に付着して沿面の絶縁抵抗が低下することを防止している。アークシールド12の電位は、後述するが、両接点7、9の電位(電位100%)と接地電位(電位0%)との中間の電位となる。   In addition, a cylindrical arc shield 12 provided so as to surround both the contacts 7 and 9 is fixed to the intermediate metal fitting 3. The arc shield 12 prevents the metal vapor generated when the currents of the contacts 7 and 9 are opened / closed from adhering to the inner surfaces of the vacuum insulating containers 2a and 2b, thereby reducing the creeping insulation resistance. As will be described later, the potential of the arc shield 12 is an intermediate potential between the potential of both the contacts 7 and 9 (potential 100%) and the ground potential (potential 0%).

また、真空絶縁容器2a、2b外の可動側通電軸10は、接触子13を有する外部導体14を移動自在に貫通している。外部導体14には、他方の電路となる固定部材の下部導体15が固定されている。   Moreover, the movable-side energizing shaft 10 outside the vacuum insulating containers 2a and 2b penetrates the outer conductor 14 having the contact 13 so as to be movable. A lower conductor 15 of a fixing member serving as the other electric circuit is fixed to the outer conductor 14.

そして、上部導体8と中間金具3間、および中間金具3と下部導体15間には、例えばセラミックコンデンサのような円柱状の電圧分担素子16a、16bが、真空絶縁容器2a、2bと後述する所定の絶縁距離Gを保って離間され、接続導体17a、17bにより接続固定されている。電圧分担素子16a、16bの両端には、例えば金属溶射で取り付けられた電極16a1、16a2、16b1、16b2がそれぞれ設けられている。   Further, between the upper conductor 8 and the intermediate metal fitting 3 and between the intermediate metal fitting 3 and the lower conductor 15, for example, cylindrical voltage sharing elements 16a and 16b such as ceramic capacitors are connected to the vacuum insulating containers 2a and 2b. The insulation distance G is maintained and the connection conductors 17a and 17b are connected and fixed. At both ends of the voltage sharing elements 16a and 16b, for example, electrodes 16a1, 16a2, 16b1, and 16b2 attached by metal spraying are provided.

ここで、電圧分担素子16a、16bの静電容量は、それぞれ同様の静電容量とするとともに、真空バルブ部1aの浮遊容量以上としている。これにより、アークシールド12の電位を主回路電位(接点7、9など)と接地電位の中間値のほぼ50%にすることができる。   Here, the electrostatic capacitances of the voltage sharing elements 16a and 16b are set to the same electrostatic capacitance, respectively, and more than the floating capacitance of the vacuum valve portion 1a. As a result, the potential of the arc shield 12 can be made approximately 50% of the intermediate value between the main circuit potential (contacts 7, 9 and the like) and the ground potential.

なお、一般的に浮遊容量は、百数十pFあるので、電圧分担素子16a、16bの静電容量はそれ以上となる。しかしながら、十倍以上の数千pF以上にすると、進相電流が増加するので好ましくない。これらの電圧分担素子16a、16bは、単体で形成されていてもよく、複数のコンデンサを直並列に接続してもよい。また、電圧分担素子16a、16bは、コンデンサと抵抗体とを直並列に接続したものでもよい。   In general, the stray capacitance is hundreds of tens of pF, so that the capacitances of the voltage sharing elements 16a and 16b are more than that. However, if it is more than ten times or several thousand pF, the phase advance current increases, which is not preferable. These voltage sharing elements 16a and 16b may be formed singly or a plurality of capacitors may be connected in series and parallel. Further, the voltage sharing elements 16a and 16b may be ones in which a capacitor and a resistor are connected in series and parallel.

操作機構部1bには、可動側通電軸10の軸方向に絶縁操作ロッド18が連結されている。また、絶縁操作ロッド18には、例えば電磁アクチュエータのような操作機構19が連結され、両接点7、9の開閉が行われるようになっている。   An insulating operation rod 18 is coupled to the operation mechanism portion 1b in the axial direction of the movable energizing shaft 10. In addition, an operating mechanism 19 such as an electromagnetic actuator is connected to the insulating operating rod 18 so that both the contacts 7 and 9 are opened and closed.

このような電圧分担素子16a、16bを接続した真空バルブにおいて、電圧分担素子16a、16bの配置と大きさを説明する。   In the vacuum valve to which the voltage sharing elements 16a and 16b are connected, the arrangement and size of the voltage sharing elements 16a and 16b will be described.

先ず、真空絶縁容器2a、2bと電圧分担素子16a、16b間の絶縁距離Gは、数mmから筒状の真空絶縁容器2a、2bの半径の距離までとしている。   First, the insulation distance G between the vacuum insulation containers 2a and 2b and the voltage sharing elements 16a and 16b is set to be a few millimeters to the radial distance of the cylindrical vacuum insulation containers 2a and 2b.

絶縁距離Gの下限では、G=0mmのように互いが接触すると微小ギャップが形成されるので、電界強度が大きく上昇する。また、異物が挟まるような絶縁距離Gでも同様に電界強度が上昇する。このため、絶縁距離Gは、一般的な電気室での異物が挟まって電気的な欠陥部が形成されない離間された距離、例えば気中ではG=5mm以上としている。   At the lower limit of the insulation distance G, a minute gap is formed when they come into contact with each other as G = 0 mm, so that the electric field strength greatly increases. Similarly, the electric field strength increases even at an insulation distance G where foreign matter is caught. For this reason, the insulation distance G is set to a separated distance where foreign matters in a general electric chamber are sandwiched and an electrical defect is not formed, for example, G = 5 mm or more in the air.

絶縁距離Gの上限では、真空絶縁容器2a、2bの半径までの距離とし、真空絶縁容器2a、2bと電圧分担素子16a、16bとの相互の電界分布が緩衝し合って互いの電界強度が抑制されるようにしている。即ち、電界の相互作用による電界強度の抑制効果が生じるようにしている。なお、絶縁距離Gを半径以上に広げると、電界強度の抑制効果が低下し、互いを単独で用いたときの電界分布に近づいていく。   The upper limit of the insulation distance G is the distance to the radius of the vacuum insulation containers 2a and 2b, and the mutual electric field distribution between the vacuum insulation containers 2a and 2b and the voltage sharing elements 16a and 16b is buffered to suppress the mutual electric field strength. To be. That is, the effect of suppressing the electric field strength due to the electric field interaction is produced. Note that if the insulation distance G is increased beyond the radius, the effect of suppressing the electric field strength decreases, and the electric field distribution when using each of them alone is approached.

例えば、真空絶縁容器2a、2bの直径を200mmとし、定格電圧60kVクラス以下で絶縁距離Gを求めると、G=5mm〜100mmにおいて、互いの電界強度が抑制される。そして、絶縁距離G=35mm近傍において、真空バルブと電圧分担素子16a、16bとの両者の電界強度が最も抑制される。   For example, when the diameter of the vacuum insulation containers 2a and 2b is 200 mm and the insulation distance G is obtained with a rated voltage of 60 kV or less, the electric field strength of each other is suppressed at G = 5 mm to 100 mm. And in the insulation distance G = 35 mm vicinity, the electric field strength of both a vacuum valve and voltage sharing element 16a, 16b is suppressed most.

次に、電圧分担素子16a、16bの電極16a1、16a2間、即ち、軸方向の長さをL1とし、真空絶縁容器2a、2bの筒の長さ、即ち、軸方向の長さをL2とすると、L1=(0.7〜1.2)×L2としている。   Next, let L1 be the length between the electrodes 16a1 and 16a2 of the voltage sharing elements 16a and 16b, that is, the axial direction, and L2 be the length of the cylinder of the vacuum insulating containers 2a and 2b, that is, the axial length. , L1 = (0.7 to 1.2) × L2.

