JP2006162380A - Measuring method of input energy of equipment apparatus, and measuring method of steam flow rate - Google Patents
Measuring method of input energy of equipment apparatus, and measuring method of steam flow rate Download PDFInfo
- Publication number
- JP2006162380A JP2006162380A JP2004352750A JP2004352750A JP2006162380A JP 2006162380 A JP2006162380 A JP 2006162380A JP 2004352750 A JP2004352750 A JP 2004352750A JP 2004352750 A JP2004352750 A JP 2004352750A JP 2006162380 A JP2006162380 A JP 2006162380A
- Authority
- JP
- Japan
- Prior art keywords
- steam
- return water
- flow rate
- equipment
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
Landscapes
- Measuring Volume Flow (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
本発明は,吸収冷凍機をはじめとして,蒸気駆動タービンや加熱設備など,蒸気エネルギーが投入される設備機器の入力エネルギー(消費エネルギー)の計測方法,及び蒸気流量の計測方法に関するものである。 The present invention relates to a method for measuring input energy (consumed energy) and a method for measuring a steam flow rate of equipment such as an absorption chiller, a steam-driven turbine, a heating facility, and the like that are supplied with steam energy.
建物(主にビル建物)の消費エネルギーの約半分は,空調用エネルギーが消費し,その6割,全体の3割程度を冷凍機などの熱源設備で消費している。特に冷凍機の性能低下は,ただちにエネルギー消費量の増大に繋がるので,ビル建物の省エネルギー化にとって冷凍機の性能評価は欠かせない状況になっている。 About half of the energy consumed by buildings (mainly building buildings) is consumed by air-conditioning energy, and 60% of that energy is consumed by heat source equipment such as refrigerators. In particular, a decrease in the performance of a refrigerator will immediately lead to an increase in energy consumption, so it is indispensable to evaluate the performance of the refrigerator in order to save energy in a building.
冷凍機の性能指標としては,一般にCOP(製造エネルギーに対する入力エネルギーの割合)を用い,工場試験成績などと比較して劣化具合などを判定することになる。冷凍機の性能が低下すると,製造熱量に対し入力量が増加するため,電気,ガスや油の燃料消費も増えることになる。電動式ターボ冷凍機では入力が電気で,入力エネルギーの特定は,電力計などの設置によって計測することが可能となる。 Generally, COP (ratio of input energy to production energy) is used as a performance index of the refrigerator, and the degree of deterioration is determined by comparing with factory test results. When the performance of the refrigerator decreases, the amount of input increases with respect to the amount of production heat, so the fuel consumption of electricity, gas, and oil also increases. In an electric turbo chiller, the input is electricity, and the input energy can be specified by installing a power meter or the like.
しかしながら蒸気が投入される吸収冷凍機では,その蒸気の入力エネルギーの計測機器を装備した既存設備はほとんどない。その理由としては,直接蒸気の流量を計測する蒸気流量計が非常に高価であること,ガスや油のようにランニングコストに直接反映するものではないこと(蒸気はエネルギー搬送の媒体の一つである)が挙げられる。また,新築後に改めて取り付けるには,配管の切断・撤去といった多大なコストと労力を要することがある。吸収冷凍機の性能が低下すると,製造熱量に対し蒸気消費量が増加するため,その燃料であるガスや油の消費量も増えることになる。したがって蒸気式の吸収冷凍機のエネルギー入力を,安価で簡便に計測する方法が望まれている。 However, there are few existing facilities equipped with measuring equipment for the input energy of steam in absorption chillers to which steam is charged. The reason for this is that a steam flow meter that directly measures the flow rate of steam is very expensive and does not directly reflect the running cost like gas or oil (steam is one of the media for energy transfer). There is). In addition, re-installation after a new construction may require a great deal of cost and labor, such as cutting and removing piping. When the performance of an absorption refrigerator decreases, the amount of steam consumed increases with respect to the amount of heat produced, and thus the amount of consumption of gas and oil as fuel increases. Therefore, an inexpensive and simple method for measuring the energy input of a vapor absorption refrigerator is desired.
前記したように,蒸気をエネルギー源として冷熱を製造する吸収冷凍機において,冷凍機の性能を把握することは,省エネルギー並びに冷凍機の高効率運転に必要不可欠である。
冷凍機の性能評価には,製造した冷熱量とそれに要するエネルギーの入力量を計測し,例えば冷熱量を入力量で除したCOPを用いる。ここで,エネルギーの入力量,即ち冷凍機で消費した蒸気の熱量を計測するには,吸収冷凍機の蒸気入口配管に流れる蒸気流量を計測し,吸収冷凍機に入る飽和蒸気のエンタルピーと吸収冷凍機から出た蒸気還水のエンタルピーの差を乗じればよい。したがって,吸収冷凍機のCOPを求めるには,蒸気流量と,蒸気と還水のエンタルピーを得る必要がある。
As described above, in an absorption refrigerator that produces cold using steam as an energy source, grasping the performance of the refrigerator is indispensable for energy saving and high-efficiency operation of the refrigerator.
For evaluation of the performance of the refrigerator, the amount of cold heat produced and the input amount of energy required for it are measured. For example, a COP obtained by dividing the amount of cold heat by the input amount is used. Here, in order to measure the amount of energy input, that is, the amount of heat of the steam consumed by the refrigerator, the flow rate of the steam flowing through the steam inlet pipe of the absorption refrigerator is measured, and the enthalpy of saturated steam entering the absorption refrigerator and the absorption refrigeration Multiply the difference in the enthalpy of steam return water from the machine. Therefore, to obtain the COP of the absorption refrigerator, it is necessary to obtain the steam flow rate and the enthalpy of steam and return water.
また,規定された条件(圧力,温度)の蒸気を入力して特定温度まで蒸気を凝縮させて蒸気エネルギーを利用する凝縮器を持った設備機器の利用状況を計測する場合や,ボイラーで発生した蒸気を複数の機器に配分する設備(例えば地域暖房システムで加熱用の蒸気を供給する場合)での蒸気の配分状況を計測する場合などで,蒸気の入口条件(温度,圧力),還水の出口条件(温度,圧力)が共に規定できる,あるいは規定できるものとみなす場合には,とくに蒸気流量を得る必要がある。 Also, when steam of specified conditions (pressure, temperature) is input to condense the steam to a specific temperature to measure the usage status of equipment with a condenser that uses steam energy, this occurs in boilers When measuring the distribution of steam in equipment that distributes steam to multiple devices (for example, when supplying steam for heating in a district heating system), the steam inlet conditions (temperature, pressure), return water When the outlet conditions (temperature, pressure) can both be defined or deemed to be specified, it is particularly necessary to obtain the steam flow rate.
この点に関し,従来の蒸気流量を計測するための蒸気流量計としては,次のようなものがある。
(a)配管内に検出機構部を挿入して流体に直接接触させる流量計
このタイプのものとしては,タービン型,オリフィス型,コーン型がある。
(b)検出機構部が流体に接触しない非接触型の流量計
このタイプのものとしては,いわゆるセミクランプオンタイプと呼ばれている専用短管を用いた超音波方式のものがある。これは2つの超音波発信器から交互に超音波を送受信して,蒸気の流れ方向と順方向,及び逆方向の時間差から蒸気流速を計測し,管断面積を乗じて蒸気流量とする超音波伝搬時間差式であるが,超音波発信機と管表面並びに管材での超音波の減衰があるため,超音波受発信器の保護管と配管が一体となった専用の短管を配管途中に挿入する必要がある。
なお蒸気管を流れる復水の流量を計測するものとしては,特許文献1に記載されている。
In this regard, conventional steam flow meters for measuring the steam flow include the following.
(A) A flow meter in which a detection mechanism is inserted into a pipe and brought into direct contact with a fluid. This type includes a turbine type, an orifice type, and a cone type.
(B) Non-contact type flow meter in which the detection mechanism does not come into contact with the fluid. This type includes an ultrasonic method using a special short tube called a so-called semi-clamp on type. This is an ultrasonic wave that is alternately transmitted and received from two ultrasonic transmitters, measures the steam flow velocity from the time difference between the steam flow direction and the forward and reverse directions, and multiplies the tube cross-sectional area to obtain the steam flow rate. Although it is a propagation time difference type, because there is attenuation of ultrasonic waves on the ultrasonic transmitter, pipe surface and pipe material, a special short pipe that integrates the protective pipe and pipe of the ultrasonic transmitter / receiver is inserted in the middle of the pipe. There is a need to.
前記した従来の蒸気流量計を用いた蒸気流量計測方法では,吸収冷凍機ごとに個別の蒸気流量計がない場合は,吸収冷凍機の運転を停止して,蒸気配管の一部を切断し,これを撤去して流量計を取り付ける必要があった。そのため計測に相当の時間と費用がかかり,さらに冷凍機の運転を停止するので冷熱の供給も停止しなければならないという問題があった。またこれらの蒸気の計量では,別途,蒸気圧力の計測あるいは蒸気温度を計測して圧力に換算を行って,圧力による蒸気比容積から蒸気の質量流量を求めるため,付帯する計測機器も多くなる。吸収冷凍機の入力量の計測に必要な温度や圧力は,一般には挿入型温度計や挿入型圧力計で計測する必要があり,この点からも蒸気配管の一部の切断,撤去が伴う。
したがって従来は,蒸気流量計が設置されていない吸収冷凍機の入力エネルギーを計測するには,配管の切断・撤去とそれによる設備の停止が避けられない状況であった。また特許文献1に記載のものは,入力蒸気量,入力エネルギーの特定を目的にしたものではなく,それを用いても入力蒸気量,入力エネルギーを直ちに求めることはできない。
In the steam flow measurement method using the conventional steam flow meter described above, if there is no individual steam flow meter for each absorption refrigerator, the operation of the absorption refrigerator is stopped, and a part of the steam pipe is cut off. It was necessary to remove this and attach a flow meter. As a result, the measurement takes a considerable amount of time and money, and the operation of the refrigerator is stopped, so that the supply of cold heat must also be stopped. In addition, in the measurement of these vapors, there are many additional measuring instruments that separately measure the vapor pressure or measure the vapor temperature and convert it to the pressure to obtain the vapor mass flow rate from the vapor specific volume due to the pressure. In general, it is necessary to measure the temperature and pressure required to measure the input quantity of the absorption refrigerator with an insertion-type thermometer or insertion-type pressure gauge. From this point, part of the steam pipe is cut and removed.
Therefore, in the past, in order to measure the input energy of an absorption chiller without a steam flow meter, it was inevitable to cut or remove the piping and stop the equipment due to that. Moreover, the thing of
本発明は,かかる点に鑑みてなされたものであり,蒸気をエネルギー源とする設備機器のエネルギー入力量を,配管を切断することなく簡便に計測する方法を提供することを目的としている。また併せて蒸気流量の計測方法をも提供する。 This invention is made | formed in view of this point, and it aims at providing the method of measuring easily the energy input amount of the installation equipment which uses steam as an energy source, without cut | disconnecting piping. In addition, a method for measuring the steam flow rate is also provided.
前記目的を達成するため,本発明は,蒸気を利用する設備機器に入力された蒸気エネルギーを計測する方法であって,前記設備機器に流入する蒸気の温度を測定して入口側蒸気エンタルピーを求める工程と,前記設備機器から出る蒸気還水の温度を測定して出口側蒸気エンタルピーを求める工程と,前記設備機器から出る蒸気還水が流れる配管の表面に取り付けた液体用超音波流量計によって当該蒸気還水の流量を求める工程とを有している。そして前記入口側蒸気エンタルピーから前記出口側蒸気エンタルピーを減じ,その結果に前記蒸気還水の流量を乗じて前記設備機器に入力された蒸気エネルギーを求めることを特徴としている。 In order to achieve the above object, the present invention is a method for measuring steam energy input to equipment using steam, and measures the temperature of the steam flowing into the equipment to determine the inlet side steam enthalpy. Measuring the temperature of the steam return water exiting from the equipment and determining the outlet side steam enthalpy, and applying the ultrasonic flowmeter for liquid attached to the surface of the pipe through which the steam return water exiting the equipment flows. And obtaining a flow rate of the steam return water. Then, the outlet side steam enthalpy is subtracted from the inlet side steam enthalpy, and the result is multiplied by the flow rate of the steam return water to obtain the steam energy input to the equipment.
設備機器に流入する蒸気の温度を測定して入口側蒸気エンタルピーを求めるには,予め入口側蒸気エンタルピーの温度−比エンタルピーの関係を求めておき,それに基づいて入口側蒸気エンタルピーの換算式を近似式によって出しておけば,測定した温度から直ちに入口側蒸気エンタルピーを求めることができる。同様に,設備機器からの蒸気還水の温度を測定して出口側蒸気エンタルピーを求めるには,予め出口側還水エンタルピーの温度−比エンタルピーの関係を求めておき,それに基づいて出口側還水エンタルピーの換算式を求めておけばよい。 In order to measure the temperature of the steam flowing into the equipment and determine the inlet-side steam enthalpy, the temperature-specific enthalpy relationship of the inlet-side steam enthalpy is determined in advance, and the conversion formula for the inlet-side steam enthalpy is approximated based on this relationship. If the equation is used, the inlet-side steam enthalpy can be obtained immediately from the measured temperature. Similarly, in order to measure the temperature of the steam return water from the equipment and determine the outlet side steam enthalpy, the temperature-specific enthalpy relationship of the outlet side return water enthalpy is obtained in advance, and the outlet side return water is determined based on the relationship. Find the enthalpy conversion formula.
そして前記設備機器から出る蒸気還水が流れる配管表面に取り付けた液体用超音波流量計によって計測される当該蒸気還水の体積流量の瞬時値を時間平均化し,還水温度の平均値で求めた水の比容積で除した質量流量に換算して蒸気流量を求める。さらに前記入口側蒸気エンタルピーから前記出口側蒸気エンタルピーを減じ,その結果に前記蒸気還水の流量を乗じることにより,前記設備機器に入力された蒸気エネルギーを求めることができる。 And the instantaneous value of the volume flow of the steam return water measured by the ultrasonic flowmeter for liquid attached to the surface of the pipe through which the steam return water from the facility equipment flows was time-averaged, and the average value of the return water temperature was obtained. The steam flow rate is obtained by converting the mass flow rate divided by the specific volume of water. Further, by subtracting the outlet-side steam enthalpy from the inlet-side steam enthalpy and multiplying the result by the flow rate of the steam return water, the steam energy input to the equipment can be obtained.
前記液体用超音波流量計は,例えば超音波の伝播時間差やドップラー効果を利用した既存のものを用いることができる。還水の流れは凝縮トラップのために間欠的な流れとなるが,液体用超音波流量計で計測される還水流量(体積流量)の瞬時値を時間平均化(時間積分)し,還水温度の平均値で求めた水の比容積で除した質量流量に換算して蒸気流量を求めることができる。 As the liquid ultrasonic flowmeter, for example, an existing one utilizing a difference in propagation time of ultrasonic waves or the Doppler effect can be used. Although the flow of the return water is intermittent due to the condensation trap, the instantaneous value of the return water flow rate (volume flow rate) measured by the ultrasonic flowmeter for liquid is time-averaged (time integration), and the return water flow The steam flow rate can be obtained in terms of the mass flow rate divided by the specific volume of water obtained by the average temperature value.
還水流量を平均化処理しない場合は,凝縮トラップの間欠的な動作による還水の間欠的な流れのために,蒸気入力量の安定した計測値を得ることができない。蒸気から還水までが密閉された設備機器においては,蒸気と還水の間の質量保存は必ず成立している。
超音波流量計で計測した還水流量は体積流量であるが,質量流量への変換は,温度と比容積の関係を用いれば実用上問題はなく,例えば1リットルを1kgと単純に変換したとしてもその誤差はせいぜい3〜4%である。凝縮トラップがなく,蒸気が還水まで完全に消費される(熱交換して冷却される)装置で,蒸気流量の変動がなく装置内の圧力変動もない場合には還水流量と蒸気流量の瞬時値は等しくなる。つまり還水流量(瞬時値)=蒸気流量(瞬時値)である。
しかしながら凝縮トラップがある場合には,凝縮トラップの間欠的な開閉のために,間欠的に流れる還水の流量と,一定に流れる蒸気の流量を,ある一時点の瞬時値で比較しても等しくならない。したがって還水流量の瞬時データを所定の時間で積分(平均化)することで,蒸気流量(の平均)に等しくなる。すなわち,以下のように時間積分値が等しいと言い換えることができる。還水流量(時間積分値)=蒸気流量(時間積分値)
したがって,設備機器に入力される蒸気流量が一定で安定しているほど還水流量と蒸気流量は短い時間の平均でも良く一致することになり,蒸気流量が変動する場合には,長い時間で平均化することで,還水流量と蒸気流量とは等しくなる。それゆえ,すなわち前記蒸気還水の流量を求めるにあたっては,瞬時値として計測する還水流量データに対して平均化処理を行って,これを還水流量とすることがよい。
If the return water flow rate is not averaged, a stable measured value of the steam input cannot be obtained due to the intermittent flow of the return water due to the intermittent operation of the condensation trap. In equipment that seals from steam to return water, mass conservation between the steam and return water is always true.
Although the return water flow rate measured by the ultrasonic flowmeter is a volume flow rate, conversion to mass flow rate has no practical problem if the relationship between temperature and specific volume is used. For example, 1 liter is simply converted to 1 kg. However, the error is at most 3 to 4%. If there is no condensation trap and the steam is completely consumed up to the return water (heat exchanged and cooled), and there is no fluctuation in the steam flow and no pressure fluctuation in the equipment, the return water flow and the steam flow Instantaneous values are equal. That is, return water flow rate (instantaneous value) = steam flow rate (instantaneous value).
However, if there is a condensation trap, the intermittent return of the condensation trap will be equal even if the flow rate of the return water flowing intermittently and the constant flow rate of steam are compared at an instantaneous value at a certain point in time. Don't be. Therefore, by integrating (averaging) instantaneous data of the return water flow rate for a predetermined time, it becomes equal to (average of) the steam flow rate. That is, it can be paraphrased that the time integration values are equal as follows. Return water flow rate (time integral value) = Steam flow rate (time integral value)
Therefore, as the steam flow rate input to the equipment is constant and stable, the return water flow rate and the steam flow rate agree well even with a short time average. As a result, the return water flow rate and the steam flow rate become equal. Therefore, when obtaining the flow rate of the steam return water, it is preferable to perform an averaging process on the return water flow rate data measured as an instantaneous value and use this as the return water flow rate.
液体用超音波流量計は,蒸気還水が流れる縦管の表面に取り付けるのがよい。これによって,上流側の凝縮トラップが間欠運転されても,縦管内では常に満水状態となるから,配管表面から還水流量(蒸気流量)の計測が可能になる。 The liquid ultrasonic flowmeter should be installed on the surface of the vertical pipe through which the steam return water flows. This makes it possible to measure the flow rate of the return water (steam flow rate) from the pipe surface because the upstream condensate trap is always in full operation even if it is intermittently operated.
設備機器に流入する蒸気の温度を測定するには,例えば温度ロガーを用いることができるが,熱電対を使用すれば,蒸気入口温度が300℃を越えるものであっても,これを計測することができ,入力エネルギーの計測対象機器の範囲を例えば高温蒸気を利用する蒸気駆動タービンにまで広げることが可能である。 For example, a temperature logger can be used to measure the temperature of the steam flowing into the equipment, but if a thermocouple is used, this should be measured even if the steam inlet temperature exceeds 300 ° C. It is possible to extend the range of input energy measurement target equipment to, for example, a steam-driven turbine using high-temperature steam.
本発明によれば,配管を切断したり,除去することなく,蒸気をエネルギー源とする設備機器のエネルギー入力量を,簡便に計測することができる。 ADVANTAGE OF THE INVENTION According to this invention, the energy input amount of the equipment which uses steam as an energy source can be measured simply, without cutting or removing piping.
以下,本発明の好ましい実施の形態について説明する。図1は,計測対象となる設備機器の一例として吸収冷凍機1の蒸気配管周りを示しており,この吸収冷凍機1は,再生器2,凝縮器3,吸収器・蒸発器4を備えている。
Hereinafter, preferred embodiments of the present invention will be described. FIG. 1 shows the circumference of a steam pipe of an
再生器2には,例えばボイラなどの高温蒸気発生装置(図示せず)で発生した蒸気を吸収冷凍機1に導入するための配管11と,当該導入した蒸気によって吸収冷凍機1で,例えば冷熱を製造した後の蒸気を前記高温蒸気発生装置に戻すための配管12が接続されている。配管11には,吸収冷凍機1の冷熱製造量を制御する自動弁13が設けられている。また配管12には,吸収冷凍機1の再生器2を出た後の蒸気をトラップして凝縮させる凝縮装置としての凝縮トラップ14が設けられている。そして凝縮トラップ14の下流側には,縦管15が配管されている。
The
配管11における再生器2と自動弁13との間には,配管11内を流れる高温蒸気の温度を測定する温度センサ16が設けられ,縦管15には,縦管15内を流れる還水の温度を測定する温度センサ17が設けられている。これら温度センサ16,17の検出信号は,温度ロガー18へと入力される。なおこれらの温度センサ16,17は種々のものを用いることができるが,配管表面に取り付けて使用できる,例えば特開2001−296187に開示のものを使用することができる。
Between the
温度センサ16,17と配管11,縦管17との間には,温度センサの感温部と配管表面の接合部に,熱伝導シリコンを塗布して,伝熱性を向上させることがこのましい。また温度センサ16,17を取付けた配管部分には,適宜保温を施し,計測誤差を縮小させることが望ましい。吸収冷凍機1の入口蒸気温度は,およそ150〜180℃である。また再生器2を出て凝縮トラップ14において凝縮された後の,縦管15における蒸気還水の温度は,およそ80〜100℃である。
Between the
縦管15における温度センサ17の下流側には,液体用の超音波流量計19が設けられている。この超音波流量計19は,配管の外壁に超音波受発信器を設置するいわゆるクランプオンタイプである。このように液体用の超音波流量計19の取り付け位置を,凝縮トラップ14以降の縦管15とすることで,蒸気還水が管内で満水状態となり,配管表面から蒸気流量の計測が可能となる。また,超音波流量計19の取り付け位置は,吸収冷凍機1から十分に離れた位置とすることが望ましい。これによって縦管15の表面の温度が,周囲空気により冷却されるため,耐熱温度が高いものでも130℃程度までの超音波流量計19の超音波受発信器(図示せず)の熱負担を軽減することができる。また,凝縮トラップ動作時に蒸気(気泡)が混入した場合も,配管が冷却され配管内の還水の冷却も進むため,満水状態を確実にすることができる。
An ultrasonic flow meter 19 for liquid is provided on the downstream side of the
本発明の実施の形態にかかる計測方法を実施するための吸収冷凍機1の配管周り,及び主要な機器は以上のように構成されており,次に具体的な計測方法について説明する。
The circumference of the piping of the
まず,配管11を流れる蒸気の温度から蒸気エンタルピーを求める。蒸気温度から蒸気エンタルピーへの換算は,図2に示した換算式で求めることができる。本実施の形態では,公知の文献(例えば社団法人空気調和衛生工学会:空気調和衛生工学便覧第13版1巻基礎編(2001)に記載されているデータ表を基に作成した換算式を用いた。
本実施の形態においては,下記の換算式を得ている。
蒸気温度の比エンタルピーh’’(kJ/kg)
=−0.00001×(蒸気温度)3+0.0007×(蒸気温度)2
+1.7981×(蒸気温度)+2501.2
First, the steam enthalpy is obtained from the temperature of the steam flowing through the
In the present embodiment, the following conversion formula is obtained.
Steam temperature specific enthalpy h '' (kJ / kg)
= −0.00001 × (steam temperature) 3 + 0.0007 × (steam temperature) 2
+ 1.7981 × (steam temperature) +2501.2
また縦管15を流れる蒸気還水の温度から還水エンタルピーを求める。蒸気還水温度から還水エンタルピーへの換算は,図3に示した換算式で求めることができる。これは公知の文献(例えば社団法人空気調和衛生工学会:空気調和衛生工学便覧第13版1巻基礎編(2001)に記載されているデータ表を基に作成した換算式である。
本実施の形態においては,下記の換算式を得ている。
還水温度の比エンタルピーh’(kJ/kg)=4.2208×還水温度
Further, the return water enthalpy is obtained from the temperature of the steam return water flowing through the
In the present embodiment, the following conversion formula is obtained.
Specific enthalpy of return water temperature h ′ (kJ / kg) = 4.2208 × return water temperature
そして超音波流量計19によって縦管15を流れる蒸気還水の体積流量の瞬時値を計測し,これを質量流量に換算し,平均化処理を施して蒸気流量を求める。なお還水流量の計測値の処理方法については,凝縮トラップ14が間欠動作するため,数秒〜数分のサンプリング周期で計測した流量の瞬時値を,一旦データロガー(図示せず)に記録し,その計測値を数十分から1時間程度の間で平均化することで,精度よく安定した蒸気の入力量を特定することができる。このような処理を行ったデータで吸収冷凍機1の性能評価を行うことが望ましい。以上の処理を施すことで,配管挿入型の流量計と比較して数%,実測による比較では3%以内の精度で計測できる。図4に,配管挿入型の渦式蒸気流量計による計測結果(実線:中央データ)と,本実施の形態による計測結果(丸印)と比較結果を示した。
Then, an instantaneous value of the volume flow rate of the steam return water flowing through the
以上の計測結果から,吸収冷凍機1に入力した蒸気エネルギー量Q(kW)は,以下の式によって算出できる。すなわち,Sv:縦管15で計測した蒸気流量(kg/s),Hi:吸収冷凍機1の蒸気入口側の配管11で計測した蒸気温度から推算した蒸気エンタルピー(kJ/kg),H0:縦管15で計測した還水温度から推算したエンタルピー(kj/kg)としたとき,
Q=Sv×(Hi−H0)
である。
From the above measurement results, the steam energy amount Q (kW) input to the
Q = Sv × (Hi−H 0 )
It is.
したがって,本実施の形態にかかる計測方法によれば,既設の蒸気流量計を設置していない冷凍機でも,蒸気配管を切断・撤去することなく,しかも稼働中の吸収冷凍機1の運転を止めることなく,直接計測として入力エネルギー量を特定でき,吸収式冷凍機1の性能評価が可能となる。
また稼動中の吸収冷凍機1の蒸気流量とエンタルピー計測を行うことで,入力エネルギー量の計測ができるので,配管切断や,蒸気流量計の設置など,計測に要する時間と費用を節約できる。また工事に伴う吸収冷凍機1の停止による冷熱供給の停止もないことから,他の設備機器の運転を停止する必要もない。このように各種設備機器を停止する必要がないので,設備管理に過分な負担を与えることがない。
そして既設の計測機器がある場合でも,それと並列して設置することができ,従来の監視機器,設備を阻害することがなく,既設の計測機器の動作確認等にも用いることができる。
Therefore, according to the measurement method according to the present embodiment, the operation of the
Also, by measuring the steam flow rate and enthalpy of the
Even if there is an existing measuring device, it can be installed in parallel with the existing measuring device and can be used to check the operation of the existing measuring device without obstructing the conventional monitoring device and equipment.
蒸気入口温度を測定する温度センサ16については,上限測定可能温度が数千度までの熱電対を配管表面に取り付けて使用すれば,実質上,高温域(高圧域)まで制限がなく測定でき,また蒸気(気体)から還水まで密閉経路で蒸気を消費する場合は蒸気消費量を特定できることから,前記したような吸収冷凍機1に限らず,蒸気駆動タービンや加熱設備など,蒸気エネルギーを入力とする設備機器,ボイラーの蒸気発生量など,設備機器の性能の計測に広く適用することが可能である。
As for the
次に既述した方法に従って実際に計測した例について説明する。まず,蒸気温度と,蒸気の還水温度を計測する(瞬時値:実測データ)。次いでこれらの実測データから,1分ごとの測定値を60分ごとに平均する。図5に,蒸気温度と還水温度の各々の実測データ(瞬時値)と,1分ごとの測定値を60分ごとに平均したデータを示した。 Next, an example of actual measurement according to the method described above will be described. First, the steam temperature and the return water temperature of the steam are measured (instantaneous value: measured data). Next, from these measured data, the measured values every minute are averaged every 60 minutes. FIG. 5 shows measured data (instantaneous values) of each of the steam temperature and the return water temperature, and data obtained by averaging measured values every minute every 60 minutes.
次いで前記した蒸気温度の平均値と,還水温度の平均値から,既述の予め得ていた比エンタルピーの換算式によって,各々のエンタルピーを求める。図6にこれによって求めた蒸気エンタルピーと還水エンタルピーを示した。 Next, each enthalpy is obtained from the average value of the steam temperature and the average value of the return water temperature by the above-described conversion formula for specific enthalpy obtained in advance. FIG. 6 shows the steam enthalpy and return water enthalpy determined by this.
一方,還水流量についても,実際に計測した瞬時値から,1分ごとの測定値を60分ごとに平均する。図7に,還水流量(体積流量)の実測データ(瞬時値)と,1分ごとの測定値を60分ごとに平均したデータを示した。 On the other hand, for the return water flow rate, the measured value every minute is averaged every 60 minutes from the actually measured instantaneous value. FIG. 7 shows measured data (instantaneous value) of the return water flow rate (volume flow rate) and data obtained by averaging measured values every minute every 60 minutes.
そして当該平均化した体積流量(l/min)を,公知の水温と水の比容積関係に基づいて質量流量(kg/min)に変換する。変換前の体積流量と,変換後の質量流量とを図8に示した。 Then, the averaged volume flow rate (l / min) is converted into a mass flow rate (kg / min) based on a known water temperature and specific volume relationship of water. The volume flow before conversion and the mass flow after conversion are shown in FIG.
次いで蒸気エンタルピーと還水エンタルピーとの差に対して,前記変換した後の還水流量(質量流量)を乗ずることによって,入力した蒸気の熱量(エネルギー)を求めることができる。図9に,これら一連の計測,計算によって求めた蒸気熱量を示した。 Next, by multiplying the difference between the steam enthalpy and the return water enthalpy by the return water flow rate (mass flow rate) after the conversion, the heat amount (energy) of the input steam can be obtained. FIG. 9 shows the amount of steam heat obtained by these series of measurements and calculations.
以上は,計測対象となる設備機器の一例として吸収冷凍機1の入力した蒸気の熱量(エネルギー)を求める例について説明したものであるが,本発明はそのような入力エネルギーまで求める場合に限らず,エネルギーが消費された後の蒸気流量自体を求めることが可能である。
The above is an example of obtaining the heat quantity (energy) of steam input to the
すなわち,図7,図8に示したように,まず蒸気還水の体積流量を,液体用超音波流量計で計測し,これを平均化し,次いで水温と水の比容積関係に基づいて質量流量に変換することで,前記エネルギーを消費した後の蒸気流量を求めることが可能である。したがって,間欠的に作動する凝縮トラップなどの凝縮器を,蒸気が流通する密閉管路に有する各種の設備機器であっても,蒸気エネルギー消費後の蒸気流量を容易に計測することが可能である。
なお,ここでの質量流量の変換では,設備機器の仕様書などにある還水温度から水の比容積を予め設定した定数としても良い。これによる変換の誤差は,3〜4%程度であるので,これ以上の精度を必要としない計測には,実用上問題がない。また,これにより還水温度の計測が不要となり,蒸気流量の省力化が図れる。
That is, as shown in FIGS. 7 and 8, first, the volume flow rate of the steam return water is measured with an ultrasonic flowmeter for liquid, averaged, and then the mass flow rate based on the specific volume relationship between water temperature and water. It is possible to obtain the steam flow rate after consuming the energy. Therefore, it is possible to easily measure the flow rate of steam after consumption of steam energy, even for various equipment that has a condenser such as a condensing trap that operates intermittently in a closed pipe line through which steam flows. .
In the conversion of mass flow here, the specific volume of water may be set in advance from the return water temperature in the specifications of the equipment. Since the error in conversion due to this is about 3 to 4%, there is no practical problem in measurement that does not require higher accuracy. This also eliminates the need for measuring the return water temperature and saves steam flow.
本発明は,蒸気をエネルギー源とする各種の設備機器の入力エネルギーの計測,蒸気流量の計測に有用である。 INDUSTRIAL APPLICABILITY The present invention is useful for measuring input energy and measuring steam flow of various equipment using steam as an energy source.
1 吸収冷凍機
2 再生器
3 凝縮器
4 吸収器・蒸発器
11,12 配管
13 自動弁
14 凝縮トラップ
15 縦管
16,17 温度センサ
18 温度ロガー
19 超音波流量計
DESCRIPTION OF
Claims (7)
前記設備機器に流入する蒸気の温度を測定して入口側蒸気エンタルピーを求める工程と,
前記設備機器から出る蒸気還水の温度を測定して出口側蒸気エンタルピーを求める工程と,
前記設備機器から出る蒸気還水が流れる配管の表面に取り付けた液体用超音波流量計によって当該蒸気還水の流量を求める工程とを有し,
さらに前記入口側蒸気エンタルピーから前記出口側蒸気エンタルピーを減じ,その結果に前記蒸気還水の流量を乗じて前記設備機器に入力された蒸気エネルギーを求めることを特徴とする,設備機器の入力エネルギーの計測方法。 A method of measuring steam energy input to equipment using steam,
Measuring the temperature of the steam flowing into the equipment and determining the inlet-side steam enthalpy;
Measuring the temperature of the steam return water from the equipment to determine the outlet side steam enthalpy;
Obtaining the flow rate of the steam return water by means of an ultrasonic flowmeter for liquid attached to the surface of the pipe through which the steam return water from the equipment flows.
Further, subtracting the outlet-side steam enthalpy from the inlet-side steam enthalpy, and multiplying the result by the flow rate of the steam return water to obtain the steam energy input to the equipment, Measurement method.
前記エネルギーを消費した後の蒸気を,密閉管路を介して前記設備機器から導出させ,
前記密閉管路には,蒸気を蒸気還水に相変化させる凝縮装置を設け,
前記凝縮装置によって相変化した後の蒸気還水が流れる配管の表面に液体用超音波流量計を取り付け,
当該液体用超音波流量計によって計測された還水流量に基づいて,エネルギー消費後の蒸気流量を求めることを特徴とする,蒸気流量の計測方法。 A method for measuring steam flow after energy consumption from equipment that uses steam energy,
The steam after consuming the energy is led out from the equipment through a sealed line,
The closed pipe is provided with a condensing device for changing the phase of the steam into steam return water,
An ultrasonic flow meter for liquid is attached to the surface of the pipe through which the steam return water after the phase change by the condensing device flows,
A method for measuring a steam flow, characterized in that the steam flow after energy consumption is obtained based on the return water flow measured by the liquid ultrasonic flowmeter.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004352750A JP4694185B2 (en) | 2004-12-06 | 2004-12-06 | Method for measuring input energy of equipment and method for measuring steam flow rate |
CN 200510062976 CN100501343C (en) | 2004-03-31 | 2005-03-31 | Energy metering method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004352750A JP4694185B2 (en) | 2004-12-06 | 2004-12-06 | Method for measuring input energy of equipment and method for measuring steam flow rate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006162380A true JP2006162380A (en) | 2006-06-22 |
JP4694185B2 JP4694185B2 (en) | 2011-06-08 |
Family
ID=36664569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004352750A Active JP4694185B2 (en) | 2004-03-31 | 2004-12-06 | Method for measuring input energy of equipment and method for measuring steam flow rate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4694185B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011242013A (en) * | 2010-05-14 | 2011-12-01 | Ebara Refrigeration Equipment & Systems Co Ltd | Absorption heat pump |
KR101594140B1 (en) | 2015-01-06 | 2016-02-15 | 한국지역난방공사 | System for converting energy of differential pressure in heat pipes of district heating |
JP2016035372A (en) * | 2014-08-04 | 2016-03-17 | 富士電機株式会社 | Heat loss measurement system of steam pipe and calculation device thereof |
JP2016061743A (en) * | 2014-09-19 | 2016-04-25 | 株式会社市丸技研 | Steam consumption amount measurement device and steam consumption amount measurement method |
CN115592789A (en) * | 2022-11-24 | 2023-01-13 | 深圳市星耀福实业有限公司(Cn) | ALC plate static temperature control method, device and system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58125849U (en) * | 1982-02-18 | 1983-08-26 | 大阪瓦斯株式会社 | calorimeter |
JPH05296860A (en) * | 1992-04-15 | 1993-11-12 | Tlv Co Ltd | Measuring apparatus for consumed calory of device using steam |
-
2004
- 2004-12-06 JP JP2004352750A patent/JP4694185B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58125849U (en) * | 1982-02-18 | 1983-08-26 | 大阪瓦斯株式会社 | calorimeter |
JPH05296860A (en) * | 1992-04-15 | 1993-11-12 | Tlv Co Ltd | Measuring apparatus for consumed calory of device using steam |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011242013A (en) * | 2010-05-14 | 2011-12-01 | Ebara Refrigeration Equipment & Systems Co Ltd | Absorption heat pump |
JP2016035372A (en) * | 2014-08-04 | 2016-03-17 | 富士電機株式会社 | Heat loss measurement system of steam pipe and calculation device thereof |
JP2016061743A (en) * | 2014-09-19 | 2016-04-25 | 株式会社市丸技研 | Steam consumption amount measurement device and steam consumption amount measurement method |
KR101594140B1 (en) | 2015-01-06 | 2016-02-15 | 한국지역난방공사 | System for converting energy of differential pressure in heat pipes of district heating |
CN115592789A (en) * | 2022-11-24 | 2023-01-13 | 深圳市星耀福实业有限公司(Cn) | ALC plate static temperature control method, device and system |
Also Published As
Publication number | Publication date |
---|---|
JP4694185B2 (en) | 2011-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7792659B2 (en) | Device and a method for measurement of energy for heating tap water separated from the buildings heating energy-usage | |
CN103616136B (en) | A kind of heat distribution pipeline valve leak state monitoring method | |
RU2485323C2 (en) | Steam turbine and method for determining leakage in steam turbine | |
JP2006010229A (en) | Boiler deterioration diagnosing method, device, system and recording medium for recording program | |
JP4694185B2 (en) | Method for measuring input energy of equipment and method for measuring steam flow rate | |
Tran et al. | Refrigerant-based measurement method of heat pump seasonal performances | |
JP2010139207A (en) | Steam generation amount calculating method for boiler | |
CN104615857A (en) | Method for determining heat loads of condenser of condensing steam turbine | |
JP4986701B2 (en) | Refrigerant flow rate measurement method, method for determining cooling / heating capacity of refrigeration apparatus, and refrigerant flow rate measurement device | |
JP3690992B2 (en) | Abnormality diagnosis method and apparatus for thermal power plant | |
CN102538886B (en) | Extra-pipe binding type thermal pulse gas flowmeter capable of resisting ambient temperature disturbances | |
KR101767415B1 (en) | Two-phase Fluid Sensor | |
CN100501343C (en) | Energy metering method | |
JP6357954B2 (en) | Heat loss measurement system for steam piping and its arithmetic unit | |
Stuparu et al. | Experimental investigation of a pumping station from CET power plant Timisoara | |
JP4672019B2 (en) | Fuel gas supply facility and fuel gas moisture monitoring method | |
JP4231024B2 (en) | Absorption diagnosis method and apparatus for absorption refrigerator | |
JP2015087037A (en) | Loss measurement system of steam pipe and measurement method | |
CN103534540A (en) | Water flow measurement device | |
CN113837565A (en) | Steam heat network water hammer risk assessment system and method based on condensation coefficient | |
JP6380170B2 (en) | Thermal energy loss evaluation method for steam piping | |
US20210072060A1 (en) | Real-time measurement of two-phase mass flow rate and enthalpy using pressure differential devices | |
RU2781748C1 (en) | Method for determining the thermal energy released to the consumer and a device for its implementation | |
JP6303473B2 (en) | Steam pipe loss measurement system and steam pipe loss measurement method | |
CN219511810U (en) | Heat exchange performance testing device of backheating capillary tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071031 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101012 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110222 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110223 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140304 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4694185 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |