[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006171010A - Method of measuring sample - Google Patents

Method of measuring sample Download PDF

Info

Publication number
JP2006171010A
JP2006171010A JP2006017808A JP2006017808A JP2006171010A JP 2006171010 A JP2006171010 A JP 2006171010A JP 2006017808 A JP2006017808 A JP 2006017808A JP 2006017808 A JP2006017808 A JP 2006017808A JP 2006171010 A JP2006171010 A JP 2006171010A
Authority
JP
Japan
Prior art keywords
hole
sample
particle
particles
cleaning liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006017808A
Other languages
Japanese (ja)
Other versions
JP2006171010A5 (en
JP4241740B2 (en
Inventor
Takaaki Nagai
孝明 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp filed Critical Sysmex Corp
Priority to JP2006017808A priority Critical patent/JP4241740B2/en
Publication of JP2006171010A publication Critical patent/JP2006171010A/en
Publication of JP2006171010A5 publication Critical patent/JP2006171010A5/ja
Application granted granted Critical
Publication of JP4241740B2 publication Critical patent/JP4241740B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of measuring a sample for obtaining precise measurement results by measuring particles, without bubbles, since a cleaning liquid is sprayed to a through hole or close to it and is discharged with the bubbles, before measuring the particles. <P>SOLUTION: The method is used to measure particles in liquid containing the particles obtained, by diluting a sample at least in a diluted solution and comprises a step of removing bubbles by spraying the cleaning liquid to the through hole for detecting particles and collecting the sprayed cleaning liquid, a step of supplying the liquid containing the particles to the through hole, by wrapping the liquid with a sheath liquid made of the diluted solution, after the bubble removal process, and a step of measuring the particles that pass through the through hole. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、血液等の試料を希釈液で希釈して得られる粒子含有液中の粒子を測定する試料測定方法に関する。   The present invention relates to a sample measurement method for measuring particles in a particle-containing liquid obtained by diluting a sample such as blood with a diluent.

この発明に関連する従来技術としては、粒子検出用の貫通孔を有する検出ブロックと、前記貫通孔へ粒子含有液をシース液に包んで供給する第1セルと、前記貫通孔を通過した粒子含有液とシース液を受取って排出する第2セルと、第1および第2セルにそれぞれ設けられた電極と、第1又は第2セルの一方を摺動可能支持して両者の間隙を変化しうる摺動部材とを備え、検出ブロックが、第1および第2セルの間隙に離脱可能に扶持されて第1および第2セルに水密的に連結された粒子検出器が知られている(例えば、特許文献1参照)。   Prior arts related to this invention include a detection block having a through hole for particle detection, a first cell for supplying a particle-containing liquid to the through-hole in a sheath liquid, and containing particles that have passed through the through-hole. The second cell for receiving and discharging the liquid and the sheath liquid, the electrodes respectively provided in the first and second cells, and one of the first and second cells can be slidably supported to change the gap between them. There is known a particle detector including a sliding member, and a detection block is detachably held in a gap between the first and second cells and is watertightly connected to the first and second cells (for example, Patent Document 1).

特開平2001−33378号公報Japanese Patent Laid-Open No. 2001-33378

従来、血液中の血球、あるいはセメントの粉、ラテックス、トナー等の工業用粒子の粒度や数を測定するのに、電気的検知帯法が用いられている。電気的検知帯法では、電解質溶液中に貫通孔を1つ有する隔壁を設け、貫通孔をはさんで2つの電極を配置し、電解質溶液中に測定対象となる粒子を分散させた粒子含有液を貫通孔に通して流す。   Conventionally, an electrical detection band method has been used to measure the particle size and number of blood cells in blood or industrial particles such as cement powder, latex, and toner. In the electrical detection zone method, a particle-containing liquid in which a partition wall having one through hole is provided in an electrolyte solution, two electrodes are arranged across the through hole, and particles to be measured are dispersed in the electrolyte solution. Through the through hole.

粒子が貫通孔を通過する時、電気抵抗が瞬間時に変化し電極間に電圧パルスが生じる。そのパルス高さは粒子体積を反映しているので、粒子の球相当径が形状にほとんど影響されずに測定でき、この結果をもとに試料粒子の体積基準の粒度を求めることができる。また、パルス数から粒子数を求めることができる。   As the particles pass through the through-holes, the electrical resistance changes instantaneously and a voltage pulse is generated between the electrodes. Since the pulse height reflects the particle volume, the sphere equivalent diameter of the particle can be measured with almost no influence on the shape, and the volume-based particle size of the sample particle can be obtained based on this result. Further, the number of particles can be obtained from the number of pulses.

ところで、このような電気的検知帯法を採用した粒子検出器、つまり電気抵抗式粒子検出器では、貫通孔に粒子含有液が流れると、貫通孔およびその近傍に気泡が生じる。そして、その気泡が多くなると、電極
間の検出パルスが乱れ、粒子情報が誤って検出されるという不都合が生じる。
By the way, in the particle detector adopting such an electric detection band method, that is, an electric resistance type particle detector, when the particle-containing liquid flows into the through hole, bubbles are generated in the through hole and the vicinity thereof. When the number of bubbles increases, the detection pulse between the electrodes is disturbed, and there is a disadvantage that the particle information is erroneously detected.

この発明はこのような事情を考慮してなされたもので、貫通孔およびその近傍に生じる気泡を洗浄液によって除去し、精度の高い測定結果を得ようとするものである。   The present invention has been made in consideration of such circumstances, and aims to obtain a highly accurate measurement result by removing bubbles generated in and near the through-hole with a cleaning liquid.

この発明は、試料を少なくとも希釈液で希釈して得られる粒子含有液中の粒子を測定する試料測定方法において、粒子検出用の貫通孔に洗浄液を吹き付けて、吹きつけられた洗浄液を回収することにより、気泡を除去する工程と、前記気泡除去工程の後、前記貫通孔に、粒子含有液を希釈液からなるシース液で包んで供給する工程と、貫通孔を通過する粒子を測定する工程と、からなる試料測定方法を提供する。   The present invention relates to a sample measurement method for measuring particles in a particle-containing liquid obtained by diluting a sample with at least a diluent, and spraying the cleaning liquid on the through holes for particle detection and collecting the sprayed cleaning liquid The step of removing bubbles, the step of supplying a particle-containing liquid to the through-hole after being wrapped in a sheath liquid made of a diluent, and the step of measuring particles passing through the through-hole after the bubble removing step A sample measurement method is provided.

この発明によれば、粒子の測定を行う前に、洗浄液が貫通孔およびその近傍に吹き付けられ、気泡とともに排出されるので、粒子の測定を気泡のない状態で行うことができ、精度の高い測定結果を得ることが可能となる。   According to this invention, before the measurement of the particles, the cleaning liquid is sprayed to the through-hole and the vicinity thereof and discharged together with the bubbles, so that the particles can be measured without the bubbles, and the measurement is highly accurate. The result can be obtained.

この発明の試料測定方法は、試料を少なくとも希釈液で希釈して得られる粒子含有液中の粒子を測定する試料測定方法であって、粒子検出用の貫通孔に洗浄液を吹き付けて、吹きつけられた洗浄液を回収することにより、気泡を除去する工程と、前記気泡除去工程の後、前記貫通孔に、粒子含有液を希釈液からなるシース液で包んで供給する工程と、貫通孔を通過する粒子を測定する工程と、からなることを特徴とする。   The sample measurement method of the present invention is a sample measurement method for measuring particles in a particle-containing liquid obtained by diluting a sample with at least a diluent, and is sprayed by spraying a cleaning liquid on a through-hole for particle detection. The step of removing the bubbles by collecting the washing liquid, the step of supplying the particle-containing liquid to the through hole by wrapping the sheath liquid made of a diluent into the through hole after the bubble removing step, and passing through the through hole. And measuring the particles.

また、上記試料測定方法は、血液分析装置や尿分析装置のような粒子分析装置に好適に用いることができる。   The sample measurement method can be suitably used for a particle analyzer such as a blood analyzer or a urine analyzer.

以下、図面に示す実施例に基づいてこの発明を詳述する。
血液分析装置の構成
図1はこの発明に係る血液分析装置の構成を示すブロック図であり、図2はその外観斜視図である。これらの図に示すように、血液分析装置は、血液分析装置本体101とパーソナルコンピュータ102から構成される。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
Configuration of Blood Analyzer FIG. 1 is a block diagram showing a configuration of a blood analyzer according to the present invention, and FIG. 2 is an external perspective view thereof. As shown in these drawings, the blood analyzer includes a blood analyzer main body 101 and a personal computer 102.

本体101は、サンプリング部51、希釈反応部52、電気抵抗式検出部53、フローサイトメータ式検出部54、比色式検出部55を備え、パーソナルコンピュータ102は、データ処理部56と出力部57
を備える。
The main body 101 includes a sampling unit 51, a dilution reaction unit 52, an electric resistance type detection unit 53, a flow cytometer type detection unit 54, and a colorimetric type detection unit 55. The personal computer 102 includes a data processing unit 56 and an output unit 57.
Is provided.

サンプリング部51は、分析対象の血液試料を収容した検体容器から所望量の血液試料を吸引定量し、希釈反応部52へ送出する。希釈反応部52は、定量された血液試料を所定倍率で希釈すると共に必要な試
薬で反応させた後、電気抵抗式検出部53、フローサイトメータ式検出部54、比色式検出部55へ送出する。
The sampling unit 51 aspirates and quantifies a desired amount of blood sample from the specimen container containing the blood sample to be analyzed, and sends it to the dilution reaction unit 52. The dilution reaction unit 52 dilutes the quantified blood sample at a predetermined magnification and reacts with a necessary reagent, and then sends it to the electrical resistance detection unit 53, the flow cytometer detection unit 54, and the colorimetric detection unit 55. To do.

電気抵抗式検出部53は電気的検知帯法により、血液試料中の赤血球や血小板などの項目を測定する。フローサイトメータ式検出部はフローサイトメトリー法により、血液試料中の白血球の計数と分類を行うためのデータを測定する。また、比色式検出部55は比色法により、血液試料中のヘモグロビン濃度を測定する。   The electrical resistance detection unit 53 measures items such as red blood cells and platelets in a blood sample by an electrical detection band method. The flow cytometer type detection unit measures data for counting and classifying white blood cells in a blood sample by flow cytometry. In addition, the colorimetric detection unit 55 measures the hemoglobin concentration in the blood sample by a colorimetric method.

データ処理部56は、検出部53,54,55で得られた各測定データから所望の測定項目を算出し、数値一覧表やスキャッタグラムの形で出力部57に出力させる。   The data processing unit 56 calculates a desired measurement item from each measurement data obtained by the detection units 53, 54, and 55, and causes the output unit 57 to output it in the form of a numerical list or a scattergram.

なお、データ処理部56は、CPU,ROM,RAMで構成され、出力部57はCRTおよびプリンタで構成される。また、本体101は金属製のハウジング58を備え、金属製ハウジング58は、サンプリン
グ部51、希釈反応部52、検出部53,54,55を収容する。
The data processing unit 56 is composed of a CPU, ROM, and RAM, and the output unit 57 is composed of a CRT and a printer. The main body 101 includes a metal housing 58, and the metal housing 58 accommodates the sampling unit 51, the dilution reaction unit 52, and the detection units 53, 54 and 55.

しかし、電気抵抗式検出部53の粒子検出器は特にそのメンテナンス(保守、点検)が容易に行えるように、ハウジング58の前面パネル58aの外面に設けられ、開閉可能なノイズ防止用の金属製カバー59
内に収容されている。
However, the particle detector of the electric resistance type detection unit 53 is provided on the outer surface of the front panel 58a of the housing 58 so that the maintenance (maintenance, inspection) can be easily performed, and a metal cover for preventing noise that can be opened and closed. 59
Is housed inside.

(粒子検出器の構成)
図3はカバー59内に収容される粒子検出器1の側面図、図4は図3のA−A矢視断面図、図5は図3のB−B矢視断面図、図6は図4のC部拡大図である。
(Configuration of particle detector)
3 is a side view of the particle detector 1 accommodated in the cover 59, FIG. 4 is a cross-sectional view taken along the line AA in FIG. 3, FIG. 5 is a cross-sectional view taken along the line BB in FIG. FIG.

これらの図に示されるように、粒子検出器1は、板状部材3と、第1セル4と、第2セル5と、2本の貫通シャフト8,9とを備える。板状部材3は粒子検出用の貫通孔2を有する。第1セル4は、第1蓋部材15と筒状の第1セル本体16からなり、第2セル5は、第2蓋部材18と筒状の第2セル本体20からなる。   As shown in these drawings, the particle detector 1 includes a plate-like member 3, a first cell 4, a second cell 5, and two through shafts 8 and 9. The plate-like member 3 has a through hole 2 for particle detection. The first cell 4 includes a first lid member 15 and a cylindrical first cell body 16, and the second cell 5 includes a second lid member 18 and a cylindrical second cell body 20.

図4に示すように、板状部材3を挟んだ第1および第2セル本体16と20にはシャフト8,9が貫通し、貫通したシャフト8,9の両端からチューブ状のストッパー10,11,12,13がそれぞれ挿入されている。   As shown in FIG. 4, the shafts 8 and 9 penetrate the first and second cell bodies 16 and 20 sandwiching the plate-like member 3, and tube-like stoppers 10 and 11 are inserted from both ends of the penetrated shafts 8 and 9. , 12, 13 are inserted.

そして、シャフト8,9の両端に形成された雄ネジにナット31が螺着し、ナット31の締め付け力により第1および第2セル本体16と20は板状部材3に水密的に結合している。   Then, a nut 31 is screwed onto male threads formed at both ends of the shafts 8 and 9, and the first and second cell bodies 16 and 20 are watertightly coupled to the plate-like member 3 by the tightening force of the nut 31. Yes.

さらに、第1および第2蓋部材15,18はそれぞれ軸心を貫通するノズル14と回収管17を備える。また、第1および第2蓋部材15,18は、突出部15a、フランジ部15bと突出部18a、フランジ
18bとをそれぞれ備える。
Further, each of the first and second lid members 15 and 18 includes a nozzle 14 and a recovery pipe 17 penetrating the axis. Moreover, the 1st and 2nd cover members 15 and 18 are each provided with the protrusion part 15a, the flange part 15b, the protrusion part 18a, and the flange 18b.

突出部15a,18aがそれぞれ第1および第2セル本体16,20の開口に挿入された状態でフランジ部15aと15bがストッパー10,11,12,13の環状部10a,11a,12a,13aに係
止し、第1および第2セル本体16,20の方向へ押圧されている。
The flange portions 15a and 15b are formed on the annular portions 10a, 11a, 12a, and 13a of the stoppers 10, 11, 12, and 13 with the protruding portions 15a and 18a inserted into the openings of the first and second cell bodies 16 and 20, respectively. It is locked and pressed in the direction of the first and second cell bodies 16 and 20.

それにより、第1および第2蓋部材15,18は、それぞれパッキン21,22を介して第1および第2セル本体16,20に水密的に結合されている。また、同時に、第1および第2蓋部材15,18は、ノズル15aと貫通孔2と回収管17が互いに同軸になるようにシャフト8,9により位置決めされている。   Accordingly, the first and second lid members 15 and 18 are watertightly coupled to the first and second cell bodies 16 and 20 via the packings 21 and 22, respectively. At the same time, the first and second lid members 15 and 18 are positioned by the shafts 8 and 9 so that the nozzle 15a, the through hole 2 and the recovery pipe 17 are coaxial with each other.

フランジ部15bには、図3に示すように、ノズル14の軸を中心とする円弧上に挿通穴32,33と、係止穴34,35と、挿通穴32と係止穴34とを連通する円弧状の連通穴36、挿通穴33と係止穴
35とを連通する円弧状の連通穴37が穿設されている。
As shown in FIG. 3, the insertion hole 32, 33, the locking hole 34, 35, and the insertion hole 32 and the locking hole 34 are communicated with the flange portion 15 b on an arc centered on the axis of the nozzle 14. An arc-shaped communication hole 36, and an arc-shaped communication hole 37 that communicates the insertion hole 33 and the locking hole 35 are formed.

挿通穴32,33は内径がストッパー10,12の環状部10a,12aの外径よりも大きく、係止穴34,35は内径が環状部10a,12aの外径より小さくなっている。   The insertion holes 32 and 33 have an inner diameter larger than the outer diameter of the annular portions 10a and 12a of the stoppers 10 and 12, and the locking holes 34 and 35 have an inner diameter smaller than the outer diameter of the annular portions 10a and 12a.

また、挿通穴32と連通穴36と係止穴34の各周縁および挿通穴33と連通穴37と係止穴35の各周縁には、フランジ部15bの表面から突出した帯状の縁取り部15cが設けられている。そして、縁取り
部15cは、係止穴35を囲む部分の高さが他の部分よりも高くなっている。そして、環状部10a,12aは、図3に示すように係止穴34,35の周りの縁取り部15cに乗り上げた状態に保持されている。それによって、第1蓋部材15は第1セル本体16の方向に押圧
され、パッキン21を介して第1セル本体16に水密的に結合される。
Further, strip-shaped rim portions 15c protruding from the surface of the flange portion 15b are formed on the peripheral edges of the insertion hole 32, the communication hole 36, and the locking hole 34 and on the peripheral edges of the insertion hole 33, the communication hole 37, and the locking hole 35. Is provided. And the edge part 15c has the height of the part surrounding the locking hole 35 higher than another part. And the annular parts 10a and 12a are hold | maintained in the state which got on the edge part 15c around the locking holes 34 and 35, as shown in FIG. Thereby, the first lid member 15 is pressed in the direction of the first cell body 16 and is watertightly coupled to the first cell body 16 via the packing 21.

また、フランジ部18bもフランジ部15bと同等の構成を有するので、第2蓋部材18も同様にして第2セル本体20にパッキン22を介して水密的に結合される。   Further, since the flange portion 18b has the same configuration as the flange portion 15b, the second lid member 18 is also water-tightly coupled to the second cell body 20 via the packing 22 in the same manner.

板状部材3は、図6に示すように中央の開口23の内部に、貫通孔2を有するペレット24と、ペレット24を両側から挟む2つのリング状パッキン25,26を備える。そして、第1および第2セル本体部
16,20はペレット24に対し、それぞれパッキン25,26を介して水密的に結合されている。
As shown in FIG. 6, the plate-like member 3 includes a pellet 24 having a through-hole 2 and two ring-like packings 25 and 26 sandwiching the pellet 24 from both sides inside a central opening 23. And the 1st and 2nd cell main-body parts 16 and 20 are watertightly connected with respect to the pellet 24 via packing 25 and 26, respectively.

図5に示すように、第1セル本体16は上方から嵌入されたステンレス鋼製のニップル6および下方に一体成型されたニップル27を備える。ニップル6はシース液を受入れて貫通孔2へ供給し、ノズル14か
ら噴射される粒子含有液を包んで貫通孔2を通過させる。また、ニップル6の先端は第1セル本体16の内部に露出しており、測定用の電極(負極)として使用される。
As shown in FIG. 5, the first cell body 16 includes a stainless steel nipple 6 fitted from above and a nipple 27 integrally formed below. The nipple 6 receives the sheath liquid and supplies it to the through hole 2, wraps the particle-containing liquid ejected from the nozzle 14, and passes through the through hole 2. The tip of the nipple 6 is exposed inside the first cell body 16 and is used as a measurement electrode (negative electrode).

ニップル27は、洗浄液を受入れて貫通孔2へ斜め下方から吹き付けることができるように、ノズル14の軸に対してほぼ45度の角度を有する。   The nipple 27 has an angle of approximately 45 degrees with respect to the axis of the nozzle 14 so that the cleaning liquid can be received and sprayed to the through-hole 2 obliquely from below.

また、第2セル本体20は上方と下方にそれぞれ一体成型されたニップル28,19を備える。ニップル19は、洗浄液を受入れて貫通孔2へ斜め下方から吹き付けることができるように、回収管17の軸に対
しほぼ45度の角度を有する。
Further, the second cell body 20 includes nipples 28 and 19 integrally formed above and below, respectively. The nipple 19 has an angle of approximately 45 degrees with respect to the axis of the recovery tube 17 so that the cleaning liquid can be received and sprayed to the through hole 2 from obliquely below.

ニップル28は第2セル本体20内の洗浄液を排出するために設けられている。第2セル本体20は、内部に露出する測定用電極7(図4)を備える。電極7は白金製の棒状電極であり、陽極として使用され、
フランジ部18に回収管17と平行に固定されている。
The nipple 28 is provided for discharging the cleaning liquid in the second cell body 20. The 2nd cell main body 20 is equipped with the electrode 7 for a measurement (FIG. 4) exposed inside. The electrode 7 is a platinum rod-shaped electrode, used as an anode,
The flange 18 is fixed in parallel with the recovery pipe 17.

ノズル14は後端にチューブ接続部29を備え、回収管17も後端にチューブ接続部30を備える。   The nozzle 14 includes a tube connection portion 29 at the rear end, and the recovery tube 17 also includes a tube connection portion 30 at the rear end.

ノズル14はステンレス鋼製で0.2mmの内径を有し、ペレット24は人工ルビー製で1mmの板厚を有する。なお、貫通孔2の直径は測定対象粒子の粒度により異なるが、赤血球の場合は、50〜100μ
mである。
The nozzle 14 is made of stainless steel and has an inner diameter of 0.2 mm, and the pellet 24 is made of artificial ruby and has a thickness of 1 mm. The diameter of the through-hole 2 varies depending on the particle size of the measurement target particle.
m.

第1および第2セル本体16,20、第1蓋部材15および第2蓋部材18は、いずれも耐薬品性の熱可塑性樹脂ポリエーテルイミドを射出成型することにより形成される。   The first and second cell bodies 16 and 20, the first lid member 15 and the second lid member 18 are all formed by injection-molding a chemical-resistant thermoplastic resin polyetherimide.

ニップル27は第1セル本体16と一体成型され、ニップル19,28は第2セル本体20と一体成型される。ノズル14、電極兼ニップル6および電極7は、成型後の第1セル本体16および第2蓋部材18
にそれぞれ圧入され、接着剤で固定される。
The nipple 27 is integrally formed with the first cell body 16, and the nipples 19 and 28 are integrally formed with the second cell body 20. The nozzle 14, the electrode / nipple 6 and the electrode 7 are the first cell body 16 and the second lid member 18 after molding.
Each is press-fitted and fixed with an adhesive.

(粒子検出器の分解と組立て)
粒子検出器の分解と組立て貫通孔2およびその近傍の付着物を除去する保守作業などを行う場合に粒子検出器1を分解し、組立てる方法に
ついて説明する。まず、作業者は、図3に示すフランジ部15bを握り、矢印D方向(反時計方向)に約45度だけ回転させる。それによって、環状部10a,12aが相対的にフランジ部15bの2つの挿通穴32,33へ移動する。そこで、作業者はフランジ部15bを握りながら第1蓋部材15を第1セル本体16から図7に示すように引き出すことができる。
(Disassembly and assembly of particle detector)
Disassembling and assembling the particle detector A method for disassembling and assembling the particle detector 1 when performing maintenance work for removing the adhering through-hole 2 and the adhering material in the vicinity will be described. First, the operator holds the flange portion 15b shown in FIG. 3 and rotates it by about 45 degrees in the direction of arrow D (counterclockwise). As a result, the annular portions 10a and 12a move relatively to the two insertion holes 32 and 33 of the flange portion 15b. Therefore, the operator can pull out the first lid member 15 from the first cell body 16 as shown in FIG. 7 while grasping the flange portion 15b.

第2蓋部材18についても、フランジ部18bを同様に操作することにより、第2セル本体20から引き出すことができる。そこで、作業者は、第1および第2セル本体16,20の各開口から細筆状のブラシ
を挿入し、貫通孔2およびその近傍の付着物を貫通孔2の両側から除去する。
The second lid member 18 can also be pulled out from the second cell body 20 by operating the flange portion 18b in the same manner. Therefore, the operator inserts a fine brush-like brush from each opening of the first and second cell bodies 16 and 20 to remove the through-hole 2 and the adhering material in the vicinity thereof from both sides of the through-hole 2.

次に、粒子検出器1をもと通りに組立てる場合は、分解操作と逆の順序で行う。つまり、第1蓋部材15のフランジ部15bを握り、フランジ部15bの挿通穴32,33にそれぞれストッパー10,12の環
状部10a,12aを挿通する。同時に突出部15aも第1セル本体16の開口に挿入する。
Next, when reassembling the particle detector 1, it is performed in the reverse order of the disassembling operation. That is, the flange portion 15b of the first lid member 15 is gripped, and the annular portions 10a and 12a of the stoppers 10 and 12 are inserted into the insertion holes 32 and 33 of the flange portion 15b, respectively. At the same time, the protrusion 15 a is also inserted into the opening of the first cell body 16.

そして、フランジ部15bを第1セル本体16の方向へ押し付けながらフランジ部15bを図3の矢印Dと逆方向(反時計方向)に約45度だけ回転させる。それに伴って、環状部10a,12aは、係止穴3
4,35へ相対的に移動し縁取り部15cの高い部分に乗り上げる。
Then, while pressing the flange portion 15b in the direction of the first cell body 16, the flange portion 15b is rotated by about 45 degrees in the opposite direction (counterclockwise direction) to the arrow D in FIG. Accordingly, the annular portions 10a, 12a are connected to the locking holes 3
It moves relatively to 4,35 and rides on the high part of the edge 15c.

それによって第1蓋部材15は第1セル本体16に向って押圧され、パッキン21を介して第1セル本体16に水密的に結合する。第2蓋部材18も同様の手順によって第2セル本体18に水密的に結合させ
る。それによって、組立て作業を終了する。
As a result, the first lid member 15 is pressed toward the first cell body 16 and is watertightly coupled to the first cell body 16 via the packing 21. The second lid member 18 is also water-tightly coupled to the second cell body 18 by the same procedure. Thereby, the assembling work is completed.

(粒子検出器のカバーの構成)
図8は粒子検出器1のカバー59の斜視図、図9はカバー59を開いた状態を示す斜視図、図10はカバー59の横断面図である。これらの図に示すように、カバー59はビス82により固定されているので、ビス82をゆるめてツマミ80を手前に引くと、カバー59が開いて、内部に設置されている粒子検出器1が露出するようになっている。
(Structure of particle detector cover)
8 is a perspective view of the cover 59 of the particle detector 1, FIG. 9 is a perspective view showing a state in which the cover 59 is opened, and FIG. 10 is a cross-sectional view of the cover 59. As shown in these drawings, since the cover 59 is fixed by a screw 82, when the screw 82 is loosened and the knob 80 is pulled forward, the cover 59 is opened, and the particle detector 1 installed inside the cover 59 is opened. It is supposed to be exposed.

カバー59は外側カバー60と内側カバー61の2重構造になっている。内側カバー61は対応する底板63を備え、底板63は絶縁ブッシュ62を介して絶縁樹脂製のビス65により前面パネル58aに固定
されている。底板63は周縁から立設する2枚の横方向の補助側板63aと2枚の縦方向の補助側板63bを備え、補助側板63a,63bはカバー59を閉じた時に、内側カバー61の内面に弾性的に接触するように構成されている。
The cover 59 has a double structure of an outer cover 60 and an inner cover 61. The inner cover 61 includes a corresponding bottom plate 63, and the bottom plate 63 is fixed to the front panel 58 a with an insulating resin screw 65 via an insulating bush 62. The bottom plate 63 includes two lateral auxiliary side plates 63a erected from the periphery and two vertical auxiliary side plates 63b. The auxiliary side plates 63a and 63b are elastic on the inner surface of the inner cover 61 when the cover 59 is closed. Are configured to contact each other.

また、外側カバー60に対応して1枚の補助側板64が前面パネル58aに金属製ビス81で固定され、カバー59を閉じた時に、補助側板64は外側カバー60の内面に弾性的に接触する。そして、外側カバ
ー60は金属製ビス82により補助側板64に固定される。
Also, one auxiliary side plate 64 corresponding to the outer cover 60 is fixed to the front panel 58a with a metal screw 81, and when the cover 59 is closed, the auxiliary side plate 64 elastically contacts the inner surface of the outer cover 60. . The outer cover 60 is fixed to the auxiliary side plate 64 with a metal screw 82.

さらに、外側カバー60は開口の周縁にスポット溶接した4枚の接触板66を備える。これらに対応して前面パネル58aには、4つの導電性の弾性部材67が固定され、カバー59を閉じた時に、4枚の接触
板66が対応する各弾性部材67に弾性的に接触するようになっている。
Further, the outer cover 60 includes four contact plates 66 spot welded to the periphery of the opening. Corresponding to these, four conductive elastic members 67 are fixed to the front panel 58a, and when the cover 59 is closed, the four contact plates 66 elastically contact the corresponding elastic members 67. It has become.

また、外側カバー60は図10に示すように内側カバー61に絶縁部材68を介して固定されている。内側カバー61は、図9に示すように、2本の支点ピン69により、2枚の縦方向の補助側板63bに回転
可能に支持され、これによってカバー59が開閉できるようになっている。
Further, the outer cover 60 is fixed to the inner cover 61 via an insulating member 68 as shown in FIG. As shown in FIG. 9, the inner cover 61 is rotatably supported by two longitudinal auxiliary side plates 63b by two fulcrum pins 69 so that the cover 59 can be opened and closed.

外側カバー60、内側カバー61、補助側板63a,63b,64、接触板66はすべて金属板(例えばステンレス鋼板)で製作されている。従って、カバー59を閉じた時には、粒子検出器1は、互いに絶
縁された2重の導体ケースで覆われることになる。なお、導電性の弾性部材66は、例えば、スポンジゴムに導電テープを貼り付けることにより容易に形成することができる。
The outer cover 60, the inner cover 61, the auxiliary side plates 63a, 63b, 64, and the contact plate 66 are all made of a metal plate (for example, a stainless steel plate). Therefore, when the cover 59 is closed, the particle detector 1 is covered with a double conductor case insulated from each other. The conductive elastic member 66 can be easily formed by attaching a conductive tape to sponge rubber, for example.

(電気抵抗式検出部53の電気回路の構成と動作)
図11は電気抵抗式検出部53の電気回路の要部を示す回路図である。図11に示すように、商用電源からAC100Vの電圧がスイッチング電源回路71に入力されると、スイッチング電源回路71はAC100Vの電圧をDC5VとDC12Vの電圧に変換し、グランドラインGを共通の負極として5Vと12Vの直流電圧を出力する。
(Configuration and operation of electric circuit of electric resistance type detection unit 53)
FIG. 11 is a circuit diagram showing a main part of an electric circuit of the electric resistance type detection unit 53. As shown in FIG. 11, when a voltage of AC100V is input from the commercial power supply to the switching power supply circuit 71, the switching power supply circuit 71 converts the voltage of AC100V into a voltage of DC5V and DC12V, and uses the ground line G as a common negative electrode. Outputs DC voltage of 5V and 12V.

昇圧回路72はDC12Vを56Vに昇圧し、グランドラインGを負極として56Vの直流電圧を定電流回路73へ入力する。   The booster circuit 72 boosts DC12V to 56V, and inputs a DC voltage of 56V to the constant current circuit 73 with the ground line G as a negative electrode.

定電流回路73は無負荷電圧56Vの直流電圧を粒子検出器1の電極6,7へ、電極7が正極、電極6が負極になるように印加する。粒子検出器1において、シース液に包まれた粒子含有液が貫通孔2を通過す
るとき、電極6,7間に定電流回路73から定電流が供給され、電極6,7間の電気抵抗(又はインピーダンス)が変化し、その変化が電圧の変化(パルス)として電極6,7間に現れる。
The constant current circuit 73 applies a DC voltage of no-load voltage 56V to the electrodes 6 and 7 of the particle detector 1 so that the electrode 7 is a positive electrode and the electrode 6 is a negative electrode. In the particle detector 1, when the particle-containing liquid wrapped in the sheath liquid passes through the through-hole 2, a constant current is supplied from the constant current circuit 73 between the electrodes 6 and 7, and the electric resistance ( (Or impedance) changes, and the change appears between the electrodes 6 and 7 as a voltage change (pulse).

電極6,7間の電圧がアンプ74により増幅され、A/D変換器75でデジタル信号に変換される。変換されたデジタル信号に基づいて演算回路76は粒径や粒子数などのデータを算出し、パーソナルコンピュータ102(図1)へ出力する。   The voltage between the electrodes 6 and 7 is amplified by the amplifier 74 and converted into a digital signal by the A / D converter 75. Based on the converted digital signal, the arithmetic circuit 76 calculates data such as the particle diameter and the number of particles and outputs the data to the personal computer 102 (FIG. 1).

図11に示す回路において、スイッチング電源回路71の5Vの出力電圧はその正極と負極がそれぞれ電源ラインHとグランドラインGに接続される。アンプ74、A/D変換器75、演算回路76はラインH,Gに接続され、ラインH.Gから電圧を受けて駆動するようになっている。   In the circuit shown in FIG. 11, the 5V output voltage of the switching power supply circuit 71 has its positive and negative electrodes connected to the power supply line H and the ground line G, respectively. The amplifier 74, the A / D converter 75, and the arithmetic circuit 76 are connected to the lines H and G. It is driven by receiving a voltage from G.

(粒子検出器1のノイズ対策)
粒子検出器1を図8〜図10に示すように外側カバー60と内側カバー61からなる2重構造のカバー59で覆い、図11に示すように外側カバー60をハウジング58の前面パネル58aを介して接地し、内側カバー61を電気回路のグランドラインGに接続する。このような
構成によって粒子検出器1を外部ノイズから遮蔽することができ、電磁波に関するEMC規制をクリアすることができる。
(Measures against noise in particle detector 1)
8 to 10, the particle detector 1 is covered with a double structure cover 59 including an outer cover 60 and an inner cover 61, and the outer cover 60 is interposed via a front panel 58 a of the housing 58 as shown in FIG. 11. The inner cover 61 is connected to the ground line G of the electric circuit. With such a configuration, the particle detector 1 can be shielded from external noise, and EMC regulations regarding electromagnetic waves can be cleared.

つまり、80MHz〜1GHzの高周波を1KHzでAM変調した3V/mの電界強度の電波を外部から受けても、アンプ74の出力はそれによって影響を受けないことが確認されている。   That is, it has been confirmed that the output of the amplifier 74 is not affected by a radio wave having an electric field strength of 3 V / m obtained by AM modulation of a high frequency of 80 MHz to 1 GHz at 1 KHz.

(粒子検出器1の気泡除去操作)
粒子検出器1において、第1セル4から第2セルへ貫通孔2を介してシース液と共に粒子含有液を流しながら、粒子の測定を行うと、貫通孔2およびその近傍に気泡が発生する。この気泡が多くなると、その気泡が電極6,7間の検出電圧を乱し、粒子情報が誤って検出されると
いう不都合が生じる。
(Bubble removal operation of particle detector 1)
In the particle detector 1, when particles are measured while flowing the particle-containing liquid together with the sheath liquid from the first cell 4 to the second cell via the through hole 2, bubbles are generated in the through hole 2 and the vicinity thereof. When the number of bubbles increases, the bubbles disturb the detection voltage between the electrodes 6 and 7, and there is a disadvantage that the particle information is erroneously detected.

そこで、この発明では、1つの検体の測定を行う直前に、図5に示すニップル19,27から洗浄液を貫通孔2とその近傍に吹き付ける。それにより、貫通孔2とその近傍に付着又は浮遊する気泡を除去して洗
浄液と共にニップル28,6からそれぞれ排出させるようにしている。これによって、粒子検出器1は高い検出精度を維持することができる。
Therefore, in the present invention, immediately before the measurement of one specimen, the cleaning liquid is sprayed from the nipples 19 and 27 shown in FIG. Thereby, bubbles adhering to or floating in the vicinity of the through-hole 2 and the vicinity thereof are removed and discharged together with the cleaning liquid from the nipples 28 and 6, respectively. Thereby, the particle detector 1 can maintain high detection accuracy.

(電気抵抗式検出部53の流体回路とその動作)
図12は粒子検出器1を用いた電気抵抗式検出部53の要部流体回路図である。同図において、バルブV1,V2が開くと、排液チャンバWC1の陰圧により赤血球測定用の試料が試料チャンバSCより流路Pに吸引され貯留される。なお、試料チャンバSCには希釈反応部52
(図1)で希釈された赤血球測定用試料が予め貯留されている。
(Fluid circuit of electric resistance type detection unit 53 and its operation)
FIG. 12 is a main part fluid circuit diagram of the electrical resistance detection unit 53 using the particle detector 1. In the figure, when the valves V1 and V2 are opened, a sample for measuring red blood cells is sucked into the flow path P from the sample chamber SC and stored by the negative pressure in the drainage chamber WC1. The sample chamber SC has a dilution reaction unit 52.
The red blood cell measurement sample diluted in (FIG. 1) is stored in advance.

バルブV1,V2が閉じ、バルブV3,V4,V5,V6が開くと、希釈液チャンバDCから陽圧により希釈液が洗浄液としてニップル27,19へ供給され、貫通孔2に吹き付けられ、第1および第2セル4,5内の洗浄と気泡の除去を行ってニップル6,28から排液チャンバWC1へ排出される。   When the valves V1 and V2 are closed and the valves V3, V4, V5 and V6 are opened, the diluent is supplied from the diluent chamber DC to the nipples 27 and 19 as a cleaning liquid by positive pressure, and is sprayed to the through-hole 2 and the first and second The second cells 4 and 5 are cleaned and air bubbles are removed, and discharged from the nipples 6 and 28 to the drain chamber WC1.

バルブV3,V4,V5,V6が閉じ、バルブV7が開くと、希釈液チャンバDCから陽圧により希釈液がシース液としてニップル6へ供給され、貫通孔2と回収管17を通って排液チャンバWC2へ排出され
る。これによって貫通孔2を通るシース液流が形成される。
When the valves V3, V4, V5 and V6 are closed and the valve V7 is opened, the diluent is supplied as a sheath fluid from the diluent chamber DC to the nipple 6 as a sheath fluid, and passes through the through hole 2 and the recovery pipe 17 to drain the fluid chamber. It is discharged to WC2. As a result, a sheath liquid flow passing through the through hole 2 is formed.

この状態でシリンジポンプCPを吐出方向に作動させると、流路Pに貯留されていた試料が押し出され、ノズル14から貫通孔2へ噴出する。噴出した試料はシース液に包まれて貫通孔2を通過し回収管17を
介して排液チャンバWC2ヘ排出される。
When the syringe pump CP is operated in the discharge direction in this state, the sample stored in the flow path P is pushed out and ejected from the nozzle 14 to the through hole 2. The ejected sample is wrapped in the sheath liquid, passes through the through-hole 2, and is discharged to the drainage chamber WC2 through the recovery pipe 17.

試料がシース液に包まれて貫通孔2を通過するとき電極6(図3)と電極7(図2)間のインピーダンスの変化が図11に示す測定回路により測定される。測定が終了すると、シリンジポンプCPを停止させる。そして、バルブV8を開き、試料チャンバSCの残留試料を排液チャンバWC1へ排出する。   When the sample is wrapped in the sheath liquid and passes through the through-hole 2, the change in impedance between the electrode 6 (FIG. 3) and the electrode 7 (FIG. 2) is measured by the measurement circuit shown in FIG. When the measurement is completed, the syringe pump CP is stopped. Then, the valve V8 is opened, and the residual sample in the sample chamber SC is discharged to the drain chamber WC1.

次に、バルブV1,V2,V8,V9を開き、試料吸引流路、試料チャンバSC、シリンジポンプCP、ノズル14に希釈液チャンバDCから希釈液を洗浄液として供給し、一定時間後にバルブV1,V2、V
8,V9を閉じて洗浄を終了する。
Next, the valves V1, V2, V8, and V9 are opened, and the diluent is supplied as a cleaning liquid from the diluent chamber DC to the sample suction channel, the sample chamber SC, the syringe pump CP, and the nozzle 14, and after a predetermined time, the valves V1, V2 , V
8, V9 is closed to finish the cleaning.

本発明に係る試料測定方法は、粒子の測定を行う前に、洗浄液が貫通孔およびその近傍に吹き付けられ、気泡とともに排出されるので、粒子の測定を気泡のない状態で行うことができ、精度の高い測定結果を得ることが可能である等の優れた効果を奏し、試料測定方法として有用である。   In the sample measurement method according to the present invention, since the cleaning liquid is sprayed on the through hole and the vicinity thereof and discharged together with the bubbles before the measurement of the particles, the measurement of the particles can be performed in the absence of the bubbles. As a result, it is possible to obtain a high measurement result and is useful as a sample measurement method.

この発明に係る血液分析装置の構成を示すブロック図である。It is a block diagram which shows the structure of the blood analyzer which concerns on this invention. この発明に係る血液分析装置の斜視図である。1 is a perspective view of a blood analyzer according to the present invention. この発明に係る粒子検出器の側面図である。It is a side view of the particle detector concerning this invention. 図3のA−A矢視断面図である。It is AA arrow sectional drawing of FIG. 図3のB−B矢視断面図である。It is a BB arrow sectional view of Drawing 3. 図4のC部拡大図である。It is the C section enlarged view of FIG. 図4に示す粒子検出器の分解図である。FIG. 5 is an exploded view of the particle detector shown in FIG. 4. この発明に係る粒子検出器のカバーの斜視図である。It is a perspective view of the cover of the particle detector concerning this invention. 図8に示すカバーを開いた状態を示す斜視図である。It is a perspective view which shows the state which opened the cover shown in FIG. 図8に示すカバーの横断面図である。It is a cross-sectional view of the cover shown in FIG. この発明に係る血液分析装置の要部電気回路図である。It is a principal part electric circuit diagram of the blood analyzer according to the present invention. この発明に係る血液分析装置の要部流体回路図である。It is a principal part fluid circuit diagram of the blood analyzer which concerns on this invention.

符号の説明Explanation of symbols

1 粒子検出器
2 貫通孔
3 板状部材
4 第1セル
5 第2セル
6 電極(ニップル)
7 電極
8 シャフト
9 シャフト
10 ナット
11 ナット
12 ナット
13 ナット
14 ノズル
15 第1蓋部材
16 第1セル本体
17 回収管
18 第2蓋部
19 ニップル
20 第2セル本体
21 パッキン
22 パッキン
23 開口
24 ペレット
25 パッキン
26 パッキン
27 ニップル
28 ニップル
29 チューブ接続部
30 チューブ接続部
59 カバー
60 外側カバー
61 内側カバー
62 絶縁ブッシュ
63 底板
64 補助側板
65 ビス
66 接触板
67 弾性部材
68 絶縁部材
69 支点ピン


































DESCRIPTION OF SYMBOLS 1 Particle detector 2 Through-hole 3 Plate-shaped member 4 1st cell 5 2nd cell 6 Electrode (nipple)
7 Electrode 8 Shaft 9 Shaft 10 Nut 11 Nut 12 Nut 13 Nut 14 Nozzle 15 First Lid Member 16 First Cell Main Body 17 Recovery Pipe 18 Second Lid 19 Nipple 20 Second Cell Main Body 21 Packing 22 Packing 23 Opening 24 Pellet 25 Packing 26 Packing 27 Nipple 28 Nipple 29 Tube connecting part 30 Tube connecting part 59 Cover 60 Outer cover 61 Inner cover 62 Insulating bush 63 Bottom plate 64 Auxiliary side plate 65 Screw 66 Contact plate 67 Elastic member 68 Insulating member 69 Support pin


































Claims (6)

試料を少なくとも希釈液で希釈して得られる粒子含有液中の粒子を測定する試料測定方法であって、
粒子検出用の貫通孔に洗浄液を吹き付けて、吹きつけられた洗浄液を回収することにより、気泡を除去する工程と、
前記気泡除去工程の後、前記貫通孔に、粒子含有液を希釈液からなるシース液で包んで供給する工程と、
貫通孔を通過する粒子を測定する工程と、からなる試料測定方法。
A sample measurement method for measuring particles in a particle-containing liquid obtained by diluting a sample with at least a diluent,
A step of removing bubbles by spraying a cleaning liquid on the through holes for particle detection and collecting the sprayed cleaning liquid;
After the bubble removal step, the step of supplying the particle-containing liquid by wrapping it in a sheath liquid made of a diluent into the through hole;
Measuring the particles passing through the through-hole, and a sample measuring method.
前記洗浄液が希釈液である請求項1記載の試料測定方法。   The sample measurement method according to claim 1, wherein the cleaning liquid is a diluent. 前記洗浄液を前記貫通孔に対して斜めから吹き付ける請求項1または請求項2に記載の試料測定方法。   The sample measurement method according to claim 1, wherein the cleaning liquid is sprayed obliquely with respect to the through hole. 前記洗浄液の貫通孔への吹き付けを、粒子含有液供給側及びその逆側からの両方から行う請求項1〜3の何れか1項に記載の試料測定方法。   The sample measuring method according to any one of claims 1 to 3, wherein the cleaning liquid is sprayed from the particle-containing liquid supply side and the opposite side thereof. 前記粒子測定工程において、貫通孔を粒子が通過することによる電気抵抗値の変化に基づき粒子を測定する請求項1〜4の何れか1項に記載の試料測定方法。   The sample measurement method according to any one of claims 1 to 4, wherein in the particle measurement step, the particles are measured based on a change in an electric resistance value caused by the particles passing through the through holes. 前記試料は血液又は尿である請求項1〜5の何れか1項に記載の試料測定方法。












The sample measurement method according to claim 1, wherein the sample is blood or urine.












JP2006017808A 2006-01-26 2006-01-26 Sample measurement method Expired - Lifetime JP4241740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006017808A JP4241740B2 (en) 2006-01-26 2006-01-26 Sample measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006017808A JP4241740B2 (en) 2006-01-26 2006-01-26 Sample measurement method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001371513A Division JP4112217B2 (en) 2001-11-30 2001-12-05 Particle detector and particle analyzer using the same

Publications (3)

Publication Number Publication Date
JP2006171010A true JP2006171010A (en) 2006-06-29
JP2006171010A5 JP2006171010A5 (en) 2008-04-10
JP4241740B2 JP4241740B2 (en) 2009-03-18

Family

ID=36671882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006017808A Expired - Lifetime JP4241740B2 (en) 2006-01-26 2006-01-26 Sample measurement method

Country Status (1)

Country Link
JP (1) JP4241740B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020527241A (en) * 2017-06-28 2020-09-03 ディアグドゥヴ Measurement cuvettes for counting and / or characterizing cells

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11674536B2 (en) 2020-12-14 2023-06-13 Caterpillar Inc. Guide element for hydraulic fluid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020527241A (en) * 2017-06-28 2020-09-03 ディアグドゥヴ Measurement cuvettes for counting and / or characterizing cells
JP7315543B2 (en) 2017-06-28 2023-07-26 ディアグドゥヴ Measurement cuvettes for counting and/or characterizing cells

Also Published As

Publication number Publication date
JP4241740B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
US6909269B2 (en) Particle detector and particle analyzer employing the same
US6806450B2 (en) Hazardous material detection system
US9482682B2 (en) Reagent preparation apparatus and sample processing apparatus
US20080221805A1 (en) Multi-channel lock-in amplifier system and method
US20060216213A1 (en) Measuring unit and rotary valve for use therein
CN110650803A (en) Tip connector for fluid and electrical connections
JP4241740B2 (en) Sample measurement method
CN114127549B (en) Analysis device and analysis method
JP2006171010A5 (en)
JP2001033378A (en) Particle-measuring device
EP1994988B1 (en) Reaction cuvette for automatic analyzer and method of surface treatment for reaction cuvette
JP4112217B2 (en) Particle detector and particle analyzer using the same
JP4212803B2 (en) Particle measuring device
JP3737047B2 (en) Particle detector and particle analyzer using the same
JPWO2011093347A1 (en) Automatic analyzer
JP3276550B2 (en) Sample quantification device
WO2010093022A1 (en) Automatic analysis device
KR101631186B1 (en) Apparatus and method for simultaneously detecting water pollutant through selective electrode-activation
JP3722743B2 (en) Particle detector and particle analyzer using the same
JP2015015118A (en) Sample introduction device
Ropandi et al. Finite element approach using electrical tomography for bioassay application
US5200052A (en) Ion concentration analyzer
JP3421556B2 (en) Analyzer with liquid level detection function
KR20230144967A (en) Potable detecting apparatus for various fungi detection in air
WO2024134567A1 (en) Ionization device, ion detection apparatus, and gas analysis apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4241740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term