これは、電圧分担素子16a、16bの軸方向の長さL1がL1=0.7×L2未満では、真空絶縁容器2a、2bよりも電圧分担素子16a、16bの軸方向の長さが短く、真空絶縁容器2a、2b近傍の電位分布が電極16a1、16a2、16b1、16b2の電位に引っ張られ、固定側封着金具4や可動側封着金具5の端部(図示A部)の電界強度が上昇するためである。   This is because when the axial length L1 of the voltage sharing elements 16a and 16b is less than L1 = 0.7 × L2, the axial length of the voltage sharing elements 16a and 16b is shorter than the vacuum insulating containers 2a and 2b. The potential distribution in the vicinity of the vacuum insulating containers 2a and 2b is pulled to the potential of the electrodes 16a1, 16a2, 16b1 and 16b2, and the electric field strength at the end (A portion in the figure) of the fixed-side sealing fitting 4 and the movable-side sealing fitting 5 is increased. It is to rise.

また、電圧分担素子16a、16bの軸方向の長さL1がL1=1.2×L2超過では、電圧分担素子16a、16bが真空絶縁容器2a、2bから突出した状態となり、特に、固定側封着金具4および可動側封着金具5側の電極16a1および16b2端部(図示B部)の電界強度が上昇するためである。   If the axial length L1 of the voltage sharing elements 16a and 16b exceeds L1 = 1.2 × L2, the voltage sharing elements 16a and 16b protrude from the vacuum insulating containers 2a and 2b. This is because the electric field strength at the ends (B portion in the drawing) of the electrodes 16a1 and 16b2 on the side of the fitting 4 and the movable side fitting 5 is increased.

電圧分担素子16a、16bの軸方向の長さL1と真空絶縁容器2a、2bの軸方向の長さL2は、それぞれ同様の長さ(L1=L2)であって、真空絶縁容器2a、2bの軸方向の沿面に沿って、両端の位置を揃えて電圧分担素子16a、16bを配置すると、固定側封着金具4、可動側封着金具5の端部、および電極16a1、16a2、16b1、16b2のそれぞれの電界強度が最も抑制され好ましい。   The length L1 in the axial direction of the voltage sharing elements 16a and 16b and the length L2 in the axial direction of the vacuum insulating containers 2a and 2b are the same lengths (L1 = L2), respectively. When the voltage sharing elements 16a and 16b are arranged along the axial creepage, both ends of the fixed-side sealing fitting 4, the movable-side sealing fitting 5 and the electrodes 16a1, 16a2, 16b1, and 16b2 are arranged. The respective electric field strengths are most suppressed and preferable.

上記実施例1の真空開閉装置によれば、真空バルブ外に、所定の絶縁距離Gを保って離間するとともに、所定の軸方向の長さを有する電圧分担素子16a、16bを接続固定し、相互作用による電界抑制をしているので、真空バルブを構成する固定側封着金具4、可動側封着金具5の端部、および電圧分担素子16a、16bの電界強度をそれぞれ抑制することができ、絶縁特性を向上させることができる。   According to the vacuum switching device of the first embodiment, the voltage sharing elements 16a and 16b having a predetermined axial length are connected and fixed to the outside of the vacuum valve while maintaining a predetermined insulation distance G. Since the electric field is suppressed by the action, it is possible to suppress the electric field strengths of the fixed-side sealing fitting 4 and the movable-side sealing fitting 5 constituting the vacuum valve and the voltage sharing elements 16a and 16b, Insulation characteristics can be improved.

次に、本発明の実施例2に係る真空開閉装置を図2を参照して説明する。図2は、本発明の実施例2に係る真空開閉装置の真空バルブ部を示す断面図である。なお、この実施例2が実施例1と異なる点は、電圧分担素子の形状である。図2において、実施例1と同様の構成部分においては、同一符号を付し、その詳細な説明を省略する。   Next, a vacuum switchgear according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 2 is a cross-sectional view illustrating a vacuum valve portion of a vacuum switchgear according to Embodiment 2 of the present invention. The second embodiment is different from the first embodiment in the shape of the voltage sharing element. In FIG. 2, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図2に示すように、電圧分担素子21a、21bは、筒状の例えばセラミックコンデンサからなり、真空絶縁容器2a、2bの外周に所定の絶縁距離を保って離間され、同軸方向に配置されている。また、電圧分担素子21a、21bの外径よりも大きい上部導体22と下部導体23間には、円周方向に複数設けられた接続導体17aにより電極21a1、21a2、21b1、21b2が接続固定されている。互いの電圧分担素子21aおよび21b間は、接続導体17bで中間金具3に接続されている。   As shown in FIG. 2, the voltage sharing elements 21a and 21b are made of cylindrical ceramic capacitors, for example, spaced apart from the outer periphery of the vacuum insulation containers 2a and 2b with a predetermined insulation distance, and arranged in the coaxial direction. . Further, between the upper conductor 22 and the lower conductor 23, which are larger than the outer diameter of the voltage sharing elements 21a and 21b, electrodes 21a1, 21a2, 21b1, and 21b2 are connected and fixed by a plurality of connection conductors 17a provided in the circumferential direction. Yes. The voltage sharing elements 21a and 21b are connected to the intermediate fitting 3 by a connection conductor 17b.

上記実施例2の真空開閉装置によれば、実施例1の効果のほかに、電圧分担素子21a、21bが真空バルブの同軸方向に配置されているので、固定側封着金具4、可動側封着金具5および中間金具3の端部の電界強度を更に抑制することができる。   According to the vacuum switching device of the second embodiment, in addition to the effects of the first embodiment, the voltage sharing elements 21a and 21b are arranged in the coaxial direction of the vacuum valve. The electric field strength at the ends of the fitting 5 and the intermediate fitting 3 can be further suppressed.

次に、本発明の実施例3に係る真空開閉装置を図3を参照して説明する。図3は、本発明の実施例3に係る真空開閉装置の真空バルブ部を示す断面図である。なお、この実施例3が実施例2と異なる点は、電圧分担素子の静電容量分布である。図3において、実施例2と同様の構成部分においては、同一符号を付し、その詳細な説明を省略する。   Next, a vacuum switchgear according to Embodiment 3 of the present invention will be described with reference to FIG. FIG. 3 is a cross-sectional view illustrating a vacuum valve portion of a vacuum switchgear according to Embodiment 3 of the present invention. The third embodiment is different from the second embodiment in the capacitance distribution of the voltage sharing element. In FIG. 3, the same components as those in the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図3に示すように、電圧分担素子25a、25bは、それぞれ軸方向と直交する方向に三分割されている。そして、それぞれ図示上段が第1の電圧分担素子25a1、25b1、図示中段が第2の電圧分担素子25a2、25b2、図示下段が第3の電圧分担素子25a3、25b3となっている。また、電圧分担素子25a、25bの両端には、それぞれ電極25a4、25a5、25b4、25b5が設けられている。   As shown in FIG. 3, the voltage sharing elements 25a and 25b are each divided into three in a direction orthogonal to the axial direction. The upper stage in the figure is the first voltage sharing elements 25a1 and 25b1, the middle stage in the figure is the second voltage sharing elements 25a2 and 25b2, and the lower stage in the figure is the third voltage sharing elements 25a3 and 25b3. Further, electrodes 25a4, 25a5, 25b4, and 25b5 are provided at both ends of the voltage sharing elements 25a and 25b, respectively.

ここで、第1の電圧分担素子25a1、25b1の比誘電率をε1とし、第2の電圧分担素子25a2、25b2の比誘電率をε2、および中間金具3側の第3の電圧分担素子25a3、25b3の比誘電率をε3とすると、比誘電率ε2<ε1、ε3としている。即ち、中間部よりも両端部の比誘電率を大きくし、静電容量が大きくなるようにしている。   Here, the relative permittivity of the first voltage sharing elements 25a1, 25b1 is ε1, the relative permittivity of the second voltage sharing elements 25a2, 25b2 is ε2, and the third voltage sharing element 25a3 on the intermediate metal fitting 3 side, When the relative dielectric constant of 25b3 is ε3, the relative dielectric constant ε2 <ε1, ε3. That is, the relative permittivity at both end portions is made larger than that at the intermediate portion so that the capacitance is increased.

上記実施例3の真空開閉装置によれば、実施例1の効果のほかに、真空バルブを構成する固定側封着金具4、可動側封着金具5、中間金具3の端部の電界強度を更に抑制することができる。   According to the vacuum switchgear of the third embodiment, in addition to the effects of the first embodiment, the electric field strength at the ends of the fixed-side sealing metal fitting 4, the movable-side sealing metal fitting 5 and the intermediate metal fitting 3 constituting the vacuum valve is increased. Further suppression can be achieved.

なお、上記実施例3では、電圧分担素子25a、25bを三分割して説明したが、複数に分割し、中間部よりも両端部の静電容量を大きくして用いることができる。   In the third embodiment, the voltage sharing elements 25a and 25b have been described as being divided into three parts. However, the voltage sharing elements 25a and 25b can be divided into a plurality of parts, and the capacitances at both ends can be made larger than the intermediate part.

次に、本発明の実施例4に係る真空開閉装置を図4を参照して説明する。図4は、本発明の実施例4に係る真空開閉装置の真空バルブ部を示す断面図である。なお、この実施例4が実施例1と異なる点は、真空絶縁容器の静電容量である。図4において、実施例1と同様の構成部分においては、同一符号を付し、その詳細な説明を省略する。   Next, a vacuum switchgear according to Embodiment 4 of the present invention will be described with reference to FIG. FIG. 4 is a cross-sectional view showing a vacuum valve portion of a vacuum switchgear according to Embodiment 4 of the present invention. The fourth embodiment is different from the first embodiment in the capacitance of the vacuum insulating container. In FIG. 4, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図4に示すように、真空絶縁容器27a、27bは、例えば高誘電体セラミックから構成されている。これは、アルミナ磁器に酸化チタン粉末などの高誘電体を混合させることで得ることができる。そして、固定側封着金具4と中間金具3間および中間金具3と可動側封着金具5間で形成される静電容量を、それぞれ同様の静電容量とするとともに、真空バルブ部1aの浮遊容量以上としている。   As shown in FIG. 4, the vacuum insulating containers 27a and 27b are made of, for example, a high dielectric ceramic. This can be obtained by mixing alumina ceramic with a high dielectric material such as titanium oxide powder. The capacitances formed between the fixed-side sealing metal fitting 4 and the intermediate metal fitting 3 and between the intermediate metal fitting 3 and the movable-side sealing metal fitting 5 are set to the same capacitance, and the floating of the vacuum valve portion 1a. More than capacity.

一般的に、アルミナ磁器の比誘電率は8近傍であるが、酸化チタン粉末を混合すると、酸化チタンの比誘電率がアルミナ磁器の十倍以上あるので、その混合比により静電容量を増やすことができる。   In general, the relative dielectric constant of alumina porcelain is close to 8, but when titanium oxide powder is mixed, the relative dielectric constant of titanium oxide is more than ten times that of alumina porcelain. Can do.

上記実施例4の真空開閉装置によれば、実施例1の効果のほかに、実施例1で用いた電圧分担素子を接続する必要がなく、真空開閉装置の構造を簡素化することができる。   According to the vacuum switchgear of the fourth embodiment, in addition to the effects of the first embodiment, it is not necessary to connect the voltage sharing element used in the first embodiment, and the structure of the vacuum switchgear can be simplified.

なお、本発明は、上記実施例に限定されるものではなく、発明の要旨を逸脱しない範囲で、種々変形して実施することができる。上記実施例では、二個の真空絶縁容器2a、2bを中間金具3で直列接続し、この中間金具3に一個のアークシールド12を固定して説明したが、二個以上の複数の真空絶縁容器で、複数のアークシールドを固定する真空バルブにおいても用いることができる。また、二個以上の複数の高誘電体の真空絶縁容器を用いる場合も同様である。   In addition, this invention is not limited to the said Example, In the range which does not deviate from the summary of invention, it can implement in various deformation | transformation. In the above embodiment, two vacuum insulation containers 2a and 2b are connected in series with the intermediate metal fitting 3, and one arc shield 12 is fixed to the intermediate metal fitting 3. However, two or more vacuum insulation containers are used. Thus, it can also be used in a vacuum valve for fixing a plurality of arc shields. The same applies to the case of using two or more high dielectric vacuum insulating containers.

また、上記実施例では、電圧分担素子を気中で用いたが、全体形状の縮小化のため、真空バルブと電圧分担素子とを例えばエポキシ樹脂のような絶縁材料で一体モールドしてもよい。更には、汚損などの影響を受けないようにするため、モールドした絶縁層の表面に接地層を設けたものでもよい。この場合、真空絶縁容器と電圧分担素子間の絶縁距離は、この間にも絶縁材料が充填されて絶縁耐力が向上するので、充填時に絶縁材料の流れが停滞して空隙などの電気的な欠陥部が形成されない離間した距離、例えば1mmとすることができる。   In the above embodiment, the voltage sharing element is used in the air. However, in order to reduce the overall shape, the vacuum valve and the voltage sharing element may be integrally molded with an insulating material such as an epoxy resin. Further, a grounding layer may be provided on the surface of the molded insulating layer so as not to be affected by contamination. In this case, the insulation distance between the vacuum insulation container and the voltage sharing element is also filled with an insulating material in the meantime, so that the dielectric strength is improved. The distance may be 1 mm, for example.

本発明の実施例1に係る真空開閉装置の構成を示す断面図。Sectional drawing which shows the structure of the vacuum switchgear which concerns on Example 1 of this invention. 本発明の実施例2に係る真空開閉装置の真空バルブ部を示す断面図。Sectional drawing which shows the vacuum valve part of the vacuum switchgear which concerns on Example 2 of this invention. 本発明の実施例3に係る真空開閉装置の真空バルブ部を示す断面図。Sectional drawing which shows the vacuum valve part of the vacuum switchgear which concerns on Example 3 of this invention. 本発明の実施例4に係る真空開閉装置の真空バルブ部を示す断面図。Sectional drawing which shows the vacuum valve part of the vacuum switchgear which concerns on Example 4 of this invention.

符号の説明Explanation of symbols

1a 真空バルブ部
1b 操作機構部
2a、2b、27a、27b 真空絶縁容器
3 中間金具
4 固定側封着金具
5 可動側封着金具
6 固定側通電軸
7 固定側接点
8、22 上部導体
9 可動側接点
10 可動側通電軸
11 ベローズ
12 アークシールド
13 接触子
14 外部導体
15、23 下部導体
16a、16b、21a、21b、25a、25b 電圧分担素子
16a1、16a2、16b1、16b2、21a1、21a2、21b1、21b2、25a4、25a5、25b4、25b5 電極
17a、17b 接続導体
18 絶縁操作ロッド
19 操作機構
25a1、25b1 第1の電圧分担素子
25a2、25b2 第2の電圧分担素子
25a3、25b3 第3の電圧分担素子
DESCRIPTION OF SYMBOLS 1a Vacuum valve part 1b Operation mechanism part 2a, 2b, 27a, 27b Vacuum insulating container 3 Intermediate metal fitting 4 Fixed side sealing metal fitting 5 Movable side sealing metal fitting 6 Fixed side electricity supply shaft 7 Fixed side contact 8, 8 Upper conductor 9 Movable side Contact 10 Movable side energizing shaft 11 Bellows 12 Arc shield 13 Contact 14 External conductors 15, 23 Lower conductors 16a, 16b, 21a, 21b, 25a, 25b Voltage sharing elements 16a1, 16a2, 16b1, 16b2, 21a1, 21a2, 21b1, 21b2, 25a4, 25a5, 25b4, 25b5 Electrodes 17a, 17b Connecting conductor 18 Insulating operating rod 19 Operating mechanism 25a1, 25b1 First voltage sharing element 25a2, 25b2 Second voltage sharing element 25a3, 25b3 Third voltage sharing element

Claims (6)

中間部が中間金具で気密に直列接続された筒状の真空絶縁容器と、
前記真空絶縁容器の一方端の開口部に封着された固定側封着金具と、
この真空絶縁容器の他方端の開口部に封着された可動側封着金具と、
前記真空絶縁容器内に設けられた接離自在の一対の接点と、
前記一対の接点を包囲するように配置されるとともに、前記中間金具に固定された中間電位のアークシールドと、
前記固定側封着金具と前記中間金具間および前記中間金具と前記可動側封着金具間にそれぞれ接続された電圧分担素子と、
前記一対の接点を開閉する操作機構と
を備え、前記電圧分担素子は、この電圧分担素子と前記真空絶縁容器間の電界強度が抑制されるように、前記真空絶縁容器の軸方向の沿面に沿って配置されるとともに、この真空絶縁容器と所定の絶縁距離を保って離間されていることを特徴とする真空開閉装置。
A cylindrical vacuum insulating container whose middle part is air-tightly connected in series with an intermediate fitting;
A fixed-side sealing fitting sealed at the opening at one end of the vacuum insulating container;
A movable side sealing fitting sealed in the opening of the other end of the vacuum insulating container;
A pair of detachable contacts provided in the vacuum insulating container; and
An arc shield having an intermediate potential fixed to the intermediate fitting, and arranged to surround the pair of contacts;
Voltage sharing elements connected between the fixed-side sealing bracket and the intermediate bracket and between the intermediate bracket and the movable-side sealing bracket,
An operating mechanism that opens and closes the pair of contacts, and the voltage sharing element is arranged along a creeping surface in the axial direction of the vacuum insulating container so that an electric field strength between the voltage sharing element and the vacuum insulating container is suppressed. And a vacuum switchgear characterized in that the vacuum switchgear is spaced apart from the vacuum insulation container while maintaining a predetermined insulation distance.
前記電圧分担素子の軸方向の長さをL1とし、
前記真空絶縁容器の軸方向の長さをL2とすると、
L1=(0.7〜1.2)×L2としたことを特徴とする請求項1に記載の真空開閉装置。
The axial length of the voltage sharing element is L1,
When the axial length of the vacuum insulating container is L2,
The vacuum switchgear according to claim 1, wherein L1 = (0.7 to 1.2) × L2.
前記真空絶縁容器と前記電圧分担素子間の絶縁距離は、この間に電気的な欠陥部が形成されない離間された距離から前記真空絶縁容器の半径の距離までとしたことを特徴とする請求項1に記載の真空開閉装置。   2. The insulation distance between the vacuum insulation container and the voltage sharing element is from a spaced distance where no electrical defect is formed therebetween to a radius distance of the vacuum insulation container. The vacuum switchgear described. 前記電圧分担素子は、電極間が複数分割され、中間部よりも両端部の比誘電率が大きいことを特徴とする請求項1乃至請求項3のいずれか1項に記載の真空開閉装置。   The vacuum switchgear according to any one of claims 1 to 3, wherein the voltage sharing element is divided into a plurality of electrodes and has a relative dielectric constant at both end portions larger than that at the intermediate portion. 中間部が中間金具で気密に直列接続された筒状の真空絶縁容器と、
前記真空絶縁容器の一方端の開口部に封着された固定側封着金具と、
この真空絶縁容器の他方端の開口部に封着された可動側封着金具と、
前記真空絶縁容器内に設けられた接離自在の一対の接点と、
前記一対の接点を包囲するように配置されるとともに、前記中間金具に固定された中間電位のアークシールドと、
前記一対の接点を開閉する操作機構と
を備え、前記固定側封着金具と前記中間金具間および前記中間金具と前記可動側封着金具間で形成されるそれぞれの前記真空絶縁容器の静電容量は、前記一対の接点と対地間とで形成される浮遊容量よりも大きいことを特徴とする真空開閉装置。
A cylindrical vacuum insulating container whose middle part is air-tightly connected in series with an intermediate fitting;
A fixed-side sealing fitting sealed at the opening at one end of the vacuum insulating container;
A movable side sealing fitting sealed in the opening of the other end of the vacuum insulating container;
A pair of detachable contacts provided in the vacuum insulating container; and
An arc shield having an intermediate potential fixed to the intermediate fitting, and arranged to surround the pair of contacts;
An operation mechanism for opening and closing the pair of contacts, and a capacitance of each of the vacuum insulating containers formed between the fixed-side sealing metal fitting and the intermediate metal fitting and between the intermediate metal fitting and the movable-side sealing metal fitting. Is larger than the stray capacitance formed between the pair of contacts and the ground.
前記真空絶縁容器は、アルミナ磁器に酸化チタン粉末を混合させたことを特徴とする請求項5に記載の真空開閉装置。   6. The vacuum switchgear according to claim 5, wherein the vacuum insulating container is made by mixing titanium oxide powder with alumina porcelain.
JP2004362486A 2004-12-15 2004-12-15 Vacuum switchgear Active JP4481808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004362486A JP4481808B2 (en) 2004-12-15 2004-12-15 Vacuum switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004362486A JP4481808B2 (en) 2004-12-15 2004-12-15 Vacuum switchgear

Publications (2)

Publication Number Publication Date
JP2006172847A true JP2006172847A (en) 2006-06-29
JP4481808B2 JP4481808B2 (en) 2010-06-16

Family

ID=36673370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004362486A Active JP4481808B2 (en) 2004-12-15 2004-12-15 Vacuum switchgear

Country Status (1)

Country Link
JP (1) JP4481808B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015135764A (en) * 2014-01-17 2015-07-27 株式会社神戸製鋼所 switch
US9589751B2 (en) 2013-06-06 2017-03-07 Meidensha Corporation Sealed relay
JP2017157453A (en) * 2016-03-03 2017-09-07 株式会社明電舎 Voltage dividing capacitor and multipoint cut circuit breaker
US10910184B2 (en) 2013-06-06 2021-02-02 Meidensha Corporation Sealed relay
JP2021533540A (en) * 2018-08-01 2021-12-02 シーメンス エナジー グローバル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトSiemens Energy Global Gmbh & Co. Kg Vacuum breaker and high voltage switchgear

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9589751B2 (en) 2013-06-06 2017-03-07 Meidensha Corporation Sealed relay
US10910184B2 (en) 2013-06-06 2021-02-02 Meidensha Corporation Sealed relay
JP2015135764A (en) * 2014-01-17 2015-07-27 株式会社神戸製鋼所 switch
US9786446B2 (en) 2014-01-17 2017-10-10 Kobe Steel, Ltd. Switch
JP2017157453A (en) * 2016-03-03 2017-09-07 株式会社明電舎 Voltage dividing capacitor and multipoint cut circuit breaker
JP2021533540A (en) * 2018-08-01 2021-12-02 シーメンス エナジー グローバル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトSiemens Energy Global Gmbh & Co. Kg Vacuum breaker and high voltage switchgear
JP7187670B2 (en) 2018-08-01 2022-12-12 シーメンス エナジー グローバル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Vacuum circuit breaker and high voltage switchgear

Also Published As

Publication number Publication date
JP4481808B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
US10818455B2 (en) Series vacuum interrupters with grading capacitors integrated in a molded switch housing
JP4481808B2 (en) Vacuum switchgear
JP5243575B2 (en) Vacuum circuit breaker
JP2006019193A (en) Switching device
JP5175516B2 (en) Vacuum valve
JP2014026854A (en) Vacuum switch and switchgear using the same
JP2023127251A (en) vacuum valve
CN114631161B (en) Vacuum switching device for a circuit having primary and secondary current paths
JP5475601B2 (en) Vacuum valve
JP7143195B2 (en) vacuum valve
JP2011040302A (en) Grounding switching device
US7060902B2 (en) Bushing
JP2006080036A (en) Vacuum circuit breaker
JP6519179B2 (en) Vacuum circuit breaker
JP2014182877A (en) Resin insulation vacuum valve
JP2006172848A (en) Voltage sharing element installing vacuum bulb
JP2016208809A (en) Switch gear
JP4703360B2 (en) Vacuum valve
JP4695496B2 (en) Vacuum switchgear
JP2008311036A (en) Vacuum switchgear
US11862419B2 (en) Toroidal encapsulation for high voltage vacuum interrupters
JP2016115596A (en) Electric field relaxing device of vacuum interrupter
JP7505665B1 (en) Vacuum Circuit Breaker
CA2830764C (en) Vacuum interrupter and switch pole
TWI707103B (en) Vacuum valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4481808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4