[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006170521A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2006170521A
JP2006170521A JP2004363263A JP2004363263A JP2006170521A JP 2006170521 A JP2006170521 A JP 2006170521A JP 2004363263 A JP2004363263 A JP 2004363263A JP 2004363263 A JP2004363263 A JP 2004363263A JP 2006170521 A JP2006170521 A JP 2006170521A
Authority
JP
Japan
Prior art keywords
oil
pipe
refrigerant
compressor
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004363263A
Other languages
Japanese (ja)
Inventor
Takeshi Mochizuki
武 望月
Masaru Miura
賢 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2004363263A priority Critical patent/JP2006170521A/en
Publication of JP2006170521A publication Critical patent/JP2006170521A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator with superior reliability capable of maintaining a refrigerating machine oil amount of each compressor at an optimum state by efficiently discharging excessive portions of refrigerating machine oil in the compressor without being affected by a difference of operation capacities of the compressors, and without deteriorating refrigerant delivery performance. <P>SOLUTION: Refrigerants delivered from the compressors 1a and 1b are joined in a junction pipe 4 via delivery pipes 2a and 2b. Oil pipes 12a and 12b are connected from side parts of sealed cases of the compressors 1a and 1b to the junction pipe 4. The excessive portions of the refrigerating machine oil in the sealed cases are discharged into the oil pipes 12a and 12b, and sucked into the junction pipe 4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、複数の圧縮機を備えた冷凍装置に関する。   The present invention relates to a refrigeration apparatus including a plurality of compressors.

冷凍装置に搭載されるロータリ圧縮機は、内部空間が高圧の密閉ケースにより、周囲が被われている。密閉ケースには、その密閉ケース内の部品の潤滑作用を保つため、冷凍機油(潤滑油ともいう)が収容されている。この冷凍機油の一部は、圧縮機から吐出される冷媒ガスと共に、冷凍サイクル中に流出する。流出した冷凍機油は、冷媒と共に、冷凍サイクルを循環して圧縮機に吸込まれる。   The rotary compressor mounted in the refrigeration apparatus is surrounded by a sealed case whose internal space has a high pressure. In the sealed case, refrigeration oil (also referred to as lubricating oil) is accommodated in order to maintain the lubricating action of the components in the sealed case. A part of this refrigeration oil flows out into the refrigeration cycle together with the refrigerant gas discharged from the compressor. The refrigeration oil that has flowed out is circulated through the refrigeration cycle together with the refrigerant and sucked into the compressor.

複数の圧縮機を備えた冷凍装置の場合、各圧縮機から流出する冷凍機油の量が圧縮機ごとに異なり、各圧縮機に戻る冷凍機油の量も圧縮機ごとに異なる。このため、各圧縮機の密閉ケース内の冷凍機油量に、差が生じる。   In the case of a refrigeration apparatus provided with a plurality of compressors, the amount of refrigeration oil flowing out from each compressor is different for each compressor, and the amount of refrigeration oil returning to each compressor is also different for each compressor. For this reason, a difference arises in the amount of refrigeration oil in the airtight case of each compressor.

冷凍機油量が少なくなると、密閉ケース内の圧縮機構部の潤滑作用を十分に保つことができなくなる。   When the amount of the refrigerating machine oil decreases, the lubricating action of the compression mechanism portion in the sealed case cannot be sufficiently maintained.

冷凍機油量が多くなると、密閉ケース内のモータのロータが油中で回転することになるため冷凍機油が負荷となり、モータの駆動電力が増大してしまうなどの問題がある。   When the amount of the refrigerating machine oil increases, the rotor of the motor in the sealed case rotates in the oil, so that the refrigerating machine oil becomes a load and the driving power of the motor increases.

そこで、従来、各圧縮機に設けられている返油口と各圧縮機の吐出配管との間に、それぞれ返油管を設けたものがある(特許文献1)。この例では、吐出配管内の冷媒流により、返油管に吸入圧力が加わる。この吸入圧力により、各圧縮機内の冷凍機油の余剰分が、それぞれの返油管を通って吐出配管に流出する。   In view of this, there is a conventional oil return pipe provided between the oil return port provided in each compressor and the discharge pipe of each compressor (Patent Document 1). In this example, the suction pressure is applied to the oil return pipe by the refrigerant flow in the discharge pipe. Due to this suction pressure, surplus refrigeration oil in each compressor flows out to the discharge pipe through the oil return pipe.

また、各圧縮機の吐出管に圧力損失手段を設け、各圧縮機のケーシングの上部と各圧縮機の吐出管における上記圧力損失手段の下流側との間に、それぞれ油排出管を設けたものもある(特許文献2)。この例では、吐出管における圧力損失手段により、油排出管の両端部に圧力差が生じる。この圧力差により、各圧縮機のケーシングの上側に溜まった潤滑油が、それぞれの油排出管を通って吐出管に流出する。
特開2002−327975号公報 特許第3387250号公報
Also, pressure loss means is provided in the discharge pipe of each compressor, and an oil discharge pipe is provided between the upper part of the casing of each compressor and the downstream side of the pressure loss means in the discharge pipe of each compressor. There is also (patent document 2). In this example, a pressure difference is generated at both ends of the oil discharge pipe by the pressure loss means in the discharge pipe. Due to this pressure difference, the lubricating oil accumulated on the upper side of the casing of each compressor flows out to the discharge pipe through the oil discharge pipe.
JP 2002-327975 A Japanese Patent No. 3387250

上記特許文献1の例では、それぞれの返油管に加わる吸入圧力の大きさが、圧縮機1台分の吐出冷媒流量に対応する。このため、圧縮機が低能力運転した場合に、冷凍機油の余剰分を効率よく流出させることができない可能性がある。しかも、各圧縮機の運転能力に差がある場合、低能力側の圧縮機では返油管に加わる吸入圧力が大きく低下するのに対し、一方の高能力側圧縮機では返油管に加わる吸入圧力が大きく上昇する。このため、各圧縮機内の冷凍機油量に大きな差が生じることがある。   In the example of Patent Document 1, the magnitude of the suction pressure applied to each oil return pipe corresponds to the discharge refrigerant flow rate for one compressor. For this reason, when a compressor carries out a low capacity | capacitance driving | operation, there exists a possibility that the surplus part of refrigeration oil cannot be discharged efficiently. In addition, when there is a difference in operating capacity between the compressors, the suction pressure applied to the oil return pipe is greatly reduced in the compressor on the low capacity side, whereas the suction pressure applied to the oil return pipe is reduced in the one on the high capacity side compressor. A big rise. For this reason, a big difference may arise in the amount of refrigeration oil in each compressor.

上記特許文献2の例では、それぞれの油排出管に加わる吸入圧力の大きさは、圧力損失手段を経由した後の圧縮機1台分の吐出冷媒流量に対応する。このため、特許文献1の例と同じように、圧縮機が低能力運転した場合に、冷凍機油を効率よく流出させることができない可能性がある。しかも、この例では、吐出管に圧力損失手段が存在するため、冷媒の吐出性能が低下するという問題もある。   In the example of Patent Document 2, the magnitude of the suction pressure applied to each oil discharge pipe corresponds to the discharged refrigerant flow rate for one compressor after passing through the pressure loss means. For this reason, as in the example of Patent Document 1, when the compressor is operated at a low capacity, there is a possibility that the refrigeration oil cannot be efficiently discharged. In addition, in this example, since the pressure loss means exists in the discharge pipe, there is a problem that the discharge performance of the refrigerant is deteriorated.

この発明は、上記事情を考慮したもので、各圧縮機の運転能力の差に影響を受けることなく、冷媒の吐出性能を低下させることもなく、圧縮機内の冷凍機油の余剰分を効率よく流出させることができ、これにより各圧縮機の冷凍機油量を最適な状態に維持することができる信頼性にすぐれた冷凍装置を提供することを目的とする。   The present invention takes the above circumstances into consideration, and does not affect the difference in operating capacity between the compressors, and does not deteriorate the discharge performance of the refrigerant, and efficiently drains the excess refrigeration oil in the compressor. Accordingly, an object of the present invention is to provide a highly reliable refrigeration apparatus capable of maintaining the amount of refrigeration oil in each compressor in an optimum state.

請求項1に係る発明の冷凍装置は、冷凍機油が収容された密閉ケースを有し、冷媒を吸込んで圧縮し、圧縮した冷媒を密閉ケースの吐出口から吐出する複数の圧縮機と、この各圧縮機から吐出される冷媒が流れる複数の吐出管と、この各吐出管内の冷媒が合流する1つの合流管と、上記各圧縮機の密閉ケースの側部と上記合流管との間に接続され、密閉ケース内の冷凍機油の余剰分が流入する複数の油管と、を備えている。   A refrigeration apparatus according to a first aspect of the present invention includes a sealed case in which refrigeration oil is accommodated, a plurality of compressors that suck and compress the refrigerant, and discharge the compressed refrigerant from the discharge port of the sealed case, Connected between a plurality of discharge pipes through which refrigerant discharged from the compressor flows, one merging pipe where the refrigerant in each of the discharge pipes merges, and a side portion of the hermetic case of each compressor and the merging pipe. And a plurality of oil pipes into which surplus refrigeration oil in the sealed case flows.

請求項3に係る発明の冷凍装置は、冷凍機油が収容された密閉ケースを有し、冷媒を吸い込んで圧縮し、圧縮した冷媒を密閉ケースの吐出口から吐出する複数の圧縮機と、上記各圧縮機から吐出される冷媒が流れる複数の吐出管と、上記各吐出管内の冷媒が合流する1つの合流管と、この合流管の吐出冷媒を油分離器および室外熱交換器に通して室内側に供給しその室内側から戻る冷媒を圧縮機の吸込側に導く室外ユニットを複数台備えたものであって、上記各室外ユニットの油分離器から、同各油分離器が設けられている自ユニットの冷媒吸込側にかけて、接続された第1油管と、上記各油分離器から、同各油分離器が設けられているのとは別の他ユニットの冷媒吸込側にかけて、接続された第2油管と、を備え、上記各油分離器に対する上記第1油管の開口位置の高さを、上記各油分離器に対する上記第2油管の開口位置の高さよりも、低くしている。   According to a third aspect of the present invention, there is provided a refrigeration apparatus including a sealed case in which refrigeration oil is accommodated, a plurality of compressors that suck and compress refrigerant, and discharge the compressed refrigerant from a discharge port of the sealed case; A plurality of discharge pipes through which refrigerant discharged from the compressor flows, one merging pipe in which the refrigerant in each of the discharge pipes merges, and the refrigerant discharged from the merging pipes are passed through an oil separator and an outdoor heat exchanger to the indoor side Are provided with a plurality of outdoor units that guide the refrigerant returning from the indoor side to the suction side of the compressor, from the oil separators of the outdoor units. The first oil pipe connected to the refrigerant suction side of the unit and the second oil pipe connected to the refrigerant suction side of another unit other than the oil separator provided from each oil separator. An oil pipe, and for each of the oil separators The height of the opening position of the serial first oil pipe, than the height of the opening position of the second oil pipe for each oil separator is lowered.

この発明によれば、各圧縮機の運転能力の差に影響を受けることなく、圧縮機内の冷凍機油の余剰分を効率よく流出させることができる。これにより、各圧縮機の冷凍機油量を最適な状態に維持することができる信頼性にすぐれた冷凍装置を提供できる。   According to the present invention, it is possible to efficiently drain the excess amount of the refrigeration oil in the compressor without being affected by the difference in operating capacity between the compressors. Thereby, it is possible to provide a refrigeration apparatus with excellent reliability that can maintain the amount of refrigeration oil in each compressor in an optimum state.

[1]以下、この発明の第1の実施形態について図面を参照して説明する。
図1に示すように、複数台の室外ユニットA1,A2および複数台の室内ユニットB1,B2,B3,B4が相互に配管接続されて、マルチタイプの空気調和機が構成されている。
[1] A first embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, a plurality of outdoor units A1, A2 and a plurality of indoor units B1, B2, B3, B4 are connected to each other by pipes to constitute a multi-type air conditioner.

室外ユニットA1において、1a,1bは密閉ケース内空間が高圧冷媒で満たされる高圧型のロータリ圧縮機で、冷媒を吸込んで圧縮し、圧縮した冷媒を密閉ケースの吐出口から吐出する。これら圧縮機1a,1bは密閉ケースで被われており、その密閉ケースには内部の圧縮機構部の摺動部における各部品の潤滑作用を保つために冷凍機油Lが収容されている。この冷凍機油Lの一部は、冷媒の吐出に伴い、密閉ケースから流出する。   In the outdoor unit A1, 1a and 1b are high-pressure rotary compressors in which the space inside the sealed case is filled with high-pressure refrigerant, and the refrigerant is sucked in and compressed, and the compressed refrigerant is discharged from the discharge port of the sealed case. These compressors 1a and 1b are covered with a hermetic case, and refrigeration oil L is accommodated in the hermetic case in order to maintain the lubricating action of each component in the sliding portion of the internal compression mechanism. A part of the refrigerating machine oil L flows out of the sealed case as the refrigerant is discharged.

圧縮機1a,1bから吐出される冷媒(および冷凍機油Lの一部)は、吐出管2a,2bおよびその吐出管2bに設けられている逆流防止用の逆止弁3a,3bを介して、1つの合流管(高圧側配管)4に流れる。合流管4に流れた冷媒は、油分離器5、逆止弁6、および四方弁7を介して室外熱交換器8に流れる。油分離器5は、冷媒に含まれている冷凍機油Lを分離して収容する。   The refrigerant discharged from the compressors 1a and 1b (and a part of the refrigerating machine oil L) passes through the discharge pipes 2a and 2b and the check valves 3a and 3b for preventing backflow provided in the discharge pipe 2b. It flows to one junction pipe (high-pressure side pipe) 4. The refrigerant that has flowed to the junction pipe 4 flows to the outdoor heat exchanger 8 through the oil separator 5, the check valve 6, and the four-way valve 7. The oil separator 5 separates and stores the refrigerating machine oil L contained in the refrigerant.

室外熱交換器8に流れた冷媒は、外気と熱交換して液化する。この液冷媒が複数の室内ユニットB1,B2,B3,B4に流れる。これら室内ユニットは、膨張弁31および室内熱交換器32を有している。各室内熱交換器32に流れた液冷媒は、室内空気と熱交換してガス化する。このガス冷媒は、各室内熱交換器32から、室外ユニットA1に戻り、上記四方弁7およびアキュームレータ9を介して、吸込管(低圧側配管)10a,10bに導かれる。吸込管10a,10bに導かれた冷媒は、気液分離器(サクションカップともいう)11a,11bを介して圧縮機1a,1bに吸込まれる。   The refrigerant flowing into the outdoor heat exchanger 8 is liquefied by exchanging heat with the outside air. This liquid refrigerant flows into the plurality of indoor units B1, B2, B3, B4. These indoor units have an expansion valve 31 and an indoor heat exchanger 32. The liquid refrigerant that has flowed to each indoor heat exchanger 32 is gasified by exchanging heat with indoor air. This gas refrigerant returns from each indoor heat exchanger 32 to the outdoor unit A1, and is guided to the suction pipes (low-pressure side pipes) 10a and 10b via the four-way valve 7 and the accumulator 9. The refrigerant guided to the suction pipes 10a and 10b is sucked into the compressors 1a and 1b through gas-liquid separators (also referred to as suction cups) 11a and 11b.

室外ユニットA2も同じ構成であり、室外ユニットA1,A2の並列回路に室内ユニットB1,B2,B3,B4が配管接続されたヒートポンプ式の冷凍サイクルが構成されている。   The outdoor unit A2 has the same configuration, and a heat pump type refrigeration cycle in which the indoor units B1, B2, B3, and B4 are connected to a parallel circuit of the outdoor units A1 and A2 is configured.

室外ユニットA1において、圧縮機1a,1bの密閉ケースの側壁に油管12a,12bの一端が接続され、その油管12a,12bの他端が上記合流管4に接続されている。油管12a,12bには、逆止弁13a,13bが設けられている。逆止弁13a,13bは、合流管4から圧縮機1a,1b側への冷媒および冷凍機油Lの逆流を阻止する。   In the outdoor unit A1, one ends of oil pipes 12a and 12b are connected to the side walls of the sealed cases of the compressors 1a and 1b, and the other ends of the oil pipes 12a and 12b are connected to the junction pipe 4. The oil pipes 12a and 12b are provided with check valves 13a and 13b. The check valves 13a and 13b prevent the refrigerant and the refrigerating machine oil L from flowing backward from the merging pipe 4 to the compressors 1a and 1b.

圧縮機1a,1bの密閉ケースには、冷凍機油Lの油面レベルの許容下限位置が予め定められている。油面レベルの許容下限位置は、圧縮機1a,1bの運転に必要な最小限の冷凍機油量に相当する。この油面レベルの許容下限位置よりも上の位置に、上記油管12a,12bの開口が設けられている。   In the sealed cases of the compressors 1a and 1b, an allowable lower limit position of the oil level of the refrigerating machine oil L is determined in advance. The allowable lower limit position of the oil level corresponds to the minimum amount of refrigeration oil necessary for the operation of the compressors 1a and 1b. The openings of the oil pipes 12a and 12b are provided at positions above the allowable lower limit position of the oil level.

密閉ケース内の冷凍機油Lの油面レベルが油管12a,12bの開口位置より高くなると、冷凍機油Lと冷媒の混合流体のうち、冷凍機油比率の高い混合流体が油管12a,12bに流入する。密閉ケース内の冷凍機油Lの油面レベルが油管12a,12bの開口位置より低い場合は、冷凍機油Lと冷媒ガスの混合流体のうち、冷媒ガス比率の高い混合流体が油管12a,12bに流入する。   When the oil level of the refrigerating machine oil L in the sealed case becomes higher than the opening position of the oil pipes 12a and 12b, a mixed fluid having a high refrigerating machine oil ratio flows into the oil pipes 12a and 12b among the mixed fluid of the refrigerating machine oil L and the refrigerant. When the oil level of the refrigerating machine oil L in the sealed case is lower than the opening position of the oil pipes 12a and 12b, a mixed fluid having a high refrigerant gas ratio flows into the oil pipes 12a and 12b among the mixed fluid of the refrigerating machine oil L and the refrigerant gas. To do.

上記油分離器5の底部から、同油分離器5が設けられている室外ユニットA1の吸込管10a,10bにかけて、油戻し用の第1油管15が接続されている。油管15には、開閉弁16および減圧用のキャピラリチューブ17が設けられている。また、油分離器5の底部から、同油分離器15が設けられている室外ユニットA1とは別の室外ユニットA2の吸込管10a,10bにかけて、油戻し用の第2油管18a,18bが接続されている。油管18aには、室外ユニットA1から室外ユニットA2に対する冷凍機油の供給を制御するための開閉弁19が設けられている。油管18bには、室外ユニットA2からの冷凍機油の取込みを制御するために開閉弁20が設けられている。   A first oil pipe 15 for oil return is connected from the bottom of the oil separator 5 to the suction pipes 10a and 10b of the outdoor unit A1 where the oil separator 5 is provided. The oil pipe 15 is provided with an on-off valve 16 and a capillary tube 17 for pressure reduction. Also, second oil pipes 18a and 18b for oil return are connected from the bottom of the oil separator 5 to the suction pipes 10a and 10b of the outdoor unit A2 different from the outdoor unit A1 where the oil separator 15 is provided. Has been. The oil pipe 18a is provided with an on-off valve 19 for controlling the supply of refrigeration oil from the outdoor unit A1 to the outdoor unit A2. The oil pipe 18b is provided with an on-off valve 20 for controlling the intake of the refrigeration oil from the outdoor unit A2.

油分離器5に対する油管15,18aのそれぞれ開口位置については、油管15の開口位置の高さよりも、油管18aの開口位置が高く設定されている。油管15には油分離器5に収容されている冷凍機油Lの全てが流入可能で、油管18aには油管18aの開口位置よりも上方に存する冷凍機油Lが流入することになる。   About the opening position of the oil pipes 15 and 18a with respect to the oil separator 5, the opening position of the oil pipe 18a is set higher than the height of the opening position of the oil pipe 15. All the refrigerating machine oil L accommodated in the oil separator 5 can flow into the oil pipe 15, and the refrigerating machine oil L existing above the opening position of the oil pipe 18a flows into the oil pipe 18a.

室外ユニットA2にも、同様に、油管12a,12b、逆止弁13a,13b、油管15、開閉弁16、キャピラリチューブ17が設けられている。   Similarly, the outdoor unit A2 is provided with oil pipes 12a and 12b, check valves 13a and 13b, an oil pipe 15, an on-off valve 16, and a capillary tube 17.

また、室外ユニットA2において、油分離器5の底部から、同油分離器5が設けられている室外ユニットA2の吸込管10a,10bにかけて、油戻し用の油管15が接続されている。油管15には、開閉弁16および減圧用のキャピラリチューブ17が設けられている。また、油分離器5の底部から、同油分離器15が設けられている室外ユニットA2とは別の室外ユニットA1の吸込管10a,10bにかけて、油戻し用の油管18a,18bが接続されている。油管18aには、室外ユニットA2から室外ユニットA1に対する冷凍機油の供給を制御するための開閉弁19が設けられている。油管18bには、室外ユニットA1からの冷凍機油の取込みを制御するための開閉弁20が設けられている。   In the outdoor unit A2, an oil pipe 15 for oil return is connected from the bottom of the oil separator 5 to the suction pipes 10a and 10b of the outdoor unit A2 where the oil separator 5 is provided. The oil pipe 15 is provided with an on-off valve 16 and a capillary tube 17 for pressure reduction. Also, oil return oil pipes 18a and 18b are connected from the bottom of the oil separator 5 to the suction pipes 10a and 10b of the outdoor unit A1 different from the outdoor unit A2 in which the oil separator 15 is provided. Yes. The oil pipe 18a is provided with an on-off valve 19 for controlling the supply of refrigeration oil from the outdoor unit A2 to the outdoor unit A1. The oil pipe 18b is provided with an on-off valve 20 for controlling the intake of the refrigerating machine oil from the outdoor unit A1.

油分離器5に対する油管15,18aのそれぞれ開口位置については、油管15の開口位置の高さよりも、油管18aの開口位置が高く設定されている。油管15には油分離器5に収容されている冷凍機油Lの全てが流入可能で、油管18aには油管18aの開口位置よりも上方に存する冷凍機油Lが流入することになる。   About the opening position of the oil pipes 15 and 18a with respect to the oil separator 5, the opening position of the oil pipe 18a is set higher than the height of the opening position of the oil pipe 15. All the refrigerating machine oil L accommodated in the oil separator 5 can flow into the oil pipe 15, and the refrigerating machine oil L existing above the opening position of the oil pipe 18a flows into the oil pipe 18a.

作用を説明する。
圧縮機1a,1bが運転されると、圧縮機1a,1bから吐出される冷媒が、吐出管2a,2bを通って合流管4に合流する。合流した冷媒の速度は、吐出管2a,2bの個々を通る冷媒の速度に比べて速い。この速度の速い合流冷媒により、合流管4から油管12a,12bに対し、吸入圧力(負圧)が加わる。
The operation will be described.
When the compressors 1a and 1b are operated, the refrigerant discharged from the compressors 1a and 1b joins the merge pipe 4 through the discharge pipes 2a and 2b. The speed of the merged refrigerant is higher than the speed of the refrigerant passing through each of the discharge pipes 2a and 2b. Due to this fast merging refrigerant, suction pressure (negative pressure) is applied from the merging pipe 4 to the oil pipes 12a and 12b.

また、圧縮機1a,1bの運転により、それぞれの密閉ケースの内部圧力が高くなる。圧縮機1bの密閉ケースに収容されている冷凍機油Lの油面レベルが油管12bの開口位置よりも高ければ、その開口位置を超えている分の冷凍機油Lが余剰分として油管12bに流入する。流入した冷凍機油Lは、合流管4からの吸入圧力を受けて、合流管4に吸い込まれる。   Moreover, the internal pressure of each sealed case is increased by the operation of the compressors 1a and 1b. If the oil level of the refrigerating machine oil L accommodated in the sealed case of the compressor 1b is higher than the opening position of the oil pipe 12b, the refrigerating machine oil L that exceeds the opening position flows into the oil pipe 12b as a surplus. . The refrigeration oil L that has flowed in is sucked into the merging pipe 4 in response to the suction pressure from the merging pipe 4.

圧縮機1aの密閉ケースに収容されている冷凍機油Lの油面レベルが油管12aの開口位置よりも高ければ、その開口位置を超えている分の冷凍機油Lが余剰分として油管12aに流入する。流入した冷凍機油Lは、合流管4からの吸入圧力を受けて、合流管4に吸い込まれる。   If the oil level of the refrigerating machine oil L accommodated in the sealed case of the compressor 1a is higher than the opening position of the oil pipe 12a, the refrigerating machine oil L that exceeds the opening position flows into the oil pipe 12a as a surplus. . The refrigeration oil L that has flowed in is sucked into the merging pipe 4 in response to the suction pressure from the merging pipe 4.

合流管4から油管12a,12bに加わる吸入圧力の大きさは、圧縮機2台分の吐出冷媒流量に対応する。したがって、圧縮機1a,1bのいずれかが低能力運転した場合でも、合流管4から油管12a,12bに加わる吸入圧力は十分な大きさを有し、圧縮機1a,1bの冷凍機油Lの余剰分を合流管4に向かって効率よく流出させることができる。合流管4に流れた冷凍機油Lの余剰分は、冷凍サイクルを巡って圧縮機1a,1bに吸込まれる。   The magnitude of the suction pressure applied from the merging pipe 4 to the oil pipes 12a and 12b corresponds to the discharge refrigerant flow rate for two compressors. Therefore, even when one of the compressors 1a and 1b is operated at a low capacity, the suction pressure applied from the merging pipe 4 to the oil pipes 12a and 12b has a sufficient magnitude, and the excess of the refrigerating machine oil L of the compressors 1a and 1b. The minute can be efficiently discharged toward the junction pipe 4. The surplus portion of the refrigerating machine oil L that has flowed into the merge pipe 4 is sucked into the compressors 1a and 1b through the refrigerating cycle.

圧縮機1a,1bの運転能力に差があっても、合流管4から油管2a,2bに加わる吸入圧力は互いに同じである。したがって、圧縮機1a,1bの運転能力に差があっても、圧縮機1a,1b内の冷凍機油Lの量に大きな差は生じない。   Even if there is a difference in operating capacity between the compressors 1a and 1b, the suction pressure applied from the merging pipe 4 to the oil pipes 2a and 2b is the same. Therefore, even if there is a difference in the operating capabilities of the compressors 1a and 1b, there is no significant difference in the amount of the refrigerating machine oil L in the compressors 1a and 1b.

以上のように、圧縮機2台分の吐出冷媒流量に対応する合流管4の合流冷媒によって油管12a,12bに吸入圧力を加えることにより、圧縮機1a,1bの運転能力の差に影響を受けることなく、圧縮機1a,1b内の冷凍機油Lの余剰分を効率よく流出させることができる。これにより、圧縮機1a,1bの冷凍機油量を最適な状態に維持することができて、冷凍装置としての信頼性が大幅に向上する。従来のように吐出管に圧力損失手段を設けることなく吸入圧力を確保できるので、冷媒の吐出性能が低下することもない。   As described above, the suction pressure is applied to the oil pipes 12a and 12b by the merged refrigerant in the merged pipe 4 corresponding to the flow rate of the refrigerant discharged from the two compressors, thereby being affected by the difference in the operating capacity of the compressors 1a and 1b. Without surplus, the excess of the refrigerating machine oil L in the compressors 1a and 1b can be efficiently discharged. Thereby, the amount of refrigerating machine oil of compressor 1a, 1b can be maintained in the optimal state, and the reliability as a refrigerating device improves significantly. Since the suction pressure can be secured without providing pressure loss means in the discharge pipe as in the prior art, the refrigerant discharge performance does not deteriorate.

一方、合流管4の合流冷媒は、油分離器5に流れる。油分離器5に流れた冷媒には、圧縮機1a,1bから吐出された冷凍機油Lが含まれている。この冷凍機油Lが油分離器5に溜まり込む。   On the other hand, the merged refrigerant in the merge tube 4 flows to the oil separator 5. The refrigerant that has flowed to the oil separator 5 contains the refrigerating machine oil L discharged from the compressors 1a and 1b. This refrigerating machine oil L accumulates in the oil separator 5.

室外ユニットA1において、開閉弁16が開放された場合、油分離器5に溜まった冷凍機油Lが油管15、開閉弁16、およびキャピラリチューブ17を通って吸込管10a,10bに流れる。吸込管10a,10bに流れた冷凍機油Lは、圧縮機1a,1bに吸込まれる。   In the outdoor unit A1, when the on-off valve 16 is opened, the refrigerating machine oil L accumulated in the oil separator 5 flows into the suction pipes 10a, 10b through the oil pipe 15, the on-off valve 16, and the capillary tube 17. The refrigerating machine oil L flowing into the suction pipes 10a and 10b is sucked into the compressors 1a and 1b.

室外ユニットA1の開閉弁19が開放されて、室外ユニットA2の開閉弁20が開放された場合は、室外ユニットA1の油分離器5に溜まった冷凍機油Lが油管18aおよび開閉弁19を通り、さらに室外ユニットA2側の油管18bおよび開閉弁20を通って同室外ユニットA2の吸込管10a,10bに流れる。吸込管10a,10bに流れた冷凍機油Lは、室外ユニットA2の圧縮機1a,1bに吸込まれる。すなわち、室外ユニットA1側の冷凍機油Lを、室外ユニットA2からの要求に応じて、室外ユニットA2に補給することができる。   When the opening / closing valve 19 of the outdoor unit A1 is opened and the opening / closing valve 20 of the outdoor unit A2 is opened, the refrigerating machine oil L accumulated in the oil separator 5 of the outdoor unit A1 passes through the oil pipe 18a and the opening / closing valve 19. Furthermore, it flows through the oil pipe 18b on the outdoor unit A2 side and the open / close valve 20 to the suction pipes 10a and 10b of the outdoor unit A2. The refrigerating machine oil L that has flowed into the suction pipes 10a and 10b is sucked into the compressors 1a and 1b of the outdoor unit A2. That is, the refrigerating machine oil L on the outdoor unit A1 side can be supplied to the outdoor unit A2 in response to a request from the outdoor unit A2.

室外ユニットA2の開閉弁19が開放されて、室外ユニットA1の開閉弁20が開放された場合には、室外ユニットA2の油分離器5に溜まった冷凍機油Lが油管18aおよび開閉弁19を通り、さらに室外ユニットA1側の油管18bおよび開閉弁20を通って同室外ユニットA1の吸込管10a,10bに流れる。吸込管10a,10bに流れた冷凍機油Lは、室外ユニットA1の圧縮機1a,1bに吸込まれる。すなわち、室外ユニットA2側の冷凍機油Lを、室外ユニットA1からの要求に応じて、室外ユニットA1に補給することができる。   When the on-off valve 19 of the outdoor unit A2 is opened and the on-off valve 20 of the outdoor unit A1 is opened, the refrigerating machine oil L accumulated in the oil separator 5 of the outdoor unit A2 passes through the oil pipe 18a and the on-off valve 19. Furthermore, the oil flows through the oil pipe 18b on the outdoor unit A1 side and the on-off valve 20 to the suction pipes 10a and 10b of the outdoor unit A1. The refrigerating machine oil L that has flowed into the suction pipes 10a and 10b is sucked into the compressors 1a and 1b of the outdoor unit A1. That is, the refrigerating machine oil L on the outdoor unit A2 side can be supplied to the outdoor unit A1 in response to a request from the outdoor unit A1.

油分離器5に対する油管15,18aの開口位置については、自ユニット補給用の油管15の開口位置の高さが、他ユニット補給用の油管18aの開口位置の高さよりも、低く設定されている。   About the opening position of the oil pipes 15 and 18a with respect to the oil separator 5, the height of the opening position of the oil pipe 15 for own unit replenishment is set lower than the height of the opening position of the oil pipe 18a for other unit replenishment. .

したがって、室外ユニットA1の油分離器5内の冷凍機油Lが室外ユニットA2に補給されても、室外ユニットA1の油分離器5には、自身の室外ユニットA1に対する冷凍機油Lの補給分が、確実に確保される。これにより、室外ユニットA1における冷凍機油不足を防ぐことができる。   Therefore, even if the refrigerating machine oil L in the oil separator 5 of the outdoor unit A1 is replenished to the outdoor unit A2, the replenishment amount of the refrigerating machine oil L to the outdoor unit A1 is stored in the oil separator 5 of the outdoor unit A1. Secured surely. Thereby, the shortage of refrigeration oil in outdoor unit A1 can be prevented.

同様に、室外ユニットA2の油分離器5内の冷凍機油Lが室外ユニットA1に補給されても、室外ユニットA2の油分離器5には、自身の室外ユニットA2に対する冷凍機油Lの補給分が、確実に確保される。これにより、室外ユニットA2における冷凍機油不足を防ぐことができる。   Similarly, even if the refrigerating machine oil L in the oil separator 5 of the outdoor unit A2 is supplied to the outdoor unit A1, the oil separator 5 of the outdoor unit A2 has a replenishment amount of the refrigerating machine oil L to its outdoor unit A2. , Ensured. Thereby, the shortage of refrigeration oil in outdoor unit A2 can be prevented.

[2]第2の実施形態について説明する。
図2に示すように、合流管4に負圧吸引機構40が設けられている。そして、負圧吸引機構40に対し、油管12a,12bの一端がそれぞれ傾斜状態で接続されている。
[2] A second embodiment will be described.
As shown in FIG. 2, the merging pipe 4 is provided with a negative pressure suction mechanism 40. Then, one end of each of the oil pipes 12a and 12b is connected to the negative pressure suction mechanism 40 in an inclined state.

負圧吸引機構40は、図3に示すように、合流管4を覆うように設けられ、油管12a,12bを傾斜状態に保持しながら、その油管12a,12bの先端を合流管4に結合させる構成を有している。合流管4に対する油管12a,12bの傾斜は、冷凍機油Lの流れの上流側に向かって鋭角に傾斜している。   As shown in FIG. 3, the negative pressure suction mechanism 40 is provided so as to cover the merging pipe 4, and the tips of the oil pipes 12 a and 12 b are coupled to the merging pipe 4 while holding the oil pipes 12 a and 12 b in an inclined state. It has a configuration. The inclination of the oil pipes 12a and 12b with respect to the merging pipe 4 is inclined at an acute angle toward the upstream side of the flow of the refrigerating machine oil L.

油管12a,12bが傾斜状態で合流管4に結合する構成により、合流管4内の冷媒流によって生じる吸入圧力(負圧)が、油管12a,12bに対して効率よくスムーズに加わる。したがって、圧縮機1a,1b内の冷凍機油Lの余剰分をより効率よく流出させることができる。
他の構成および作用効果は、第1の実施形態と同じである。よって、その説明は省略する。
With the configuration in which the oil pipes 12a and 12b are coupled to the joining pipe 4 in an inclined state, the suction pressure (negative pressure) generated by the refrigerant flow in the joining pipe 4 is efficiently and smoothly applied to the oil pipes 12a and 12b. Therefore, the surplus of the refrigerating machine oil L in the compressors 1a and 1b can be discharged more efficiently.
Other configurations and operational effects are the same as those of the first embodiment. Therefore, the description is omitted.

[3]第3の実施形態について説明する。
図4に示すように、油管12aにおける逆止弁13aの上流側位置と、圧縮機1aの吸込み冷媒が流れる吸込管10aとの間に、減圧手段たとえばキャピラリチューブ51aを介して、連通管52aが接続されている。そして、連通管52aにおけるキャピラリチューブ51aの下流側位置に、温度センサ53aが取付けられている。
[3] A third embodiment will be described.
As shown in FIG. 4, the communication pipe 52a is connected between the upstream position of the check valve 13a in the oil pipe 12a and the suction pipe 10a through which the suction refrigerant of the compressor 1a flows, via a decompression means such as a capillary tube 51a. It is connected. And the temperature sensor 53a is attached to the downstream position of the capillary tube 51a in the communicating pipe 52a.

油管12bにおける逆止弁13bの上流側位置と、圧縮機1bの吸込み冷媒が流れる吸込管10bとの間に、減圧手段たとえばキャピラリチューブ51bを介して、連通管52bが接続されている。そして、連通管52bにおけるキャピラリチューブ51bの下流側位置に、温度センサ53bが取付けられている。   A communication pipe 52b is connected between the upstream position of the check valve 13b in the oil pipe 12b and the suction pipe 10b through which the suction refrigerant of the compressor 1b flows, via a decompression means, for example, a capillary tube 51b. And the temperature sensor 53b is attached to the downstream position of the capillary tube 51b in the communicating pipe 52b.

上記温度センサ53a,53bは、制御部60に接続されている。制御部60には、インバータ61a,61bが接続されている。   The temperature sensors 53 a and 53 b are connected to the control unit 60. Inverters 61 a and 61 b are connected to the control unit 60.

インバータ61a,61bは、商用交流電源62の電圧を直流電圧に変換し、その直流電圧をスイッチングにより制御部60からの指令に応じた周波数の交流電圧に変換して出力する。この出力により、圧縮機1a,1bのモータ(圧縮機モータ)Ma,Mbが駆動される。インバータ61a,61bの出力周波数が変化すると、圧縮機1a,1bの能力が変化する。
なお、図4の冷凍サイクルの構成は、図1の要部のみを示している。
Inverters 61a and 61b convert the voltage of commercial AC power supply 62 into a DC voltage, convert the DC voltage into an AC voltage having a frequency corresponding to a command from control unit 60 by switching, and output the voltage. The motors (compressor motors) Ma and Mb of the compressors 1a and 1b are driven by this output. When the output frequencies of the inverters 61a and 61b change, the capabilities of the compressors 1a and 1b change.
In addition, the structure of the refrigerating cycle of FIG. 4 has shown only the principal part of FIG.

制御部60は、主要な機能として、次の(1)〜(3)の手段を有している。
(1)連通管52a,52bを流れる流体が冷凍機油Lであるか冷媒であるかを、温度センサ53a,53bの検知温度T1,T2に応じて判定する第1判定手段。
The control unit 60 has the following means (1) to (3) as main functions.
(1) First determination means for determining whether the fluid flowing through the communication pipes 52a and 52b is the refrigerating machine oil L or the refrigerant according to the detected temperatures T1 and T2 of the temperature sensors 53a and 53b.

(2)上記第1判定手段の判定結果に応じて、圧縮機1a,1bの冷凍機油量が適正であるか不足であるかを判定する第2判定手段。   (2) Second determination means for determining whether the amount of refrigerating machine oil of the compressors 1a and 1b is appropriate or insufficient according to the determination result of the first determination means.

(3)上記第2判定手段で不足が判定された場合に、圧縮機1a,1b内の冷凍機油Lの量を平均化するいわゆる均油運転を実行する制御手段。均油運転とは、たとえば、圧縮機1a,1bの能力(インバータ61a,61bの出力周波数)を交互に増減する運転である。   (3) Control means for executing a so-called oil leveling operation that averages the amount of the refrigerating machine oil L in the compressors 1a and 1b when the second determination means determines that the shortage has occurred. The oil leveling operation is, for example, an operation that alternately increases or decreases the capacity of the compressors 1a and 1b (output frequencies of the inverters 61a and 61b).

作用を説明する。
密閉ケース内の冷凍機油Lの油面レベルが油管12a,12bの開口位置より高い場合は、冷凍機油Lと冷媒の混合流体のうち、冷凍機油比率の高い混合流体が油管12a,12bに流入する。密閉ケース内の冷凍機油Lの油面レベルが油管12a,12bの開口位置より低い場合は、冷凍機油Lと冷媒ガスの混合流体のうち、冷媒ガス比率の高い混合流体が油管12a,12bに流入する。
The operation will be described.
When the oil level of the refrigerating machine oil L in the sealed case is higher than the opening position of the oil pipes 12a and 12b, a mixed fluid having a high refrigerating machine oil ratio flows into the oil pipes 12a and 12b among the mixed fluid of the refrigerating machine oil L and the refrigerant. . When the oil level of the refrigerating machine oil L in the sealed case is lower than the opening position of the oil pipes 12a and 12b, a mixed fluid having a high refrigerant gas ratio flows into the oil pipes 12a and 12b among the mixed fluid of the refrigerating machine oil L and the refrigerant gas. To do.

油管12a,12bに流入した流体(冷凍機油Lまたは冷媒)の一部は、連通管52a,52bおよびキャピラリチューブ51a,51bを介して、吸込管10a,10bに流れる。このとき、連通管52a,52bを流れる流体の温度Ta,Tbが温度センサ53a,53bでそれぞれ検知される。
油面レベルが油管12aの開口位置より高くて、冷凍機油比率の高い混合流体が連通管52aを流れる場合は、温度センサ53aの検知温度Taが比較的高くなる。油面レベルが油管12aの開口位置より低くて、冷媒ガス比率の高い混合流体が連通管52aを流れる場合は、温度センサ53aの検知温度Taが比較的低くなる。
Part of the fluid (refrigerator oil L or refrigerant) flowing into the oil pipes 12a and 12b flows to the suction pipes 10a and 10b via the communication pipes 52a and 52b and the capillary tubes 51a and 51b. At this time, the temperatures Ta and Tb of the fluid flowing through the communication pipes 52a and 52b are detected by the temperature sensors 53a and 53b, respectively.
When the fluid level is higher than the opening position of the oil pipe 12a and a mixed fluid having a high refrigerating machine oil ratio flows through the communication pipe 52a, the detection temperature Ta of the temperature sensor 53a becomes relatively high. When the fluid level is lower than the opening position of the oil pipe 12a and a mixed fluid having a high refrigerant gas ratio flows through the communication pipe 52a, the detection temperature Ta of the temperature sensor 53a is relatively low.

温度センサ53aの検知温度Taが設定値以上の場合、連通管52aを流れる流体が冷凍機油Lであると判定される。そして、この判定に基づき、圧縮機1aの冷凍機油量が適正であると判定される。温度センサ53aの検知温度Taが設定値未満の場合、連通管52aを流れる流体が冷媒であると判定される。この判定に基づき、圧縮機1aの冷凍機油量が不足であると判定される。   When the detected temperature Ta of the temperature sensor 53a is equal to or higher than the set value, it is determined that the fluid flowing through the communication pipe 52a is the refrigerating machine oil L. And based on this determination, it determines with the amount of refrigerating machine oil of the compressor 1a being appropriate. When the detected temperature Ta of the temperature sensor 53a is less than the set value, it is determined that the fluid flowing through the communication pipe 52a is a refrigerant. Based on this determination, it is determined that the amount of refrigeration oil in the compressor 1a is insufficient.

同様に、油面レベルが油管12bの開口位置より高くて、冷凍機油比率の高い混合流体が連通管52bを流れる場合は、温度センサ53bの検知温度Tbが比較的高くなる。油面レベルが油管12bの開口位置より低くて、冷媒ガス比率の高い混合流体が連通管52bを流れる場合は、温度センサ53bの検知温度Tbが比較的低くなる。   Similarly, when the fluid level is higher than the opening position of the oil pipe 12b and a mixed fluid having a high refrigerating machine oil ratio flows through the communication pipe 52b, the detected temperature Tb of the temperature sensor 53b becomes relatively high. When the fluid level is lower than the opening position of the oil pipe 12b and a mixed fluid having a high refrigerant gas ratio flows through the communication pipe 52b, the temperature Tb detected by the temperature sensor 53b is relatively low.

温度センサ53bの検知温度Tbが設定値以上の場合、連通管52bを流れる流体が冷凍機油Lであると判定される。そして、この判定に基づき、圧縮機1bの冷凍機油量が適正であると判定される。温度センサ53bの検知温度Tbが設定値未満の場合、連通管52bを流れる流体が冷媒であると判定される。この判定に基づき、圧縮機1bの冷凍機油量が不足であると判定される。   When the detected temperature Tb of the temperature sensor 53b is equal to or higher than the set value, it is determined that the fluid flowing through the communication pipe 52b is the refrigerating machine oil L. And based on this determination, it determines with the amount of refrigeration oil of the compressor 1b being appropriate. When the detected temperature Tb of the temperature sensor 53b is less than the set value, it is determined that the fluid flowing through the communication pipe 52b is a refrigerant. Based on this determination, it is determined that the amount of refrigeration oil in the compressor 1b is insufficient.

圧縮機1a,1bのいずれかについて冷凍機油量の不足が判定されると、圧縮機1a,1b内の冷凍機油Lの量を平均化するための均油運転が例えば一定時間だけ実行される。この均油運転により、圧縮機1a,1bの油量不足が解消される。   When it is determined that one of the compressors 1a and 1b is insufficient in the amount of the refrigerating machine oil, an oil equalizing operation for averaging the amount of the refrigerating machine oil L in the compressors 1a and 1b is executed, for example, for a predetermined time. This oil leveling operation solves the shortage of the oil amount of the compressors 1a and 1b.

他の構成および作用効果は、第1の実施形態と同じである。よって、その説明は省略する。   Other configurations and operational effects are the same as those of the first embodiment. Therefore, the description is omitted.

なお、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine the component covering different embodiment suitably.

第1の実施形態の構成を示す図。The figure which shows the structure of 1st Embodiment. 第2の実施形態の構成を示す図。The figure which shows the structure of 2nd Embodiment. 第2の実施形態における要部の構成を示す図。The figure which shows the structure of the principal part in 2nd Embodiment. 第3の実施形態の要部の構成を示す図。The figure which shows the structure of the principal part of 3rd Embodiment.

符号の説明Explanation of symbols

A1,A2…室外ユニット、B1〜B4…室内ユニット、1a,1b…圧縮機、2a,2b…吐出管、4…合流管、5…油分離器、8…室外熱交換器、10a,10b…吸込管、12a,12b…油管、15…第1油管、18a,18b…第2油管、L…冷凍機油、32…室内熱交換器、40…負圧吸引機構、52a,52b…連通管、53a,53b…温度センサ、60…制御部、61a,61b…インバータ   A1, A2 ... outdoor unit, B1-B4 ... indoor unit, 1a, 1b ... compressor, 2a, 2b ... discharge pipe, 4 ... confluence pipe, 5 ... oil separator, 8 ... outdoor heat exchanger, 10a, 10b ... Suction pipe, 12a, 12b ... oil pipe, 15 ... first oil pipe, 18a, 18b ... second oil pipe, L ... refrigerator oil, 32 ... indoor heat exchanger, 40 ... negative pressure suction mechanism, 52a, 52b ... communication pipe, 53a , 53b ... temperature sensor, 60 ... control unit, 61a, 61b ... inverter

Claims (3)

冷凍機油が収容された密閉ケースを有し、冷媒を吸込んで圧縮し、圧縮した冷媒を密閉ケースの吐出口から吐出する複数の圧縮機と、
前記各圧縮機から吐出される冷媒が流れる複数の吐出管と、
前記各吐出管内の冷媒が合流する1つの合流管と、
前記各圧縮機の密閉ケースの側部と前記合流管との間に接続され、密閉ケース内の冷凍機油の余剰分が流入する複数の油管と、
を備えていることを特徴とする冷凍装置。
A plurality of compressors having a sealed case containing refrigeration oil, sucking and compressing the refrigerant, and discharging the compressed refrigerant from a discharge port of the sealed case;
A plurality of discharge pipes through which refrigerant discharged from each compressor flows;
One merge pipe where the refrigerant in each discharge pipe merges;
A plurality of oil pipes connected between a side portion of the hermetic case of each compressor and the merging pipe, and into which surplus refrigeration oil in the hermetic case flows;
A refrigeration apparatus comprising:
前記各油管と前記各圧縮機の吸込み冷媒が流れる吸込管との間に減圧手段を介して接続された複数の連通管と、
前記各連通管を流れる流体が冷凍機油であるか冷媒であるかを判定する第1判定手段と、
前記第1判定手段の判定結果に応じて前記各圧縮機の冷凍機油量が適正であるか不足であるかを判定する第2判定手段と、
をさらに備えていることを特徴とする請求項1に記載の冷凍装置。
A plurality of communication pipes connected via decompression means between each oil pipe and a suction pipe through which the suction refrigerant of each compressor flows;
First determination means for determining whether the fluid flowing through each of the communication pipes is refrigeration oil or refrigerant;
Second determination means for determining whether the amount of refrigerating machine oil of each compressor is appropriate or insufficient according to the determination result of the first determination means;
The refrigeration apparatus according to claim 1, further comprising:
冷凍機油が収容された密閉ケースを有し、冷媒を吸い込んで圧縮し、圧縮した冷媒を密閉ケースの吐出口から吐出する複数の圧縮機と、
前記各圧縮機から吐出される冷媒が流れる複数の吐出管と、
前記各吐出管内の冷媒が合流する1つの合流管と、
前記合流管の吐出冷媒を油分離器および室外熱交換器に通して室内側に供給しその室内側から戻る冷媒を圧縮機の吸込側に導く室外ユニットを複数台備えた冷凍装置において、
前記各室外ユニットの油分離器から、同各油分離器が設けられている自ユニットの冷媒吸込側にかけて、接続された第1油管と、
前記各油分離器から、同各油分離器が設けられているのとは別の他ユニットの冷媒吸込側にかけて、接続された第2油管と、
を備え、前記各油分離器に対する前記第1油管の開口位置の高さを、前記各油分離器に対する前記第2油管の開口位置の高さよりも、低くしたことを特徴とする冷凍装置。
A plurality of compressors having a sealed case containing refrigeration oil, sucking and compressing the refrigerant, and discharging the compressed refrigerant from a discharge port of the sealed case;
A plurality of discharge pipes through which refrigerant discharged from each compressor flows;
One merge pipe where the refrigerant in each discharge pipe merges;
In the refrigeration apparatus comprising a plurality of outdoor units that supply the refrigerant discharged from the junction pipe to the indoor side through the oil separator and the outdoor heat exchanger and guide the refrigerant returning from the indoor side to the suction side of the compressor,
From the oil separator of each outdoor unit to the refrigerant suction side of the unit where the oil separator is provided, the connected first oil pipe,
From each of the oil separators to the refrigerant suction side of another unit other than the oil separators provided, the second oil pipe connected,
And the height of the opening position of the first oil pipe with respect to each oil separator is made lower than the height of the opening position of the second oil pipe with respect to each oil separator.
JP2004363263A 2004-12-15 2004-12-15 Refrigerator Pending JP2006170521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004363263A JP2006170521A (en) 2004-12-15 2004-12-15 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004363263A JP2006170521A (en) 2004-12-15 2004-12-15 Refrigerator

Publications (1)

Publication Number Publication Date
JP2006170521A true JP2006170521A (en) 2006-06-29

Family

ID=36671469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004363263A Pending JP2006170521A (en) 2004-12-15 2004-12-15 Refrigerator

Country Status (1)

Country Link
JP (1) JP2006170521A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196829A (en) * 2007-02-15 2008-08-28 Mitsubishi Electric Corp Air conditioner
JP2008249230A (en) * 2007-03-30 2008-10-16 Yanmar Co Ltd Air conditioner
CN103574958A (en) * 2012-08-02 2014-02-12 珠海格力电器股份有限公司 Multi-split modular system
JP2015155774A (en) * 2014-02-20 2015-08-27 三菱電機株式会社 Heat source unit and refrigeration cycle device
JP2016145651A (en) * 2015-02-06 2016-08-12 株式会社富士通ゼネラル Air conditioner
JP2016145708A (en) * 2016-04-04 2016-08-12 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air-conditioner
WO2020241622A1 (en) * 2019-05-31 2020-12-03 ダイキン工業株式会社 Refrigeration device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196829A (en) * 2007-02-15 2008-08-28 Mitsubishi Electric Corp Air conditioner
JP4588728B2 (en) * 2007-02-15 2010-12-01 三菱電機株式会社 Air conditioner
JP2008249230A (en) * 2007-03-30 2008-10-16 Yanmar Co Ltd Air conditioner
CN103574958A (en) * 2012-08-02 2014-02-12 珠海格力电器股份有限公司 Multi-split modular system
JP2015155774A (en) * 2014-02-20 2015-08-27 三菱電機株式会社 Heat source unit and refrigeration cycle device
JP2016145651A (en) * 2015-02-06 2016-08-12 株式会社富士通ゼネラル Air conditioner
JP2016145708A (en) * 2016-04-04 2016-08-12 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air-conditioner
WO2020241622A1 (en) * 2019-05-31 2020-12-03 ダイキン工業株式会社 Refrigeration device
JPWO2020241622A1 (en) * 2019-05-31 2021-12-09 ダイキン工業株式会社 Refrigeration equipment
CN113939700A (en) * 2019-05-31 2022-01-14 大金工业株式会社 Refrigerating device
JP7174299B2 (en) 2019-05-31 2022-11-17 ダイキン工業株式会社 refrigeration equipment

Similar Documents

Publication Publication Date Title
US8122735B2 (en) Refrigerating apparatus
US8312732B2 (en) Refrigerating apparatus
KR100807498B1 (en) Refrigerator
JP4013261B2 (en) Refrigeration equipment
EP1443286B1 (en) Refrigerating equipment
JP2002242833A (en) Refrigerating cycle device
JP2007285681A5 (en)
US9383123B2 (en) Refrigeration cycle device capable of efficiently varying capacity providing a first and a second compressing mechanism disposed in a hermetic container
WO2007123085A1 (en) Refrigeration device
JP2015038407A (en) Refrigerating device
WO2015025515A1 (en) Refrigeration device
JP3685180B2 (en) Hermetic compressor
JP2006170521A (en) Refrigerator
JP2013024447A (en) Refrigerating device
JP4591402B2 (en) Refrigeration equipment
EP3614071A1 (en) Refrigeration cycle device
JP2005283067A (en) Air conditioner
JP2004205175A (en) Refrigerator
JP4722173B2 (en) Refrigeration cycle equipment
KR20070120848A (en) Oil seperating apparatus for compressor
JPH09170823A (en) Refrigerating cycle apparatus
KR100675797B1 (en) Air conditioner
JP4720594B2 (en) Refrigeration equipment
CN111512098B (en) Refrigeration cycle device
JP4720593B2 (en) Refrigeration equipment