[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006170796A - Method and device of reducing periodic error of optical interferometer - Google Patents

Method and device of reducing periodic error of optical interferometer Download PDF

Info

Publication number
JP2006170796A
JP2006170796A JP2004363505A JP2004363505A JP2006170796A JP 2006170796 A JP2006170796 A JP 2006170796A JP 2004363505 A JP2004363505 A JP 2004363505A JP 2004363505 A JP2004363505 A JP 2004363505A JP 2006170796 A JP2006170796 A JP 2006170796A
Authority
JP
Japan
Prior art keywords
error
interferometer
optical interferometer
periodic error
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004363505A
Other languages
Japanese (ja)
Other versions
JP4465451B2 (en
Inventor
Kazuto Kinoshita
和人 木下
Satoshi Gonta
聡 権太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004363505A priority Critical patent/JP4465451B2/en
Publication of JP2006170796A publication Critical patent/JP2006170796A/en
Application granted granted Critical
Publication of JP4465451B2 publication Critical patent/JP4465451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors
    • G01B9/02059Reducing effect of parasitic reflections, e.g. cyclic errors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02083Interferometers characterised by particular signal processing and presentation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems wherein an orthogonal two-phase signal of a homodyne optical interferometer used for a high-precision length measuring system or the like includes an error by an optical system and electric circuit system, the Lissajous's waveform is out of round, and the error becomes a position error as it is when the measuring result is used and positional servo is applied in real time. <P>SOLUTION: The signal including the error is converted into the polar coordinate, and then a correction value (amplitude, zero point, and phase difference) of the orthogonal two-phase signal of the interferometer is determined by a least squares method based on the relation between the phase angle and radius variation. Based on these values, the orthogonal two-phase signal of the interferometer is corrected so that the radius of the polar coordinate is constant, and the periodic error is reduced. The orthogonal two-phase signal of the interferometer is converted into the polar coordinate, then calculation for emphasizing only a changed part of the radius element is performed, it is converted into the orthogonal coordinate again, and it is displayed similarly to the Lissajous's waveform, thereby obtaining a display resolution required for adjustment. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は高精度測長システム等に用いる光干渉計に関するものである。   The present invention relates to an optical interferometer used in a high-precision length measuring system or the like.

まず、図面を用いて光干渉計の測定原理を示す。
図11において、レーザ発振器1から出たレーザ光Iは、λ/2波長板5を介して偏光ビームスプリッタ(以下「PBS」という。)2に導かれる。PBS2において、レーザ光Iを測定光Imと参照光Isに分離する。測定光Imと参照光Isの強度比は、λ/2波長板5を光軸と直角の面内で回転し、レーザ光Iの偏光面を回転させることにより調整する。通常は、ほぼ同量である。測定光Imは、移動プリズム4で反射し、再び、PBS2に導かれる。参照光Isは、参照プリズム3で反射し、PBS2に導かれ、反射し、測定光Imと重なる。重ねられた測定光Imと参照光Isは、ミラー6を介し、偏光子20に導かれる。偏光子の方向は、45度とし、測定光Imと参照光Isをほぼ同量透過させる。偏光方向を一致させた測定光Imと参照光Isは、光検出器11に導かれ、干渉強度を測定する。
First, the measurement principle of the optical interferometer will be described with reference to the drawings.
In FIG. 11, a laser beam I 0 emitted from the laser oscillator 1 is guided to a polarization beam splitter (hereinafter referred to as “PBS”) 2 through a λ / 2 wavelength plate 5. In PBS 2, separates the laser beam I 0 to the reference light I s and the measurement light I m. The intensity ratio of the measured light I m and the reference beam I s rotates the lambda / 2 wave plate 5 to the optical axis within a plane perpendicular, adjusted by rotating the polarization plane of the laser beam I 0. Usually it is almost the same amount. Measurement light I m is reflected by the moving prism 4, again, is led to the PBS 2. Reference light I s is reflected by the reference prism 3, is guided to the PBS 2 is reflected, overlaps with the measurement light I m. Measurement light I m and the reference beam I s superimposed is through the mirror 6 and is guided to the polarizer 20. Direction of the polarizer, a 45 °, the reference light I s and the measurement light I m is approximately the same amount transmitted. Reference light I s and the measurement light I m of the polarization direction matched is guided to a photodetector 11, measures the interference intensity.

干渉強度は、測定光Imと参照光Isとの光路差より決まり、レーザ光Iの波長をλ、上記光路差をxとし、また、光検出器11上での測定光Imと参照光Isとの光量が等しい時、干渉強度は
P(x)=Im・(1+cos(kx)) k=2π/λ
となる。したがって、測定光Imと参照光Isとの光路差xが変化する、すなわち、移動プリズム4を変位させると正弦波状に振動するため明暗を繰り返す。この明暗の繰返しが光検出器11の出力となる。これを計数することにより移動プリズム4の変位:dを計測できる。しかし、明暗の周期はλ/2であるから、このままでは変位測定の分解能はλ/2であり、高精度な変位測定は出来ない。
Interference intensity is determined from the optical path difference between the measurement light I m and the reference beam I s, the wavelength of the laser light I 0 lambda, the optical path difference and x, also, the measurement light I m on optical detector 11 when the light quantity of the reference light I s are equal, interference strength
P (x) = I m · (1 + cos (kx)) k = 2π / λ
It becomes. Therefore, a change in optical path difference x between the measurement light I m and the reference beam I s, i.e., repeat the dark to vibrate when displacing the moving prism 4 sinusoidally. This repetition of light and dark becomes the output of the photodetector 11. By counting this, the displacement d of the moving prism 4 can be measured. However, since the period of light and dark is λ / 2, the resolution of displacement measurement is λ / 2 as it is, and high-precision displacement measurement cannot be performed.

