[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006164689A - Electrode structure, secondary battery, and capacitor - Google Patents

Electrode structure, secondary battery, and capacitor Download PDF

Info

Publication number
JP2006164689A
JP2006164689A JP2004352932A JP2004352932A JP2006164689A JP 2006164689 A JP2006164689 A JP 2006164689A JP 2004352932 A JP2004352932 A JP 2004352932A JP 2004352932 A JP2004352932 A JP 2004352932A JP 2006164689 A JP2006164689 A JP 2006164689A
Authority
JP
Japan
Prior art keywords
active material
electrode active
conductive material
particles
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004352932A
Other languages
Japanese (ja)
Inventor
Zenzo Hashimoto
橋本善三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENERSTRUCT KK
Original Assignee
ENERSTRUCT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENERSTRUCT KK filed Critical ENERSTRUCT KK
Priority to JP2004352932A priority Critical patent/JP2006164689A/en
Publication of JP2006164689A publication Critical patent/JP2006164689A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a secondary battery or a capacitor, or an electric structure thereof having large capacity and high output power. <P>SOLUTION: The electrode structure is formed by a current collector material; and an electrode layer formed on the surface of the current collector material composed of conductive material mixed electrode activator particle, space forming particle; and a binder; including the conductive material mixed electrode activator particle having conductive material around electrode activator particle; the space forming particle with an average size larger than that of the conductive material mixed electrode activator particle by two times or more; and the binder. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電極構造体、二次電池及びキャパシタに関するものである。
The present invention relates to an electrode structure, a secondary battery, and a capacitor.

非水系電解質の二次電池は、電極活物質と導電材とバインダの混合物を集電材表面に塗布し、バインダの接着力により集電材の表面に電極活物質と導電材を接着して電極構造を形成していた。そこで、電極構造の導電性を高めるために、導電材の粒径を大から小まで幅広く分布させて稠密構造にすると、バインダの量が多くなり、結局、電極構造体の抵抗を増大させる結果になる。また、二次電池の充放電容量を大きくするために、電極活物質の粒径を大から小まで幅広く分布させて稠密構造にしている(特許文献1参照)。しかし、充放電に必要な電解質が電極層に十分に入り込めず、大容量の二次電池を得ることができない。   A non-aqueous electrolyte secondary battery has an electrode structure in which a mixture of an electrode active material, a conductive material and a binder is applied to the surface of the current collector, and the electrode active material and the conductive material are adhered to the surface of the current collector by the adhesive strength of the binder. Was forming. Thus, in order to increase the conductivity of the electrode structure, if the particle size of the conductive material is widely distributed from large to small to form a dense structure, the amount of binder increases, which eventually increases the resistance of the electrode structure. Become. In addition, in order to increase the charge / discharge capacity of the secondary battery, the electrode active material has a dense structure in which the particle size of the electrode active material is widely distributed from large to small (see Patent Document 1). However, the electrolyte required for charging and discharging cannot sufficiently enter the electrode layer, and a large-capacity secondary battery cannot be obtained.

従来、また、バインダを用いずに、電極活物質の表面に導電材を蒸着やスパッタなどで被着し、導電材の表面被覆率を40%〜80%にする点が記載されている(特許文献2参照)。しかし、電極活物質の表面を40%〜80%も被覆すると、電極活物質の特性や機能を十分に引き出すことができるか問題がある。即ち、導電材が電極活物質の表面を被覆すると、電極活物質のイオンの放出と吸引を妨げ、電極活物質の被覆が、電極活物質の反応場所を塞いでいるとも考えられる。また、電極活物質を被覆する導電材は、電極活物質表面から突出していないので、電極活物質間の導電性を高めることが難しいと考えられる。   Conventionally, there is a description that a conductive material is deposited on the surface of an electrode active material by vapor deposition or sputtering without using a binder, so that the surface coverage of the conductive material is 40% to 80% (patent) Reference 2). However, if the surface of the electrode active material is covered by 40% to 80%, there is a problem whether the characteristics and functions of the electrode active material can be sufficiently extracted. That is, when the conductive material covers the surface of the electrode active material, it is considered that the ion active material is prevented from being released and sucked, and the electrode active material coating blocks the reaction site of the electrode active material. Further, since the conductive material covering the electrode active material does not protrude from the surface of the electrode active material, it is considered difficult to increase the conductivity between the electrode active materials.

なお、本出願人は、電極活物質のイオンの放出と吸引を容易にし、かつ、導電性を高めることができる導電材混合電極活物質粒子を発明している(特許文献3参照)。   In addition, the present applicant has invented conductive material mixed electrode active material particles that facilitate the release and suction of ions of the electrode active material and can increase the conductivity (see Patent Document 3).

特開2003−109592号公報JP 2003-109592 A 特開2000−58063号公報JP 2000-58063 A 国際公開番号WO 03/103076 A1International Publication Number WO 03/103076 A1

(1)本発明は、性能の良い二次電池又はキャパシタの電極構造体を提供すること。
(2)又は、本発明は、大容量で高出力の二次電池又はキャパシタを提供すること。
(1) The present invention provides a secondary battery or capacitor electrode structure having good performance.
(2) Alternatively, the present invention provides a secondary battery or capacitor having a large capacity and a high output.

(1)本発明は、集電材と、電極活物質粒子の周囲に導電材が付着している導電材混合電極活物質粒子と、導電材混合電極活物質粒子の平均粒径より2倍以上大きい平均粒径を有する空間形成粒子と、バインダとを備え、導電材混合電極活物質粒子と空間形成粒子とバインダとで集電材の面に電極層を形成している、電極構造体にある。
(2)本発明は、又は、前記(1)に記載の電極構造体において、空間形成粒子の平均粒径は、導電材混合電極活物質粒子の平均粒径より3倍以上大きい、電極構造体にある。
(3)本発明は、又は、前記(1)に記載の電極構造体において、空間形成粒子の平均粒径は、10μm以上であり、導電材混合電極活物質粒子の平均粒径は、3μm以下である、電極構造体にある。
(4)本発明は、又は、前記(1)に記載の電極構造体において、空間形成粒子の平均粒径は、10μm以上であり、導電材混合電極活物質粒子の平均粒径は、1μm以下である、電極構造体にある。
(5)本発明は、又は、前記(1)に記載の電極構造体において、空間形成粒子の平均粒径は、10μm以上であり、導電材混合電極活物質粒子の平均粒径は、0.5μm以下である、電極構造体にある。
(1) The present invention is at least twice as large as the average particle size of the current collector, the conductive material mixed electrode active material particles having conductive material attached around the electrode active material particles, and the conductive material mixed electrode active material particles An electrode structure comprising space-forming particles having an average particle diameter and a binder, wherein an electrode layer is formed on the surface of the current collector by the conductive material mixed electrode active material particles, the space-forming particles, and the binder.
(2) The electrode structure according to the present invention or the electrode structure according to (1), wherein the average particle diameter of the space-forming particles is three times or more larger than the average particle diameter of the conductive material mixed electrode active material particles. It is in.
(3) In the electrode structure according to (1), the space-forming particles have an average particle size of 10 μm or more, and the conductive material mixed electrode active material particles have an average particle size of 3 μm or less. In the electrode structure.
(4) In the electrode structure according to (1), the space-forming particles have an average particle size of 10 μm or more, and the conductive material mixed electrode active material particles have an average particle size of 1 μm or less. In the electrode structure.
(5) In the electrode structure according to (1), the space-forming particles have an average particle size of 10 μm or more, and the conductive material mixed electrode active material particles have an average particle size of 0.00. The electrode structure is 5 μm or less.

(1)電池又はキャパシタの電気部品の電極
電池やキャパシタ(電気二重層キャパシタ、電気二重層コンデンサ)の電極は、イオンとの間で電気の受け渡しができるもの、又はイオンを引きつけることができるものである。そのため、電極は、集電材の面上にイオンの受け渡しができる電極層を形成した電極構造体とする。電極構造体は、集電材の面上に電極層を形成したものがある。なお、面上とは、集電材3の面に直接接していても、又は、その面との間に他の層を介して配置しても良い。
(1) Electrodes of battery or capacitor electrical parts Electrodes of batteries and capacitors (electric double layer capacitors and electric double layer capacitors) are those that can transfer electricity to and from ions or attract ions. is there. Therefore, the electrode is an electrode structure in which an electrode layer capable of transferring ions is formed on the surface of the current collector. Some electrode structures have electrode layers formed on the surface of a current collector. Note that “on the surface” may be in direct contact with the surface of the current collector 3, or may be disposed with another layer between the surface.

電極層は、導電材混合活物質粒子と空間形成粒子を少ない量のバインダで結合してあるものである。電池やキャパシタの電極構造体2は、図1に示すように、集電材21の面上に電極層22が形成されている。導電材混合活物質粒子51は、電極活物質粒子の周囲にバインダを用いることなく導電材が付着したものである。この電極活物質粒子は、正電極活物質粒子にも負電極活物質粒子にも適用できる。空間形成粒子52の平均粒径は、電極活物質粒子の平均粒径の2倍以上大きいことが望ましく、更に好ましくは、3倍以上大きくして、電極層22を形成した際、電極層内を稠密にすることなく、多量の電解物質が入り得る空間を形成することができ、しかも、厚い電極層22を形成することができる。   The electrode layer is formed by bonding conductive material mixed active material particles and space forming particles with a small amount of binder. As shown in FIG. 1, the electrode structure 2 of a battery or a capacitor has an electrode layer 22 formed on the surface of a current collector 21. The conductive material mixed active material particles 51 are obtained by attaching a conductive material around the electrode active material particles without using a binder. The electrode active material particles can be applied to both positive electrode active material particles and negative electrode active material particles. The average particle diameter of the space-forming particles 52 is desirably twice or more larger than the average particle diameter of the electrode active material particles, and more preferably three times or more larger to form the electrode layer 22 when the electrode layer 22 is formed. A space where a large amount of electrolyte can enter can be formed without being dense, and the thick electrode layer 22 can be formed.

二次電池の正電極活物質粒子はLiMnなどが使用でき、負電極活物質粒子はグラファイトやハードカーボンなどが使用できる。また、キャパシタの正電極活物質粒子と負電極活物質粒子は、リチウムなどのイオンを多量に付着できる高表面積の電極活物質粒子が使用できる。二次電池又はキャパシタの電気部品1は、正電極構造体と負電極構造体をセパレータ4を介在させて対向して配置し、その間に電解液などの電解物質3を配置する。
LiMn 2 O 4 or the like can be used as the positive electrode active material particles of the secondary battery, and graphite, hard carbon, or the like can be used as the negative electrode active material particles. Moreover, as the positive electrode active material particles and the negative electrode active material particles of the capacitor, electrode active material particles having a high surface area capable of adhering a large amount of ions such as lithium can be used. In an electrical component 1 of a secondary battery or a capacitor, a positive electrode structure and a negative electrode structure are disposed to face each other with a separator 4 interposed therebetween, and an electrolytic substance 3 such as an electrolytic solution is disposed therebetween.

(2)電極活物質粒子
電極活物質粒子は、イオンを授受するものであり、例えば、リチウム電池の場合、正極活物質としては、LiCoO、LiNiO、LiMnなどリチウム活物質がある。負極活物質としては、カーボン系材料、リチウム金属など金属がある。
(2) Electrode active material particles The electrode active material particles exchange ions. For example, in the case of a lithium battery, the positive electrode active material includes a lithium active material such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4. . Examples of the negative electrode active material include carbon materials and metals such as lithium metal.

キャパシタの電極活物質粒子としては、高表面積材料が使用できる。特に炭素材料を水蒸気賦活処理法、溶融KOH賦活処理法などにより賦活化した活性炭素が好適である。活性炭素としては、例えば、やしがら系活性炭、フェノール系活性炭、石油コークス系活性炭、ポリアセンなどが挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることが出きる。中でも、大きな静電容量を実現する上でフェノール系活性炭、石油コークス系活性炭、ポリアセンが好ましい。
A high surface area material can be used as the electrode active material particles of the capacitor. In particular, activated carbon obtained by activating a carbon material by a steam activation treatment method, a molten KOH activation treatment method, or the like is preferable. Examples of the activated carbon include coconut shell activated carbon, phenol activated carbon, petroleum coke activated carbon, polyacene, and the like, and one of these can be used alone or in combination of two or more. Among these, phenol-based activated carbon, petroleum coke-based activated carbon, and polyacene are preferable in realizing a large capacitance.

(3)導電材
導電材は、導電性が高く、電極構造体2の導電率を高めるものである。導電材が集電材21であるアルミニウムの不働態皮膜に接する場合、導電材は、炭素物質が好ましく、炭素物質が不働態皮膜に付着している個所で不働態皮膜の伝導率が高まると考えられる。導電材は、例えばカーボンブラック、ケッチェンブラック、アセチレンブラック、カーボンウイスカー、天然黒鉛、人造黒鉛、VGCFやカーボンナノチューブなどの炭素繊維などが挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。中でも、カーボンブラックの一種であるケッチェンブラックが好ましい。
(3) Conductive Material The conductive material has high conductivity and increases the conductivity of the electrode structure 2. When the conductive material is in contact with the passive film of aluminum as the current collector 21, the conductive material is preferably a carbon material, and the conductivity of the passive film is considered to increase at the location where the carbon material is attached to the passive film. . Examples of the conductive material include carbon black, ketjen black, acetylene black, carbon whisker, natural graphite, artificial graphite, carbon fiber such as VGCF and carbon nanotube, and the like. Can be used. Among them, ketjen black which is a kind of carbon black is preferable.

(4)導電材混合電極活物質粒子
導電材混合電極活物質粒子51は、電極活物質粒子の表面にバインダを使用することなく導電材が付着したものである。導電材混合電極活物質粒子51は、導電材と電極活物質粒子との間で電子の移動が容易にでき、イオンの放出と吸引の出入りが容易にできるものである。付着とは、導電材が電極活物質粒子の周囲に綿状様に結合又は付いた状態と考えられる。綿状様とは、綿状、カビ状、ヒゲ状、線状、糸状などからなっている状態をいう。導電材混合電極活物質粒子51は、このように、綿状様の小さい導電材が電極活物質粒子の周囲に点状として結合又は付いていると考えられる。ここで、点状とは、1点に限らず、複数の点からなっていてもよく、電極活物質粒子のイオンの放出や吸引を実質的に制限することがないように面状に覆わない状態を言う。導電材混合電極活物質粒子51について、詳しくは国際公開番号WO 03/103076 A1に示されている。
(4) Conductive material mixed electrode active material particles The conductive material mixed electrode active material particles 51 are obtained by attaching a conductive material to the surface of the electrode active material particles without using a binder. The conductive material mixed electrode active material particles 51 can easily move electrons between the conductive material and the electrode active material particles, and can easily release and suck ions. The adhesion is considered to be a state in which the conductive material is bonded or attached in a cotton-like manner around the electrode active material particles. The cotton-like state means a state consisting of cotton-like, mold-like, beard-like, linear, thread-like and the like. In the conductive material mixed electrode active material particles 51, it is considered that a small cotton-like conductive material is bonded or attached around the electrode active material particles as dots. Here, the dot shape is not limited to a single point, and may be composed of a plurality of points, and is not covered in a planar shape so as not to substantially limit the release and suction of ions of the electrode active material particles. Say state. The conductive material mixed electrode active material particles 51 are shown in detail in International Publication No. WO 03/103076 A1.

(5)空間形成粒子
空間形成粒子52は、電極層2内に電解液が入り易くする空間を作るための大径の粒子である。粒径を大きくすると、隣接する空間形成粒子で囲まれる空間を大きく取れ、その空間中に電解液が容易に浸入することができる。これにより、電極層2を厚くしても、電極層2内部や集電材近くまで十分に電解液が入り込み、電極層2全体においてイオンの充放電が可能になる。しかし、従来、電極層2は、電極活物質粒子や導電材の径を大から小まで幅広く稠密な状態にすることにより、充填密度を高めているため、充放電に必要な電解質が電極層内に十分に入り込めず、電極層を厚くしても、大容量の電池を得ることができなかった。
(5) Space-Forming Particles The space-forming particles 52 are large-diameter particles for creating a space in which the electrolyte solution can easily enter the electrode layer 2. When the particle size is increased, a space surrounded by adjacent space-forming particles can be made larger, and the electrolytic solution can easily enter the space. Thereby, even if the electrode layer 2 is thickened, the electrolyte sufficiently enters the electrode layer 2 and near the current collector, and ions can be charged and discharged throughout the electrode layer 2. However, since the electrode layer 2 has conventionally increased the packing density by making the diameters of the electrode active material particles and the conductive material wide and dense from large to small, the electrolyte required for charging and discharging is contained in the electrode layer. However, even if the electrode layer was thickened, a large-capacity battery could not be obtained.

空間形成粒子52の平均粒径は、導電材混合電極活物質粒子51の平均粒径より大きく、好ましくは、平均粒径を2倍以上とする。2倍以上とすると、体積は、8倍以上となり、隣接する空間形成粒子間で形成される空間に入る電解液を多量にすることができる。更に好ましくは、平均粒径を3倍以上とする。その場合、空間形成粒子の平均粒径を10μm以上とし、電極活物質粒子の平均粒径を3μm以下とする。又は、空間形成粒子の平均粒径を5μm以上とし、電極活物質粒子の平均粒径を1μm以下とする。又は、空間形成粒子の平均粒径を10μm以上とし、電極活物質粒子の平均粒径を0.5μm以下とする。導電材混合電極活物質粒子51は、空間形成粒子52を用いないで電極層22を形成すると、導電材混合電極活物質粒子51の粒径が小さいほど、稠密となり、電解液が入り難くなる。しかし、空間形成粒子52を入れると、導電材混合活物質粒子51は、空間形成粒子52の周囲にまとわりつき、隣接する空間形成粒子52、52間で形成される空間を大きく取れ、電解液が入り易くなる。しかも、粒径の小さな、表面積の大きい粒子の量を形成される空間の割合に対して少なく出来るので、電極層2を形成する際に、バインダの量と、集電材21に塗布するためにペースト状にする溶媒の量を形成される空間の割合に対して少なくすることができる。   The average particle diameter of the space forming particles 52 is larger than the average particle diameter of the conductive material mixed electrode active material particles 51, and preferably the average particle diameter is twice or more. If it is 2 times or more, the volume is 8 times or more, and the amount of electrolyte entering the space formed between adjacent space-forming particles can be increased. More preferably, the average particle size is 3 times or more. In that case, the average particle diameter of the space-forming particles is 10 μm or more, and the average particle diameter of the electrode active material particles is 3 μm or less. Alternatively, the average particle diameter of the space-forming particles is 5 μm or more, and the average particle diameter of the electrode active material particles is 1 μm or less. Alternatively, the average particle diameter of the space forming particles is 10 μm or more, and the average particle diameter of the electrode active material particles is 0.5 μm or less. When the electrode layer 22 is formed without using the space forming particles 52, the conductive material mixed electrode active material particles 51 become denser and the electrolyte becomes difficult to enter as the conductive material mixed electrode active material particles 51 have a smaller particle size. However, when the space-forming particles 52 are inserted, the conductive material mixed active material particles 51 cling around the space-forming particles 52, and a large space is formed between the adjacent space-forming particles 52, 52, and the electrolytic solution enters. It becomes easy. Moreover, since the amount of particles having a small particle size and a large surface area can be reduced with respect to the proportion of the space to be formed, the amount of the binder and the paste to be applied to the current collector 21 when the electrode layer 2 is formed. The amount of solvent to be reduced can be reduced relative to the proportion of space formed.

空間形成粒子52は、カーボン粒子、電極活物質粒子など、電解液など電極を構成する物質により腐食されないものが好ましく、しかも、大型粒径が得られるものがよい。更に、カーボン粒子のように電気伝導性があるものが好ましい。カーボン粒子の場合、黒鉛の1種であるメソカーボンマイクロビーズ(MCMB)粒子が好ましい。
The space-forming particles 52 are preferably those that are not corroded by a substance constituting the electrode such as an electrolytic solution, such as carbon particles and electrode active material particles, and those that can obtain a large particle size. Furthermore, what has electrical conductivity like a carbon particle is preferable. In the case of carbon particles, mesocarbon microbead (MCMB) particles that are one type of graphite are preferred.

(6)集電材
集電材21は、導電性が極めて高い材料が使用される。正電極の集電材21として、一般的には、アルミニウム箔が使用され、負電極の集電材21として、例えば銅箔や金属(Li電池の場合、Li金属)が使用される。
(6) Current collector The current collector 21 is made of a material having extremely high conductivity. As the positive electrode current collector 21, an aluminum foil is generally used, and as the negative electrode current collector 21, for example, copper foil or metal (in the case of a Li battery, Li metal) is used.

アルミ箔は、電極を製造する段階では、表面に酸化皮膜が自然に形成されている。電池やキャパシタとして組み立てられ、電解液を注入し電流が流れると、その表面に不働態皮膜が生成することもある。不働態皮膜は、電解液による集電材の腐食を防止することができ、及び、集電材の耐食性の向上を得ることができる。一方、不働態皮膜は、絶縁性を有しているので、電極の電流を制限することになるが、不働態皮膜に炭素材を接することにより、炭素材子が接している付近の不働態皮膜に点欠陥が生じ、導電性が高まると考えられる。集電材21は、片面上に電極層22を形成しても、又は両面上に電極層22を形成しても良い。片面にするか両面にするかは、電池やキャパシタの電気部品1において電極構造体2をどのように使用するかによって決まるものである。
In the aluminum foil, an oxide film is naturally formed on the surface when the electrode is manufactured. When assembled as a battery or a capacitor and an electrolyte is injected and a current flows, a passive film may be formed on the surface. The passive film can prevent the current collector from being corroded by the electrolytic solution, and can improve the corrosion resistance of the current collector. On the other hand, since the passive film has an insulating property, the current of the electrode is limited. However, when the carbon material is in contact with the passive film, the passive film near the carbon material element is in contact with the passive film. It is considered that point defects are generated in the film, and conductivity is increased. The current collector 21 may be formed with the electrode layer 22 on one side or the electrode layer 22 on both sides. Whether it is single-sided or double-sided depends on how the electrode structure 2 is used in the electrical component 1 of a battery or capacitor.

(7)電極層
電極層22は、導電材混合電極活物質粒子51と空間形成粒子52とPVDFなどのバインダを有するものであり、電解物質との間でイオンのやり取りをする。導電材混合電極活物質粒子51と空間形成粒子52の量の比は、空間形成粒子52の表面に導電材混合電極活物質粒子51が付着している状態でよく、隣接する空間形成粒子間に形成される空間に電解液が入り得る状態であり、導電材混合電極活物質粒子51が稠密に配置されないようにする。電極層22の空隙率は、例えば、10%〜30%である。又は、電極層22の体積に閉める割合が、空間形成粒子52が40%〜60%であり、導電材混合電極活物質粒子51が40%〜20%である。又は、電極層22の重量に占める割合は、空間形成粒子52が60重量%〜90重量%であり、導電材混合電極活物質粒子51が40重量%〜10重量%である。
(7) Electrode layer The electrode layer 22 has conductive material mixed electrode active material particles 51, space-forming particles 52, and a binder such as PVDF, and exchanges ions with the electrolyte. The ratio of the amount of the conductive material mixed electrode active material particles 51 and the space forming particles 52 may be such that the conductive material mixed electrode active material particles 51 are attached to the surface of the space forming particles 52, and between the adjacent space forming particles. The electrolytic solution can enter the space to be formed, and the conductive material mixed electrode active material particles 51 are not densely arranged. The porosity of the electrode layer 22 is, for example, 10% to 30%. Alternatively, the ratio of the volume of the electrode layer 22 to be closed is 40% to 60% for the space forming particles 52 and 40% to 20% for the conductive material mixed electrode active material particles 51. Alternatively, the proportion of the electrode layer 22 in the weight is 60% to 90% by weight of the space-forming particles 52 and 40% to 10% by weight of the conductive material mixed electrode active material particles 51.

(8)電解物質
電解物質は、電解液の他に、ゲル状、又は固体状などで、イオンが正電極構造体と負電極構造体との間を移動できるものであり、例えば、ジブチルエーテル、1,2−ジメトキシエタンなどが挙げられる。
(8) Electrolytic substance The electrolytic substance is a gel or solid in addition to the electrolytic solution, and ions can move between the positive electrode structure and the negative electrode structure. For example, dibutyl ether, 1,2-dimethoxyethane and the like can be mentioned.

(9)セパレータ
セパレータ4は、正負極電極構造間の電気的接触を防止しイオンが通過できるものであり、例えば、ポリエチレン、ポリプロピレンなどの多孔質材料が使用できる。
(9) Separator The separator 4 prevents electrical contact between positive and negative electrode structures and allows ions to pass through. For example, a porous material such as polyethylene or polypropylene can be used.

以下、導電材混合電極活物質粒子の製造方法を説明する。   Hereinafter, the manufacturing method of electroconductive material mixed electrode active material particle is demonstrated.

(1)導電材混合電極活物質粒子の製造装置
導電材混合電極活物質粒子の製造装置の一例を図2に示す。図2は、L型製造装置(水平回転式)である。この製造装置は、水平に回転するバレル6を備えている。バレル6は、蓋62を有する出入口61を備えている。この製造装置は、モータなどの駆動装置で駆動される。出入口61から電極活物質粒子、導電材や硬球63を出し入れする。この装置の硬球63は、重量の大きなものが適している。バレル6の内部には流動板64を配置する。硬球63は、鋼球、ステンレス球、セラミック球、テフロン(登録商標)ライニング球などが使用できる。
(1) Conductive material mixed electrode active material particle manufacturing apparatus An example of a conductive material mixed electrode active material particle manufacturing apparatus is shown in FIG. FIG. 2 shows an L-shaped manufacturing apparatus (horizontal rotation type). The manufacturing apparatus includes a barrel 6 that rotates horizontally. The barrel 6 includes an entrance / exit 61 having a lid 62. This manufacturing apparatus is driven by a driving device such as a motor. The electrode active material particles, the conductive material, and the hard sphere 63 are taken in and out from the doorway 61. As the hard sphere 63 of this device, one having a large weight is suitable. A fluidized plate 64 is disposed inside the barrel 6. As the hard sphere 63, a steel sphere, a stainless sphere, a ceramic sphere, a Teflon (registered trademark) lining sphere, or the like can be used.

(2)導電材混合電極活物質粒子の製造装置の使用方法
バレル6の中に一度に処理する電極活物質粒子と導電材の粉体を投入する。バレル6を矢印の方向に回転すると、電極活物質粒子と導電材は流動板64などにより硬球63と共に回転して混ざり合い、硬球63と共に落下して、撹拌と混合が行われる。これにより、電極活物質粒子と導電材に衝撃力が付与され、導電材が電極活物質粒子と混合し、導電材混合電極活物質粒子51が得られる。蓋62を開けて出入口61から取り出す。
(2) Method of Using Conductive Material Mixed Electrode Active Material Particle Manufacturing Apparatus Electrode active material particles and conductive material powder to be processed at a time are put into barrel 6. When the barrel 6 is rotated in the direction of the arrow, the electrode active material particles and the conductive material are rotated and mixed together with the hard sphere 63 by the fluidized plate 64 and the like, and dropped together with the hard sphere 63 to be stirred and mixed. Thereby, an impact force is applied to the electrode active material particles and the conductive material, the conductive material is mixed with the electrode active material particles, and the conductive material mixed electrode active material particles 51 are obtained. The lid 62 is opened and taken out from the entrance / exit 61.

(3)顕微鏡写真
原料となるマンガン酸リチウムLiMnの粉体の電子顕微鏡写真(SEM)を図3(A)に示す。この電子顕微鏡写真は倍率が1万倍であり、大きさを示すために1μmの線分が写真に示されている。図3(A)は、マンガン酸リチウムの1つの粒子の一部を示しており、1つの粒子は、多数の小さな結晶が結合した形状を有している。結合している各小さな結晶の表面は、きれいな平面を示している。結合している各小さな結晶の角部は、各平面が交差しており、鮮明である。
(3) Micrograph An electron micrograph (SEM) of a powder of lithium manganate LiMn 2 O 4 used as a raw material is shown in FIG. This electron micrograph has a magnification of 10,000, and a 1 μm line segment is shown in the photograph to indicate the size. FIG. 3A shows part of one particle of lithium manganate, and one particle has a shape in which a large number of small crystals are combined. The surface of each bonded small crystal represents a clean plane. The corners of each small crystal that is bonded are sharp, with each plane intersecting.

処理した導電材混合電極活物質51の粉体の電子顕微鏡写真(SEM)を図3(B)に示す。この電子顕微鏡写真は倍率が2万倍であり、大きさを示すために1μmの線分が写真に示されている。図3(B)は、マンガン酸リチウムの表面は綿状様の状態であり、処理前の表面状態とは異なっている。マンガン酸リチウムの周囲に無数の綿状様の導電材が混合して存在している。特に、マンガン酸リチウムが硬球と衝突して破壊し小さくなった粒子の表面に無数の綿状様の導電材が付着し、又は電気的に結合しているように考えられる。例えば、導電材混合電極活物質51を電極層22に使用した場合、この綿状様の導電材により電極活物質と電極活物質との間の導電性が高まり、また、電極活物質の表面は、イオンの出入に対して被覆されていないので、電極活物質としての特性や機能を充分に引き出すことができる。これにより、多量の導電材を使用することなく、導電率を高めることができる。その結果、電極層22の形成の際に、バインダが多量に導電材に吸収されることなく、バインダの量を減らすことができる。
An electron micrograph (SEM) of the treated conductive material mixed electrode active material 51 powder is shown in FIG. This electron micrograph has a magnification of 20,000 times, and a 1 μm line segment is shown in the photograph to indicate the size. In FIG. 3B, the surface of the lithium manganate is in a cotton-like state, which is different from the surface state before the treatment. A myriad of cotton-like conductive materials are mixed around lithium manganate. In particular, it seems that innumerable cotton-like conductive materials are attached to or electrically connected to the surfaces of the particles which are reduced by collision and destruction of the lithium manganate with the hard sphere. For example, when the conductive material mixed electrode active material 51 is used for the electrode layer 22, this cotton-like conductive material increases the conductivity between the electrode active material and the electrode active material, and the surface of the electrode active material is Since it is not coated with respect to the entry / exit of ions, the characteristics and functions as an electrode active material can be sufficiently extracted. Thereby, electrical conductivity can be raised, without using a lot of electrically conductive materials. As a result, when the electrode layer 22 is formed, the amount of the binder can be reduced without the binder being absorbed in a large amount by the conductive material.

以下、リチウム二次電池の実施例を説明する。   Hereinafter, examples of the lithium secondary battery will be described.

(1)実施例1
導電材混合電極活物質粒子51は、正極活物質のマンガン酸リチウムLM−9(日揮化学株式会社製)と導電材のケッチンブラック(ケッチンブラックインターナショナル)を混合粉砕して作製する。マンガン酸リチウムLM−9とケッチンブラック(KB)は、100g:20gの重量比で混合する。
(1) Example 1
The conductive material mixed electrode active material particles 51 are prepared by mixing and pulverizing lithium manganate LM-9 (manufactured by JGC Chemical Co., Ltd.) as a positive electrode active material and Kettin Black (Ketchin Black International) as a conductive material. Lithium manganate LM-9 and Kettin Black (KB) are mixed at a weight ratio of 100 g: 20 g.

導電材混合電極活物質粒子(平均粒径0.3μm)51と、空間形成粒子52であるカーボン粒子(平均粒径10μm〜15μm)(MCMB:大阪ガスケミカル株式会社製)と、バインダであるPVDF(呉羽化学工業株式会社製)と、溶媒であるNMP(Nメチル2ピロリドン)とをミキサーで撹拌し、混合物を形成する。導電材混合電極活物質粒子51と、カーボン粒子と、PVDFは、10g:10g:2gの重量比で混合する。混合物を集電材21であるアルミ箔(昭和電工株式会社製)にドクターブレード法にて、ほぼ25μmの厚さで塗布する。これを乾燥し、押圧装置で圧延処理して、ほぼ20μm〜21μmの正電極層を集電材の上に形成して、正電極構造体を作製する。導電材混合電極活物質粒子51は、図3(B)では見易いように大きな粒径を写しているが、平均粒径は0.3μmである
Conductive material mixed electrode active material particles (average particle size 0.3 μm) 51, carbon particles (average particle size 10 μm to 15 μm) which are space forming particles 52 (MCMB: manufactured by Osaka Gas Chemical Co., Ltd.), and PVDF which is a binder (Kureha Chemical Industry Co., Ltd.) and NMP (N-methyl 2-pyrrolidone) as a solvent are stirred with a mixer to form a mixture. Conductive material mixed electrode active material particles 51, carbon particles, and PVDF are mixed at a weight ratio of 10 g: 10 g: 2 g. The mixture is applied to an aluminum foil (made by Showa Denko KK), which is a current collector 21, with a thickness of approximately 25 μm by the doctor blade method. This is dried and rolled with a pressing device to form a positive electrode layer of approximately 20 μm to 21 μm on the current collector to produce a positive electrode structure. The conductive material mixed electrode active material particles 51 have a large particle diameter so as to be easily seen in FIG. 3B, but the average particle diameter is 0.3 μm.

(2)実施例2
実施例2は、実施例1のカーボン粒子の代わりにマンガン酸リチウムLM−45(平均粒径15.8μm)(日揮化学株式会社製)を使用している。これら成分の混合割合も同じである。導電材混合電極活物質粒子と、マンガン酸リチウムと、PVDFは、10g:10g:2gの重量比で混合する。混合物を集電材であるアルミ箔(昭和電工株式会社製)にドクターブレード法にて、25μmの厚さで塗布する。これを乾燥し、押圧装置で圧延処理して、ほぼ20μm〜21μmの正電極層を集電材の上に形成して、正電極構造体を作製する。
(2) Example 2
In Example 2, lithium manganate LM-45 (average particle size: 15.8 μm) (manufactured by JGC Chemical Co., Ltd.) is used instead of the carbon particles of Example 1. The mixing ratio of these components is also the same. Conductive material mixed electrode active material particles, lithium manganate, and PVDF are mixed at a weight ratio of 10 g: 10 g: 2 g. The mixture is applied to an aluminum foil (manufactured by Showa Denko KK) as a current collector in a thickness of 25 μm by the doctor blade method. This is dried and rolled with a pressing device to form a positive electrode layer of approximately 20 μm to 21 μm on the current collector to produce a positive electrode structure.

(3)リチウム二次電池
リチウム二次電池は、ホッケーパックセル電池(HSセル:宝泉株式会社製)を使用する。正電極は、アルミ箔21の面上に形成された正電極層22を円形のコイン状に打ち抜く。例えば図4に示すように、この正電極と負電極であるコイン状のリチウム金属2とをセパレータ4を介在させて対向して配置する。これをホッケーパックセルの容器に配置する。次に、容器に電解液LiClOを注入してリチウム二次電池を作製する。
(3) Lithium secondary battery As the lithium secondary battery, a hockey pack cell battery (HS cell: manufactured by Hosen Co., Ltd.) is used. The positive electrode is formed by punching a positive electrode layer 22 formed on the surface of the aluminum foil 21 into a circular coin shape. For example, as shown in FIG. 4, the positive electrode and the coin-shaped lithium metal 2 as a negative electrode are arranged to face each other with a separator 4 interposed therebetween. This is placed in the container of the hockey pack cell. Next, an electrolytic solution LiClO 4 is injected into the container to produce a lithium secondary battery.

(4)リチウム二次電池の充放電曲線
実施例1〜2の電池を充電する。充電方法は、初期充電として1CのCレートで充電し、初め定電流で充電し、次に定電圧で充電する。この操作を4回繰り返す。初期容量が安定したら、1CのCレートで充電し、充電が完了したら、10C、20C、・・・、100CのCレートで放電をして、取り出せる容量を測定する。なお、1Cは、一時間で理論電池容量を充電あるいは放電するときの充放電の速度を言う。
(4) Charging / discharging curve of lithium secondary battery The batteries of Examples 1 and 2 are charged. As a charging method, charging is performed at a C rate of 1 C as initial charging, charging is performed at a constant current, and then charging is performed at a constant voltage. This operation is repeated 4 times. When the initial capacity is stabilized, the battery is charged at a C rate of 1C, and when charging is completed, the battery is discharged at a C rate of 10C, 20C,. In addition, 1C means the speed of charging / discharging when the theoretical battery capacity is charged or discharged in one hour.

実施例1〜2の放電特性を図5(A)〜(B)に示す。図5において、三角印は、実施例1の特性を示し、丸印は、実施例2の特性を示す。図5(A)は、Cレートが1の時を100%とした放電特性の割合(%)を示し、図5(B)は、測定した電流量(mAh)を示している。実施例1は、Cレートの変化に対して電流量の変化が少なく、Cレートが100近くになっても、充電量の50〜60%を取り出すことができることを示している。それに対して、実施例2は、Cレートが小さい場合、多くの電流を取り出せ、Cレートが100近くなると、充電量の10%が取り出せることを示している。実施例2は、空間形成粒子52として大径の活物質を利用しているので、実施例1よりは多くの活物質を利用していることから、大電流を取り出せることがわかる。しかし、大径の活物質には、導電材混合電極活物質粒子51のように表面に導電材を付着していないので、Cレートが30〜50付近で急激に電流量が小さくなることを示している。Cレートが100近くでは、実施例2は、実施例1より電流量が僅か少ないが、導電材混合電極活物質粒子51により取り出すことができることを示している。   The discharge characteristics of Examples 1 and 2 are shown in FIGS. In FIG. 5, the triangle marks indicate the characteristics of the first embodiment, and the circle marks indicate the characteristics of the second embodiment. FIG. 5A shows the ratio (%) of the discharge characteristic with 100% when the C rate is 1, and FIG. 5B shows the measured current amount (mAh). Example 1 shows that the change in the current amount is small with respect to the change in the C rate, and even when the C rate is close to 100, 50 to 60% of the charge amount can be taken out. On the other hand, Example 2 shows that when the C rate is small, a large amount of current can be extracted, and when the C rate is close to 100, 10% of the charged amount can be extracted. Since Example 2 uses an active material having a large diameter as the space-forming particles 52, it can be understood that a large current can be taken out because more active material is used than in Example 1. However, since the conductive material is not attached to the surface of the large-diameter active material like the conductive material mixed electrode active material particles 51, the amount of current decreases rapidly when the C rate is around 30-50. ing. When the C rate is close to 100, Example 2 shows that the amount of current is slightly smaller than that of Example 1, but can be taken out by the conductive material mixed electrode active material particles 51.

この結果から、導電材混合電極活物質粒子51と空間形成粒子52を組み合わせて使用すると、極めて良好な特性を得ることができることが分かる。そのため、厚い電極活物質層を作製すると、Cレートを大きくしても、大量の電流を得ることができる。特に、空間形成粒子52として、カーボン粒子を使用すると、電解液を十分に満たすことができると共に、更に導電性を高めることができ、また、空間形成粒子52として、電極活物質を使用すると、電解液を十分に満たすことができると共に、更に大きな電流量を取り出せることができる。
From this result, it can be seen that when the conductive material mixed electrode active material particles 51 and the space forming particles 52 are used in combination, extremely good characteristics can be obtained. Therefore, when a thick electrode active material layer is manufactured, a large amount of current can be obtained even if the C rate is increased. In particular, when carbon particles are used as the space forming particles 52, the electrolyte solution can be sufficiently filled and the conductivity can be further increased. When the electrode active material is used as the space forming particles 52, electrolysis can be achieved. The liquid can be sufficiently filled and a larger amount of current can be taken out.

リチウム二次電池の説明図Explanatory diagram of lithium secondary battery 導電材混合電極活物質粒子の製造装置の説明図Illustration of conductive material mixed electrode active material particle manufacturing equipment 正極活物質と導電材混合電極活物質粒子の顕微鏡写真の図Figure of micrograph of positive electrode active material and conductive material mixed electrode active material particles ホッケーパックセル電池内部の正電極と負電極とをセパレータを介在させた状態の説明図Illustration of a state in which a separator is interposed between a positive electrode and a negative electrode inside a hockey pack cell battery 電池の放電特性の説明図Explanatory diagram of battery discharge characteristics

符号の説明Explanation of symbols

1・・・二次電池又はキャパシタの電気部品
2・・・電極構造体
21・・集電材
22・・電極層
3・・・電解物質
4・・・セパレータ
51・・導電材混合活物質
52・・空間形成粒子
6・・・導電材混合電極活物質粒子の製造装置のバレル
61・・バレルの出入口
62・・バレルの蓋
63・・硬球
64・・流動板
DESCRIPTION OF SYMBOLS 1 ... Electrical component of secondary battery or capacitor 2 ... Electrode structure 21 ... Current collector 22 ... Electrode layer 3 Electrolytic substance 4 Separator 51 ... Conductive material mixed active material 52・ Space forming particle 6... Barrel 61 of conductive material mixed electrode active material particle manufacturing apparatus ・ Barrel inlet / outlet 62 ・ Barrel lid 63 ・ Hard ball 64 ・ ・ Flow plate

Claims (7)

集電材と、
電極活物質粒子の周囲に導電材が付着している導電材混合電極活物質粒子と、
導電材混合電極活物質粒子の平均粒径より2倍以上大きい平均粒径を有する空間形成粒子と、
バインダとを備え、
導電材混合電極活物質粒子と空間形成粒子とバインダとで集電材の面に電極層を形成している、電極構造体。
Current collector,
Conductive material mixed electrode active material particles in which a conductive material is attached around the electrode active material particles;
Space-forming particles having an average particle size that is at least twice as large as the average particle size of the conductive material mixed electrode active material particles;
With a binder,
An electrode structure in which an electrode layer is formed on the surface of a current collector with conductive material mixed electrode active material particles, space-forming particles, and a binder.
請求項1に記載の電極構造体において、
導電材混合電極活物質粒子は、電極活物質粒子と導電材と硬球とを撹拌混合して形成されることを特徴とする、電極構造体。
The electrode structure according to claim 1, wherein
Conductive material mixed electrode active material particles are formed by stirring and mixing electrode active material particles, conductive material, and hard spheres.
請求項1に記載の電極構造体において、
空間形成粒子はカーボン粒子であり、導電材混合電極活物質粒子の電極活物質はマンガン酸リチウムであり、導電材混合電極活物質粒子の導電材はケッチェンブラックである、電極構造体。
The electrode structure according to claim 1, wherein
An electrode structure in which the space-forming particles are carbon particles, the electrode active material of the conductive material mixed electrode active material particles is lithium manganate, and the conductive material of the conductive material mixed electrode active material particles is ketjen black.
請求項1に記載の電極構造体において、
空間形成粒子はマンガン酸リチウム粒子であり、導電材混合電極活物質粒子の電極活物質はマンガン酸リチウムであり、導電材混合電極活物質粒子の導電材はケッチェンブラックである、電極構造体。
The electrode structure according to claim 1, wherein
An electrode structure in which the space-forming particles are lithium manganate particles, the electrode active material of the conductive material mixed electrode active material particles is lithium manganate, and the conductive material of the conductive material mixed electrode active material particles is ketjen black.
請求項1に記載の電極構造体を負極に用い、電極構造体内に電解液を充填してある、二次電池。
A secondary battery in which the electrode structure according to claim 1 is used as a negative electrode, and the electrode structure is filled with an electrolytic solution.
請求項1に記載の電極構造体を正極と負極に用い、電極構造体内に電解液を充填してある、二次電池。
A secondary battery in which the electrode structure according to claim 1 is used for a positive electrode and a negative electrode, and an electrolyte solution is filled in the electrode structure.
請求項1に記載の電極構造体を正極と負極に用い、電極構造体内に電解液を充填してある、キャパシタ。

A capacitor, wherein the electrode structure according to claim 1 is used for a positive electrode and a negative electrode, and an electrolyte solution is filled in the electrode structure.

JP2004352932A 2004-12-06 2004-12-06 Electrode structure, secondary battery, and capacitor Pending JP2006164689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004352932A JP2006164689A (en) 2004-12-06 2004-12-06 Electrode structure, secondary battery, and capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004352932A JP2006164689A (en) 2004-12-06 2004-12-06 Electrode structure, secondary battery, and capacitor

Publications (1)

Publication Number Publication Date
JP2006164689A true JP2006164689A (en) 2006-06-22

Family

ID=36666462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004352932A Pending JP2006164689A (en) 2004-12-06 2004-12-06 Electrode structure, secondary battery, and capacitor

Country Status (1)

Country Link
JP (1) JP2006164689A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235252A (en) * 2007-02-23 2008-10-02 Tdk Corp Active substance particles for electrode, electrode, electrochemical device, and manufacturing method of electrode
WO2010095711A1 (en) * 2009-02-19 2010-08-26 日産自動車株式会社 Electricity storage device electrode and manufacturing method for same
JP2012134236A (en) * 2010-12-20 2012-07-12 Jsr Corp Lithium ion capacitor
CN104662627A (en) * 2012-09-28 2015-05-27 松下知识产权经营株式会社 Electrode for capacitor and capacitor using same

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201322U (en) * 1987-06-17 1988-12-26
JPH10312811A (en) * 1997-03-11 1998-11-24 Matsushita Electric Ind Co Ltd Nonaqeous electrolyte secondary battery
JP2000058063A (en) * 1998-08-12 2000-02-25 Hitachi Metals Ltd Lithium secondary battery having high conductive positive electrode and manufacture thereof
JP2002083601A (en) * 2000-09-06 2002-03-22 Toshiba Corp Positive electrode and nonaqueous electrolyte secondary battery
WO2002041420A1 (en) * 2000-11-17 2002-05-23 Kansai Research Institute, Inc. Nonaqueous lithium secondary cell
JP2002289174A (en) * 2001-01-17 2002-10-04 Nisshinbo Ind Inc Active material mix powder for battery, electrode composition, carbon material mix powder for secondary- battery electrode, secondary battery, and electric double layer capacitor, polarizable electrode composition, polarizable electrode, and electric double layer capacitor
JP2002358966A (en) * 2001-06-04 2002-12-13 Hitachi Ltd Lithium secondary battery positive electrode plate and lithium secondary battery
WO2003103076A1 (en) * 2002-06-04 2003-12-11 伊藤忠商事株式会社 Conductive material-mixed electrode active material, electrode structure, secondary cell, amd method for producing conductive material-mixed electrode active material
JP2004014519A (en) * 2003-07-22 2004-01-15 Denso Corp Positive active material for secondary battery using nonaqueous solution as electrolyte, method of manufacturing positive electrode, and secondaey battery
JP2004047404A (en) * 2002-05-17 2004-02-12 Shin Etsu Chem Co Ltd Conductive silicon composite and manufacturing method of same as well as negative electrode material for nonaqueous electrolyte secondary battery
JP2004047487A (en) * 1995-01-25 2004-02-12 Ricoh Co Ltd Cathode for lithium secondary battery and lithium secondary battery using the same
JP2004179008A (en) * 2002-11-27 2004-06-24 Mitsui Mining Co Ltd Positive electrode material for lithium secondary battery and its manufacturing method
JP2004241242A (en) * 2003-02-05 2004-08-26 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolytic solution secondary battery
JP2005190786A (en) * 2003-12-25 2005-07-14 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201322U (en) * 1987-06-17 1988-12-26
JP2004047487A (en) * 1995-01-25 2004-02-12 Ricoh Co Ltd Cathode for lithium secondary battery and lithium secondary battery using the same
JPH10312811A (en) * 1997-03-11 1998-11-24 Matsushita Electric Ind Co Ltd Nonaqeous electrolyte secondary battery
JP2000058063A (en) * 1998-08-12 2000-02-25 Hitachi Metals Ltd Lithium secondary battery having high conductive positive electrode and manufacture thereof
JP2002083601A (en) * 2000-09-06 2002-03-22 Toshiba Corp Positive electrode and nonaqueous electrolyte secondary battery
WO2002041420A1 (en) * 2000-11-17 2002-05-23 Kansai Research Institute, Inc. Nonaqueous lithium secondary cell
JP2002289174A (en) * 2001-01-17 2002-10-04 Nisshinbo Ind Inc Active material mix powder for battery, electrode composition, carbon material mix powder for secondary- battery electrode, secondary battery, and electric double layer capacitor, polarizable electrode composition, polarizable electrode, and electric double layer capacitor
JP2002358966A (en) * 2001-06-04 2002-12-13 Hitachi Ltd Lithium secondary battery positive electrode plate and lithium secondary battery
JP2004047404A (en) * 2002-05-17 2004-02-12 Shin Etsu Chem Co Ltd Conductive silicon composite and manufacturing method of same as well as negative electrode material for nonaqueous electrolyte secondary battery
WO2003103076A1 (en) * 2002-06-04 2003-12-11 伊藤忠商事株式会社 Conductive material-mixed electrode active material, electrode structure, secondary cell, amd method for producing conductive material-mixed electrode active material
JP2004179008A (en) * 2002-11-27 2004-06-24 Mitsui Mining Co Ltd Positive electrode material for lithium secondary battery and its manufacturing method
JP2004241242A (en) * 2003-02-05 2004-08-26 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolytic solution secondary battery
JP2004014519A (en) * 2003-07-22 2004-01-15 Denso Corp Positive active material for secondary battery using nonaqueous solution as electrolyte, method of manufacturing positive electrode, and secondaey battery
JP2005190786A (en) * 2003-12-25 2005-07-14 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235252A (en) * 2007-02-23 2008-10-02 Tdk Corp Active substance particles for electrode, electrode, electrochemical device, and manufacturing method of electrode
WO2010095711A1 (en) * 2009-02-19 2010-08-26 日産自動車株式会社 Electricity storage device electrode and manufacturing method for same
JP2012134236A (en) * 2010-12-20 2012-07-12 Jsr Corp Lithium ion capacitor
CN104662627A (en) * 2012-09-28 2015-05-27 松下知识产权经营株式会社 Electrode for capacitor and capacitor using same

Similar Documents

Publication Publication Date Title
JP4777593B2 (en) Method for producing lithium ion secondary battery
CN110537269B (en) Pre-lithiated energy storage device
JP7100808B2 (en) Method for manufacturing lithium-ion secondary batteries and active material
JP4077432B2 (en) Electrochemical element
JP5800208B2 (en) Nonaqueous electrolyte secondary battery
JP6704295B2 (en) All-solid-state lithium secondary battery and manufacturing method thereof
JP5070721B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
KR20090086456A (en) Negative electrode material for lithium ion secondary battery, method for production thereof, negative electrode for lithium ion secondary battery, and lithium ion secondary batter
JP2012243645A (en) Electrode and all-solid state nonaqueous electrolyte battery
US11848438B2 (en) Densified battery electrodes and methods thereof
JP2011159421A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP2008166156A (en) Storage element
WO2013132592A1 (en) Solid sulfide battery system and method for controlling solid sulfide battery
JP2009054596A (en) Lithium-ion secondary battery, and manufacturing method thereof
JP7102831B2 (en) Positive electrode and lithium ion secondary battery
JP2018106984A (en) All-solid-state lithium ion battery
CN109417167A (en) Cladding lithium titanate for lithium ion battery
JP5682793B2 (en) Lithium secondary battery and manufacturing method thereof
CN114156487A (en) Pole piece and lithium ion battery
KR101551682B1 (en) Electrode and method of manufacturing an active material for the electrode
JP3399614B2 (en) Positive electrode mixture and battery using the same
WO2023171825A1 (en) Solid electrolyte, solid electrolyte layer, and solid electrolyte battery
JP2018170128A (en) Current collector for lithium secondary battery and lithium secondary battery
JP2006164689A (en) Electrode structure, secondary battery, and capacitor
WO2023127357A1 (en) Negative electrode for solid electrolyte battery, and solid electrolyte battery

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070907

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090123

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110530

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120828