JP2006154358A - Automatic focusing device - Google Patents
Automatic focusing device Download PDFInfo
- Publication number
- JP2006154358A JP2006154358A JP2004345506A JP2004345506A JP2006154358A JP 2006154358 A JP2006154358 A JP 2006154358A JP 2004345506 A JP2004345506 A JP 2004345506A JP 2004345506 A JP2004345506 A JP 2004345506A JP 2006154358 A JP2006154358 A JP 2006154358A
- Authority
- JP
- Japan
- Prior art keywords
- objective lens
- focus
- pinholes
- measured
- ccd camera
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Automatic Focus Adjustment (AREA)
- Microscoopes, Condenser (AREA)
Abstract
Description
この発明は、液晶や半導体部材の製膜状態の観察等に用いられるオートフォーカス装置に関するものである。 The present invention relates to an autofocus device used for observing a film forming state of a liquid crystal or a semiconductor member.
液晶や半導体のパターン製膜後の観察や加工装置には顕微鏡が使用されている。この場合、実際の対象物の映像に良好なコントラストを得る必要があり、このため、顕微鏡のフォーカス位置まで顕微鏡を移動させていた。そして、通常の動作では、観察移動後観察対象地点まで移動後、フォーカス動作することになる。 A microscope is used for an observation and processing apparatus after pattern formation of a liquid crystal or a semiconductor. In this case, it is necessary to obtain a good contrast in the image of the actual object. For this reason, the microscope is moved to the focus position of the microscope. In a normal operation, the focus operation is performed after moving to the observation target point after the observation movement.
しかしながら、上記方式では、移動後の対物レンズと対象物に対する高さ方向位置関係が不明の為、移動開始地点から、移動終点地点までの最大高さの差を見込んだ上方より最良像点を探す必要があり、フォーカス動作に時間がかかっていた。特に液晶分野では、ガラスの大型化により、検査時間、加工時間の短縮により生産効率を上げてコストダウンすることが重要となっている。 However, in the above method, since the positional relationship in the height direction with respect to the objective lens and the object after movement is unknown, the best image point is searched from above in consideration of the maximum height difference from the movement start point to the movement end point. It was necessary and the focus operation took a long time. Particularly in the liquid crystal field, it is important to increase the production efficiency and reduce the cost by shortening the inspection time and the processing time by increasing the size of the glass.
この発明は、上記従来の欠点を解決するためになされたものであって、その目的は観察対象や加工対象移動中に追従式のフォーカス動作を行い事前に対物レンズと対象物の距離をある範囲内に制限し、静止後最終的なフォーカス動作を行う距離を短くし、フォーカス時間の短縮を図るオートフォーカス装置を提供することにある。 The present invention has been made to solve the above-mentioned conventional drawbacks, and its purpose is to perform a tracking-type focusing operation while moving an observation object or a processing object and to set a distance between the objective lens and the object in advance. It is an object of the present invention to provide an autofocus device that is limited to the inner distance, shortens the distance for performing a final focus operation after being stopped, and shortens the focus time.
そこで請求項1のオートフォーカス装置は、光軸方向及びこれと垂直方向に距離の異なる2個のピンホール7A、7Bを、対物レンズ2を介して被測定物1の平坦面1aに投影する投影手段30と、上記2個のピンホール7A、7Bの段差と対物レンズ2の倍率とに基づいて被測定物側の投影像のフォーカス位置の差を演算する演算手段11とを備えたことを特徴としている。 Therefore, the autofocus device according to the first aspect projects the two pinholes 7A and 7B having different distances in the optical axis direction and the direction perpendicular to the optical axis direction onto the flat surface 1a of the object 1 to be measured via the objective lens 2. And means 30 and calculation means 11 for calculating the difference in focus position of the projected image on the object side based on the step between the two pinholes 7A and 7B and the magnification of the objective lens 2. It is said.
請求項2のオートフォーカス装置は、上記投影手段30は2個のCCDカメラ8、9を有し、一方のCCDカメラ8を対物レンズ2に対する相対的移動時の追従用粗フォーカス用とし、他方のCCDカメラ9を対物レンズ2に対する相対的静止時の微調用フォーカスとしたことを特徴としている。 In the autofocus device according to a second aspect, the projection means 30 has two CCD cameras 8 and 9, and one CCD camera 8 is used for the coarse focus for tracking at the time of relative movement with respect to the objective lens 2, and the other The CCD camera 9 is characterized by a fine adjustment focus at the time of stationary relative to the objective lens 2.
請求項3のオートフォーカス装置は、上記投影手段30は1個のCCDカメラを有し、2個のピンホールの照明装置点灯時には、対物レンズ2に対する相対的移動時の追従用粗フォーカスとなり、被測定物1の観察照明点灯時には、対物レンズ2に対する相対的静止時の微調用フォーカスとなることを特徴としている。 In the autofocus device according to a third aspect, the projection means 30 has one CCD camera, and when the two pinhole illumination devices are turned on, it becomes a coarse focus for tracking at the time of relative movement with respect to the objective lens 2, and When the observation illumination of the measurement object 1 is turned on, it becomes a fine adjustment focus at the time of stationary relative to the objective lens 2.
請求項4のオートフォーカス装置は、2個のピンホール7A、7Bの相対位置を光軸方向に沿って変化させる移動機構を設けたことを特徴としている。 The autofocus device according to a fourth aspect is characterized in that a moving mechanism is provided for changing the relative positions of the two pinholes 7A and 7B along the optical axis direction.
請求項1のオートフォーカス装置によれば、ピンホールの像が対物レンズを介して被測定物側に形成されると、2個のピンホールの像は対物レンズと被測定物との間との距離によりその大きさや輝度が変わる。このため、ピンホールの光軸方向の中間点を被測定面と共役の関係とすれば、およそ2個のピンホールの大きさが等しくなった位置がおよその合焦点とみなすことができる。すなわち、2個のピンホールを用いると、双方の大きさの違いから対物レンズが合焦点に対してどちらの方向にずれているかを確認できる。このため、合焦点までのフォーカス合わせを簡単に行うことができる。 According to the autofocus device of the first aspect, when the pinhole image is formed on the measured object side through the objective lens, the two pinhole images are formed between the objective lens and the measured object. The size and brightness change depending on the distance. For this reason, if the intermediate point of the pinhole in the optical axis direction is conjugate with the surface to be measured, a position where the size of about two pinholes is equal can be regarded as an approximate focal point. That is, when two pinholes are used, it can be confirmed in which direction the objective lens is displaced with respect to the in-focus point from the difference in size between the two. For this reason, it is possible to easily perform focusing to the in-focus point.
請求項2のオートフォーカス装置によれば、一方のCCDカメラを対物レンズに対する相対的移動時の追従用粗フォーカス用とし、他方のCCDカメラを対物レンズに対する相対的静止時の微調用フォーカスとしている。このため、被測定物に対して追従式のフォーカス動作を行い、事前に対物レンズと対象物の距離をある範囲内に制限し、静止後最終的なフォーカス動作を行う距離を短くし、フォーカス時間の短縮を図ることができる。 According to the autofocus device of the second aspect, one CCD camera is used for a coarse focus for tracking when moving relative to the objective lens, and the other CCD camera is used for a fine adjustment focus when stationary relative to the objective lens. For this reason, follow-up focus operation is performed on the object to be measured, the distance between the objective lens and the object is limited within a certain range in advance, and the distance for the final focus operation after stationary is shortened, the focus time Can be shortened.
請求項3のオートフォーカス装置によれば、1個のCCDカメラにて上記請求項2のオートフォーカス装置と同様の作用効果を発揮することができる。しかも、CCDカメラが1個であるため、装置のコンパクト化及び低コスト化を図ることができる。 According to the autofocus device of the third aspect, the same effect as that of the autofocus device of the second aspect can be exhibited with one CCD camera. In addition, since there is only one CCD camera, it is possible to reduce the size and cost of the apparatus.
請求項4のオートフォーカス装置によれば、2個のピンホールの相対位置を光軸方向に沿って変化させる移動機構を設けたので、対物レンズの倍率や被測定面のたわみ量に従ってピンホールの差(段差)変更することができる。これにより、種々の被測定物に対応するようにでき、この装置を使用した検査等における観察の作業効率の向上を図ることができる。 According to the autofocus device of the fourth aspect, since the moving mechanism for changing the relative position of the two pinholes along the optical axis direction is provided, the pinhole of the pinhole is adjusted according to the magnification of the objective lens and the amount of deflection of the surface to be measured. The difference (step) can be changed. Thereby, it can respond to various to-be-measured objects, and can aim at the improvement of the work efficiency of observation in the test | inspection etc. which use this apparatus.
次に、この発明のオートフォーカス装置の具体的な実施の形態について、図面を参照しつつ詳細に説明する。図1はこのオートフォーカス装置の簡略図を示す。図1はオートフォーカス装置の光学的な構成を示している。このオートフォーカス装置は、光学系として、対象物体(被測定物)1の映像を観察する為の無限遠補正顕微鏡対物レンズ2と、対象物体1の照明装置4と、結像レンズ5等と備え、さらに、光路を2つに分ける為のビームスプリッター3A、3B、3C、6と、追従用粗動フォーカス用CCDカメラ8と、最終微調フォーカス用CCDカメラ9と、ピンホール(段差ピンホール)7A、7Bの照明装置(ピンホール照明)10とを備えている。 Next, specific embodiments of the autofocus device of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a simplified diagram of this autofocus device. FIG. 1 shows an optical configuration of the autofocus device. This autofocus device includes, as an optical system, an infinity-corrected microscope objective lens 2 for observing an image of a target object (object to be measured) 1, an illumination device 4 for the target object 1, an imaging lens 5, and the like. Further, the beam splitters 3A, 3B, 3C, and 6 for dividing the optical path into two, the follow-up coarse focus CCD camera 8, the final fine focus CCD camera 9, and the pinhole (step pinhole) 7A , 7B illumination device (pinhole illumination) 10.
この場合、光軸方向及びこれと垂直方向に距離の異なる2個のピンホール7A、7Bを、対物レンズ2を介して被測定物1の平坦面1aに投影する投影手段30と、上記2個のピンホール7A、7Bの段差(差)と対物レンズ2の倍率とに基づいて被測定物側の投影像のフォーカス位置の差を演算する演算手段11とを備えることになる。 In this case, the projection means 30 for projecting the two pinholes 7A and 7B having different distances in the optical axis direction and the direction perpendicular thereto onto the flat surface 1a of the object to be measured 1 through the objective lens 2, and the above two pieces The calculation means 11 for calculating the difference in the focus position of the projected image on the measured object side based on the step (difference) between the pinholes 7A and 7B and the magnification of the objective lens 2 is provided.
すなわち、投影手段30は、照明装置10と、追従用粗動フォーカス用CCDカメラ8と、ビームスプリッター3A、6と、結像レンズ5と、ビームスプリッター3Bと、対物レンズ2と、照明装置4と、ビームスプリッター3Cと、最終微調フォーカス用CCDカメラ9とを備える。この際、カメラCCD面、段差ピンホール7A、7Bの光軸方向の中間位置、及び対物レンズ2のフォーカス面(対象物)とは、光学的に共役な配置としておく。段差ピンホール7A、7Bの像は、対物レンズ2の上下に伴いCCD面上にフォーカス状態の異なる像を2個結ぶことになる。なお、図1において、13は後述するZ軸制御ドライバーである。 That is, the projection unit 30 includes the illumination device 10, the follow-up coarse focus CCD camera 8, the beam splitters 3A and 6, the imaging lens 5, the beam splitter 3B, the objective lens 2, and the illumination device 4. A beam splitter 3C and a CCD camera 9 for final fine focus. At this time, the camera CCD surface, the intermediate position of the step pinholes 7A and 7B in the optical axis direction, and the focus surface (object) of the objective lens 2 are arranged optically conjugate. The images of the step pinholes 7A and 7B form two images with different focus states on the CCD surface as the objective lens 2 is moved up and down. In FIG. 1, reference numeral 13 denotes a Z-axis control driver described later.
上記のように構成されたオートフォーカス装置では、顕微鏡光学系内のビームスプリッターを介してオートフォーカス光学系を通常の顕微鏡光学系システムの中に、組み込んで使用することができる。すなわち、段差ピンホール7A、7Bは、ピンホール照明10により照明され、その2つのピンホール7A、7Bの輝点がビームスプリッター3A、ビームスプリッター6、結像レンズ5、ビームスプリッター3B、対物レンズ2を介して被測定物1の面に投影される。この際、被被測定面側の投影像のフォーカス位置の差ΔXは、段差ピンホール7A、7Bの段差ΔSと対物レンズ2の倍率によりきまる。具体的には、例えば、5倍程度の対物レンズ2と段差ΔS10mmでは、およそΔX400ミクロン程度でありこれによりフォーカスの追従範囲が決定される。 In the autofocus device configured as described above, the autofocus optical system can be incorporated into a normal microscope optical system via a beam splitter in the microscope optical system. That is, the step pinholes 7A and 7B are illuminated by the pinhole illumination 10, and the bright spots of the two pinholes 7A and 7B are the beam splitter 3A, the beam splitter 6, the imaging lens 5, the beam splitter 3B, and the objective lens 2. Is projected onto the surface of the DUT 1 via. At this time, the difference ΔX in the focus position of the projected image on the surface to be measured is determined by the step ΔS of the step pinholes 7A and 7B and the magnification of the objective lens 2. Specifically, for example, in the case of the objective lens 2 of about 5 times and the step ΔS10 mm, it is about ΔX400 microns, and the focus follow-up range is thereby determined.
従って急激な段差が無い緩やかな被測定面(平坦面)1aに対しては、XYステージ15(図2参照)が駆動中に、組み込まれた対物レンズ2を被測定面1aに対してフォーカス動作をするように、CCDカメラ8の映像を用いて、演算手段11及び制御手段12にて制御することが可能となる。なお、XYステージ15とは、X軸方向とこれに直交するY軸方向とに移動可能なステージである。 Therefore, for the gentle measurement surface (flat surface) 1a having no sudden step, the integrated objective lens 2 is focused on the measurement surface 1a while the XY stage 15 (see FIG. 2) is being driven. As described above, the calculation unit 11 and the control unit 12 can control the video of the CCD camera 8. The XY stage 15 is a stage that can move in the X-axis direction and the Y-axis direction orthogonal thereto.
演算手段11は、ピンホール7A、7Bの2個の像の大きさや輝度の状態の変化により対物レンズ2の対象物に対する位置変化を計算することができる。また、対物レンズ2に対して対象物動作中でも、このピンホール像は、CCD映像の固定位置に定位し演算処理も簡単に行うことができる。制御手段11は、図2に示すように、2つのピンホール映像を用いてオートフォーカスを制御する為のアルゴリズムを有するCPU16およびその周辺回路よりなっている。ここで、周辺回路とは、ドライバー回路17、パルス発生器18、ビデオ信号入力回路19、A/D変換器20、メモリー回路21、及び通信部22等からなる。 The calculation means 11 can calculate a change in position of the objective lens 2 with respect to the object based on a change in the size and brightness state of the two images of the pinholes 7A and 7B. Further, even while the object is moving with respect to the objective lens 2, the pinhole image is localized at a fixed position of the CCD image, and the arithmetic processing can be easily performed. As shown in FIG. 2, the control means 11 includes a CPU 16 having an algorithm for controlling autofocus using two pinhole images and its peripheral circuits. Here, the peripheral circuit includes a driver circuit 17, a pulse generator 18, a video signal input circuit 19, an A / D converter 20, a memory circuit 21, a communication unit 22, and the like.
すなわち、演算手段11では、映像信号は、ビデオ信号入力回路19を経てAD変換器20にてアナログデータがデジタルデータに変換され、デジタルデータとしてメモリー回路21に入る。データはCPU16で処理されZ軸駆動量が計算され、パルス発生器18、ドライバー回路17を経て駆動信号がZ軸制御ドライバー13(図1参照)からZ軸ステージ14に送られる。制御手段12は、CPUと通信部23を持つことにより、駆動データの表示を行うことができる。また、静止後の制御手段12による画像処理による最終フォーカス駆動量は、通信部23を介して演算手段11に送られる。 That is, in the arithmetic means 11, the video signal is converted into digital data by the AD converter 20 through the video signal input circuit 19, and enters the memory circuit 21 as digital data. The data is processed by the CPU 16 to calculate the Z-axis drive amount, and the drive signal is sent from the Z-axis control driver 13 (see FIG. 1) to the Z-axis stage 14 via the pulse generator 18 and the driver circuit 17. The control means 12 can display drive data by having the CPU and the communication unit 23. Further, the final focus drive amount by the image processing by the control means 12 after being stationary is sent to the calculation means 11 via the communication unit 23.
そして、XYステージ15が停止後は、ピンホール照明10を消灯した後、光源装置4を点灯させる。この際、CCDカメラ9の映像を制御手段12内に内臓した画像キャプチャーボードの画像取込ボード24等で、狭い範囲の映像すなわち少数枚の取り込みパターン画像を用いて高速でフォーカスを実施可能である。 And after the XY stage 15 stops, after turning off the pinhole illumination 10, the light source device 4 is turned on. At this time, it is possible to focus at a high speed using a narrow range of images, that is, a small number of captured pattern images, with the image capture board 24 of the image capture board in which the images of the CCD camera 9 are incorporated in the control means 12. .
次にこの装置を使用した被測定物1の測定方法を説明する。まず、XYステージ動作中、段差ピンホール7A、7Bの映像を被測定面1aに形成する。そして、その像をCCDカメラ8で捕らえて合焦位置の検出しながら高さ方向(上記X軸方向及びY軸方向に直交するZ軸方向)のステージ制御すなわちZ軸制御ドライバー13によるフォーカス制御を行うことで、フォーカス合わせを行う。すなわち、段差ピンホール7A、7Bの像が顕微鏡対物レンズ2を通して被測定面1aに形成されると、2つのピンホール像は顕微鏡対物レンズ2と被測定面1aとの距離によりその大きさや輝度が変わる。また、段差ピンホール7A、7Bの光軸方向の中間点を被測定面1aと共役の関係とすれば、およそ2つのピンホール7A、7Bの大きさが等しくなった位置がおよその合焦点とみなすことができる。そのため、このような2つのピンホール7A、7Bを用いて、双方の大きさの違いから対物レンズ2が合焦点に対してどちらの方向にずれているかを認識できるようにしている。 Next, a method for measuring the DUT 1 using this apparatus will be described. First, during the XY stage operation, images of the step pinholes 7A and 7B are formed on the surface to be measured 1a. The image is captured by the CCD camera 8 and the focus control is performed by the stage control in the height direction (the Z-axis direction orthogonal to the X-axis direction and the Y-axis direction), that is, the focus control by the Z-axis control driver 13 while detecting the in-focus position. Performing focus adjustment. That is, when the images of the step pinholes 7A and 7B are formed on the measured surface 1a through the microscope objective lens 2, the size and brightness of the two pinhole images vary depending on the distance between the microscope objective lens 2 and the measured surface 1a. change. Further, if the intermediate point of the step pinholes 7A and 7B in the optical axis direction is conjugate with the surface to be measured 1a, the positions where the sizes of the two pinholes 7A and 7B are approximately equal to the focal point. Can be considered. Therefore, using such two pinholes 7A and 7B, it is possible to recognize in which direction the objective lens 2 is deviated from the focal point due to the difference in size between the two.
また対象物体1の照明装置4を消灯すれば、ピンホール像のみ2次元CCDカメラにより取得される為、被測定面1aが顕微鏡視野内で平面とみなせれば、ほぼ同一位置に2点が結像するのでCCDカメラ映像の特定位置での処理をすれば良く、パターンの処理等の複雑な処理をする必要が無い。さらに、被測定面1aの下地のパターンがある場合でも、この装置では、2次元CCDの角度をパターン方向に対して傾けることで影響を取り除くこともできる。しかも、対象物の種類により投射する光の波長閾、偏光成分も途中の光学系や光源により変更できる。 If the illumination device 4 of the target object 1 is turned off, only the pinhole image is acquired by the two-dimensional CCD camera. Therefore, if the surface to be measured 1a can be regarded as a plane in the microscope field of view, two points are connected at substantially the same position. Therefore, it is only necessary to perform processing at a specific position of the CCD camera image, and it is not necessary to perform complicated processing such as pattern processing. Further, even when there is a base pattern on the surface to be measured 1a, this apparatus can remove the influence by inclining the angle of the two-dimensional CCD with respect to the pattern direction. In addition, the wavelength threshold value and polarization component of the light to be projected can be changed by an intermediate optical system or light source depending on the type of object.
オートフォーカス装置によれば、この装置を顕微鏡を含む光学システムに設置することにより、顕微鏡と被測定物が測定目標地点までXY方向に相対的に移動している間に、フォーカス追従動作を行わせて、フォーカス位置のZ位置範囲の追い込みを行い、静止後、狭い範囲の映像すなわち少数枚の取り込みパターン画像により処理し、合焦点までのフォーカスを短時間で行うことができる。すなわち、顕微鏡移動中に段差ピンホール7A、7Bの像を用いて合掌範囲の絞込みを行い静止後、ピンホール照明10を消灯し、対象物体(被測定物)1の照明装置4を点灯し、最終微調フォーカス用CCDカメラ9の映像を用いて、高速に合焦させることによりオートフォーカス時間を短縮させることができる。 According to the autofocus device, by installing this device in an optical system including a microscope, a focus follow-up operation is performed while the microscope and the object to be measured are relatively moved in the XY direction to the measurement target point. Thus, the Z position range of the focus position can be tracked and processed after processing in a narrow range of video, that is, a small number of captured pattern images, and focusing to the focal point can be performed in a short time. That is, during the movement of the microscope, using the images of the stepped pinholes 7A and 7B to narrow the palm range, and after resting, the pinhole illumination 10 is turned off, and the illumination device 4 of the target object (object to be measured) 1 is turned on. The autofocus time can be shortened by focusing at high speed using the image of the final fine focus CCD camera 9.
ところで、ピンホール7A、7Bの段差を可変構造とすることも可能であるが、ピンホール7A、7Bの段差を可変とすれば、対物レンズ2の倍率や被測定面1aの面たわみ量に従ってピンホール7A、7Bの段差変更することもできる。これにより、種々の被測定物1の対応するようにでき、この装置を使用した検査等における観察の作業効率の向上を図ることができる。なお、ピンホール7A、7Bの段差を可変構造は、2個のピンホール7A、7Bの相対位置を光軸方向に沿って変化させる移動機構(図示省略)を設けることによって構成することができる。 By the way, the step of the pinholes 7A and 7B can be made variable. However, if the step of the pinholes 7A and 7B is made variable, the pin is pinned according to the magnification of the objective lens 2 and the surface deflection of the surface 1a to be measured. The steps of the holes 7A and 7B can be changed. Thereby, it can respond to the various to-be-measured objects 1, and can aim at the improvement of the work efficiency of observation in the test | inspection etc. which use this apparatus. The structure in which the level difference between the pinholes 7A and 7B is variable can be configured by providing a moving mechanism (not shown) that changes the relative positions of the two pinholes 7A and 7B along the optical axis direction.
また、上記図1に示すオートフォーカス装置では、CCDカメラを2個用いているが、1個のCCDカメラであってもよい。すなわち、1個のCCDカメラを、2個のピンホール7A、7Bの照明装置(ピンホール照明)点灯時には、対物レンズ2に対する相対的移動時の追従用粗フォーカスとして使用し、被測定物1の観察照明点灯時には、対物レンズ2に対する相対的静止時の微調用フォーカスとして使用するようにすればよく、映像の分岐によりXYステージ駆動時及び静止時のフォーカス動作をするようにすればよい。 In the autofocus device shown in FIG. 1, two CCD cameras are used. However, one CCD camera may be used. That is, one CCD camera is used as a coarse focus for tracking at the time of relative movement with respect to the objective lens 2 when the illumination device (pinhole illumination) of the two pinholes 7A and 7B is turned on. When the observation illumination is turned on, it may be used as a fine adjustment focus at the time of stationary relative to the objective lens 2, and the focus operation at the time of driving the XY stage and at the time of stationary may be performed by branching the image.
このように、1個のCCDカメラを使用しても、2個のCCDカメラを使用したのと同様な機能を発揮することができる。しかも、CCDカメラが1個であるため、装置のコンパクト化及び低コスト化を図ることができる。 As described above, even when one CCD camera is used, the same function as that using two CCD cameras can be exhibited. In addition, since there is only one CCD camera, it is possible to reduce the size and cost of the apparatus.
以上にこの発明の具体的な実施の形態について説明したが、この発明は上記形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。例えば、ピンホール照明10と装置照明4の切り替えと移動時用フォーカスのCCDカメラ8及び静止時用フォーカスのCCDカメラ9の切り替えを実施しているが、ビームスプリッター6に対して偏光特性や反射透過に関する波長依存性をもたせて、照明切り替えを省くことも可能である。 Although specific embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the present invention. For example, switching between the pinhole illumination 10 and the device illumination 4 and switching between the CCD camera 8 for moving focus and the CCD camera 9 for stationary focus are performed. It is also possible to eliminate the illumination switching by providing the wavelength dependence.
1・・対象物体(被測定物)、1a・・平坦面(被測定面)、2・・対物レンズ、7A、7B・・ピンポール、8、9・・CCDカメラ、11・・演算手段、30・・投影手段 1 .... Target object (object to be measured), 1a ... Flat surface (surface to be measured) 2 .... Objective lens, 7A, 7B ... Pin pole, 8,9 ... CCD camera, 11 .... Calculation means, 30 ..Projection means
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004345506A JP2006154358A (en) | 2004-11-30 | 2004-11-30 | Automatic focusing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004345506A JP2006154358A (en) | 2004-11-30 | 2004-11-30 | Automatic focusing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006154358A true JP2006154358A (en) | 2006-06-15 |
Family
ID=36632750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004345506A Pending JP2006154358A (en) | 2004-11-30 | 2004-11-30 | Automatic focusing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006154358A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019178241A1 (en) | 2018-03-14 | 2019-09-19 | Nanotronics Imaging, Inc. | Systems, devices and methods for automatic microscopic focus |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62143010A (en) * | 1985-12-17 | 1987-06-26 | Olympus Optical Co Ltd | Focus detecting device |
JPS63220521A (en) * | 1987-03-10 | 1988-09-13 | Canon Inc | Focusing device |
JPH0545573A (en) * | 1991-08-09 | 1993-02-23 | Olympus Optical Co Ltd | Focus detecting device |
JPH1184252A (en) * | 1997-09-04 | 1999-03-26 | Olympus Optical Co Ltd | Automatic focusing microscope |
JP2002156578A (en) * | 2000-11-20 | 2002-05-31 | Olympus Optical Co Ltd | Focus detector as well as objective lens, optical microscope or optical test apparatus having the same |
JP2003241079A (en) * | 2002-02-22 | 2003-08-27 | Mitsutoyo Corp | Image observing device |
-
2004
- 2004-11-30 JP JP2004345506A patent/JP2006154358A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62143010A (en) * | 1985-12-17 | 1987-06-26 | Olympus Optical Co Ltd | Focus detecting device |
JPS63220521A (en) * | 1987-03-10 | 1988-09-13 | Canon Inc | Focusing device |
JPH0545573A (en) * | 1991-08-09 | 1993-02-23 | Olympus Optical Co Ltd | Focus detecting device |
JPH1184252A (en) * | 1997-09-04 | 1999-03-26 | Olympus Optical Co Ltd | Automatic focusing microscope |
JP2002156578A (en) * | 2000-11-20 | 2002-05-31 | Olympus Optical Co Ltd | Focus detector as well as objective lens, optical microscope or optical test apparatus having the same |
JP2003241079A (en) * | 2002-02-22 | 2003-08-27 | Mitsutoyo Corp | Image observing device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019178241A1 (en) | 2018-03-14 | 2019-09-19 | Nanotronics Imaging, Inc. | Systems, devices and methods for automatic microscopic focus |
EP3765885A4 (en) * | 2018-03-14 | 2022-01-26 | Nanotronics Imaging, Inc. | Systems, devices and methods for automatic microscopic focus |
US11294146B2 (en) | 2018-03-14 | 2022-04-05 | Nanotronics Imaging, Inc. | Systems, devices, and methods for automatic microscopic focus |
US11656429B2 (en) | 2018-03-14 | 2023-05-23 | Nanotronics Imaging, Inc. | Systems, devices, and methods for automatic microscopic focus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8836943B2 (en) | Workpiece alignment device | |
JP6643328B2 (en) | Optical system for producing lithographic structures | |
JPH05264221A (en) | Device for detecting mark position for semiconductor exposure device and positioning deice for semiconductor exposure device using the same | |
JP2008152065A5 (en) | ||
KR20040002540A (en) | Apparatus and method of detecting a mark position | |
JP5208896B2 (en) | Defect inspection apparatus and method | |
JPH1123952A (en) | Automatic focusing device and laser beam machining device using the same | |
JP2009053485A (en) | Automatic focusing device, automatic focusing method, and measuring device | |
JP2006154358A (en) | Automatic focusing device | |
JP2010109220A (en) | Maskless exposure device and maskless exposure method | |
JP5145698B2 (en) | Microscope focus detection apparatus and microscope having the same | |
JP2008046362A (en) | Optical device | |
JP2010008458A (en) | Optical measuring instrument and pattern formed on projection plate | |
US7580121B2 (en) | Focal point detection apparatus | |
JP4384446B2 (en) | Autofocus method and apparatus | |
KR101846189B1 (en) | Apparatus and method for adjusting the focus automatically | |
JPH09230250A (en) | Automatic focusing device for optical microscope | |
JP2005338255A (en) | Autofocusing device and microscope using the same | |
JP2008139513A (en) | Focusing state output device and optical equipment | |
JP4684646B2 (en) | Autofocus method | |
KR100758837B1 (en) | microscope possible for controlling auto focus | |
JP2003315666A (en) | Focusing function for projection optical device | |
JP2004085213A (en) | Surface observation device | |
JPH0521318A (en) | Autofocusing mechanism | |
JP4875354B2 (en) | Autofocus device and autofocus method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100413 |
|
A02 | Decision of refusal |
Effective date: 20100803 Free format text: JAPANESE INTERMEDIATE CODE: A02 |