図12に、分解能を向上させる方法の一例を示す。レーザ発振器1から出たレーザ光は、ミラー6までは図11と同様に導かれる。ミラー6で反射した後、λ/2波長板7により測定光Imと参照光Isの偏光方向を45度回転する。これらの光は、次に無偏光ビームスプリッタ8により偏光状態を保ったまま2方向に分けられ、透過した光はPBS9aにて測定光Imと参照光Isの偏光成分により分けられ、紙面と平行な成分は透過し、光検出器11aに、紙面と垂直な成分は反射し、光検出器11bに導かれる。また、無偏光ビームスプリッタ8で反射された光はλ/4波長板10により測定光Imと参照光Isの偏光を円偏光とした後、PBS9bにて測定光Imと参照光Isの偏光成分により分けられ、紙面と平行な成分は透過し、光検出器11cに、紙面と垂直な成分は反射し、光検出器11dに導かれる。 FIG. 12 shows an example of a method for improving the resolution. The laser beam emitted from the laser oscillator 1 is guided to the mirror 6 in the same manner as in FIG. After reflected by the mirror 6, rotated 45 degrees the polarization direction of the measuring beam I m and the reference beam I s by lambda / 2 wavelength plate 7. These lights then divided into two directions while maintaining the polarization state by the non-polarizing beam splitter 8, the light transmitted is divided by the polarization component of the measuring light I m and the reference beam I s at PBS9a, and paper The parallel component is transmitted, the component perpendicular to the paper surface is reflected to the photodetector 11a, and is guided to the photodetector 11b. Further, non-polarized light after the polarization of the measuring beam I m and the reference beam I s circularly polarized light by light is lambda / 4 wave plate 10 reflected by the beam splitter 8, the measurement light I m and the reference beam I s at PBS9b The component parallel to the paper surface is transmitted and the component perpendicular to the paper surface is reflected and guided to the light detector 11d.

この光学系は、測定光Imと参照光Isとの光路差に特定の位相差を生じさせるもので、上記説明の場合、光検出器11aには位相差0°、光検出器11bには位相差180°、光検出器11cには位相差90°、光検出器11dには位相差270°を与えた後の干渉強度が発生する。すなわち各光検出器11a〜11dの出力Pa〜Pdは
Pa(x)=Im/2・(1+cos(kx))
Pb(x)=Im/2・(1+cos(kx+π))
Pc(x)=Im/2・(1+cos(kx+π/2))
Pd(x)=Im/2・(1+cos(kx+3π/2)) k=2π/λ
となる。
The optical system is intended to produce a specific phase difference in the optical path difference between the measurement light I m and the reference beam I s, in the above description, the phase difference 0 ° to the optical detector 11a, the photodetector 11b Produces an interference intensity after applying a phase difference of 180 °, a phase difference of 90 ° to the photodetector 11c, and a phase difference of 270 ° to the photodetector 11d. That is, the outputs Pa to Pd of the photodetectors 11a to 11d are
Pa (x) = I m / 2 · (1 + cos (kx))
Pb (x) = I m / 2 · (1 + cos (kx + π))
Pc (x) = I m / 2 · (1 + cos (kx + π / 2))
Pd (x) = I m / 2 · (1 + cos (kx + 3π / 2)) k = 2π / λ
It becomes.

そこで、PaとPbを差分回路12a導き、その差分Vaをとり、PcとPdを差分回路12b導き、その差分Vbをとると
Va=Im・cos(kx)
Vb=Im・sin(kx)
となる。
Therefore, if Pa and Pb are derived from the difference circuit 12a, the difference Va is taken, Pc and Pd are derived from the difference circuit 12b, and the difference Vb is taken.
Va = I m・ cos (kx)
Vb = I m・ sin (kx)
It becomes.

図13に、VaとVbの関係を示す。横軸にVa、縦軸にVbをとると、2つの軸の交点を中心とした半径Imの円上を常に通ることになる。このことは、極座標として考えると、半径は一定で位相角のみ変化することとなる。したがって、VaとVbから位相角を計算することにより、λ/2であった分解能を飛躍的に向上することができる。 FIG. 13 shows the relationship between Va and Vb. Va on the horizontal axis and the vertical axis Taking Vb, so that always passes through the center of the intersection of the two axes was a circle of radius I m. Considering this as polar coordinates, the radius is constant and only the phase angle changes. Therefore, by calculating the phase angle from Va and Vb, the resolution that was λ / 2 can be dramatically improved.

また、図14に示すように、光路差が連続的に変化しても、検出できる位相差は0から2πの間のみであるので、0から2πへの飛び、2πから0への飛びを判断し、位相角を連結する必要がある。図12では位相算出回路14により位相角を算出し、位相連結回路15により位相角を連結し出力している。   Further, as shown in FIG. 14, even if the optical path difference changes continuously, the detectable phase difference is only between 0 and 2π, so it is determined whether the jump from 0 to 2π or the jump from 2π to 0 However, it is necessary to connect the phase angles. In FIG. 12, the phase calculation circuit 14 calculates the phase angle, and the phase connection circuit 15 connects and outputs the phase angle.

しかし、これまで説明した動作は理想的な場合であり、実際には、各光学素子の製作誤差、光学調整誤差、電気回路系の誤差等があり、図15に示すように、Va、Vb軸に対し完全な円にならず、楕円となる。そうなると、半径が一定の前程が崩れ、図16に示すように、検出位相に非直線性が含まれ、それを位相連結すると図中の測定光路差のように周期的な誤差となってしまい、測定精度の悪化につながる。   However, the operation described so far is an ideal case. Actually, there are manufacturing errors of each optical element, optical adjustment errors, errors in the electric circuit system, and the like. As shown in FIG. Is not a perfect circle but an ellipse. Then, as shown in FIG. 16, when the radius is constant, the detection phase includes non-linearity, and when it is phase-coupled, a periodic error such as a measured optical path difference in the figure results. It leads to deterioration of measurement accuracy.

これらの改善方法としては、測定後のデータから誤差解析を行い、周期的誤差を補正するものがある(例えば、下記非特許文献1〜3参照)。
P. L.M.Heydemann, Determination and correction of quadrature fringe measurement errorsin interferometers, Appl. Opt., 20, 1981, 3382-3384 K. P. Brich, Opticalfringe subdivision with nanometric accuracy, Precision Eng, Oct 1990 Vol12 No4 大関ら、「レーザ干渉計の二相正弦波信号による内装位置の不確かさ低減方法に関する研究」、精密工学会誌、Vol.69、No9、2003
As these improvement methods, there is a method of performing error analysis from data after measurement and correcting a periodic error (for example, see Non-Patent Documents 1 to 3 below).
PLMHeydemann, Determination and correction of quadrature fringe measurement errorsin interferometers, Appl.Opt., 20, 1981, 3382-3384 KP Brich, Opticalfringe subdivision with nanometric accuracy, Precision Eng, Oct 1990 Vol12 No4 Ozeki et al., "Study on interior position uncertainty reduction method using two-phase sine wave signal of laser interferometer", Journal of Precision Engineering, Vol.69, No9, 2003

前述したように、高精度測長システム等に用いるホモダイン光干渉計の直交2相信号には光学系および電気回路系による誤差(それぞれの信号の振幅差、零点およびそれらの位相差)が含まれており、リサージュ波形が真円でなくなる。このままでは、測定結果に周期的な誤差が含まれてしまう。この測定結果を用い、実時間で位置サーボをかける場合等においては、そのまま、位置誤差となってしまうという問題があった。   As described above, quadrature two-phase signals of homodyne optical interferometers used in high-accuracy measurement systems, etc. include errors (amplitude difference of each signal, zero point, and their phase difference) due to the optical system and electrical circuit system. The Lissajous waveform is not a perfect circle. In this state, a periodic error is included in the measurement result. In the case where the position servo is applied in real time using this measurement result, there is a problem that the position error is generated as it is.

また、干渉計の光学調整の際、直交2相信号でリサージュ波形を表示し、その波形を真円に近づけていた。しかし、通常のリサージュ波形は表示分解能を高めることが出来ず、調整の隘路になっていた。   In addition, when the interferometer was optically adjusted, a Lissajous waveform was displayed as a quadrature two-phase signal, and the waveform was brought close to a perfect circle. However, the normal Lissajous waveform cannot increase the display resolution and has become a bottleneck for adjustment.

誤差を含む前記信号を極座標に変換した後、位相角と半径変化の関係から干渉計直交2相信号の補正値(振幅、零点および位相差)を最小自乗法により求める。これらの値により、極座標の半径が一定となるよう、干渉計直交2相信号を補正し、周期的な誤差を低減する。干渉計直交2相信号を極座標に変換した後、半径成分の変動分のみを強調する演算を行い、再び直交座標に変換し、リサージュ波形と同様に表示することにより、調整に必要な表示分解能を得ることができる。   After the signal including an error is converted into polar coordinates, a correction value (amplitude, zero point, and phase difference) of the interferometer quadrature two-phase signal is obtained by the method of least squares from the relationship between the phase angle and the radius change. With these values, the interferometer quadrature two-phase signal is corrected so that the radius of the polar coordinates is constant, and periodic errors are reduced. After converting the interferometer quadrature two-phase signal to polar coordinates, the calculation that emphasizes only the variation of the radius component is performed, and then converted to the quadrature coordinates again, and displayed in the same way as the Lissajous waveform, so that the display resolution required for adjustment is increased. Obtainable.

干渉計の周期的な誤差の低減を実時間で達成することができるとともに、干渉計の調整精度を向上することができる。   Reduction of the periodic error of the interferometer can be achieved in real time, and the adjustment accuracy of the interferometer can be improved.

以下に、本願発明をより良く理解できるように、図面を用いて説明する。   Hereinafter, the present invention will be described with reference to the drawings so that the present invention can be better understood.

本発明の一実施例を図1から図6を用いて説明する。   An embodiment of the present invention will be described with reference to FIGS.

レーザ発振器1から出たレーザ光Iは、λ/2波長板5を介してPBS2に導かれる。PBS2において、レーザ光Iを測定光Imと参照光Isに分離する。測定光Imと参照光Isの強度比は、λ/2波長板5を光軸と直角の面内で回転し、レーザ光Iの偏光面を回転させることにより調整する。通常は、ほぼ同量である。測定光Imは、移動プリズム4で反射し、再び、PBS2に導かれる。 Laser light I 0 emitted from the laser oscillator 1 is guided to the PBS 2 through the λ / 2 wavelength plate 5. In PBS 2, separates the laser beam I 0 to the reference light I s and the measurement light I m. The intensity ratio of the measured light I m and the reference beam I s rotates the lambda / 2 wave plate 5 to the optical axis within a plane perpendicular, adjusted by rotating the polarization plane of the laser beam I 0. Usually it is almost the same amount. Measurement light I m is reflected by the moving prism 4, again, is led to the PBS 2.

参照光Isは、参照プリズム3で反射した後、λ/2波長板7により測定光Imと参照光Isの偏光方向を45度回転する。これらの光は、次に無偏光ビームスプリッタ8により偏光状態を保ったまま2方向に分けられ、透過した光は、PBS9aにて測定光Imと参照光Isの偏光成分により分けられ、紙面と平行な成分は透過し、光検出器11aに、紙面と垂直な成分は反射し、光検出器11bに導かれる。 Reference light I s is reflected by the reference prism 3 is rotated by 45 degrees the polarization direction of the measuring beam I m and the reference beam I s by lambda / 2 wavelength plate 7. These lights then divided into two directions while maintaining the polarization state by the non-polarizing beam splitter 8, the transmitted light is split by the polarization component of the measuring light I m and the reference beam I s at PBS9a, paper And the component perpendicular to the paper surface are reflected and guided to the photodetector 11b.

また、無偏光ビームスプリッタ8で反射された光は、λ/4波長板10により測定光Imと参照光Isの偏光を円偏光とした後、PBS9bにて測定光Imと参照光Isの偏光成分により分けられ、紙面と平行な成分は透過し、光検出器11cに、紙面と垂直な成分は反射し、光検出器11dに導かれる。 The light reflected by the non-polarizing beam splitter 8, lambda / 4 after the circularly polarized light the polarization of the measuring beam I m and the reference beam I s by the wavelength plate 10, the measurement light I m and the reference beam I at PBS9b The component divided by the polarization component of s and parallel to the paper surface is transmitted, and the component perpendicular to the paper surface is reflected by the light detector 11c and guided to the light detector 11d.

この光学系は、測定光Imと参照光Isとの光路差に特定の位相差を生じさせるもので、上記説明の場合、光検出器11aには位相差0°、光検出器11bには位相差180°、光検出器11cには位相差90°、光検出器11dには位相差270°を与えた後の干渉強度が発生する。各光検出器11a〜11dの出力Pa〜Pdとし、PaとPbを差分回路12a導き、その差分Vaをとり、PcとPdを差分回路12b導き、その差分Vbをとる。このままでは、前述の測定誤差が含まれてしまうので、補正回路13により、補正した、Va’とVb’から位相算出回路14により位相角を算出し、位相連結回路15により位相角を連結し出力している。 The optical system is intended to produce a specific phase difference in the optical path difference between the measurement light I m and the reference beam I s, in the above description, the phase difference 0 ° to the optical detector 11a, the photodetector 11b Produces an interference intensity after applying a phase difference of 180 °, a phase difference of 90 ° to the photodetector 11c, and a phase difference of 270 ° to the photodetector 11d. The outputs Pa to Pd of the respective photodetectors 11a to 11d are set, Pa and Pb are derived from the difference circuit 12a, the difference Va is taken, Pc and Pd are led from the difference circuit 12b, and the difference Vb is taken. Since the measurement error described above is included as it is, the phase calculation circuit 14 calculates the phase angle from the corrected Va ′ and Vb ′ by the correction circuit 13, and the phase connection circuit 15 concatenates the phase angles and outputs them. is doing.

次に、VaとVbの補正方法について説明する。図15に示すように、一般的な光干渉計の出力VaとVbは上述の理想的干渉信号と異なり、それぞれの増幅度(Ga,Gb)、零点(Va0,Vb0)の誤差を含み、また、光学素子の誤差により理想の90度位相からずれ(φ)を生じる。上記誤差を含む干渉信号はそれぞれ
Va=Ga×cos(θ)+Va0
Vb=Gb×sin(θ+φ)+Vb0
で表される。
Next, a method for correcting Va and Vb will be described. As shown in FIG. 15, the outputs Va and Vb of a general optical interferometer are different from the above-described ideal interference signals, and include errors of respective amplification degrees (Ga, Gb) and zero points (Va0, Vb0). Deviation (φ) from the ideal 90 degree phase occurs due to the error of the optical element. The interference signal including the above error is
Va = Ga × cos (θ) + Va0
Vb = Gb × sin (θ + φ) + Vb0
It is represented by

したがって、原点からの半径r’と位相θ‘は
となり、このまま位相を求めたのではθ‘≠θであり、誤差を含むことになる。
Therefore, the radius r 'and the phase θ' from the origin are
Thus, if the phase is obtained as it is, θ ′ ≠ θ, which includes an error.

そこで、図Iに示すように誤差を含む干渉信号Va、Vbを補正演算回路100により
Va’=( Va- Va0’)/ Ga’
Vb’’=( Vb- Vb0’)/ Gb’
Vb’=( Vb’’- Va’ ×sinθ’)/ cosθ’
の演算を行い、誤差の少ないVa’、Vb’に変換した後にθ’を検出し、測定変位とする。
補正演算用データGa’,Gb’,Va0’,Vb0’,φ’は、補正値レジスタ110の値を使用し、誤差検出回路120で求めたΔGa、ΔGb、ΔVa0、ΔVb0、Δφにより補正し、誤差低減を図る。
Therefore, as shown in FIG.
Va '= (Va- Va0') / Ga '
Vb '' = (Vb- Vb0 ') / Gb'
Vb '= (Vb''-Va' × sinθ ') / cosθ'
After performing the above calculation and converting into Va ′ and Vb ′ with little error, θ ′ is detected and set as a measurement displacement.
The correction calculation data Ga ′, Gb ′, Va0 ′, Vb0 ′, φ ′ are corrected using ΔGa, ΔGb, ΔVa0, ΔVb0, Δφ obtained by the error detection circuit 120 using the values of the correction value register 110, Reduce errors.

まず、Gaのみに誤差が有る場合を考える(Ga≠1)。
Va=(1+ΔGa) ×cos(θ)
Vb=sinθ
であるから、図2に示すようなVa軸を長軸とする楕円となる。これからr‘、θ’を求めると
となる。この関係を図3に示す。
First, consider a case where only Ga has an error (Ga ≠ 1).
Va = (1 + ΔGa) × cos (θ)
Vb = sinθ
Therefore, an ellipse having the Va axis as a major axis as shown in FIG. From now on, r 'and θ'
It becomes. This relationship is shown in FIG.

この変動はcos(2θ‘)、あるいはcos(θ‘)^2の成分を持っている。
ここで、その変動を確認する。理想円(r=1)とr‘の差は
ここで、ΔGaは1≫であるので、この項を省略し平方根を級数展開の2項までで表現すると
r’-1≒1+ΔGa×cos2θ-1=ΔGa×cos2θ
となる。
This variation has a component of cos (2θ ′) or cos (θ ′) ^ 2.
Here, the fluctuation is confirmed. The difference between the ideal circle (r = 1) and r 'is
Here, since ΔGa 2 is 1 >>, if this term is omitted and the square root is expressed by up to two terms in the series expansion,
r'-1 ≒ 1 + ΔGa × cos 2 θ-1 = ΔGa × cos 2 θ
It becomes.

これから、最小自乗法の考え方を用いてΔGaを求める(ノイズ等の影響を極力少なくするため、統計的手法を用いる)。本来はr’とθ’の関係で評価すべきであるが、ΔGaが小さくなるにつれ、θ’→θとなって行くので、ここではθ’=θとして評価した。   From this, ΔGa is obtained using the idea of the method of least squares (a statistical method is used to minimize the influence of noise and the like). Originally, it should be evaluated based on the relationship between r ′ and θ ′. However, as ΔGa becomes smaller, θ ′ → θ, and therefore, evaluation is performed with θ ′ = θ.

Gaのみ誤差を含むN個の干渉信号の内、k番目のVak’ , Vbk’からr’kとθkを求め、これからΔGaを求めると
となる。なお、ΔGaを精度良く求めるためには、θからθがリサージュ波形一周の半分以上の角度に分散していることが必要で、より高精度化のためには、一周分以上のデータを使用した演算が望ましい。
Of N interference signals containing only Ga errors, r ′ k and θ k are obtained from k-th Va k ′ and Vb k ′, and ΔGa is obtained from this.
It becomes. In order to obtain ΔGa with high accuracy, it is necessary that θ 1 to θ n be dispersed at an angle that is half or more of the Lissajous waveform round. For higher accuracy, data of one round or more is required. The operation used is desirable.

同様にΔGb,ΔVa0,ΔVb0,Δφは
となる。
Similarly, ΔGb, ΔVa0, ΔVb0, Δφ are
It becomes.

これらの計算は誤差検出回路120で行う。いずれも繰返し計算で補正精度を高める。繰返し計算の終了は、予め決めてある回数で打ち切っても良いし、予め決めてある補正精度に達した場合に打ち切っても良いし、それらの組み合わせにより打ち切ることも可能である。   These calculations are performed by the error detection circuit 120. Both increase the correction accuracy by iterative calculation. The end of the iterative calculation may be terminated at a predetermined number of times, may be terminated when a predetermined correction accuracy is reached, or may be terminated by a combination thereof.

また、上記、5つの式はいずれも三角関数を含む形であり、ΔGa、ΔGb,ΔVa0,ΔVb0,Δφが大きい場合にはお互いにクロストークがあり、このままでは収束の効率が悪くなるため、前述のクロストークを加味したΔGa、ΔGb,ΔVa0,ΔVb0,Δφの補正が必要である。   In addition, the above five formulas all include trigonometric functions, and when ΔGa, ΔGb, ΔVa0, ΔVb0, and Δφ are large, there is crosstalk with each other, and the convergence efficiency deteriorates as it is. It is necessary to correct ΔGa, ΔGb, ΔVa0, ΔVb0, Δφ in consideration of the crosstalk.

補正の効果を図5、図6で示す。図1の移動ミラー4を三角波状に移動した場合で補正前の干渉計出力の一部を図5に示す。横軸を時間、縦軸左側を干渉計出力とした。干渉計出力は、最小値を過ぎると時間とともに増加し、最大値に達し、再び減少に転じている。時間とともに増加している部分に着目すると、若干、うねりが生じている。これを確認するため、これらの部分から、最小自乗法により、3次式の近似曲線を求め、近似曲線からの差を残差として縦軸右側に示す。残差は、振れ幅約5nmで周期的に繰り返していることが判る。図6に補正後の干渉計出力を示す。残差は、振れ幅で0.2nm以下であり、大幅に改善されていることが判る。   The effect of the correction is shown in FIGS. FIG. 5 shows a part of the output of the interferometer before correction when the moving mirror 4 in FIG. 1 is moved in a triangular wave shape. The horizontal axis is time, and the left side is the interferometer output. The interferometer output increases with time after a minimum value, reaches a maximum value, and then starts decreasing again. When attention is paid to the portion increasing with time, there is a slight swell. In order to confirm this, an approximated curve of a cubic equation is obtained from these parts by the method of least squares, and the difference from the approximated curve is shown as the residual on the right side of the vertical axis. It can be seen that the residual repeats periodically with a swing width of about 5 nm. FIG. 6 shows the corrected interferometer output. The residual is 0.2 nm or less in terms of the fluctuation width, and it can be seen that the residual is greatly improved.

次にリサージュ波形の表示分解能を高める方法の一実施例を示す。図7から図10を用いて説明する。   Next, an embodiment of a method for increasing the display resolution of the Lissajous waveform will be described. This will be described with reference to FIGS.

図7に本発明のブロック図を示す。干渉計直交2相信号Va’、Vb’は、極座標変換回路130により、半径方向成分rと角度成分θとに変換する。このうち、半径方向成分rは、表示演算回路140において、r’=(r−r)*r+rの演算を行った後、直交座標変換回路150により、半径方向成分を強調したra,rbが得られる。これを観測することにより、表示分解能を改善できる。なお、表示演算回路140の各補正値r、r、rは、補正値レジスタB160内のr、r、rを変更することにより変えられる。 FIG. 7 shows a block diagram of the present invention. Interferometer quadrature two-phase signals Va ′ and Vb ′ are converted into a radial component r and an angle component θ by a polar coordinate conversion circuit 130. Of these, the radial component r is calculated by r ′ = (r−r 0 ) * r G + r r in the display calculation circuit 140, and then the orthogonal coordinate conversion circuit 150 emphasizes the radial component r. a and r b are obtained. By observing this, the display resolution can be improved. Each correction value r 0, r G, r r of the display operation circuit 140, r 0 in the correction value register B 160, r G, is varied by changing the r r.

図8からQに演算結果の一例を示す。図8は、干渉計直交2相信号Va’、Vb’とr=0、r=1、r=0の場合のra,rbを示しており、なんの強調もされていない。 FIG. 8 to Q show an example of the calculation result. FIG. 8 shows interferometric quadrature signals Va ′ and Vb ′ and r a and r b when r 0 = 0, r G = 1 and r r = 0, and no emphasis is given. .

図9は、r=1、r=20、r=0の場合のra,rbを示しており,半径方向成分の変化分のみを20倍強調して表示している。図8に比べると、変動分がはっきり表示されているのが判る。干渉計の干渉状態のモニタには向いているが、しかし、変動分の方向が判断できないので、干渉計の調整等には向かない。 FIG. 9 shows r a and r b in the case of r 0 = 1, r G = 20, and r r = 0, and only the change in the radial component is highlighted 20 times. Compared to FIG. 8, it can be seen that the variation is clearly displayed. It is suitable for monitoring the interference state of the interferometer, but it is not suitable for adjusting the interferometer because the direction of fluctuation cannot be determined.

このように各補正値r、r、rの組み合わせを変えることで使用目的にあったリサージュ波形を表示できる。 In this way, a Lissajous waveform suitable for the purpose of use can be displayed by changing the combination of the correction values r 0 , r G , and r r .

本発明の第1実施例を示すブロック図である。1 is a block diagram showing a first embodiment of the present invention. 本発明の第1実施例を説明するための図である。FIG. 3 is a diagram for explaining a first embodiment of the present invention. 本発明の第1実施例を説明するための図である。FIG. 3 is a diagram for explaining a first embodiment of the present invention. 本発明の第1実施例主要部分を示すブロック図である。1 is a block diagram showing the main part of a first embodiment of the present invention. 本発明による補正を行う前の残差を示す図である。It is a figure which shows the residual before performing the correction | amendment by this invention. 本発明による補正を行った後の残差を示す図である。It is a figure which shows the residual after performing the correction | amendment by this invention. 本発明の第2実施例を示すブロック図である。It is a block diagram which shows 2nd Example of this invention. 本発明の第2実施例を説明するための図である。It is a figure for demonstrating 2nd Example of this invention. 本発明の第2実施例の効果を説明するための図である。It is a figure for demonstrating the effect of 2nd Example of this invention. 本発明の第2実施例の効果を説明するための図である。It is a figure for demonstrating the effect of 2nd Example of this invention. 光干渉計の動作原理を示すブロック図である。It is a block diagram which shows the principle of operation of an optical interferometer. 光干渉計の精度向上を示すブロック図である。It is a block diagram which shows the precision improvement of an optical interferometer. 光干渉計の動作原理を説明するための図である。It is a figure for demonstrating the principle of operation of an optical interferometer. 光干渉計の動作原理を説明するための図である。It is a figure for demonstrating the principle of operation of an optical interferometer. 光干渉計の動作原理を説明するための図である。It is a figure for demonstrating the principle of operation of an optical interferometer. 光干渉計の動作原理を説明するための図である。It is a figure for demonstrating the principle of operation of an optical interferometer.

符号の説明Explanation of symbols

1 レーザ発振器
2 偏光ビームスプリッタ(PBS)
3 参照プリズム
4 移動プリズム
5 λ/2波長板
6 ミラー
7 λ/2波長板b
8 無偏光ビームスプリッタ
9 PBS
10 λ/4波長板
11 光検出器
12 差分回路
13 補正回路
14 位相算出回路
15 位相連結回路
20 偏光子
100 補正演算回路
110 補正値レジスタ
120 誤差検出回路
130 極座標変換回路
140 表示演算回路
150 直交座標変換回路
160 補正値レジスタB
1 Laser oscillator 2 Polarizing beam splitter (PBS)
3 Reference prism 4 Moving prism 5 λ / 2 wave plate 6 Mirror 7 λ / 2 wave plate b
8 Non-polarizing beam splitter 9 PBS
10 λ / 4 wavelength plate 11 photodetector 12 difference circuit 13 correction circuit 14 phase calculation circuit 15 phase coupling circuit 20 polarizer 100 correction calculation circuit 110 correction value register 120 error detection circuit 130 polar coordinate conversion circuit 140 display calculation circuit 150 orthogonal coordinate Conversion circuit 160 Correction value register B

Claims (6)

測長に使用する光干渉計の周期誤差低減方法において、周期誤差を発生させる誤差要因を特定し、該特定した誤差要因を用いて周期誤差を低減することを特徴とする光干渉計の周期誤差低減方法。   In a method for reducing a periodic error of an optical interferometer used for length measurement, an error factor that generates a periodic error is identified, and the periodic error is reduced using the identified error factor, Reduction method. 請求項1記載の光干渉計の周期誤差低減方法において、該光干渉計の直交2相信号を極座標変換し、位相角に対する半径の変動により周期誤差を発生させる誤差要因を特定することを特徴とする光干渉計の周期誤差低減方法。   2. The method for reducing a periodic error of an optical interferometer according to claim 1, wherein the orthogonal two-phase signal of the optical interferometer is subjected to polar coordinate conversion, and an error factor that causes a periodic error due to a variation in radius with respect to the phase angle is specified. A periodic error reduction method for an optical interferometer. 請求項1記載の光干渉計の周期誤差低減方法において、位相角に対する半径の変動分のみを増幅し、モニタに出力し、その変動分が最小になるように干渉計の光学調整を行うことを特徴とする光干渉計の周期誤差低減方法。   2. The method of reducing a periodic error of an optical interferometer according to claim 1, wherein only the variation of the radius with respect to the phase angle is amplified and output to the monitor, and the interferometer is optically adjusted so that the variation is minimized. A periodic error reduction method for an optical interferometer. 測長に使用する光干渉計の周期誤差低減装置において、周期誤差を発生させる誤差要因を特定する検出部及び特定した誤差要因を用いて周期誤差を低減する補正回路を有することを特徴とする光干渉計の周期誤差低減装置。   An optical interferometer periodic error reduction apparatus for use in length measurement, comprising: a detector that identifies an error factor that generates a periodic error; and a correction circuit that reduces the periodic error using the identified error factor. Interferometer periodic error reduction device. 請求項4記載の光干渉計の周期誤差低減装置において、位相角に対する半径の変動分のみを増幅し、モニタに出力し、その変動分が最小になるように干渉計の光学調整をすることを特徴とする光干渉計の周期誤差低減装置。   5. An optical interferometer periodic error reduction apparatus according to claim 4, wherein only the variation of the radius with respect to the phase angle is amplified and output to the monitor, and the interferometer is optically adjusted so that the variation is minimized. A periodic error reduction device for an optical interferometer. 請求項4記載の光干渉計の周期誤差低減装置において、位相角に対する半径の変動分のみを増幅し、モニタに出力し、その変動分が最小になるように干渉計の光学調整を行うこと特徴とする光干渉計の周期誤差低減装置。
5. The apparatus for reducing periodic errors of an optical interferometer according to claim 4, wherein only the variation of the radius with respect to the phase angle is amplified and output to the monitor, and the interferometer is optically adjusted so that the variation is minimized. A periodic error reduction device for an optical interferometer.
JP2004363505A 2004-12-15 2004-12-15 Method and apparatus for reducing periodic error of optical interferometer Expired - Fee Related JP4465451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004363505A JP4465451B2 (en) 2004-12-15 2004-12-15 Method and apparatus for reducing periodic error of optical interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004363505A JP4465451B2 (en) 2004-12-15 2004-12-15 Method and apparatus for reducing periodic error of optical interferometer

Publications (2)

Publication Number Publication Date
JP2006170796A true JP2006170796A (en) 2006-06-29
JP4465451B2 JP4465451B2 (en) 2010-05-19

Family

ID=36671718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004363505A Expired - Fee Related JP4465451B2 (en) 2004-12-15 2004-12-15 Method and apparatus for reducing periodic error of optical interferometer

Country Status (1)

Country Link
JP (1) JP4465451B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087390A1 (en) * 2009-01-28 2010-08-05 株式会社神戸製鋼所 Shape determining device
JP2011013212A (en) * 2009-06-05 2011-01-20 Kobelco Kaken:Kk Shape measuring device, and method of the same
WO2012134291A1 (en) * 2011-03-30 2012-10-04 Mapper Lithography Ip B.V. Interferometer module
JP2013002921A (en) * 2011-06-15 2013-01-07 Canon Inc Measuring device
EP2648044A2 (en) 2012-04-04 2013-10-09 Canon Kabushiki Kaisha Measurement apparatus and measurement method
JP2014025871A (en) * 2012-07-30 2014-02-06 Mitsutoyo Corp Encoder output signal correction apparatus
JP2015075461A (en) * 2013-10-11 2015-04-20 株式会社東京精密 Two-wavelength sinewave phase modulation interferometer
JP2015517107A (en) * 2012-04-20 2015-06-18 ザイゴ コーポレーションZygo Corporation Compensation for non-harmonic periodic errors in interferometer encoder systems
US9551563B2 (en) 2012-09-27 2017-01-24 Mapper Lithography Ip B.V. Multi-axis differential interferometer
JP2018004539A (en) * 2016-07-06 2018-01-11 株式会社東京精密 Distance measurement device and distance measurement method
JP2019527357A (en) * 2016-07-13 2019-09-26 エーエスエムエル ネザーランズ ビー.ブイ. Procedure for measuring and calibrating periodic errors in interferometers
JP2021060311A (en) * 2019-10-08 2021-04-15 株式会社ミツトヨ Analyzer, analysis method, interference measuring system, and program

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087390A1 (en) * 2009-01-28 2010-08-05 株式会社神戸製鋼所 Shape determining device
US8649019B2 (en) 2009-01-28 2014-02-11 Kobe Steel, Ltd. Shape determining device
JP2011013212A (en) * 2009-06-05 2011-01-20 Kobelco Kaken:Kk Shape measuring device, and method of the same
US9069265B2 (en) 2011-03-30 2015-06-30 Mapper Lithography Ip B.V. Interferometer module
WO2012134291A1 (en) * 2011-03-30 2012-10-04 Mapper Lithography Ip B.V. Interferometer module
CN102735163A (en) * 2011-03-30 2012-10-17 迈普尔平版印刷Ip有限公司 Alignment of an interferometer module for an exposure tool
US9690215B2 (en) 2011-03-30 2017-06-27 Mapper Lithography Ip B.V. Interferometer module
JP2014515186A (en) * 2011-03-30 2014-06-26 マッパー・リソグラフィー・アイピー・ビー.ブイ. Lithography system with differential interferometer module
US9678443B2 (en) 2011-03-30 2017-06-13 Mapper Lithography Ip B.V. Lithography system with differential interferometer module
US9261800B2 (en) 2011-03-30 2016-02-16 Mapper Lithography Ip B.V. Alignment of an interferometer module for use in an exposure tool
JP2013002921A (en) * 2011-06-15 2013-01-07 Canon Inc Measuring device
EP2648044A2 (en) 2012-04-04 2013-10-09 Canon Kabushiki Kaisha Measurement apparatus and measurement method
JP2015517107A (en) * 2012-04-20 2015-06-18 ザイゴ コーポレーションZygo Corporation Compensation for non-harmonic periodic errors in interferometer encoder systems
JP2014025871A (en) * 2012-07-30 2014-02-06 Mitsutoyo Corp Encoder output signal correction apparatus
US9551563B2 (en) 2012-09-27 2017-01-24 Mapper Lithography Ip B.V. Multi-axis differential interferometer
JP2015075461A (en) * 2013-10-11 2015-04-20 株式会社東京精密 Two-wavelength sinewave phase modulation interferometer
JP2018004539A (en) * 2016-07-06 2018-01-11 株式会社東京精密 Distance measurement device and distance measurement method
JP2019527357A (en) * 2016-07-13 2019-09-26 エーエスエムエル ネザーランズ ビー.ブイ. Procedure for measuring and calibrating periodic errors in interferometers
US11287242B2 (en) 2016-07-13 2022-03-29 Asml Netherlands B.V. Cyclic error measurements and calibration procedures in interferometers
JP2021060311A (en) * 2019-10-08 2021-04-15 株式会社ミツトヨ Analyzer, analysis method, interference measuring system, and program
JP7293078B2 (en) 2019-10-08 2023-06-19 株式会社ミツトヨ Analysis device, analysis method, interference measurement system, and program

Also Published As

Publication number Publication date
JP4465451B2 (en) 2010-05-19

Similar Documents

Publication Publication Date Title
Lou et al. Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology
JP6076589B2 (en) Displacement detector
JP4465451B2 (en) Method and apparatus for reducing periodic error of optical interferometer
US9175987B2 (en) Displacement detecting device
CN101893429B (en) Super-precision surface measuring system based on polarization phase-shifting microscopy interference technology
CN104748671B (en) Angular displacement single frequency laser interferometer nonlinearity erron modification method and device
JP6252089B2 (en) Two-wave sine wave phase modulation interferometer
JP2007271624A (en) Phase difference detector and phase difference detecting method
CN109539975A (en) Single frequency laser interferometer nonlinearity erron modification method and device
CN109883362A (en) A kind of straight line degree measurement system based on grating interference principle
Xu et al. High sensitivity and full-circle optical rotary sensor for non-cooperatively tracing wrist tremor with nanoradian resolution
WO2013082247A1 (en) Interferometer, system, and method of use
CN106248195B (en) The high robust homodyne laser vibration measurer and four steppings of additional phase shift compensation
Li et al. Quadrature phase detection based on a laser self-mixing interferometer with a wedge for displacement measurement
Kim et al. A compact system for simultaneous measurement of linear and angular displacements of nano-stages
Dobosz et al. Interference method for ultra-precision measurement and compensation of laser beam angular deflection
US20050157310A1 (en) Method and apparatus for simultaneously measuring displacement and angular variations
KR20210097015A (en) Mach-Zehnder/Michelson Interferometer with Prism I/Q Demodulator
CN109974576A (en) Single frequency laser interferometer nonlinearity erron modification method and device
JP7233186B2 (en) Relative position detection means and displacement detection device
KR100431706B1 (en) Method and system for correcting the non-linearity error in a two-frequency laser interferometer
TW200949192A (en) Measurement method for parallelism verification of two plane mirrors by Fabry-Perot interferometric principle
JP7293078B2 (en) Analysis device, analysis method, interference measurement system, and program
JP5902891B2 (en) Encoder and calibration method
JP2021196166A (en) Displacement detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100126

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees