JP2006157043A - Corrosion resistant member - Google Patents
Corrosion resistant member Download PDFInfo
- Publication number
- JP2006157043A JP2006157043A JP2006032978A JP2006032978A JP2006157043A JP 2006157043 A JP2006157043 A JP 2006157043A JP 2006032978 A JP2006032978 A JP 2006032978A JP 2006032978 A JP2006032978 A JP 2006032978A JP 2006157043 A JP2006157043 A JP 2006157043A
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- metal
- melting point
- corrosion
- resistant member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
- ing And Chemical Polishing (AREA)
- Drying Of Semiconductors (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
本発明はハロゲン系腐食性ガスおよびプラズマに対して高い耐食性を有する、プラズマ処理装置や半導体・液晶製造用プラズマ装置内の内壁材や治具等、放電管として使用される部材に関するものである。 The present invention relates to a member used as a discharge tube, such as a plasma processing apparatus or an inner wall material or a jig in a plasma apparatus for manufacturing semiconductors and liquid crystals, which has high corrosion resistance against a halogen-based corrosive gas and plasma.
半導体製造におけるドライプロセスやプラズマコーティング、放電管、プラズマディスプレイなど、プラズマの利用は近年急速に進んでいる。半導体の製造時におけるプラズマプロセスでは、特にデポジション、エッチング、クリーニング用として、反応性の高いフッ素系、塩素系等のハロゲン系腐食ガスが多用されている。 In recent years, the use of plasma, such as dry processes, plasma coating, discharge tubes, and plasma displays in semiconductor manufacturing, has advanced rapidly. In the plasma process during the manufacture of semiconductors, halogen-based corrosive gases such as fluorine and chlorine having high reactivity are frequently used particularly for deposition, etching and cleaning.
これら腐食性ガス及びプラズマに接触する部材には、高い耐食性が要求される。従来より、被処理物以外でこれらの腐食性ガス及びプラズマに接触する部材は、一般にガラスや石英などのSiO2を主成分とする材料やステンレス、モネル等の耐食性金属が利用されている。 High corrosion resistance is required for members that come into contact with these corrosive gases and plasmas. Conventionally, members that are in contact with these corrosive gases and plasma other than the object to be processed generally use a material mainly composed of SiO 2 such as glass and quartz, and a corrosion-resistant metal such as stainless steel and monel.
また、半導体製造時において、半導体を支持固定するサセプタ材としてアルミナ焼結体、サファイア、AlN焼結体又は、これらをCVD法等により表面被覆したものが耐食性に優れるとして使用されている。また、グラファイトや窒化硼素を被覆したヒーター等も使用されている。 Further, during semiconductor manufacturing, alumina sintered bodies, sapphire, AlN sintered bodies, or those obtained by surface coating these by CVD or the like are used as susceptor materials for supporting and fixing semiconductors because they have excellent corrosion resistance. In addition, a heater coated with graphite or boron nitride is also used.
しかしながら、従来から用いられているガラスや石英ではプラズマ中の耐食性が不充分で消耗が激しく、特にフッ素や塩素プラズマに接すると接触面がエッチングされ、表面性状が変化したり、光透過性が必要とされる部材では、表面が次第に白く曇って透光性が低下する等の問題が生じていた。 However, conventionally used glass and quartz have insufficient corrosion resistance in the plasma and are very exhausted, especially when they come into contact with fluorine or chlorine plasma, the contact surface is etched, the surface properties change, and light transmittance is required. In the member, the surface gradually becomes white and cloudy, resulting in a problem that the translucency is lowered.
また、ステンレスなどの金属を使用した部材でも耐食性が不充分なため、腐食によってパーティクルが発生し、特に半導体製造においては不良品発生の原因となる。さらに、窒化硼素はハロゲン系ガスと反応してガス化し、コンタミネーションの原因となる。 Further, even a member using a metal such as stainless steel has insufficient corrosion resistance, so that particles are generated due to corrosion, and in particular, in semiconductor manufacturing, it may cause defective products. Further, boron nitride reacts with the halogen-based gas and gasifies, which causes contamination.
更に、アルミナ、AlNの焼結体は、上記の材料に比較してハロゲン系ガスに対して耐食性に優れるものの、高温でプラズマと接すると腐食が徐々に進行して焼結体の表面から結晶粒子の脱粒が生じ、パーティクル発生の原因になるという問題が起きている。 Further, although the sintered body of alumina and AlN is superior in corrosion resistance to the halogen-based gas as compared with the above materials, the corrosion gradually proceeds when contacting with plasma at a high temperature, so that the crystal particles are separated from the surface of the sintered body. This causes a problem that the degranulation occurs and causes the generation of particles.
本発明者は、ハロゲン系腐食ガス及びプラズマに対する耐食性を高めるための方法について検討を重ねた結果、まず、ハロゲン系腐食ガスまたはプラズマとの反応が進行すると、安定な金属ハロゲン化物が形成されること、その金属ハロゲン化物の融点が耐食性部材の使用温度よりも高い場合には、部材の腐食性が抑制されること、更に生成される金属ハロゲン化物の内、使用温度よりも低融点の金属ハロゲン化物が生成された場合、その金属ハロゲン化物が分散揮発してしまい、局所的な耐食性の低下が生じることを知見した。 As a result of repeated studies on the method for enhancing the corrosion resistance against halogen-based corrosive gas and plasma, the present inventor firstly shows that when a reaction with the halogen-based corrosive gas or plasma proceeds, a stable metal halide is formed. When the melting point of the metal halide is higher than the operating temperature of the corrosion-resistant member, the corrosiveness of the member is suppressed, and among the metal halides generated, the metal halide having a melting point lower than the operating temperature It has been found that the metal halide disperses and volatilizes, resulting in a local decrease in corrosion resistance.
本発明の耐食性部材は、上記の知見に基づき完成されたものであり、ハロゲン系腐食ガスあるいはそのプラズマに曝される耐食性部材における少なくとも前記腐食ガスやプラズマに直接接触する部位が、該耐食性部材の使用温度よりも高融点の金属ハロゲン化物、または前記ガス及びプラズマとの反応によって該耐食性部材の使用温度よりも高融点の金属ハロゲン化物を形成し得る金属あるいはその化合物からなるとともに、前記使用温度よりも低融点の金属ハロゲン化物を形成し得る金属あるいはその化合物の含有量が金属換算で1重量%以下である事を特徴とするものである。 The corrosion-resistant member of the present invention has been completed based on the above knowledge, and at least a portion of the corrosion-resistant member that is exposed to the halogen-based corrosive gas or its plasma is in direct contact with the corrosive gas or plasma. A metal halide having a melting point higher than the use temperature, or a metal or a compound thereof capable of forming a metal halide having a melting point higher than the use temperature of the corrosion-resistant member by reaction with the gas and plasma. Further, the content of a metal or a compound thereof capable of forming a metal halide having a low melting point is 1% by weight or less in terms of metal.
また、前記腐食ガスおよびプラズマとの反応によって、低融点の金属ハロゲン化物を形成し得る金属としては、Si、B、Mo及びWの群から選ばれる少なくとも1種の金属が挙げられる。 Examples of the metal capable of forming a metal halide having a low melting point by reaction with the corrosive gas and plasma include at least one metal selected from the group consisting of Si, B, Mo and W.
本発明によれば、ハロゲン系腐食ガスあるいはそのプラズマに曝される耐食性部材のガスやプラズマに接触する部位を、融点が耐食性部材の使用温度よりも高融点の金属ハロゲン化物、または前記ガスおよびプラズマとの反応によって該耐食性部材の使用温度よりも高融点の金属ハロゲン化物を形成し得る金属、あるいはその化合物にて構成することにより、ハロゲン系腐食ガスあるいはそのプラズマと接触しても部材の浸食を抑制することが出来る。 According to the present invention, the halogenated corrosive gas or the portion of the corrosion-resistant member exposed to the plasma that is in contact with the gas or plasma is a metal halide having a melting point higher than the operating temperature of the corrosion-resistant member, or the gas and plasma. By forming a metal halide having a melting point higher than the operating temperature of the corrosion-resistant member or a compound thereof by reaction with the corrosion-resistant member, the member can be eroded even in contact with a halogenated corrosive gas or plasma thereof. Can be suppressed.
しかし、同じ金属ハロゲン化物の中でも使用温度よりも低融点の金属ハロゲン化物が存在或いは生成した場合、その中でも特に融点が25℃以下の低融点ハロゲン化物は分解、揮発してしまい、空孔が形成されてしまう。この様な空孔の形成は、腐食の進行を促進し、部材の耐食性が局所的に低下してしまう。 However, among the same metal halides, when a metal halide having a melting point lower than the operating temperature is present or generated, the low melting point halide having a melting point of 25 ° C. or less is decomposed and volatilized, and voids are formed. Will be. Formation of such pores promotes the progress of corrosion, and the corrosion resistance of the member is locally reduced.
よって本発明では、部材中に、使用温度よりも低融点の金属ハロゲン化物、または前記ガスおよびプラズマとの反応によって前記使用温度よりも低融点の金属ハロゲン化物を形成し得る金属あるいはその化合物の含有量を1重量%以下に制御しその偏在を防ぐことにより、局部的な耐食性の低下とそれを原因とした脱粒・パーティクル発生を防止し更なる耐食性の向上を図ることが可能となる。 Therefore, in the present invention, the member contains a metal halide having a melting point lower than the use temperature, or a metal or a compound thereof capable of forming a metal halide having a melting point lower than the use temperature by reaction with the gas and plasma. By controlling the amount to 1% by weight or less and preventing its uneven distribution, it becomes possible to further reduce the corrosion resistance locally and prevent degranulation and particle generation due to the deterioration, thereby further improving the corrosion resistance.
以上詳述した通り、本発明の耐食性部材は、ハロゲン系腐食ガスまたはそのプラズマに対して、従来材料よりも耐食性を向上させることが出来る。これにより、プラズマ処理装置や半導体・液晶製造用プラズマ装置内の内壁材や治具等、放電管として使用される部材の長寿命化を図ることが出来る。 As described in detail above, the corrosion-resistant member of the present invention can improve the corrosion resistance against halogen-based corrosive gas or plasma thereof as compared with conventional materials. Thereby, the lifetime of members used as a discharge tube, such as inner wall materials and jigs in plasma processing apparatuses and semiconductor / liquid crystal manufacturing plasma apparatuses, can be increased.
本発明の耐食性部材は、ハロゲン系の腐食ガスあるいはそのプラズマに曝される部材であり、ハロゲン系腐食ガスとしては、SF6、CF4、CHF3、ClF3、HF等のフッ素系ガス、Cl2、HCl、BCl3等の塩素系ガス、Br2、HBr、BBr3等の臭素系ガス、HI等のヨウ素系ガス等であり、これらのガスが導入された雰囲気にマイクロ波や高周波を導入あるいはガスの解離電圧以上の電位差を加えることにより、これらのガスがプラズマ化される。 The corrosion-resistant member of the present invention is a member exposed to a halogen-based corrosive gas or its plasma. Examples of the halogen-based corrosive gas include fluorine-based gases such as SF 6 , CF 4 , CHF 3 , ClF 3 , and HF, Cl 2 , chlorine gas such as HCl, BCl 3 , bromine gas such as Br 2 , HBr, BBr 3 , iodine gas such as HI, etc. Microwave and high frequency are introduced into the atmosphere in which these gases are introduced Alternatively, by applying a potential difference equal to or higher than the gas dissociation voltage, these gases are turned into plasma.
本発明の耐食性部材では、この様なハロゲン系腐食ガスあるいはそのプラズマに曝される部分を、耐食性部材の使用温度よりも高融点の金属ハロゲン化物、または前記ガスおよびプラズマとの反応によって該耐食性部材の使用温度よりも高融点の金属ハロゲン化物を形成し得る金属、あるいはその化合物により構成する。金属ハロゲン化物および生成する金属ハロゲン化物の融点は、部材の使用温度よりも少なくとも300℃以上高いことが好ましい。特に透光性材料の成分や添加剤として使用されるフッ化物については、融点が1000℃以上、より好ましくは1100℃以上であることが望ましい。フッ化物の融点を1000℃以上と限定したのは、透光性材料の成分として使用される場合、使用温度が1000℃以下であってもフッ化物の融点が1000℃より低いと、表面の曇りが顕著に生じる等、耐腐食材料としての信頼性に欠けるためである。 In the corrosion-resistant member of the present invention, the portion exposed to the halogen-based corrosive gas or the plasma thereof is converted into a metal halide having a melting point higher than the use temperature of the corrosion-resistant member, or the corrosion-resistant member by reaction with the gas and plasma. The metal is capable of forming a metal halide having a melting point higher than the use temperature, or a compound thereof. The melting points of the metal halide and the metal halide to be produced are preferably at least 300 ° C. higher than the use temperature of the member. In particular, the fluoride used as a component or additive of the translucent material has a melting point of 1000 ° C. or higher, more preferably 1100 ° C. or higher. The reason why the melting point of fluoride is limited to 1000 ° C. or more is that when used as a component of a light-transmitting material, even if the use temperature is 1000 ° C. or less, if the melting point of fluoride is lower than 1000 ° C., surface fogging This is because the reliability as a corrosion-resistant material is insufficient.
この様な高融点のフッ化物、またはフッ素系ガス或いはそのプラズマと反応して高融点のフッ化物を形成し得る金属としては、Ca、Mg、Ba、Sr、Sc、La、Ce、Y、Yb、Al、In、Fe、Ni、Co及びCrの群から選ばれる少なくとも1種の金属が挙げられる。 Examples of such a high melting point fluoride, or a metal capable of forming a high melting point fluoride by reacting with a fluorine-based gas or plasma thereof include Ca, Mg, Ba, Sr, Sc, La, Ce, Y, Yb. And at least one metal selected from the group consisting of Al, In, Fe, Ni, Co and Cr.
また、高融点の塩化物、または塩素系ガス或いはそのプラズマと反応して高融点の塩化物を形成し得る金属としては、Ba、Ca、Ce、Co、Cr、Cu、K、La、Lu、Mg、Na、Ni、Rb、Sc、Sr、Y及びYbの群から選ばれる少なくとも1種の金属が挙げられる。 Further, examples of metals capable of forming a high melting point chloride by reacting with a high melting point chloride or a chlorine-based gas or plasma thereof include Ba, Ca, Ce, Co, Cr, Cu, K, La, Lu, Examples thereof include at least one metal selected from the group consisting of Mg, Na, Ni, Rb, Sc, Sr, Y, and Yb.
また、高融点の臭化物、または臭素系ガス或いはそのプラズマと反応して高融点の臭化物を形成し得る金属としては、Ba、Ca、Ce、Cr、K、La、Lu、Mg、Na、Ni、Rb、Sc、Y及びYbの群から選ばれる少なくとも1種の金属が挙げられる。 Further, examples of metals that can form a high melting point bromide, bromine-based gas or plasma thereof with a high melting point bromide include Ba, Ca, Ce, Cr, K, La, Lu, Mg, Na, Ni, Examples thereof include at least one metal selected from the group consisting of Rb, Sc, Y and Yb.
さらに、高融点のヨウ化物、またはヨウ素系ガス或いはそのプラズマとの反応によって高融点ヨウ化物を形成し得る金属としては、Ba、Ce、Cr、K、La、Lu、Mg、Na、Ni、Rb、Sc及びYbの群から選ばれる少なくとも1種の金属が挙げられる。 Further, as a metal capable of forming a high melting point iodide by reaction with a high melting point iodide or iodine-based gas or its plasma, Ba, Ce, Cr, K, La, Lu, Mg, Na, Ni, Rb And at least one metal selected from the group of Sc and Yb.
これらの金属或いはその化合物形態としては、特にハロゲン系ガスとの反応性という点で、金属、酸化物、窒化物が望ましい。 As these metals or their compound forms, metals, oxides and nitrides are particularly desirable in terms of reactivity with halogen-based gases.
また、この耐食性部材中には、特に該部材の使用温度よりも低融点の金属ハロゲン化物、またはハロゲン系ガス或いはそのプラズマとの反応によって使用温度よりも低融点の金属ハロゲン化物を形成し得る金属及びその化合物の含有量が金属換算で1重量%以下、特に0.5重量%以下であることも重要である。この様な低融点金属ハロゲン化物あるいは化合物が1重量%よりも多量に含有されると、これらの含有、生成される金属ハロゲン化物が分解・揮発して部材に空孔が形成されてしまい、耐腐食性が局所的に低下してしまうためである。さらにはこれらの金属及びその化合物は、部材中に偏在していないことが好ましい。これは、低融点金属ハロゲン化物がプラズマ照射面に存在した場合、特にそれが偏在していた場合には、その部分を起点として腐食が更に進行してしまうためである。 Further, in this corrosion-resistant member, a metal halide having a melting point lower than the use temperature of the member, or a metal halide having a melting point lower than the use temperature by reaction with a halogen-based gas or plasma thereof. It is also important that the content of the compound is 1% by weight or less, particularly 0.5% by weight or less in terms of metal. If such a low-melting point metal halide or compound is contained in an amount of more than 1% by weight, the contained and produced metal halide is decomposed and volatilized to form voids in the member, resulting in resistance to resistance. This is because the corrosiveness is locally lowered. Furthermore, it is preferable that these metals and compounds thereof are not unevenly distributed in the member. This is because when the low-melting point metal halide is present on the plasma irradiation surface, particularly when it is unevenly distributed, the corrosion further proceeds starting from that portion.
この様な低融点金属ハロゲン化物を形成し得る金属及び化合物としては、Si、B、Mo及びWの群から選ばれる少なくとも1種の金属であり、とくに酸化物、窒化物である。 The metal and compound capable of forming such a low-melting point metal halide are at least one metal selected from the group consisting of Si, B, Mo and W, and particularly oxides and nitrides.
なお、本発明における耐食性部材においては、上記高融点の金属ハロゲン化物を形成し得る金属化合物は、前記ガスやプラズマに直接接触する部分の表面から10μm以上の厚みで存在することが望ましい。 In the corrosion-resistant member of the present invention, the metal compound capable of forming the high melting point metal halide is preferably present in a thickness of 10 μm or more from the surface of the portion in direct contact with the gas or plasma.
また、上記の低融点の金属ハロゲン化物を形成し得る金属化合物量が金属換算で1重量%以下の層は、表面から1μm以上存在することが望ましい。 Further, it is desirable that the layer in which the amount of the metal compound capable of forming the low melting point metal halide is 1% by weight or less in terms of metal is 1 μm or more from the surface.
本発明の耐食性部材は、部材全体を上記の高融点の金属ハロゲン化物を形成し得る金属、あるいはその化合物により形成する。 In the corrosion-resistant member of the present invention, the entire member is formed of a metal capable of forming the above-described high melting point metal halide or a compound thereof.
実施例1
表1に示すような種々の化合物からなる直径25mm、厚み3mmの大きさの焼結体、ガラス体、単結晶からなる試料を作成した。なお、蛍光X線による測定の結果、いずれの試料もSi、B、Mo及びWの不純物量の合計は0.5重量%以下であった。
Example 1
Samples made of a sintered body, a glass body, and a single crystal having a diameter of 25 mm and a thickness of 3 mm made of various compounds as shown in Table 1 were prepared. As a result of measurement by fluorescent X-rays, the total amount of impurities of Si, B, Mo and W was 0.5 wt% or less in any sample.
この試料をリアクティブイオンエッチング装置内に設置して、この装置内にCF4(90%)+O2(10%)の混合ガス、またはSF6ガスを導入して装置内圧力を7〜10Paに保持した。そして、13.56MHz、1kWの高周波を導入してプラズマを発生させ、試料をプラズマに接触させた。なお、試料温度は室温(25℃)に設定した。 This sample was placed in a reactive ion etching apparatus, and a mixed gas of CF 4 (90%) + O 2 (10%) or SF 6 gas was introduced into the apparatus, and the pressure in the apparatus was adjusted to 7 to 10 Pa. Retained. Then, plasma was generated by introducing high frequency of 13.56 MHz and 1 kW, and the sample was brought into contact with the plasma. The sample temperature was set to room temperature (25 ° C.).
上記の条件下で、3時間エッチング処理を行った後の表面状態を目視及び光学顕微鏡で観察した。なお、エッチング速度は試料の重量減少から算出した。結果を表1に示した。
表1の結果から明らかなように、B、Si、Ti、V、Gaの化合物からなる試料No.1〜5はいずれもエッチング速度が高く、耐食性に劣るものであることが判る。なお、Al化合物については、平滑面に対して小さな窪みが生じており、これにより曇りが生じていた。また、Ca、Niではややエッチング速度が大きかった。室温状態では、特に、Sr、Mg、Ba、Ce、La、Sc、Y、Yb、Cr、Co、Feがエッチング
速度20Å/min以下の優れた耐食性を示した。
As is apparent from the results in Table 1, the sample Nos. Made of B, Si, Ti, V, and Ga compounds were used. It can be seen that all of Nos. 1 to 5 are high in etching rate and inferior in corrosion resistance. In addition, about the Al compound, the small hollow has arisen with respect to the smooth surface, and, thereby, cloudiness had arisen. Moreover, Ca and Ni had a slightly high etching rate. In the room temperature state, in particular, Sr, Mg, Ba, Ce, La, Sc, Y, Yb, Cr, Co, and Fe exhibited excellent corrosion resistance with an etching rate of 20 kg / min or less.
実施例2
実施例1と同様にして作製した表2の各試料に対して、RIEプラズマエッチング装置内にHClガスを導入し、高周波にてプラズマを発生させ、室温で塩素プラズマ照射テストをおこなった。装置内圧力は10Paに保持し、13.56MHz、1kWの高周波を利用した。
Example 2
For each sample of Table 2 produced in the same manner as in Example 1, HCl gas was introduced into the RIE plasma etching apparatus, plasma was generated at a high frequency, and a chlorine plasma irradiation test was performed at room temperature. The pressure inside the apparatus was maintained at 10 Pa, and a high frequency of 13.56 MHz and 1 kW was used.
評価法は実施例1と同様である。
この場合も、B、Si、Ti、V、Ga、Al、Feの化合物からなる試料No.20〜23、27及び28はエッチング速度が高く、耐食性に劣る結果となった。また、Al化合物の内AlNはAl2O3と比較して極端に高いエッチング速度を示した。塩素プラズマに対しては、特に、Sr、Mg、Ca、Ce、Sc、Y、Crがエッチング速度20Å/min以下の優れた耐食性を示した。 Also in this case, sample Nos. Made of B, Si, Ti, V, Ga, Al, and Fe compounds are used. 20-23, 27 and 28 had a high etching rate and resulted in inferior corrosion resistance. In addition, AlN in the Al compound showed an extremely high etching rate as compared with Al 2 O 3 . For chlorine plasma, in particular, Sr, Mg, Ca, Ce, Sc, Y, and Cr showed excellent corrosion resistance with an etching rate of 20 Å / min or less.
実施例3
実施例1と同様にして作製した表3の各試料に対して、RIEプラズマエッチング装置内にHBrガスを導入し、高周波にてプラズマを発生させ、室温で臭素プラズマ照射テストをおこなった。装置内圧力は10Paに保持し、13.56MHz、1kWの高周波を利用した。
Example 3
HBr gas was introduced into the RIE plasma etching apparatus, plasma was generated at a high frequency, and a bromine plasma irradiation test was performed at room temperature for each sample of Table 3 produced in the same manner as in Example 1. The pressure inside the apparatus was maintained at 10 Pa, and a high frequency of 13.56 MHz and 1 kW was used.
評価法は実施例1と同様である。
この場合も、B、Si、Ti、Ga、Al、Feの化合物からなる試料No.32〜34、37及び38はエッチング速度が高く、耐食性に劣る結果となった。臭素プラズマに対しては、特に、Mg、Sc、Ni、Y、Ybがエッチング速度20Å/min以下の優れた耐食性を示した。 Also in this case, the sample No. made of a compound of B, Si, Ti, Ga, Al, Fe is used. 32-34, 37 and 38 had high etching rates and resulted in poor corrosion resistance. Especially for bromine plasma, Mg, Sc, Ni, Y, and Yb showed excellent corrosion resistance with an etching rate of 20 kg / min or less.
実施例4
実施例1と同様にして作製した表4の各試料に対して、RIEプラズマエッチング装置内にHIガスを導入し、高周波にてプラズマを発生させ、室温でヨウ素プラズマ照射テストをおこなった。装置内圧力は10Paに保持し、13.56MHz、1kWの高周波を利用した。評価法は実施例1と同様である。
For each sample shown in Table 4 produced in the same manner as in Example 1, HI gas was introduced into the RIE plasma etching apparatus, plasma was generated at a high frequency, and an iodine plasma irradiation test was performed at room temperature. The pressure inside the apparatus was maintained at 10 Pa, and a high frequency of 13.56 MHz and 1 kW was used. The evaluation method is the same as in Example 1.
その結果、B、Si、Ti、Ga、Y、Al、Feの化合物からなる試料No.42〜44、49及び50はエッチング速度が高く、耐食性に劣る。Y化合物は、他のハロゲンプラズマに対しては優れた耐食性を示したが、ヨウ素化合物については融点が低く、ヨウ素ガス及びプラズマに対する耐食材としては好ましくない。逆に、他のハロゲンプラズマ中では腐食が進行するV系の材料はヨウ素化合物の融点が高いため、ヨウ素プラズマに対して優れた耐食性を示した。 As a result, sample Nos. Made of B, Si, Ti, Ga, Y, Al, and Fe compounds were obtained. 42-44, 49 and 50 have a high etching rate and are inferior in corrosion resistance. The Y compound showed excellent corrosion resistance against other halogen plasmas, but the iodine compound has a low melting point and is not preferable as a corrosion resistant material against iodine gas and plasma. On the other hand, V-based materials that undergo corrosion in other halogen plasmas showed excellent corrosion resistance against iodine plasma because of the high melting point of iodine compounds.
ヨウ素プラズマに対しては、特に、V、Sr、Mg、Ce、LaおよびNiがエッチング速度20Å/min以下の優れた耐食性を示した。 Especially for iodine plasma, V, Sr, Mg, Ce, La and Ni showed excellent corrosion resistance with an etching rate of 20 Å / min or less.
実施例5
実施例1と同様にして作製した表5の各試料に対して、RIEプラズマエッチング装置にて、SF6 プラズマに300℃で曝し、実験1と同様な評価を行いエッチング速度を比較した。
Each sample shown in Table 5 prepared in the same manner as in Example 1 was exposed to SF6 plasma at 300 ° C. with an RIE plasma etching apparatus, and the same evaluation as in Experiment 1 was performed to compare the etching rates.
表5の結果では、実施例1と同様にB、Si、Ti等の化合物では耐食性が低く、使用に耐えないものであった。なお、300℃の使用温度においては、特に、Mg、Ce、La、Sc、Y、Ybがエッチング速度20Å/min以下の優れた耐食性を示した。 As shown in Table 5, the compounds such as B, Si, Ti, etc., as in Example 1, had low corrosion resistance and could not be used. In particular, at a use temperature of 300 ° C., Mg, Ce, La, Sc, Y, and Yb exhibited excellent corrosion resistance with an etching rate of 20 以下 / min or less.
実施例6
実施例1と同様にして、表6の金属化合物について、Si、B、Mo及びWの含有量の異なる試料を作製して、300℃でSF6プラズマに曝し、実施例1と同様にして評価を行い、その結果を示した。
In the same manner as in Example 1, samples having different contents of Si, B, Mo, and W were prepared for the metal compounds in Table 6, exposed to SF 6 plasma at 300 ° C., and evaluated in the same manner as in Example 1. And showed the result.
表6の結果から明らかなように、これらの金属が金属換算で1重量%を越えて含有される試料No.65、68ではエッチング速度が極端に大きくなり、耐食性が低下することが判った。 As is apparent from the results in Table 6, the sample No. containing these metals in excess of 1% by weight in terms of metal. In 65 and 68, it was found that the etching rate was extremely increased and the corrosion resistance was lowered.
実施例7
実施例1と同様にして、表7の金属化合物についてSi、B、Mo及びWの含有量の異なる試料を作製して、300℃でHClプラズマに曝し、実施例1と同様にして評価を行い、その結果を示した。
Samples having different contents of Si, B, Mo and W were prepared for the metal compounds in Table 7 in the same manner as in Example 1, and exposed to HCl plasma at 300 ° C., and evaluated in the same manner as in Example 1. The result was shown.
表7の結果から明らかなように、これらの金属が金属換算で1重量%を越えて含有される試料No.71、73ではエッチング速度が極端に大きくなり、耐食性が低下することが判った。Mo、Wの塩化物融点はフッ化物と比較すると高いが、使用温度よりは低いため、やはり耐食性を低下させていることが判る。 As is apparent from the results in Table 7, the sample No. containing these metals exceeding 1% by weight in terms of metal. In 71 and 73, it was found that the etching rate was extremely increased and the corrosion resistance was lowered. Although the chloride melting points of Mo and W are higher than those of fluoride, it is found that the corrosion resistance is also lowered because it is lower than the operating temperature.
実施例8
実施例1と同様にして、表8の化合物についてB及びWの含有量の異なる試料を作製して、300℃でHBrプラズマに曝し、実施例1と同様にして評価を行い、その結果を示した。
Samples having different B and W contents for the compounds in Table 8 were prepared in the same manner as in Example 1, exposed to HBr plasma at 300 ° C., evaluated in the same manner as in Example 1, and the results are shown. It was.
表8の結果から明らかなように、これらの金属が1重量%を越えて含有されると、エッチング速度が極端に大きくなり、耐食性が低下することが判った。 As is apparent from the results in Table 8, it was found that when these metals contained more than 1% by weight, the etching rate was extremely increased and the corrosion resistance was lowered.
Wの臭化物融点はフッ化物と比較すると高いが、使用温度よりは低いため、やはり耐食性を低下させていることが判る。 It can be seen that the bromide melting point of W is higher than that of fluoride, but is lower than the operating temperature, so that the corrosion resistance is still lowered.
実施例9
実施例1と同様にして、表9の化合物についてB及びMoの含有量の異なる試料を作製して、300℃でHClプラズマに曝し、実施例1と同様にして評価を行い、その結果を示した。
In the same manner as in Example 1, samples with different contents of B and Mo were prepared for the compounds in Table 9, exposed to HCl plasma at 300 ° C., evaluated in the same manner as in Example 1, and the results are shown. It was.
表9の結果から明らかなように、これらの金属が1重量%を越えて含有される試料No.78では、エッチング速度が極端に大きくなり、耐食性が低下することが判った。Moのヨウ化物融点はフッ化物と比較すると高いが、使用温度よりは低いため、やはり耐食性を低下させていることが判る。 As is apparent from the results in Table 9, sample No. 1 containing these metals in an amount exceeding 1% by weight. In 78, it was found that the etching rate was extremely increased and the corrosion resistance was lowered. Although the iodide melting point of Mo is higher than that of fluoride, it can be seen that the corrosion resistance is also lowered because it is lower than the operating temperature.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006032978A JP4925681B2 (en) | 1995-12-28 | 2006-02-09 | Corrosion resistant material |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1995342297 | 1995-12-28 | ||
JP34229795 | 1995-12-28 | ||
JP2006032978A JP4925681B2 (en) | 1995-12-28 | 2006-02-09 | Corrosion resistant material |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20156796A Division JPH09235685A (en) | 1995-12-28 | 1996-07-31 | Corrosion resistant member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006157043A true JP2006157043A (en) | 2006-06-15 |
JP4925681B2 JP4925681B2 (en) | 2012-05-09 |
Family
ID=36634854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006032978A Expired - Fee Related JP4925681B2 (en) | 1995-12-28 | 2006-02-09 | Corrosion resistant material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4925681B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014522916A (en) * | 2011-08-10 | 2014-09-08 | インテグリス・インコーポレーテッド | AlON coated substrate with optional yttria coating layer |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5487646A (en) * | 1977-12-20 | 1979-07-12 | Ibm | Selective etching method |
JPH0285358A (en) * | 1987-10-24 | 1990-03-26 | Tadahiro Omi | Pressure reducing device |
JPH04128393A (en) * | 1990-09-19 | 1992-04-28 | Yuuha Mikakutou Seimitsu Kogaku Kenkyusho:Kk | Strain-free precision processing device by radical reaction |
JPH04191379A (en) * | 1990-11-27 | 1992-07-09 | Applied Materials Japan Kk | Plasma treating device |
JPH05251365A (en) * | 1991-05-28 | 1993-09-28 | Ngk Insulators Ltd | Corrosion-resistant member |
JPH065736A (en) * | 1992-06-16 | 1994-01-14 | Sumitomo Electric Ind Ltd | Aluminum nitride ceramic board |
JPH06244118A (en) * | 1993-02-18 | 1994-09-02 | Canon Inc | Method and equipment for continuously forming functional deposition film of large area by microwave plasma cvd method |
JPH06244117A (en) * | 1993-02-18 | 1994-09-02 | Canon Inc | Method and equipment for continuously forming functional deposition film of large area by microwave plasma cvd method |
JPH06298596A (en) * | 1993-01-28 | 1994-10-25 | Applied Materials Inc | Method and device for protecting electrically conductive surface in plasma processing reactor |
JPH06349810A (en) * | 1993-06-02 | 1994-12-22 | Hitachi Electron Eng Co Ltd | Vapor phase reaction apparatus |
JPH07153821A (en) * | 1993-11-30 | 1995-06-16 | Kyocera Corp | Susceptor for semiconductor process and its manufacture |
JPH0871408A (en) * | 1994-03-15 | 1996-03-19 | Applied Materials Inc | Protection of ceramic for heating metal surface of plasma treating chamber exposed to environment of chemical attack gas and method of protecting said heating metal surface |
JPH0885358A (en) * | 1994-09-16 | 1996-04-02 | Tochigi Fuji Ind Co Ltd | Hub clutch |
-
2006
- 2006-02-09 JP JP2006032978A patent/JP4925681B2/en not_active Expired - Fee Related
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5487646A (en) * | 1977-12-20 | 1979-07-12 | Ibm | Selective etching method |
JPH0285358A (en) * | 1987-10-24 | 1990-03-26 | Tadahiro Omi | Pressure reducing device |
JPH04128393A (en) * | 1990-09-19 | 1992-04-28 | Yuuha Mikakutou Seimitsu Kogaku Kenkyusho:Kk | Strain-free precision processing device by radical reaction |
JPH04191379A (en) * | 1990-11-27 | 1992-07-09 | Applied Materials Japan Kk | Plasma treating device |
JPH05251365A (en) * | 1991-05-28 | 1993-09-28 | Ngk Insulators Ltd | Corrosion-resistant member |
JPH065736A (en) * | 1992-06-16 | 1994-01-14 | Sumitomo Electric Ind Ltd | Aluminum nitride ceramic board |
JPH06298596A (en) * | 1993-01-28 | 1994-10-25 | Applied Materials Inc | Method and device for protecting electrically conductive surface in plasma processing reactor |
JPH06244118A (en) * | 1993-02-18 | 1994-09-02 | Canon Inc | Method and equipment for continuously forming functional deposition film of large area by microwave plasma cvd method |
JPH06244117A (en) * | 1993-02-18 | 1994-09-02 | Canon Inc | Method and equipment for continuously forming functional deposition film of large area by microwave plasma cvd method |
JPH06349810A (en) * | 1993-06-02 | 1994-12-22 | Hitachi Electron Eng Co Ltd | Vapor phase reaction apparatus |
JPH07153821A (en) * | 1993-11-30 | 1995-06-16 | Kyocera Corp | Susceptor for semiconductor process and its manufacture |
JPH0871408A (en) * | 1994-03-15 | 1996-03-19 | Applied Materials Inc | Protection of ceramic for heating metal surface of plasma treating chamber exposed to environment of chemical attack gas and method of protecting said heating metal surface |
JPH0885358A (en) * | 1994-09-16 | 1996-04-02 | Tochigi Fuji Ind Co Ltd | Hub clutch |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014522916A (en) * | 2011-08-10 | 2014-09-08 | インテグリス・インコーポレーテッド | AlON coated substrate with optional yttria coating layer |
JP2017128811A (en) * | 2011-08-10 | 2017-07-27 | インテグリス・インコーポレーテッド | BASE INCLUDING AlON COATING HAVING ANY YTTRIA COATING LAYER |
US9761417B2 (en) | 2011-08-10 | 2017-09-12 | Entegris, Inc. | AION coated substrate with optional yttria overlayer |
US10840067B2 (en) | 2011-08-10 | 2020-11-17 | Entegris, Inc. | AlON coated substrate with optional yttria overlayer |
Also Published As
Publication number | Publication date |
---|---|
JP4925681B2 (en) | 2012-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4985928B2 (en) | Multi-layer coated corrosion resistant member | |
JP3619330B2 (en) | Components for plasma process equipment | |
KR20180123992A (en) | Metal-oxy-fluoride films for chamber components | |
JP2014040634A (en) | Powder thermal spray material of rare-earth element oxyfluoride, and thermal spray member of rare-earth element oxyfluoride | |
JP2004146787A (en) | Method for etching high dielectric constant material, and for cleaning deposition chamber for high dielectric constant material | |
JP2009256800A (en) | Corrosion-resistant aluminum article for semiconductor processing equipment | |
JP3559426B2 (en) | Corrosion resistant materials | |
JPH1045467A (en) | Corrosion resistant member | |
JP3488373B2 (en) | Corrosion resistant materials | |
JP3046288B1 (en) | Components for semiconductor / liquid crystal manufacturing equipment | |
JP2008060171A (en) | Method of cleaning semiconductor processing equipment | |
JP6281507B2 (en) | Rare earth element oxyfluoride powder sprayed material and method for producing rare earth element oxyfluoride sprayed member | |
JP4166386B2 (en) | Corrosion resistant member and manufacturing method thereof | |
JP3623054B2 (en) | Components for plasma process equipment | |
JP2000239067A (en) | Oxyhalide-based member | |
JP2006157043A (en) | Corrosion resistant member | |
JP3706488B2 (en) | Corrosion-resistant ceramic material | |
JP3659435B2 (en) | Corrosion resistant member, plasma processing apparatus, semiconductor manufacturing apparatus, liquid crystal manufacturing apparatus, and discharge vessel. | |
JP4126461B2 (en) | Components for plasma process equipment | |
JPH09235685A (en) | Corrosion resistant member | |
JPH11279761A (en) | Corrosion resistant member | |
JP2002222803A (en) | Corrosion resistant member for manufacturing semiconductor | |
JP4018856B2 (en) | Vacuum chamber components | |
JP3426825B2 (en) | Member for plasma processing apparatus and plasma processing apparatus | |
JP4012714B2 (en) | Corrosion resistant material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080910 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090309 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100413 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100608 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110517 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110714 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120110 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120207 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150217 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |