[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006170303A - Vacuum heat insulating material - Google Patents

Vacuum heat insulating material Download PDF

Info

Publication number
JP2006170303A
JP2006170303A JP2004362583A JP2004362583A JP2006170303A JP 2006170303 A JP2006170303 A JP 2006170303A JP 2004362583 A JP2004362583 A JP 2004362583A JP 2004362583 A JP2004362583 A JP 2004362583A JP 2006170303 A JP2006170303 A JP 2006170303A
Authority
JP
Japan
Prior art keywords
core
core material
materials
heat insulating
vacuum heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004362583A
Other languages
Japanese (ja)
Inventor
Takeshi Katsube
毅 勝部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004362583A priority Critical patent/JP2006170303A/en
Publication of JP2006170303A publication Critical patent/JP2006170303A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To use thick cores material without increasing a distance between the cores adjacent to each other in a vacuum heat insulating material formed by depressurizingly sealing a plurality of core materials in their respective independent spaces by heating and pressurizing the core materials and the core materials held between covering materials. <P>SOLUTION: The plurality of core materials 12 are covered by the gas-barrier covering materials 13 formed of a laminated film, and the insides of the covering materials 13 are depressurized and sealed. The plurality of core materials 12 are disposed at specified intervals in a lattice shape, and heated and pressurized also in such a case that the core materials 12 are held between the covering materials 13 to form the thermally molten parts 14 of the covering materials 13 around the core materials 12. The plurality of core materials 12 are independently disposed in the independent spaces. The density of the outer peripheral part of the core materials 12 is set lower than that of the center part thereof to chamfer the angle thereof in contact with the covering materials 13. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数の芯材をそれぞれ独立した空間内に減圧密封した真空断熱材に関するものである。   The present invention relates to a vacuum heat insulating material in which a plurality of core materials are sealed under reduced pressure in independent spaces.

複数の芯材をそれぞれ独立した空間内に減圧密封した従来の真空断熱材としては、特許文献1に開示されたものがある。   As a conventional vacuum heat insulating material in which a plurality of core members are sealed under reduced pressure in independent spaces, there is one disclosed in Patent Document 1.

以下、図面を参照しながら上記従来の真空断熱材を説明する。   Hereinafter, the conventional vacuum heat insulating material will be described with reference to the drawings.

図8は従来の真空断熱材の断面図、図9は従来の真空断熱材の平面図、図10は、従来の真空断熱材の減圧密封工程を示す概念図である。   8 is a cross-sectional view of a conventional vacuum heat insulating material, FIG. 9 is a plan view of the conventional vacuum heat insulating material, and FIG. 10 is a conceptual diagram showing a vacuum sealing process of the conventional vacuum heat insulating material.

従来の真空断熱材1は、9個の厚さが数ミリ程度の板状の芯材2をガスバリア性の外被材3で覆い外被材3の内部を減圧密封して成り、9個の芯材2は、縦、横の2方向の折曲線1a,1bを形成できるように、格子状に、互いに所定間隔離して配置されており、外被材3の間に芯材2がある部分を含めて加熱加圧することにより、芯材2の周囲に外被材3の熱溶着部4が設けられ9個の芯材2のそれぞれが独立した空間内に位置している。   A conventional vacuum heat insulating material 1 is formed by covering nine plate-like core materials 2 having a thickness of about several millimeters with a gas barrier outer covering material 3 and sealing the inside of the outer covering material 3 under reduced pressure. The core material 2 is arranged in a lattice shape and spaced apart from each other by a predetermined distance so that the vertical and horizontal folding lines 1a and 1b can be formed, and the core material 2 is between the jacket materials 3 The core material 2 is provided with the heat welded portion 4 around the core material 2, and each of the nine core materials 2 is located in an independent space.

次に、従来の真空断熱材1の製造方法を説明する。   Next, the manufacturing method of the conventional vacuum heat insulating material 1 is demonstrated.

まず、チャンバー5の内部に、9個の芯材2と、芯材2を上下から覆う外被材3を設置する。そして、チャンバー5の内部の空気は、連結された真空ポンプ6により排気し、所定内圧に到達した後、チャンバー5の内部に配置されプレス装置8により上下動する弾性変形可能な熱板7で挟み、外被材3の全面にわたって熱溶着することで、真空断熱材1が得られる。   First, nine core members 2 and a jacket member 3 that covers the core members 2 from above and below are installed inside the chamber 5. Then, the air inside the chamber 5 is exhausted by a connected vacuum pump 6, and after reaching a predetermined internal pressure, is sandwiched between elastically deformable hot plates 7 that are arranged inside the chamber 5 and move up and down by a pressing device 8. The vacuum heat insulating material 1 is obtained by heat-welding the entire surface of the jacket material 3.

この真空断熱材1は、2方向に真空断熱材1を折り曲げることができるため、適用する対象物の形状に制限が少なく、用途が広い。また、特定の芯材2が入った空間の真空度が低下することが起きても、他の芯材2が入った空間の真空度まで低下することはなく、断熱性能の低下を最小限に抑えることができる。
特開2004−197935号公報
Since this vacuum heat insulating material 1 can bend the vacuum heat insulating material 1 in two directions, there are few restrictions on the shape of the object to be applied, and the usage is wide. Moreover, even if the vacuum degree of the space containing the specific core material 2 is lowered, the vacuum degree of the space containing the other core material 2 is not lowered, and the deterioration of the heat insulation performance is minimized. Can be suppressed.
JP 2004-197935 A

しかしながら、上記従来の真空断熱材1の製造方法では、厚い芯材2には適しておらず、断熱性能向上のため厚い芯材2を使用する場合には、隣接する芯材2同士の間隔を広めにする必要があり、隣接する芯材2同士の間隔が広がると、有効断熱面積が小さくなるため、厚みの割には断熱性能が良くないという課題を有していた。   However, the conventional manufacturing method of the vacuum heat insulating material 1 is not suitable for the thick core material 2, and when the thick core material 2 is used for improving the heat insulating performance, the interval between the adjacent core materials 2 is set. When the gap between adjacent core members 2 is increased, the effective heat insulation area is reduced. Therefore, there is a problem that the heat insulation performance is not good for the thickness.

本発明は、上記従来の課題に鑑み、外被材の間に芯材がある部分を含めて加熱加圧することにより複数の芯材をそれぞれ独立した空間内に減圧密封した真空断熱材において、隣接する芯材同士の間隔を広げることなく厚みのある芯材を使用できるようにすることを目的とする。   In view of the above-described conventional problems, the present invention provides a vacuum heat insulating material in which a plurality of core materials are vacuum-sealed in independent spaces by heating and pressurizing including a portion where the core material is located between the jacket materials. An object of the present invention is to make it possible to use a thick core material without widening the interval between the core materials to be performed.

上記目的を達成するために本発明の真空断熱材は、芯材の外周部における密度を中心部よりも低することで前記芯材が面取りされているのである。また、芯材を、中心部分に位置する第一の芯材と、前記第一の芯材の外周部に配置される第二の芯材とで構成し、第二の芯材を前記第一の芯材よりも低密度にするか厚みを小さくすることで前記芯材が面取りされているのである。   In order to achieve the above object, in the vacuum heat insulating material of the present invention, the core material is chamfered by making the density at the outer peripheral portion of the core material lower than the center portion. Further, the core material is constituted by a first core material located in a central portion and a second core material arranged on an outer peripheral portion of the first core material, and the second core material is defined as the first core material. The core material is chamfered by lowering the density or reducing the thickness of the core material.

これにより、外被材の間に芯材がある部分を含めて加熱加圧することにより複数の芯材をそれぞれ独立した空間内に減圧密封した真空断熱材において、隣接する芯材同士の間隔を広げることなく厚みのある芯材を使用でき、断熱性能を高めることができる。   Thus, in a vacuum heat insulating material in which a plurality of core materials are vacuum-sealed in independent spaces by heating and pressurizing including a portion where the core material is between the jacket materials, the interval between adjacent core materials is widened. A thick core material can be used without increasing the heat insulation performance.

本発明の真空断熱材は、外被材の間に芯材がある部分を含めて加熱加圧することにより複数の芯材をそれぞれ独立した空間内に減圧密封した真空断熱材において、外被材と当接する芯材の角のうち少なくとも隣接する芯材に近い側の芯材の角を面取りしたので、外被材が複数の芯材の形状、配列に対応しやすくなり、面取りしていない芯材を用いたものに較べて、隣接する芯材同士の間隔を狭くしたり、芯材の厚みを厚くすることが可能になり、真空断熱材の断熱性能を高めることができる。   The vacuum heat insulating material of the present invention is a vacuum heat insulating material in which a plurality of core materials are sealed under reduced pressure in independent spaces by heating and pressurizing the portions including the core material between the outer cover materials. Since the corner of the core material on the side close to the adjacent core material is chamfered out of the corners of the core material to be contacted, the core material can easily correspond to the shape and arrangement of a plurality of core materials, and the core material is not chamfered Compared to the one using the above, it becomes possible to narrow the interval between adjacent core members or increase the thickness of the core member, and to improve the heat insulating performance of the vacuum heat insulating material.

請求項1に記載の真空断熱材の発明は、複数の板状の芯材をガスバリア性の外被材で覆い前記外被材の内部を減圧密封して成り、前記複数の芯材は、互いに所定間隔離して配置されており、前記外被材の間に芯材がある部分を含めて加熱加圧することにより、前記芯材の周囲に前記外被材の熱溶着部が設けられ前記複数の芯材のそれぞれが独立した空間内に位置している真空断熱材であって、前記各芯材の外周部における密度を中心部よりも低くすることで前記芯材が面取りされているものであり、外被材の間に芯材がある部分を含めて加熱加圧することにより複数の芯材をそれぞれ独立した空間内に減圧密封した真空断熱材において、外被材と当接する芯材の角のうち少なくとも隣接する芯材に近い側の芯材の角を面取りしたので、外被材が複数の芯材の形状、配列に対応しやすくなり、面取りしていない芯材を用いたものに較べて、隣接する芯材同士の間隔を狭くしたり、芯材の厚みを厚くすることが可能になり、真空断熱材の断熱性能を高めることができる。また、各芯材の外周部における密度が中心部よりも低いことで、加熱加圧時に自然に面取りが施されるため、芯材作製後の面取り加工が不要で生産性が向上する。   The invention of the vacuum heat insulating material according to claim 1 is formed by covering a plurality of plate-shaped core members with a gas barrier outer cover material and sealing the inside of the outer cover member under reduced pressure, and the plurality of core members are mutually connected. A plurality of the outer cover materials are provided around the core material by heat and pressure including a portion where the core material is located between the outer cover materials. Each of the core materials is a vacuum heat insulating material located in an independent space, and the core material is chamfered by making the density at the outer peripheral portion of each core material lower than the center portion. In the vacuum heat insulating material in which a plurality of core materials are vacuum-sealed into independent spaces by heating and pressing including a portion where the core material is present between the jacket materials, the corners of the core material contacting the jacket material are Since the corner of the core material on the side closest to the adjacent core material is chamfered, the jacket material It becomes easy to correspond to the shape and arrangement of multiple core materials, and it is possible to narrow the interval between adjacent core materials and increase the thickness of the core material compared to those using non-chamfered core materials. Thus, the heat insulating performance of the vacuum heat insulating material can be enhanced. Moreover, since the density in the outer peripheral part of each core material is lower than that in the central part, chamfering is naturally performed during heating and pressurization, so that chamfering after the core material is not necessary and productivity is improved.

請求項2に記載の真空断熱材の発明は、複数の板状の芯材をガスバリア性の外被材で覆い前記外被材の内部を減圧密封して成り、前記複数の芯材は、互いに所定間隔離して配置されており、前記外被材の間に芯材がある部分を含めて加熱加圧することにより、前記芯材の周囲に前記外被材の熱溶着部が設けられ前記複数の芯材のそれぞれが独立した空間内に位置している真空断熱材であって、前記各芯材を、中心部分に位置する第一の芯材と、前記第一の芯材より低密度で前記第一の芯材の外周部に配置される第二の芯材とで構成することで、前記芯材が面取りされているものであり、外被材の間に芯材がある部分を含めて加熱加圧することにより複数の芯材をそれぞれ独立した空間内に減圧密封した真空断熱材において、外被材と当接する芯材の角のうち少なくとも隣接する芯材に近い側の芯材の角を面取りしたので、外被材が複数の芯材の形状、配列に対応しやすくなり、面取りしていない芯材を用いたものに較べて、隣接する芯材同士の間隔を狭くしたり、芯材の厚みを厚くすることが可能になり、真空断熱材の断熱性能を高めることができる。また、芯材を、中心部分に位置する第一の芯材と、前記第一の芯材の外周部に配置される第二の芯材とで構成し、第二の芯材を前記第一の芯材よりも低密度にしたことで、加熱加圧時に自然に面取りされているため、芯材作製後の面取り加工が不要であるだけでなく、第二の芯材は端材の再利用により適用が可能であるため、歩留まりを抑制できる。   The invention of the vacuum heat insulating material according to claim 2 is formed by covering a plurality of plate-shaped core members with a gas barrier outer cover material and sealing the inside of the outer cover member under reduced pressure. A plurality of the outer cover materials are provided around the core material by heat and pressure including a portion where the core material is located between the outer cover materials. Each of the core materials is a vacuum heat insulating material located in an independent space, and each of the core materials is a first core material located in a central portion, and the density is lower than that of the first core material. The core material is chamfered by being configured with a second core material arranged on the outer peripheral portion of the first core material, and includes a portion where the core material is located between the jacket materials. In a vacuum heat insulating material in which a plurality of core materials are sealed under reduced pressure in independent spaces by heating and pressurizing, they contact a jacket material. Since the corner of the core material on the side close to the adjacent core material is chamfered among the corners of the material, the outer cover material can easily correspond to the shape and arrangement of a plurality of core materials, and a core material that is not chamfered is used. Compared to those, it is possible to narrow the interval between adjacent core members or to increase the thickness of the core member, and to improve the heat insulating performance of the vacuum heat insulating material. Further, the core material is constituted by a first core material located in a central portion and a second core material arranged on an outer peripheral portion of the first core material, and the second core material is defined as the first core material. Because it has a lower density than the core material, it is chamfered naturally during heating and pressurization, so not only chamfering after core material preparation is necessary, but also the second core material is reused of end material Therefore, the yield can be suppressed.

請求項3に記載の真空断熱材の発明は、複数の板状の芯材をガスバリア性の外被材で覆い前記外被材の内部を減圧密封して成り、前記複数の芯材は、互いに所定間隔離して配置されており、前記外被材の間に芯材がある部分を含めて加熱加圧することにより、前記芯材の周囲に前記外被材の熱溶着部が設けられ前記複数の芯材のそれぞれが独立した空間内に位置している真空断熱材であって、前記各芯材を、中心部分に位置する第一の芯材と、前記第一の芯材より厚みが小さく前記第一の芯材の外周部に配置される第二の芯材とで構成することで、前記芯材が面取りされているものであり、外被材の間に芯材がある部分を含めて加熱加圧することにより複数の芯材をそれぞれ独立した空間内に減圧密封した真空断熱材において、外被材と当接する芯材の角のうち少なくとも隣接する芯材に近い側の芯材の角を面取りしたので、外被材が複数の芯材の形状、配列に対応しやすくなり、面取りしていない芯材を用いたものに較べて、隣接する芯材同士の間隔を狭くしたり、芯材の厚みを厚くすることが可能になり、真空断熱材の断熱性能を高めることができる。また、芯材を、中心部分に位置する第一の芯材と、前記第一の芯材の外周部に配置される第二の芯材とで構成し、第二の芯材を前記第一の芯材よりも厚みを小さくすることで面取りされているため、芯材作製後の面取り加工が不要であるだけでなく、全ての芯材を同一密度で設計すればよいため、芯材の密度制御が不要であるために生産性が向上する。   The invention of the vacuum heat insulating material according to claim 3 is formed by covering a plurality of plate-shaped core members with a gas barrier outer cover material and sealing the inside of the outer cover material under reduced pressure, and the plurality of core members are mutually connected. A plurality of the outer cover materials are provided around the core material by heat and pressure including a portion where the core material is located between the outer cover materials. Each of the core materials is a vacuum heat insulating material located in an independent space, and each of the core materials is a first core material located in a central portion, and the thickness is smaller than that of the first core material. The core material is chamfered by being configured with a second core material arranged on the outer peripheral portion of the first core material, and includes a portion where the core material is located between the jacket materials. A vacuum insulation material that seals a plurality of core materials in a separate space by heating and pressurizing, and abuts against the jacket material. Since the corners of the core material on the side close to the adjacent core material are chamfered among the corners of the core material to be coated, it becomes easier for the jacket material to correspond to the shape and arrangement of a plurality of core materials, and the core material that is not chamfered Compared to the one used, it is possible to narrow the interval between adjacent core members, or increase the thickness of the core member, thereby enhancing the heat insulating performance of the vacuum heat insulating material. Further, the core material is constituted by a first core material located in a central portion and a second core material arranged on an outer peripheral portion of the first core material, and the second core material is defined as the first core material. Since the core is chamfered by making the thickness smaller than that of the core material, not only chamfering after core material preparation is necessary, but all core materials need only be designed with the same density, so the density of the core material Productivity is improved because no control is required.

次に、真空断熱材の構成材料について詳細に説明する。   Next, the constituent materials of the vacuum heat insulating material will be described in detail.

芯材の材料は、外被材の熱溶着時の熱に耐えることができ、空隙率が高いもの、好ましくは空隙率が80%以上、より好ましくは空隙率が90%以上のものが適しており、工業的に利用することができるものとして、粉体や、繊維体等があり、その使用用途や必要特性に応じていずれかの材料が使用される。   The core material can withstand the heat at the time of thermal welding of the jacket material, and has a high porosity, preferably a porosity of 80% or more, more preferably a porosity of 90% or more. There are powders, fiber bodies, and the like that can be used industrially, and any material is used depending on the intended use and required characteristics.

粉体としては、無機系、有機系、およびこれらの混合物を利用できるが、工業的には、乾式シリカ、湿式シリカ、パーライト等を主成分とするものが使用できる。   As the powder, inorganic, organic, and a mixture thereof can be used, but industrially, those mainly composed of dry silica, wet silica, pearlite and the like can be used.

また、繊維体としては、無機系、有機系、およびこれらの混合物が利用できるが、コストと断熱性能の観点から無機繊維が有利である。無機繊維の一例としては、グラスウール、グラスファイバー、アルミナ繊維、シリカアルミナ繊維、シリカ繊維、ロックウール等、公知の材料を使用することができる。   In addition, inorganic, organic, and mixtures thereof can be used as the fibrous body, but inorganic fibers are advantageous from the viewpoint of cost and heat insulation performance. As an example of the inorganic fiber, a known material such as glass wool, glass fiber, alumina fiber, silica alumina fiber, silica fiber, rock wool, or the like can be used.

また、これら、粉体、および繊維体等の混合物も適用することができる。   Moreover, mixtures of these, powder, fiber bodies, etc. are also applicable.

外被材に使用するラミネートフィルムは、最内層を熱溶着層とし、中間層にはガスバリア層として、金属箔、或いは金属蒸着層を有し、最外層には表面保護層を設けたラミネートフィルムが適用できる。また、ラミネートフィルムは、金属箔を有するラミネートフィルムと金属蒸着層を有するラミネートフィルムの2種類のラミネートフィルムを組み合わせて適用しても良い。   The laminate film used for the jacket material is a laminate film in which the innermost layer is a heat-welded layer, the intermediate layer has a gas barrier layer, a metal foil or a metal vapor-deposited layer, and the outermost layer is provided with a surface protective layer. Applicable. In addition, the laminate film may be applied by combining two types of laminate films, ie, a laminate film having a metal foil and a laminate film having a metal vapor deposition layer.

なお、熱溶着層としては、低密度ポリエチレンフィルム、鎖状低密度ポリエチレンフィルム、高密度ポリエチレンフィルム、ポリプロピレンフィルム、ポリアクリロニトリルフィルム、無延伸ポリエチレンテレフタレートフィルム、エチレン−ビニルアルコール共重合体フィルム、或いはそれらの混合体等を用いることができる。   In addition, as the heat welding layer, a low density polyethylene film, a chain low density polyethylene film, a high density polyethylene film, a polypropylene film, a polyacrylonitrile film, an unstretched polyethylene terephthalate film, an ethylene-vinyl alcohol copolymer film, or those A mixture or the like can be used.

表面保護層としては、ナイロンフィルム、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルムの延伸加工品など、公知の材料が利用できる。   As the surface protective layer, known materials such as nylon film, polyethylene terephthalate film, and stretched polypropylene film can be used.

以下、本発明による実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における真空断熱材の断面図、図2は、同実施の形態の真空断熱材の平面図である。
(Embodiment 1)
FIG. 1 is a cross-sectional view of a vacuum heat insulating material in Embodiment 1 of the present invention, and FIG. 2 is a plan view of the vacuum heat insulating material of the same embodiment.

本実施の形態の真空断熱材11は、厚さ2〜10mmの板状の長方形に成形された繊維体からなる9個の芯材12を、アルミ蒸着フィルムを含むガスバリア性のラミネートフィルムからなる外被材13で覆い、外被材13の内部を減圧密封して成り、9個の芯材12は、格子状に、縦(横)方向に隣接する芯材12と横(縦)の辺が対向するように、互いに所定間隔離して配置されており、外被材13の間に芯材12がある部分を含めて加熱加圧することにより、芯材12の周囲に外被材13の熱溶着部14が設けられ、9個の芯材12のそれぞれが独立した空間内に位置している真空断熱材11であって、芯材12は、外被材13と当接する角において(外周部において)、芯材の密度が中央部分よりも小さいことで、熱溶着時の加熱加圧により斜めに面取りされているものである。   The vacuum heat insulating material 11 of the present embodiment is composed of nine core members 12 made of fiber bodies formed into a plate-like rectangle having a thickness of 2 to 10 mm, and an outer layer made of a gas barrier laminate film including an aluminum vapor deposited film. The nine core members 12 are covered with a substrate 13 and the inside of the jacket member 13 is decompressed and sealed, and the nine core members 12 are arranged in a lattice shape with the adjacent core member 12 in the vertical (horizontal) direction. It is arranged so as to be opposed to each other by a predetermined distance, and the outer cover material 13 is thermally welded around the core material 12 by heating and pressurizing the portion including the core material 12 between the outer cover material 13. The vacuum insulating material 11 is provided with a portion 14 and each of the nine core materials 12 is located in an independent space. ), Because the density of the core material is smaller than the central part, heating and pressurization during thermal welding Those which are chamfered more diagonally.

本実施の形態の芯材12は、外被材13と当接する角の部分に面取り部12aを設けたことにより、外周部が先細になっている。   The core material 12 of the present embodiment has a tapered outer peripheral portion by providing a chamfered portion 12a at a corner portion that abuts against the jacket material 13.

本実施の形態の真空断熱材11の減圧密封工程は、図10に示された従来の真空断熱材の減圧密封工程と同じである。   The vacuum sealing process of the vacuum heat insulating material 11 of the present embodiment is the same as the vacuum sealing process of the conventional vacuum heat insulating material shown in FIG.

本実施の形態の真空断熱材11は、外被材13の間に芯材12がある部分を含めて加熱加圧することにより9個の芯材12をそれぞれ独立した空間内に減圧密封した真空断熱材11において、外被材13と当接する芯材12の角のうち少なくとも隣接する芯材12に近い側の芯材12の角を面取りしたので、外被材13が9個の芯材12の形状、配列に対応して変形しやすくなり、面取りしていない芯材を用いたものに較べて、隣接する芯材12同士の間隔を狭くしたり、芯材12の厚みを厚くすることが可能になり、真空断熱材11の断熱性能を高めることができる。   The vacuum heat insulating material 11 according to the present embodiment is a vacuum heat insulating material in which nine core materials 12 are vacuum-sealed in independent spaces by heating and pressurizing a portion including the core material 12 between the jacket materials 13. In the material 11, at least the corners of the core material 12 on the side close to the adjacent core material 12 among the corners of the core material 12 in contact with the jacket material 13 are chamfered. It becomes easy to deform corresponding to the shape and arrangement, and it is possible to narrow the interval between adjacent core materials 12 and increase the thickness of the core material 12 as compared with those using a core material that is not chamfered. Thus, the heat insulating performance of the vacuum heat insulating material 11 can be enhanced.

また、本実施の形態の芯材12は長方形であるので、床暖房システム等の断熱材として適用する場合において、一般的な長方形の寸法内に芯材12を効果的に複数配置でき、芯材12がない部分の面積を他の形状に比較し最も少なくできる効果が得られる。   Moreover, since the core material 12 of this Embodiment is a rectangle, when applying as heat insulation materials, such as a floor heating system, the core material 12 can be effectively arrange | positioned in the size of a general rectangle, and a core material The effect of minimizing the area of the portion without 12 as compared with other shapes is obtained.

なお、本実施の形態による真空断熱材11の芯材12の形状は長方形であるが、三角形、多角形、円形、L型、およびこれらの組み合わせからなる任意形状が選定でき、芯材12の配置についても、千鳥状など任意に決定できる。   In addition, although the shape of the core material 12 of the vacuum heat insulating material 11 by this Embodiment is a rectangle, the arbitrary shapes which consist of a triangle, a polygon, circular, L type, and these combination can be selected, and arrangement | positioning of the core material 12 is possible. Also, it can be arbitrarily determined such as staggered.

なお、本実施の形態による真空断熱材11の芯材12は、大気圧縮時に角が斜めになるように外周に近いほど芯材12の密度を小さく制御し、大気圧縮により面取りしているが、図3に示す芯材15の面取り部15aのように、角を丸くする形で、また、角を階段形状になるように密度制御しても良い。   In addition, the core material 12 of the vacuum heat insulating material 11 according to the present embodiment controls the density of the core material 12 to be smaller as it is closer to the outer periphery so that the angle is inclined at the time of atmospheric compression, and is chamfered by atmospheric compression, Like the chamfered portion 15a of the core member 15 shown in FIG. 3, the density may be controlled so that the corners are rounded and the corners are stepped.

また、本実施の形態による真空断熱材11の芯材12は、外周の端面が残るように(縦断面が八角形になるように)角が斜めになるように面取りしているが、図4に示す芯材16の面取り部16aのように、外周の端面が残らないように(縦断面が六角形になるように)外周まで密度を減少させていき、面取りしても良い。   Further, the core material 12 of the vacuum heat insulating material 11 according to the present embodiment is chamfered so that the angle is oblique so that the outer peripheral end face remains (so that the longitudinal section is octagonal). As in the chamfered portion 16a of the core member 16 shown in FIG. 6, the density may be reduced to the outer periphery so that the outer peripheral end face does not remain (the longitudinal section becomes a hexagonal shape), and chamfering may be performed.

(実施の形態2)
以下、本発明の実施の形態2における真空断熱材について説明する。図5は、本発明の実施の形態2における真空断熱材の断面図である。
(Embodiment 2)
Hereinafter, the vacuum heat insulating material in Embodiment 2 of this invention is demonstrated. FIG. 5 is a cross-sectional view of the vacuum heat insulating material in Embodiment 2 of the present invention.

本実施の形態の真空断熱材21は、厚さ2〜10mmの板状の長方形に成形された繊維体からなる9個の芯材22を、アルミ蒸着フィルムを含むガスバリア性のラミネートフィルムからなる外被材23a,23bで覆い、外被材23a,23bの内部を減圧密封して成り、9個の芯材22は、格子状に、縦(横)方向に隣接する芯材22と横(縦)の辺が対向するように、互いに所定間隔離して配置されており、外被材23a,23bの間に芯材22がある部分を含めて加熱加圧することにより、芯材22の周囲に外被材23a,23bの熱溶着部24が設けられ、9個の芯材22のそれぞれが独立した空間内に位置している真空断熱材21であって、芯材22は、中心部に位置する第一の芯材22Aの外周に第二の芯材22Bを備え、外被材23aと当接する角において、第二の芯材22Bの密度が第一の芯材21Aよりも小さいことで、熱溶着時の加熱加圧により斜めに面取りされているものである。   The vacuum heat insulating material 21 of the present embodiment is composed of nine core members 22 made of fiber bodies formed into a plate-like rectangle having a thickness of 2 to 10 mm, and an outer layer made of a gas barrier laminate film including an aluminum vapor deposited film. Covered with the covering materials 23a and 23b, the inside of the covering materials 23a and 23b is sealed under reduced pressure, and the nine core materials 22 are arranged in a lattice shape in a horizontal (vertical) direction with the core material 22 adjacent in the vertical (horizontal) direction. ) Are separated from each other by a predetermined distance so as to face each other, and by heating and pressurizing the portion including the core material 22 between the jacket materials 23a and 23b, the outer periphery of the core material 22 is provided. The heat insulation part 24 of the to-be-processed materials 23a and 23b is provided, and each of the nine core materials 22 is the vacuum heat insulating material 21 located in the independent space, Comprising: The core material 22 is located in the center part. A second core member 22B is provided on the outer periphery of the first core member 22A, and the outer cover In 23a abutting corner, by the density of the second core member 22B is smaller than the first core member 21A, those which are bevelled by heating and pressing at the time of thermal welding.

本実施の形態の芯材22は、外被材23aと当接する角の部分に面取り部22aを設けたことにより、外周部が先細になっている。   The core material 22 of the present embodiment has a tapered outer peripheral portion by providing a chamfered portion 22a at a corner portion that comes into contact with the jacket material 23a.

また、本実施の形態の芯材22は、密度の異なる二つの板状の芯材片22A,22Bにおいて、第一の芯材22Aの外周を取り巻くように第二の芯材22Bを備えたものである。   The core material 22 of the present embodiment includes a second core material 22B so as to surround the outer periphery of the first core material 22A in two plate-shaped core material pieces 22A and 22B having different densities. It is.

本実施の形態の真空断熱材21は、芯材22の縦断面形状が、芯材22の厚み方向で対称な形になっておらず、芯材22における一方の面の外被材23a側が先細になっていて、芯材22における一方の面の外被材23aと対向する面の面積が他方の面の外被材23bと対向する面の面積より小さくなっているので、図10に示された従来の真空断熱材の減圧密封工程と同様に減圧密封しても、一方の面の外被材23aは、他方の面の外被材23bよりも芯材22と対向する部分と対向しない部分とでできる凹凸が大きくなるが、図12に示された従来の真空断熱材の減圧密封工程において、外被材23a側の熱板を外被材23b側の熱板より弾性変形しやすくすれば、芯材22の縦断面形状に関係なく、一方の面の外被材23aにおける芯材22と対向する部分と対向しない部分とでできる凹凸を、他方の面の外被材23bにおける芯材22と対向する部分と対向しない部分とでできる凹凸よりも大きくすることができる。   In the vacuum heat insulating material 21 of the present embodiment, the longitudinal cross-sectional shape of the core material 22 is not symmetric in the thickness direction of the core material 22, and the outer cover material 23 a side of one surface of the core material 22 is tapered. Since the area of the surface of the core member 22 facing the outer cover material 23a is smaller than the area of the surface of the other surface facing the outer cover material 23b, it is shown in FIG. Even when the vacuum sealing process is performed in the same manner as the vacuum sealing process of the conventional vacuum heat insulating material, the outer cover material 23a on one surface is not opposed to the portion facing the core material 22 more than the outer cover material 23b on the other surface. However, if the heat plate on the outer cover material 23a side is more elastically deformed than the heat plate on the outer cover material 23b side in the vacuum sealing process of the conventional vacuum heat insulating material shown in FIG. Regardless of the longitudinal cross-sectional shape of the core material 22, the core in the outer cover material 23a on one surface The irregularities can be between 22 and facing portion not facing portion can be larger than the irregularities that can be in the other side outer not opposed to a portion facing the core member 22 in the covering material 23b portion.

本実施の形態の真空断熱材21は、外被材23a,23bの間に芯材22がある部分を含めて加熱加圧することにより9個の芯材22をそれぞれ独立した空間内に減圧密封してなり、一方の面の外被材23aが、他方の面の外被材23bよりも芯材22と対向する部分と対向しない部分とでできる凹凸が大きい真空断熱材21において、一方の面の外被材23aと当接する芯材22の角のうち少なくとも隣接する芯材22に近い側の芯材22の角を面取りしたので、外被材23aが9個の芯材22の形状、配列に対応しやすくなり、面取りしていない芯材を用いたものに較べて、隣接する芯材22同士の間隔を狭くしたり、芯材22の厚みを厚くすることが可能になり、真空断熱材21の断熱性能を高めることができる。   The vacuum heat insulating material 21 according to the present embodiment heats and pressurizes the nine core materials 22 in an independent space by heating and pressurizing the portions including the core material 22 between the covering materials 23a and 23b. In the vacuum heat insulating material 21 in which the outer cover material 23a on one surface has a large unevenness formed by a portion facing the core material 22 and a portion not facing the cover material 23b on the other surface, Since at least the corners of the core material 22 on the side close to the adjacent core material 22 are chamfered among the corners of the core material 22 in contact with the outer jacket material 23a, the outer cover material 23a has the shape and arrangement of the nine core materials 22 Compared to the case using a core material that is not chamfered, it becomes possible to reduce the interval between adjacent core materials 22 or increase the thickness of the core material 22, and the vacuum heat insulating material 21. Can improve the heat insulation performance.

また、本実施の形態の芯材22は長方形であるので、床暖房システム等の断熱材として適用する場合において、一般的な長方形の寸法内に芯材22を効果的に複数配置でき、芯材22がない部分の面積を他の形状に比較し最も少なくできる効果が得られる。   Moreover, since the core material 22 of this Embodiment is a rectangle, when applying as heat insulation materials, such as a floor heating system, the core material 22 can be effectively arrange | positioned in the size of a general rectangle, and a core material The effect of minimizing the area of the portion without 22 as compared with other shapes is obtained.

なお、本実施の形態による真空断熱材21の芯材22の形状は長方形であるが、三角形、多角形、円形、L型、およびこれらの組み合わせからなる任意形状が選定でき、芯材22の配置についても、千鳥状など任意に決定できる。   In addition, although the shape of the core material 22 of the vacuum heat insulating material 21 by this Embodiment is a rectangle, the arbitrary shapes which consist of a triangle, a polygon, circle, L type, and these combination can be selected, and arrangement | positioning of the core material 22 is possible. Also, it can be arbitrarily determined such as staggered.

なお、本実施の形態による真空断熱材21の芯材22は、大気圧縮時に角が斜めになるように第二の芯材22Bの密度を小さく制御し、大気圧縮により面取りしているが、角を丸くする形で、また、角を階段形状になるように密度制御しても良い。   In addition, although the core material 22 of the vacuum heat insulating material 21 by this Embodiment controls the density of the 2nd core material 22B small so that an angle may become diagonal at the time of atmospheric compression, it is chamfered by atmospheric compression, The density may be controlled so that the corners are rounded and the corners are stepped.

また、本実施の形態の芯材22は、密度の異なる二つの板状の芯材片22A,22Bを第一の芯材22Aの外周を取り巻くように第二の芯材22Bを備えたものであり、密度の異なる芯材片22A、22Bとの組み合わせにより、多種多様の形状、厚みを有する芯材を容易に得ることができるだけでなく、第二の芯材22Bには端材を利用することに適しており、芯材材料の歩留まりを抑制できる。   Further, the core material 22 of the present embodiment includes a second core material 22B so that two plate-shaped core material pieces 22A and 22B having different densities surround the outer periphery of the first core material 22A. Yes, it is possible not only to easily obtain core materials having various shapes and thicknesses by combining with core material pieces 22A and 22B having different densities, but also to use end materials for the second core material 22B. The yield of the core material can be suppressed.

(実施の形態3)
以下、本発明の実施の形態3における真空断熱材について説明する。図6は、本発明の実施の形態3における真空断熱材の断面図、図7は、同実施の形態にの真空断熱材の平面図である。
(Embodiment 3)
Hereinafter, the vacuum heat insulating material in Embodiment 3 of this invention is demonstrated. FIG. 6 is a cross-sectional view of the vacuum heat insulating material in Embodiment 3 of the present invention, and FIG. 7 is a plan view of the vacuum heat insulating material in the same embodiment.

本実施の形態の真空断熱材31は、厚さ2〜10mmの板状の長方形に成形された繊維体からなる9個の芯材32を、アルミ蒸着フィルムを含むガスバリア性のラミネートフィルムからなる外被材33a,33bで覆い、外被材33a,33bの内部を減圧密封して成り、9個の芯材32は、格子状に、縦(横)方向に隣接する芯材32と横(縦)の辺が対向するように、互いに所定間隔離して配置されており、外被材33a,33bの間に芯材32がある部分を含めて加熱加圧することにより、芯材32の周囲に外被材33a,33bの熱溶着部34が設けられ、9個の芯材32のそれぞれが独立した空間内に位置している真空断熱材31であって、一方の面の外被材33aは芯材32と対向する部分と対向しない部分とで凹凸ができているが、他方の面の外被材33bは芯材32と対向する部分と対向しない部分とで凹凸ができておらず表面が平滑で、芯材32は、一方の面の外被材33aと当接する角のうち隣接する芯材32に近い側の角のみが、階段形状に面取りされているものである。   The vacuum heat insulating material 31 of the present embodiment is composed of nine core members 32 made of fibrous bodies formed into a plate-like rectangle having a thickness of 2 to 10 mm, and an outer layer made of a gas barrier laminate film including an aluminum vapor deposited film. Covered with the covering materials 33a and 33b, the inside of the covering materials 33a and 33b is sealed under reduced pressure, and the nine core materials 32 are arranged in a lattice shape in a horizontal (vertical) direction with the core material 32 adjacent in the vertical (horizontal) direction. ) Are separated from each other by a predetermined distance so as to face each other, and by heating and pressurizing the portion including the core material 32 between the jacket materials 33a and 33b, the outer periphery of the core material 32 is provided. The heat insulation part 34 of the materials 33a and 33b is provided, and each of the nine core materials 32 is a vacuum heat insulating material 31 positioned in an independent space, and the outer material 33a on one surface is a core Concavities and convexities are formed between the part facing the material 32 and the part not facing it. However, the outer cover material 33b on the other surface has no unevenness between the portion facing the core material 32 and the portion not facing the surface, and the surface is smooth. The core material 32 contacts the outer cover material 33a on one surface. Of the contacted corners, only the corners close to the adjacent core member 32 are chamfered in a staircase shape.

また、本実施の形態の芯材32は、厚みの異なる二つの板状の芯材片32A,32Bにおいて、中心部に位置する比較的厚みの大きい第一の芯材32Aの外周を取り巻くように比較的厚みの小さい第二の芯材32Bを備えてなるもので、第一の芯材片32Aが、第二の芯材片32Bより厚みが小さく、この寸法差により、一方の面の外被材33aと当接する角の部分に階段状の面取り部32aを形成している。   Further, the core member 32 of the present embodiment surrounds the outer periphery of the first core member 32A having a relatively large thickness located in the center portion between the two plate-like core member pieces 32A and 32B having different thicknesses. The second core member 32B having a relatively small thickness is provided, and the first core member piece 32A is smaller in thickness than the second core member piece 32B. A stepped chamfered portion 32a is formed at a corner portion that contacts the material 33a.

また、本実施の形態の9個の芯材32のうち外周部に位置する8個の芯材32は、隣接する芯材32から遠い側の角(真空断熱材31の外周に相当する側の角)に、階段形状の面取りができないように、第一の芯材片32Aと第二の芯材片32Bにおける真空断熱材31の外周面に相当する端面をそろえて重ねている。   Further, of the nine core members 32 of the present embodiment, the eight core members 32 positioned on the outer peripheral portion have corners on the side far from the adjacent core member 32 (on the side corresponding to the outer periphery of the vacuum heat insulating material 31). At the corner, the end faces corresponding to the outer peripheral surfaces of the vacuum heat insulating material 31 in the first core piece 32A and the second core piece 32B are aligned and overlapped so that the chamfering of the staircase shape cannot be performed.

本実施の形態の真空断熱材31の減圧密封工程は、図10に示された従来の真空断熱材の減圧密封工程において、外被材33b側の熱板を弾性変形しない熱板に代えたもので、減圧密封することができる。   The vacuum sealing process of the vacuum heat insulating material 31 according to the present embodiment is the same as the vacuum vacuum sealing process of the conventional vacuum heat insulating material shown in FIG. And can be sealed under reduced pressure.

本実施の形態の真空断熱材31は、外被材33a,33bの間に芯材32がある部分を含めて加熱加圧することにより9個の芯材32をそれぞれ独立した空間内に減圧密封してなり、一方の面の外被材33aは芯材32と対向する部分と対向しない部分とで凹凸ができているが、他方の面の外被材33bは芯材32と対向する部分と対向しない部分とで凹凸ができておらず表面が平滑な真空断熱材31において、一方の面の外被材33aと当接する芯材32の角のうち隣接する芯材32に近い側の芯材32の角を面取りしたので、外被材33aが9個の芯材32の形状、配列に対応しやすくなり、面取りしていない芯材を用いたものに較べて、隣接する芯材32同士の間隔を狭くしたり、芯材32の厚みを厚くすることが可能になり、真空断熱材31の断熱性能を高めることができる。   The vacuum heat insulating material 31 according to the present embodiment heats and pressurizes the nine core materials 32 in an independent space by heating and pressurizing the portions including the core material 32 between the jacket materials 33a and 33b. The outer cover material 33a on one surface is uneven with a portion facing the core material 32 and a portion not facing, but the outer cover material 33b on the other surface faces the portion facing the core material 32. In the vacuum heat insulating material 31 that is not uneven with the portion that is not formed and has a smooth surface, the core material 32 on the side close to the adjacent core material 32 among the corners of the core material 32 that abuts the outer cover material 33a on one surface. The chamfered corners make it easier for the jacket material 33a to correspond to the shape and arrangement of the nine core materials 32, and the spacing between adjacent core materials 32 compared to those using non-chamfered core materials. Can be narrowed, or the thickness of the core 32 can be increased. It is possible to increase the insulation performance of the timber 31.

ところで、真空断熱材31の外周部のヒレの幅は、隣接する芯材32と芯材32の間の熱溶着部34の幅より広くしても支障がないことが多く、真空断熱材31の外周部は、隣接する芯材32と芯材32の間よりも熱溶着不良が起こりにくいので、複数の芯材32のうち外周部に位置する芯材32において、隣接する芯材32から遠い側の角(真空断熱材31の外周に相当する側の角)を面取りしないことにより、芯材32の平均厚みの低減を抑えて、真空断熱材31の特に外周部の断熱性能を高めることができる。   By the way, in many cases, there is no problem even if the width of the fin on the outer peripheral portion of the vacuum heat insulating material 31 is wider than the width of the heat welding portion 34 between the adjacent core materials 32. Since the outer peripheral portion is less likely to cause poor thermal welding than between the adjacent core members 32, the core member 32 located at the outer peripheral portion of the plurality of core members 32 is far from the adjacent core member 32. By not chamfering the corner (the corner corresponding to the outer periphery of the vacuum heat insulating material 31), the average thickness of the core material 32 can be suppressed, and the heat insulating performance of the vacuum heat insulating material 31, particularly the outer peripheral portion, can be enhanced. .

また、本実施の形態の芯材32は長方形であるので、床暖房システム等の断熱材として適用する場合において、一般的な長方形の寸法内に芯材32を効果的に複数配置でき、芯材32がない部分の面積を他の形状に比較し最も少なくできる効果が得られる。   Moreover, since the core material 32 of this Embodiment is a rectangle, when applying as heat insulation materials, such as a floor heating system, the core material 32 can be effectively arrange | positioned in the size of a general rectangle, and a core material The effect of minimizing the area of the portion without 32 as compared with other shapes is obtained.

なお、本実施の形態による真空断熱材31の芯材32の形状は長方形であるが、三角形、多角形、円形、L型、およびこれらの組み合わせからなる任意形状が選定でき、芯材32の配置についても、千鳥状など任意に決定できる。   In addition, although the shape of the core material 32 of the vacuum heat insulating material 31 by this Embodiment is a rectangle, the arbitrary shapes which consist of a triangle, a polygon, circle, L type, and these combination can be selected, and arrangement | positioning of the core material 32 is possible. Also, it can be arbitrarily determined such as staggered.

また、本実施の形態の芯材32は、厚みの異なる二つの板状の芯材片32A,32Bにおいて、中心部に位置する比較的厚みの大きい第一の芯材32Aの外周に比較的厚みの小さい第二の芯材32Bを備えてなるものであり、複数の芯材片32A,32Bの組み合わせにより、階段形状の面取り部32aを容易に形成でき、また、多種多様の形状、厚みを有する芯材を容易に得ることができるだけでなく、芯材の面取り加工及び密度の制御が不要であり、生産性が向上する。   In addition, the core material 32 of the present embodiment is relatively thick on the outer periphery of the relatively thick first core material 32A located at the center in two plate-like core material pieces 32A and 32B having different thicknesses. The second core material 32B is small, and a stepped chamfered portion 32a can be easily formed by combining a plurality of core material pieces 32A and 32B, and has various shapes and thicknesses. Not only can the core material be easily obtained, but also the chamfering processing and density control of the core material are unnecessary, and the productivity is improved.

以上のように、本発明にかかる真空断熱材は、外被材の間に芯材がある部分を含めて加熱加圧することにより複数の芯材をそれぞれ独立した空間内に減圧密封した真空断熱材において、隣接する芯材同士の間隔を狭くしたり、芯材の厚みを厚くすることが可能になり、真空断熱材の断熱性能を高めることができるので、省エネを必要とする保温保冷機器に留まらず、情報機器や電子機器等、省スペースを必要とする機器の熱害対策用断熱材等の用途にも適用できる。   As described above, the vacuum heat insulating material according to the present invention is a vacuum heat insulating material in which a plurality of core materials are vacuum-sealed in independent spaces by heating and pressurizing including a portion where the core material is located between the jacket materials. In this case, it is possible to reduce the interval between adjacent core materials and increase the thickness of the core material, and to improve the heat insulation performance of the vacuum heat insulating material. In addition, the present invention can be applied to applications such as heat insulation for heat damage countermeasures for equipment that requires space saving, such as information equipment and electronic equipment.

また、複数の芯材の大きさを適切に選択して柔軟性を確保することにより、より用途が広い真空断熱材とすることができ、防寒具としてのジャケットのほか、ズボンや帽子、手袋、または寝具のふとんや座布団等にも適用できる。   In addition, by appropriately selecting the size of multiple core materials and ensuring flexibility, it can be used as a vacuum insulator with more versatility, in addition to jackets as cold protection, trousers, hats, gloves, It can also be applied to bedding for futons and cushions.

本発明の実施の形態1における真空断熱材の断面図Sectional drawing of the vacuum heat insulating material in Embodiment 1 of this invention 同実施の形態の真空断熱材の平面図Plan view of the vacuum heat insulating material of the same embodiment 同実施の形態の真空断熱材の芯材の変形例を示す断面図Sectional drawing which shows the modification of the core material of the vacuum heat insulating material of the embodiment 同実施の形態の真空断熱材の芯材の別の変形例を示す断面図Sectional drawing which shows another modification of the core material of the vacuum heat insulating material of the embodiment 本発明の実施の形態2における真空断熱材の断面図Sectional drawing of the vacuum heat insulating material in Embodiment 2 of this invention 本発明の実施の形態3における真空断熱材の断面図Sectional drawing of the vacuum heat insulating material in Embodiment 3 of this invention 同実施の形態の真空断熱材の平面図Plan view of the vacuum heat insulating material of the same embodiment 従来の真空断熱材の断面図Cross section of conventional vacuum insulation 従来の真空断熱材の平面図Plan view of conventional vacuum insulation 従来の真空断熱材の減圧密封工程を示す概念図Conceptual diagram showing the vacuum sealing process for conventional vacuum insulation materials

符号の説明Explanation of symbols

11 真空断熱材
12 芯材
12a 面取り部
13 外被材
14 熱溶着部
15 芯材
15a 面取り部
16 芯材
16a 面取り部
21 真空断熱材
22 芯材
22A 第一の芯材片
22B 第二の芯材片
22a 面取り部
23a,23b 外被材
24 熱溶着部
31 真空断熱材
32 芯材
32A 第一の芯材片
32B 第二の芯材片
32a 面取り部
33a,33b 外被材
34 熱溶着部
DESCRIPTION OF SYMBOLS 11 Vacuum heat insulating material 12 Core material 12a Chamfering part 13 Outer coating material 14 Thermal welding part 15 Core material 15a Chamfering part 16 Core material 16a Chamfering part 21 Vacuum heat insulating material 22 Core material 22A 1st core material piece 22B 2nd core material Piece 22a Chamfered portion 23a, 23b Cover material 24 Heat welded portion 31 Vacuum heat insulating material 32 Core material 32A First core material piece 32B Second core material piece 32a Chamfered portion 33a, 33b Cover material 34 Heat welded portion

Claims (3)

複数の板状の芯材をガスバリア性の外被材で覆い前記外被材の内部を減圧密封して成り、前記複数の芯材は、互いに所定間隔離して配置されており、前記外被材の間に芯材がある部分を含めて加熱加圧することにより、前記芯材の周囲に前記外被材の熱溶着部が設けられ前記複数の芯材のそれぞれが独立した空間内に位置している真空断熱材であって、前記各芯材の外周部における密度を中心部よりも低くすることで前記芯材が面取りされている真空断熱材。   A plurality of plate-like core members are covered with a gas barrier outer covering material, and the inside of the outer covering material is sealed under reduced pressure, and the plurality of core members are arranged separated from each other by a predetermined distance. By heating and pressing including a portion where the core material is between, a heat-welded portion of the jacket material is provided around the core material, and each of the plurality of core materials is located in an independent space. A vacuum heat insulating material, wherein the core material is chamfered by making the density at the outer peripheral portion of each core material lower than the center portion. 複数の板状の芯材をガスバリア性の外被材で覆い前記外被材の内部を減圧密封して成り、前記複数の芯材は、互いに所定間隔離して配置されており、前記外被材の間に芯材がある部分を含めて加熱加圧することにより、前記芯材の周囲に前記外被材の熱溶着部が設けられ前記複数の芯材のそれぞれが独立した空間内に位置している真空断熱材であって、前記各芯材を、中心部分に位置する第一の芯材と、前記第一の芯材より低密度で前記第一の芯材の外周部に配置される第二の芯材とで構成することで、前記芯材が面取りされている真空断熱材。   A plurality of plate-like core members are covered with a gas barrier outer covering material, and the inside of the outer covering material is sealed under reduced pressure, and the plurality of core members are arranged separated from each other by a predetermined distance. By heating and pressing including a portion where the core material is between, a heat-welded portion of the jacket material is provided around the core material, and each of the plurality of core materials is located in an independent space. A vacuum insulation material, wherein each of the core materials is disposed on the outer periphery of the first core material at a lower density than the first core material located in a central portion. The vacuum heat insulating material by which the said core material is chamfered by comprising with a 2 core material. 複数の板状の芯材をガスバリア性の外被材で覆い前記外被材の内部を減圧密封して成り、前記複数の芯材は、互いに所定間隔離して配置されており、前記外被材の間に芯材がある部分を含めて加熱加圧することにより、前記芯材の周囲に前記外被材の熱溶着部が設けられ前記複数の芯材のそれぞれが独立した空間内に位置している真空断熱材であって、前記各芯材を、中心部分に位置する第一の芯材と、前記第一の芯材より厚みが小さく前記第一の芯材の外周部に配置される第二の芯材とで構成することで、前記芯材が面取りされている真空断熱材。   A plurality of plate-like core members are covered with a gas barrier outer covering material, and the inside of the outer covering material is sealed under reduced pressure, and the plurality of core members are arranged separated from each other by a predetermined distance. By heating and pressurizing including a portion where the core material is between, a heat-welded portion of the jacket material is provided around the core material, and each of the plurality of core materials is located in an independent space. A vacuum insulation material, wherein each of the core materials is disposed on the outer periphery of the first core material having a thickness smaller than that of the first core material located in a central portion. The vacuum heat insulating material by which the said core material is chamfered by comprising with a 2 core material.
JP2004362583A 2004-12-15 2004-12-15 Vacuum heat insulating material Pending JP2006170303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004362583A JP2006170303A (en) 2004-12-15 2004-12-15 Vacuum heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004362583A JP2006170303A (en) 2004-12-15 2004-12-15 Vacuum heat insulating material

Publications (1)

Publication Number Publication Date
JP2006170303A true JP2006170303A (en) 2006-06-29

Family

ID=36671278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004362583A Pending JP2006170303A (en) 2004-12-15 2004-12-15 Vacuum heat insulating material

Country Status (1)

Country Link
JP (1) JP2006170303A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051162A (en) * 2006-08-23 2008-03-06 Matsushita Electric Ind Co Ltd Heat insulating structure and refrigerator
WO2011045947A1 (en) * 2009-10-16 2011-04-21 三菱電機株式会社 Vacuum heat insulation material and refrigerator
JP2013076471A (en) * 2013-01-30 2013-04-25 Mitsubishi Electric Corp Heat insulating wall, refrigerator, and equipment
JP2014025536A (en) * 2012-07-27 2014-02-06 Hitachi Appliances Inc Vacuum heat insulation material and refrigerator
JP2015055284A (en) * 2013-09-11 2015-03-23 大日本印刷株式会社 Vacuum heat insulation material
US9068683B2 (en) 2009-10-16 2015-06-30 Mitsubishi Electric Corporation Manufacturing apparatus of core material of vacuum heat insulating material, manufacturing method of vacuum heat insulating material, vacuum heat insulating material, and refrigerator
US9074716B2 (en) 2008-12-26 2015-07-07 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
US9103482B2 (en) 2009-10-19 2015-08-11 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box, refrigerator, refrigerating/air-conditioning apparatus, water heater, appliance, and manufacturing method of vacuum heat insulating material
CN109715875A (en) * 2016-09-20 2019-05-03 圣戈班伊索福公司 Inorfil laminated body, Vacuumed insulation panel and its manufacturing method using it

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051162A (en) * 2006-08-23 2008-03-06 Matsushita Electric Ind Co Ltd Heat insulating structure and refrigerator
US9074717B2 (en) 2008-12-26 2015-07-07 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
US9074716B2 (en) 2008-12-26 2015-07-07 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
EP2489920A1 (en) * 2009-10-16 2012-08-22 Mitsubishi Electric Corporation Vacuum heat insulation material and refrigerator
CN102575803A (en) * 2009-10-16 2012-07-11 三菱电机株式会社 Vacuum heat insulation material and refrigerator
JP5312605B2 (en) * 2009-10-16 2013-10-09 三菱電機株式会社 Vacuum insulation, refrigerator and equipment
US20120201997A1 (en) 2009-10-16 2012-08-09 Mitsubishi Electric Corporation Vacuum heat insulating material and refrigerator
EP2489920A4 (en) * 2009-10-16 2014-02-12 Mitsubishi Electric Corp Vacuum heat insulation material and refrigerator
US8920899B2 (en) 2009-10-16 2014-12-30 Mitsubishi Electric Corporation Vacuum heat insulating material and refrigerator
WO2011045947A1 (en) * 2009-10-16 2011-04-21 三菱電機株式会社 Vacuum heat insulation material and refrigerator
US9068683B2 (en) 2009-10-16 2015-06-30 Mitsubishi Electric Corporation Manufacturing apparatus of core material of vacuum heat insulating material, manufacturing method of vacuum heat insulating material, vacuum heat insulating material, and refrigerator
US9103482B2 (en) 2009-10-19 2015-08-11 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box, refrigerator, refrigerating/air-conditioning apparatus, water heater, appliance, and manufacturing method of vacuum heat insulating material
JP2014025536A (en) * 2012-07-27 2014-02-06 Hitachi Appliances Inc Vacuum heat insulation material and refrigerator
JP2013076471A (en) * 2013-01-30 2013-04-25 Mitsubishi Electric Corp Heat insulating wall, refrigerator, and equipment
JP2015055284A (en) * 2013-09-11 2015-03-23 大日本印刷株式会社 Vacuum heat insulation material
CN109715875A (en) * 2016-09-20 2019-05-03 圣戈班伊索福公司 Inorfil laminated body, Vacuumed insulation panel and its manufacturing method using it
CN109715875B (en) * 2016-09-20 2022-01-14 圣戈班伊索福公司 Inorganic fiber laminate, vacuum heat insulator using same, and method for producing same

Similar Documents

Publication Publication Date Title
US8927084B2 (en) Grooved type vacuum thermal insulation material and a production method for the same
JP4545126B2 (en) Vacuum insulation panel and refrigerator using the same
KR100781010B1 (en) Vacuumed insulation panel and method of manufacturing the same
JP2006170303A (en) Vacuum heat insulating material
JP5198504B2 (en) Vacuum insulation panel for refrigerator and refrigerator using the same
JP6022037B2 (en) Vacuum insulation
US9915392B2 (en) Internal thermal insulation for metal reflective insulation
JP3234649U (en) Vacuum insulated panel with improved sealing joint
JP2006138336A (en) Vacuum heat insulation material
US20200340612A1 (en) Thermal insulation sheet and multilayer thermal insulation sheet using same
JP2007239288A (en) Member for construction using vacuum insulating material
JP2009092224A (en) Vacuum heat insulating material and building adopting vacuum heat insulation material
JP4742605B2 (en) Vacuum insulation material and manufacturing method thereof
KR102016392B1 (en) Flat joint and cargo container system of liquefied gas with the flat joint
JP2006118634A (en) Vacuum heat insulating material
JP7006170B2 (en) Insulation panel
JP2009041648A (en) Vacuum heat insulating material and construction member applying the same
JP5663321B2 (en) Vacuum insulation
JP2009138918A (en) Thermal insulation member
JPS63130998A (en) Multi-layer heat insulating material
JP2007057081A (en) Vacuum heat insulating board
TW201619019A (en) Vacuum heat insulating material, vacuum heat insulating material manufacturing apparatus, and heat insulating box using vacuum heat insulating material
JP4617752B2 (en) Manufacturing method of vacuum insulation
JP2007016834A (en) Method of bending and cutting vacuum heat insulating material
JPH07127790A (en) Filler of vacuum insulator