JP2006160571A - Mg SOLID SOLUTION COBALT OXYHYDROXIDE PARTICLE AND ITS PRODUCING METHOD - Google Patents
Mg SOLID SOLUTION COBALT OXYHYDROXIDE PARTICLE AND ITS PRODUCING METHOD Download PDFInfo
- Publication number
- JP2006160571A JP2006160571A JP2004355915A JP2004355915A JP2006160571A JP 2006160571 A JP2006160571 A JP 2006160571A JP 2004355915 A JP2004355915 A JP 2004355915A JP 2004355915 A JP2004355915 A JP 2004355915A JP 2006160571 A JP2006160571 A JP 2006160571A
- Authority
- JP
- Japan
- Prior art keywords
- cobalt oxyhydroxide
- solid solution
- salt
- cobalt
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 title claims abstract description 47
- -1 COBALT OXYHYDROXIDE Chemical compound 0.000 title claims abstract description 37
- 239000006104 solid solution Substances 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title abstract description 16
- 239000007864 aqueous solution Substances 0.000 claims abstract description 24
- 150000003839 salts Chemical class 0.000 claims abstract description 20
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 18
- 230000003647 oxidation Effects 0.000 claims abstract description 17
- 239000003054 catalyst Substances 0.000 claims abstract description 15
- 230000001376 precipitating effect Effects 0.000 claims abstract description 3
- 230000001590 oxidative effect Effects 0.000 claims abstract 2
- 238000004519 manufacturing process Methods 0.000 claims description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000012266 salt solution Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 239000000243 solution Substances 0.000 abstract description 15
- 239000003513 alkali Substances 0.000 abstract description 3
- 239000012798 spherical particle Substances 0.000 abstract description 3
- 238000013019 agitation Methods 0.000 abstract 1
- 239000011777 magnesium Substances 0.000 description 38
- 238000006243 chemical reaction Methods 0.000 description 21
- 239000000843 powder Substances 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 239000011164 primary particle Substances 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 150000001868 cobalt Chemical class 0.000 description 4
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 4
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- 229940044175 cobalt sulfate Drugs 0.000 description 3
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000005496 eutectics Effects 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000010079 rubber tapping Methods 0.000 description 3
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 150000001869 cobalt compounds Chemical class 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000011163 secondary particle Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000009614 chemical analysis method Methods 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910001453 nickel ion Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、Mgを固溶状態で含有するオキシ水酸化コバルト粒子に関する。さらに詳しくは、Mgの固溶量が0.1〜20mol%であり、かつほぼ球状の形状を有するオキシ水酸化コバルト粒子に関する。酸化度が実質的に100%であるオキシ水酸化コバルト粒子及びその製造方法に関する。 The present invention relates to cobalt oxyhydroxide particles containing Mg in a solid solution state. More specifically, the present invention relates to cobalt oxyhydroxide particles having a solid solution amount of 0.1 to 20 mol% and a substantially spherical shape. The present invention relates to cobalt oxyhydroxide particles having an oxidation degree of substantially 100% and a method for producing the same.
近年、携帯電話やノート型コンピュータ等の携帯情報機器において、エネルギー密度が高い二次電池が切望されている。そこでかかる二次電池の高容量化のために種々の正極物質が研究開発されている。例えば従来アルカリ蓄電池用正極物質であって、水酸化ニッケルを含む活物質粉末とコバルト化合物からなる粉末とを含み、かつ前記コバルト化合物がβ−オキシ水酸化コバルトであり、また関活物質粉末にマグネシウム等の元素が固溶状態で含有する水酸化ニッケルに関する技術が知られている(例えば、特許文献1参照)。 In recent years, secondary batteries with high energy density have been eagerly desired in portable information devices such as mobile phones and notebook computers. Therefore, various positive electrode materials have been researched and developed to increase the capacity of such secondary batteries. For example, a conventional positive electrode material for an alkaline storage battery, which includes an active material powder containing nickel hydroxide and a powder composed of a cobalt compound, and the cobalt compound is β-cobalt oxyhydroxide, and the active material powder includes magnesium. A technique relating to nickel hydroxide containing such elements as a solid solution is known (see, for example, Patent Document 1).
しかしながらマグネシウム等の元素が固溶状態で含有されるオキシ水酸化コバルト粒子、さらにはその製造方法については全く知られていなかった。
本発明が解決しようとする課題は、高密度であり、かつほぼ球状の形状を有し、酸化度が実質的に100%であるオキシ水酸化コバルト粒子において、マグネシウム元素を固溶状態で含む全く新たな材料を単一工程で容易に得ることができる製造方法を見いだすことである。 The problem to be solved by the present invention is a cobalt oxyhydroxide particle having a high density, a substantially spherical shape, and an oxidation degree of substantially 100%, containing magnesium element in a solid solution state. It is to find a manufacturing method capable of easily obtaining a new material in a single process.
本発明者等はかかる新規な材料の製造方法を確立すべく鋭意研究した結果、酸化触媒の存在下で空気酸化により、マグネシウム塩を含む2価のCo塩水溶液から単一工程で、マグネシウム元素を固溶状態で含むオキシ水酸化コバルトを球状の粒子として沈殿させる方法を見出し本発明を完成させた。 As a result of diligent research to establish a method for producing such a novel material, the present inventors have determined the elemental magnesium from a divalent Co salt aqueous solution containing magnesium salt in a single step by air oxidation in the presence of an oxidation catalyst. The present invention was completed by finding a method for precipitating cobalt oxyhydroxide contained in a solid solution state as spherical particles.
すなわち、本発明は、マグネシウム元素(Mg)を固溶状態で含むオキシ水酸化コバルト粒子に関する。 That is, the present invention relates to cobalt oxyhydroxide particles containing magnesium element (Mg) in a solid solution state.
さらには本発明は、Mgの固溶量が0.1〜20mol%である、請求項1に記載のオキシ水酸化コバルト粒子に関する。 Furthermore, this invention relates to the cobalt oxyhydroxide particle | grains of Claim 1 whose solid solution amount of Mg is 0.1-20 mol%.
また本発明は、酸化触媒の存在下でMg塩を含む2価のCo塩の水溶液と、アルカリ水溶液の混合物を攪拌して空気と接触させることにより酸化し、Mgを固溶し、かつほぼ球状のオキシ水酸化コバルト粒子を沈殿生成させることを特徴とする製造方法に関する。 Further, the present invention oxidizes a mixture of an aqueous divalent Co salt solution containing Mg salt and an alkaline aqueous solution in contact with air in the presence of an oxidation catalyst, so that Mg is solid-dissolved and substantially spherical. It is related with the manufacturing method characterized by carrying out precipitation production of the cobalt oxyhydroxide particle | grains of this.
さらに本発明の製造方法は、前記酸化触媒が、鉄、ニッケル、クロムのいずれか一種以上から構成される金属若しくはそれらのイオンであることを特徴とする。 Furthermore, the production method of the present invention is characterized in that the oxidation catalyst is a metal composed of at least one of iron, nickel, and chromium, or ions thereof.
本発明に係る製造方法は、Mg塩を含む2価のコバルト塩水溶液から単一工程でオキシ水酸化コバルト粒子を得る方法であることから、完全に酸化された、かつ粉体特性(密度、粒径分布、平均粒径)の制御されたほぼ球状のMgを固溶状態で含む新規なオキシ水酸化コバルト粒子を得ることが可能となる。 Since the production method according to the present invention is a method for obtaining cobalt oxyhydroxide particles from a divalent cobalt salt aqueous solution containing Mg salt in a single step, it is completely oxidized and has powder characteristics (density, grain size). It becomes possible to obtain novel cobalt oxyhydroxide particles containing substantially spherical Mg having a controlled diameter distribution and average particle size in a solid solution state.
以下に本発明の実施の形態について詳細に説明する。
(Mgを固溶状態で含むオキシ水酸化コバルト粒子)
本発明のMgを固溶状態で含むオキシ水酸化コバルト粒子は、Mg化合物(例えば水酸化物)とオキシ水酸化コバルトの粒子との単なる共沈物ではなく、Mg元素が共晶若しくは固溶状態で含まれていることを特徴とする。この相違する状態は例えば粉末のX線回折(XRD)法により容易に判別することができる。
Hereinafter, embodiments of the present invention will be described in detail.
(Cobalt oxyhydroxide particles containing Mg in solid solution)
The cobalt oxyhydroxide particles containing Mg of the present invention in a solid solution state are not merely coprecipitates of Mg compounds (for example, hydroxide) and cobalt oxyhydroxide particles, but the Mg element is in a eutectic or solid solution state. It is characterized by being included. This different state can be easily distinguished by, for example, a powder X-ray diffraction (XRD) method.
本発明のMgを固溶状態で含むオキシ水酸化コバルト粒子には含まれるMgの量は特に制限はなく、使用の目的に応じて広い範囲で変えることができる。好ましくはモル比率で表現して0.01〜50mol%、特に好ましくは0.1〜20mol%の範囲である。 There is no restriction | limiting in particular in the quantity of Mg contained in the cobalt oxyhydroxide particle | grains containing Mg of this invention in a solid solution state, According to the objective of use, it can change in a wide range. Preferably, it is expressed in terms of a molar ratio and ranges from 0.01 to 50 mol%, particularly preferably from 0.1 to 20 mol%.
含まれるMgは通常公知の種々のマグネシウム元素の定量分析方法(湿式、乾式)を使用することができる。例えば湿式として原子吸光分析方法が挙げられる。 For the contained Mg, various commonly known quantitative analysis methods (wet or dry) of magnesium elements can be used. For example, an atomic absorption analysis method may be used as a wet method.
また本発明のMgを固溶状態で含むオキシ水酸化コバルト粒子の密度は高密度であり、タッピング密度は少なくとも1.8g/cm3の密度を有することを特徴とし、場合により2.2g/cm3を越える密度を有する。またバルク密度は少なくとも1.3g/cm3の密度を有することを特徴とし、場合により1.6g/cm3を越える密度を有する。 The cobalt oxyhydroxide particles containing Mg of the present invention in a solid solution state has a high density and a tapping density of at least 1.8 g / cm 3 , and in some cases, 2.2 g / cm 3. Having a density greater than 3 ; The bulk density is characterized by having a density of at least 1.3 g / cm 3 , and in some cases has a density exceeding 1.6 g / cm 3 .
さらに、その形状は一次粒子が集まったほぼ球状の二次粒子であり、平均粒径が5μm〜15μmである。かかる形状については例えば電子顕微鏡を用いて容易に観測可能であり、粒径分布についても通常公知の粒径測定装置を用いることが可能である。 Furthermore, the shape is a substantially spherical secondary particle in which primary particles are gathered, and the average particle size is 5 μm to 15 μm. Such a shape can be easily observed using, for example, an electron microscope, and a generally known particle size measuring device can be used for the particle size distribution.
本発明のMgを固溶状態で含むオキシ水酸化コバルト粒子は黒色であり、実際に実測された酸化度が実質的に100%であることを特徴とする。酸化度については酸化還元滴定等の化学分析方法やX線回折方法により判断することができる。 The cobalt oxyhydroxide particles containing Mg of the present invention in a solid solution state are black, and the actually measured oxidation degree is substantially 100%. The degree of oxidation can be determined by a chemical analysis method such as oxidation-reduction titration or an X-ray diffraction method.
(製造方法)
本発明に係る製造方法は、上で説明した本発明にかかるMgを共晶若しくは固溶状態で含む、高密度であり、かつほぼ球状の形状を有し、酸化度が実質的に100%であるオキシ水酸化コバルト粒子を製造する方法であり、Mg塩を含む2価コバルト塩を出発として単一の工程で沈殿として製造することを特徴とする。
(Production method)
The production method according to the present invention comprises Mg according to the present invention described above in a eutectic or solid solution state, has a high density and a substantially spherical shape, and has an oxidation degree of substantially 100%. This is a method for producing certain cobalt oxyhydroxide particles, characterized in that it is produced as a precipitate in a single step starting from a divalent cobalt salt containing an Mg salt.
すなわち、かかる単一工程とは、適当な酸化触媒と空気の存在下、Mg塩を含む2価のCo塩水溶液にアルカリ水溶液を攪拌しつつ加えて、オキシ水酸化コバルトをほぼ球状の粒子として生成させる工程である。 That is, such a single step is to add cobalt oxyhydroxide as substantially spherical particles by adding an alkaline aqueous solution to a divalent Co salt aqueous solution containing Mg salt in the presence of a suitable oxidation catalyst and air while stirring. It is a process to make.
本発明において用いることができる「2価のCo塩」としては、具体的には、硝酸コバルト(Co(NO3)2)、塩化コバルト(CoCl2)、硫酸コバルト(CoSO4)等が好適な一例として挙げられる。これらのCo塩は、単独で用いても良く、あるいは、2種以上を組み合わせて用いても良い。また必要に応じて少量の他の金属塩を共存させてもよい。 As the “divalent Co salt” that can be used in the present invention, specifically, cobalt nitrate (Co (NO 3 ) 2 ), cobalt chloride (CoCl 2 ), cobalt sulfate (CoSO 4 ) and the like are preferable. As an example. These Co salts may be used alone or in combination of two or more. Moreover, you may coexist a small amount of other metal salts as needed.
本発明において用いることができるMg塩としては、具体的には、硝酸マグネシウム、塩化マグネシウム、硫酸マグネシウム等が好適な一例として挙げられる。これらのMg塩は、単独で用いても良く、あるいは、2種以上を組み合わせて用いても良い。 Specific examples of the Mg salt that can be used in the present invention include magnesium nitrate, magnesium chloride, and magnesium sulfate. These Mg salts may be used alone or in combination of two or more.
かかるMg塩の種類、およびCo塩水溶液中の濃度を適時調節することにより広い範囲にわたってMgの含有量を調節することが可能である。
また本発明は、Mg塩を含む2価のCo塩水溶液の濃度等を変化させることで容易に粒径や密度を好ましい範囲に揃えることが可能となる。濃度は、具体的にはコバルトの量に換算して10g/L〜150g/Lの範囲が可能であり、好ましくは40g/L〜100g/L、さらに好ましくは60g/L〜90g/Lの範囲である。
It is possible to adjust the Mg content over a wide range by appropriately adjusting the kind of Mg salt and the concentration in the aqueous Co salt solution.
Further, according to the present invention, it is possible to easily adjust the particle size and density to a preferable range by changing the concentration of the divalent Co salt aqueous solution containing Mg salt. Specifically, the concentration can range from 10 g / L to 150 g / L in terms of cobalt, preferably from 40 g / L to 100 g / L, and more preferably from 60 g / L to 90 g / L. It is.
一般的には反応させるMgを含む2価のCo塩水溶液の濃度とアルカリ濃度が低い方が、より大きなサイズの一次粒子が生成し、該一次粒子からなる粒子の密度は高くなる傾向にある。例えば、2価のCo塩水溶液として硫酸コバルト水溶液を用いる場合、硫酸コバルトの濃度は、例えば、90g/Lの場合は緻密な一次粒子からなるほぼ球状のオキシ水酸化コバルト粒子(密度1.8g/cm3)が得られ、60g/Lの場合にはより細かい一次粒子からなるほぼ球状のオキシ水酸化コバルト粒子(密度2.3g/cm3)が得られる。 Generally, when the concentration of the divalent Co salt aqueous solution containing Mg to be reacted and the alkali concentration are lower, primary particles having a larger size are generated, and the density of the particles composed of the primary particles tends to be higher. For example, when a cobalt sulfate aqueous solution is used as the divalent Co salt aqueous solution, for example, when the concentration of cobalt sulfate is 90 g / L, almost spherical cobalt oxyhydroxide particles (density 1.8 g / L) composed of dense primary particles. cm 3 ), and in the case of 60 g / L, substantially spherical cobalt oxyhydroxide particles (density 2.3 g / cm 3 ) composed of finer primary particles are obtained.
なお、得られる粒子の粒状特性(球状性、平均粒径、密度等)は、これらコバルト塩水溶液の濃度の他、アルカリ水溶液の濃度、アルカリ水溶液の滴下時間、アルカリ水溶液の滴下量、反応温度、反応時間、撹拌速度、触媒の種類、触媒の添加量、空気の吹き込み速度等により制御可能である。すなわちこれらの条件を適宜選択して所望の粒状特性を得ることは当業者にとって容易である。 In addition, the granular characteristics (sphericity, average particle diameter, density, etc.) of the obtained particles are not only the concentration of these cobalt salt aqueous solutions, but also the concentration of the alkaline aqueous solution, the dropping time of the alkaline aqueous solution, the dropping amount of the alkaline aqueous solution, the reaction temperature, It can be controlled by the reaction time, the stirring speed, the type of catalyst, the amount of catalyst added, the air blowing speed, and the like. That is, it is easy for those skilled in the art to select these conditions as appropriate and obtain desired granular characteristics.
また、本発明において用いることができる「アルカリ水溶液」としては、具体的には、NaOH水溶液、KOH水溶液、アンモニア水等が好適な一例として挙げられるが、NaOH水溶液の使用がより好ましい。アルカリ水溶液は、反応中反応液のpHを11〜13に維持するべく添加することが好ましい。より好ましくは、反応中反応液のpHを12.0〜12.8に維持するべく添加することが好ましい。アルカリ水溶液の添加の方法には特に制限はなく、反応溶液のpHが速やかに所望のpHとなるようにすることが好ましい。pHを好ましい範囲に維持するためにpHモニターを使用し、自動的にアルカリ水溶液の添加量を調節できることが好ましい。 Specific examples of the “alkaline aqueous solution” that can be used in the present invention include NaOH aqueous solution, KOH aqueous solution, aqueous ammonia, and the like, but the use of NaOH aqueous solution is more preferable. The aqueous alkaline solution is preferably added to maintain the pH of the reaction solution at 11 to 13 during the reaction. More preferably, it is preferably added to maintain the pH of the reaction solution at 12.0 to 12.8 during the reaction. The method for adding the alkaline aqueous solution is not particularly limited, and it is preferable that the pH of the reaction solution is quickly adjusted to a desired pH. In order to maintain the pH within a preferable range, it is preferable that a pH monitor can be used to automatically adjust the addition amount of the alkaline aqueous solution.
本発明において用いることができる触媒は、アルカリ水溶液の条件下で、空気中の酸素による酸化反応を触媒するものであればよい。酸素と触媒による2価コバルト塩の、アルカリ存在下所定のpHにおいてオキシ水酸化コバルトに酸化される機構については触媒によりそれぞれ異なると考えられるが、1つの機構として一旦溶液中で生成したCo(OH)2(粒子、沈殿に制限されない)が速やかに酸化され沈殿として生成されると考えられる。その際にMgが共晶若しくは固溶の状態で取り込まれるものと考えられる。 The catalyst that can be used in the present invention may be any catalyst that catalyzes an oxidation reaction by oxygen in the air under the condition of an alkaline aqueous solution. The mechanism of divalent cobalt salt by oxygen and catalyst being oxidized to cobalt oxyhydroxide at a predetermined pH in the presence of an alkali is considered to differ depending on the catalyst, but one mechanism is Co (OH) once formed in a solution. ) 2 (particles, not limited to precipitation) is thought to be rapidly oxidized and produced as a precipitate. At that time, it is considered that Mg is incorporated in a eutectic or solid solution state.
酸化触媒は、具体的には鉄、クロム、ニッケル等の金属又はそれらの金属イオンが挙げられる。かかる触媒は反応溶液中に添加したり、またステンレススチール製のような鉄製の反応容器中で反応させる場合においては反応溶液が反応容器の壁に接触したり、また鉄製反応容器からごく少量の金属イオンが溶液中に遊離することでも存在可能となる。 Specific examples of the oxidation catalyst include metals such as iron, chromium and nickel, or metal ions thereof. Such a catalyst is added to the reaction solution, and when the reaction is performed in an iron reaction vessel such as stainless steel, the reaction solution contacts the wall of the reaction vessel, or a very small amount of metal from the iron reaction vessel. It can also exist when ions are liberated in solution.
同様に本発明において用いることができる酸化剤としての酸素は空気を吹き込むことにより容易に導入可能である。吹き込み量については特に制限はないが、反応溶液中に十分吹き込み常に飽和状態に保持することが好ましい。 Similarly, oxygen as an oxidizing agent that can be used in the present invention can be easily introduced by blowing air. Although there is no restriction | limiting in particular about the amount of blowing, It is preferable that it blows into a reaction solution sufficiently and always maintains a saturated state.
さらに酸素との反応を均一にかつ迅速に行うために反応溶液を空気とともに十分に攪拌することが好ましい。 Furthermore, it is preferable to sufficiently stir the reaction solution together with air in order to uniformly and rapidly react with oxygen.
反応温度についても特に制限はないが、通常40〜60℃の範囲が好ましい。 Although there is no restriction | limiting in particular about reaction temperature, Usually, the range of 40-60 degreeC is preferable.
反応は、最初は溶液であるが沈殿が生成するにつれスラリー状となる。粒子形状、粒径を望ましい範囲にそろえる目的で所定の反応時間が経過し定常状態になった後はオーバーフロー装置によりスラリーを連続的に取り出すことが好ましい。取り出した粒子は濾過等の通常の方法により分離し、熱風等で乾燥することができる。 The reaction is initially in solution but becomes a slurry as a precipitate forms. For the purpose of aligning the particle shape and particle size within a desired range, it is preferable to continuously take out the slurry with an overflow device after a predetermined reaction time has passed and a steady state has been reached. The extracted particles can be separated by a normal method such as filtration and dried with hot air or the like.
本発明で得られたMgを含むオキシ水酸化コバルト粒子は、高密度かつ平均粒径及び粒径分布が所望の範囲であり、かつほぼ完全に酸化されているものであることから、リチウム2次電池の材料等に広く使用することができる。 The cobalt oxyhydroxide particles containing Mg obtained in the present invention have a high density, an average particle size and a particle size distribution in a desired range, and are almost completely oxidized. It can be widely used for battery materials.
以下本発明を実施例に即して説明する。 Hereinafter, the present invention will be described with reference to examples.
(実施例)
攪拌機とオーバーフローパイプを備えた有効容積15Lのステンレス製円筒形反応槽に水を13L入れた。反応槽の材質にはSUS304を用いた。次いでpHが12.7になるまで30%水酸化ナトリウム溶液を加え、電熱ヒーターにて温度を50℃に保持した。次いで反応槽内の溶液中に十分空気が含まれるように一定速度にて攪拌を行った。次にCoイオンが1Lあたり60g含まれている硫酸コバルト水溶液にCoに対するMgのモル比が2mol%となるように硝酸マグネシウム粉末を溶解させ、その溶液を10cc/分の一定速度にて連続供給した。さらに反応槽内の溶液がpH12.7に保持されるように30%水酸化ナトリウムを断続的に加えMgを含むオキシ水酸化コバルト粒子を形成させた。
(Example)
13 L of water was put into a stainless steel cylindrical reaction tank having an effective volume of 15 L equipped with a stirrer and an overflow pipe. SUS304 was used as the material for the reaction vessel. Next, a 30% sodium hydroxide solution was added until the pH reached 12.7, and the temperature was maintained at 50 ° C. with an electric heater. Next, the solution in the reaction tank was stirred at a constant speed so that air was sufficiently contained. Next, magnesium nitrate powder was dissolved in a cobalt sulfate aqueous solution containing 60 g of Co ions per liter so that the molar ratio of Mg to Co was 2 mol%, and the solution was continuously supplied at a constant rate of 10 cc / min. . Further, 30% sodium hydroxide was intermittently added so that the solution in the reaction vessel was maintained at pH 12.7 to form cobalt oxyhydroxide particles containing Mg.
反応槽内が定常状態になった72時間後にオーバーフローパイプより得られた粒子を連続的に24時間採取し水洗後、濾過し100℃にて15時間乾燥し乾燥粉末とした。粉末の色調は黒色であった。 The particles obtained from the overflow pipe were collected for 24 hours continuously 72 hours after the inside of the reaction vessel became a steady state, washed with water, filtered, and dried at 100 ° C. for 15 hours to obtain a dry powder. The color tone of the powder was black.
また、得られた粉末のX線回折による分析(XRD)を以下のように行った。
試料の調整:上で得られたMgを含むオキシ水酸化コバルト粒子をそのまま使用した。
測定装置と条件:株式会社理学製、RINT2000(Cu−Kα)
測定結果:化学式CoO(OH)にて表されるオキシ水酸化コバルトによるピーク(Heterogenite-3R)が観測できた。
Moreover, the analysis (XRD) by X-ray diffraction of the obtained powder was performed as follows.
Preparation of sample: Cobalt oxyhydroxide particles containing Mg obtained above were used as they were.
Measuring apparatus and conditions: RINT2000 (Cu-Kα) manufactured by Rigaku Corporation
Measurement result: A peak (Heterogenite-3R) due to cobalt oxyhydroxide represented by the chemical formula CoO (OH) was observed.
またタッピング密度(TD)を以下のように測定した。
試料の調整:得られた粉末を以下のように使用した。20mLセルの質量を測定し[A]、48meshのフルイで結晶をセルに自然落下して充填した。4cmスペーサー装着のセイシン企業株式会社製、「TAPDENSER KYT3000」を用いて200回タッピング後セルの質量[B]と充填容積[D]を測定した。次式により計算した。
タップ密度=(B−A)/D g/ml
測定結果:2.29g/cc
得られたオキシ水酸化コバルトの平均粒径を以下のように測定した。
試料の調整:得られた粉末をそのまま使用した。
測定装置と条件:堀場製作所製LA−910を使用し、操作手順書に従った。
測定結果:D50、8.0μm
得られた粉末のコバルトの酸化度をヨードメトリー法にて測定した。なお、酸化度はオキシ水酸化コバルトに含まれる全Co量に対する価数が3価であるCoの量を百分率にて表した。
測定結果:酸化度=100%
得られた粉末の表面構造を走査電子顕微鏡(SEM)により図1に示した。一次粒子が集まってほぼ球状の二次粒子となっていることが分かる。
Further, the tapping density (TD) was measured as follows.
Sample preparation: The resulting powder was used as follows. The mass of the 20 mL cell was measured [A], and the crystal was spontaneously dropped into the cell and filled with a 48 mesh sieve. The mass [B] and the filling volume [D] of the cell after tapping 200 times were measured using “TAPDENSER KYT3000” manufactured by Seishin Enterprise Co., Ltd. with a 4 cm spacer. The following formula was used for calculation.
Tap density = (B−A) / D g / ml
Measurement result: 2.29 g / cc
The average particle diameter of the obtained cobalt oxyhydroxide was measured as follows.
Preparation of sample: The obtained powder was used as it was.
Measurement apparatus and conditions: LA-910 manufactured by HORIBA, Ltd. was used and the operation procedure manual was followed.
Measurement result: D50, 8.0 μm
The degree of oxidation of cobalt in the obtained powder was measured by an iodometry method. The degree of oxidation was expressed as a percentage of Co having a valence of 3 with respect to the total amount of Co contained in cobalt oxyhydroxide.
Measurement result: degree of oxidation = 100%
The surface structure of the obtained powder is shown in FIG. 1 using a scanning electron microscope (SEM). It can be seen that the primary particles gather to form a substantially spherical secondary particle.
(比較例)
Mg塩を加えないこと以外は実施例と同様に行った。
(Comparative example)
The same procedure as in Example was performed except that no Mg salt was added.
実施例及び比較例から得られた粉末の分析結果を表1にまとめた。 The analysis results of the powders obtained from Examples and Comparative Examples are summarized in Table 1.
以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004355915A JP4652791B2 (en) | 2004-12-08 | 2004-12-08 | Mg solid solution cobalt oxyhydroxide particles and production method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004355915A JP4652791B2 (en) | 2004-12-08 | 2004-12-08 | Mg solid solution cobalt oxyhydroxide particles and production method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006160571A true JP2006160571A (en) | 2006-06-22 |
JP4652791B2 JP4652791B2 (en) | 2011-03-16 |
Family
ID=36663002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004355915A Expired - Fee Related JP4652791B2 (en) | 2004-12-08 | 2004-12-08 | Mg solid solution cobalt oxyhydroxide particles and production method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4652791B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109643797A (en) * | 2016-08-29 | 2019-04-16 | 株式会社田中化学研究所 | Sodium ion secondary battery positive active material |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07286101A (en) * | 1995-04-07 | 1995-10-31 | Kaisui Kagaku Kenkyusho:Kk | Complex metal hydroxide |
JPH10324523A (en) * | 1997-03-25 | 1998-12-08 | Toda Kogyo Corp | Production of cobalt oxide fine particulate powder |
JPH1197008A (en) * | 1996-12-24 | 1999-04-09 | Matsushita Electric Ind Co Ltd | Alkaline storage battery, its positive electrode active material, and method for producing the same |
JP2001338645A (en) * | 2000-03-24 | 2001-12-07 | Matsushita Electric Ind Co Ltd | Paste positive electrode for alkaline storage batteries and nickel-metal hydride storage batteries |
JP2002060225A (en) * | 2000-08-18 | 2002-02-26 | Ishihara Sangyo Kaisha Ltd | Lithium cobaltate aggregate, cobalt oxide aggregate, method for manufacturing the same and lithium cell using lithium cobaltate aggregate |
JP2003142087A (en) * | 2001-10-31 | 2003-05-16 | Matsushita Electric Ind Co Ltd | Positive electrode for alkaline storage battery and alkaline storage battery using the same |
JP2004035342A (en) * | 2002-07-04 | 2004-02-05 | Sumitomo Metal Mining Co Ltd | High bulk density cobalt compound for lithium cobaltate raw material and method for manufacturing the same |
WO2004030126A1 (en) * | 2002-09-25 | 2004-04-08 | Seimi Chemical Co., Ltd. | Positive electrode material for lithium secondary battery and process for producing the same |
JP2004149409A (en) * | 2002-10-10 | 2004-05-27 | Nippon Chem Ind Co Ltd | Lithium-cobalt composite oxide, method for producing the same, and non-aqueous electrolyte secondary battery |
-
2004
- 2004-12-08 JP JP2004355915A patent/JP4652791B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07286101A (en) * | 1995-04-07 | 1995-10-31 | Kaisui Kagaku Kenkyusho:Kk | Complex metal hydroxide |
JPH1197008A (en) * | 1996-12-24 | 1999-04-09 | Matsushita Electric Ind Co Ltd | Alkaline storage battery, its positive electrode active material, and method for producing the same |
JPH10324523A (en) * | 1997-03-25 | 1998-12-08 | Toda Kogyo Corp | Production of cobalt oxide fine particulate powder |
JP2001338645A (en) * | 2000-03-24 | 2001-12-07 | Matsushita Electric Ind Co Ltd | Paste positive electrode for alkaline storage batteries and nickel-metal hydride storage batteries |
JP2002060225A (en) * | 2000-08-18 | 2002-02-26 | Ishihara Sangyo Kaisha Ltd | Lithium cobaltate aggregate, cobalt oxide aggregate, method for manufacturing the same and lithium cell using lithium cobaltate aggregate |
JP2003142087A (en) * | 2001-10-31 | 2003-05-16 | Matsushita Electric Ind Co Ltd | Positive electrode for alkaline storage battery and alkaline storage battery using the same |
JP2004035342A (en) * | 2002-07-04 | 2004-02-05 | Sumitomo Metal Mining Co Ltd | High bulk density cobalt compound for lithium cobaltate raw material and method for manufacturing the same |
WO2004030126A1 (en) * | 2002-09-25 | 2004-04-08 | Seimi Chemical Co., Ltd. | Positive electrode material for lithium secondary battery and process for producing the same |
JP2004149409A (en) * | 2002-10-10 | 2004-05-27 | Nippon Chem Ind Co Ltd | Lithium-cobalt composite oxide, method for producing the same, and non-aqueous electrolyte secondary battery |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109643797A (en) * | 2016-08-29 | 2019-04-16 | 株式会社田中化学研究所 | Sodium ion secondary battery positive active material |
Also Published As
Publication number | Publication date |
---|---|
JP4652791B2 (en) | 2011-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008195608A (en) | High density cobalt manganese coprecipitated nickel hydroxide and process for producing the same | |
JP5678482B2 (en) | Manganese oxide and method for producing the same | |
JP3961826B2 (en) | Method for producing high density and large particle size cobalt hydroxide or cobalt mixed hydroxide and product produced by this method | |
CN105129870A (en) | Inorganic compounds | |
JP2011057518A (en) | High-density nickel-cobalt-manganese coprecipitation hydroxide and method for producing the same | |
WO2014203814A1 (en) | Nickel-cobalt-manganese composite hydroxide, and production method therefor | |
WO2012020768A1 (en) | Production method for a composite compound comprising nickel and cobalt | |
JP6194618B2 (en) | Trimanganese tetraoxide and method for producing the same | |
JP2005050684A (en) | Method for producing lithium iron phosphorus composite oxide carbon composite containing Mn atom | |
KR20230019838A (en) | Method for producing particulate (oxy)hydroxide | |
JP4846309B2 (en) | Method for producing nickel manganese cobalt composite oxide | |
JP4846280B2 (en) | Cobalt oxyhydroxide particles and method for producing the same | |
JP4669214B2 (en) | Cobalt oxyhydroxide particles and method for producing the same | |
JP3816305B2 (en) | Method for producing cobalt oxide powder | |
JPH10324523A (en) | Production of cobalt oxide fine particulate powder | |
RU2158657C2 (en) | Metallic cobalt agglomerates, method of manufacture and application thereof | |
JP4652791B2 (en) | Mg solid solution cobalt oxyhydroxide particles and production method thereof | |
JP4271407B2 (en) | Method for producing positive electrode active material for alkaline storage battery | |
JP2005272213A (en) | Method for producing lithium-cobalt oxide | |
JP6123391B2 (en) | Trimanganese tetraoxide and method for producing the same | |
JPH10188975A (en) | Positive electrode material for silver oxide battery and its manufacture | |
JP6015320B2 (en) | Trimanganese tetraoxide and method for producing the same | |
JP2011042573A (en) | Cobalt oxyhydroxide particle | |
JP2013230966A (en) | Metal-substituted trimanganese tetraoxide and method for producing the same, and method for producing lithium manganese complex oxide using the same | |
JP3876115B2 (en) | Method for producing metal oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070910 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090707 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100830 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101105 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101210 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101216 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4652791 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131224 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |