[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006153814A - Distance measuring apparatus - Google Patents

Distance measuring apparatus Download PDF

Info

Publication number
JP2006153814A
JP2006153814A JP2004348738A JP2004348738A JP2006153814A JP 2006153814 A JP2006153814 A JP 2006153814A JP 2004348738 A JP2004348738 A JP 2004348738A JP 2004348738 A JP2004348738 A JP 2004348738A JP 2006153814 A JP2006153814 A JP 2006153814A
Authority
JP
Japan
Prior art keywords
light
distance
distance measuring
drive current
distance measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004348738A
Other languages
Japanese (ja)
Inventor
Tomio Kurosu
富男 黒須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Precision Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP2004348738A priority Critical patent/JP2006153814A/en
Publication of JP2006153814A publication Critical patent/JP2006153814A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an active distance measuring apparatus for improving the maintenance of distance measurement performance and extending the lifetime of the apparatus. <P>SOLUTION: The distance measuring apparatus comprises: a light projection section 6 for projecting luminous flux to an object; a light reception section 7 for receiving luminous flux that is reflected from the object and returns and outputting detection signals I1, I2; an operation section 8 for measuring distance to the object, based on the detection signals I1, I2; and a control section 9 for controlling the operation of the light projection section 6 and the light reception section 7. The light projection section 6 includes a light-emitting element 1 for radiating luminous flux according to a drive current Iled and a drive circuit 10 for supplying the drive current Iled to the light-emitting element 1. The control section 9 controls the drive circuit 10 of the light projection section 6, sweeps the drive current Iled from a low level to a high level, and projects light, and then monitors the quantity of received light at the light reception section 7 and stops sweeping the drive current Iled when a level suitable for measuring distance is reached for measuring distance. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、対象物に対して光束を投光する投光部と、対象物から反射して戻ってくる光束を受光して検出信号を出力する受光部と、検出信号に基づいて対象物までの測距を行う演算部と、投光部及び受光部の動作を制御する制御部とからなる光学式のアクティブ測距装置に関する。   The present invention includes a light projecting unit that projects a light beam onto an object, a light receiving unit that receives a light beam reflected and returned from the object and outputs a detection signal, and the object based on the detection signal. The present invention relates to an optical active distance measuring device including a calculation unit that performs distance measurement and a control unit that controls operations of a light projecting unit and a light receiving unit.

光学式の測距装置はカメラの自動焦点合わせや券売機の対人センサなど多様な用途に使われている。特に、対象物に赤外線などの測距用光を投光し、その反射信号光を利用して、対象物の距離を求めるアクティブ測距装置は、コンパクトカメラのオートフォーカスなどに広く応用されている。   Optical distance measuring devices are used for various purposes such as automatic focusing of cameras and interpersonal sensors of ticket vending machines. In particular, an active distance measuring device that projects distance measuring light such as infrared rays onto an object and uses the reflected signal light to determine the distance of the object is widely applied to autofocus of compact cameras, etc. .

この様なアクティブ測距装置は、図14に示すような構成を基本としている。同図において、参照番号1は赤外発光ダイオード(IRLED)などからなる発光素子、2はこの光を対象物3に集光投光するための投光レンズである。そして、その対象物3からの反射信号光を、投光レンズ2から基線長Dだけ離れた受光レンズ4と光位置検出素子(PSD)からなる受光素子5にて受光し、その受光位置xを求めると、受光レンズ4の焦点距離f及び基線長Dを用いて、Z=D・f/xという関係により、対象物までの距離Zが求められる。   Such an active distance measuring device is basically configured as shown in FIG. In the figure, reference numeral 1 is a light emitting element composed of an infrared light emitting diode (IRLED) or the like, and 2 is a light projecting lens for condensing and projecting this light on an object 3. Then, the reflected signal light from the object 3 is received by the light receiving element 4 including the light receiving lens 4 and the light position detecting element (PSD) separated from the light projecting lens 2 by the base line length D, and the light receiving position x is received. If it calculates | requires, the distance Z to a target object will be calculated | required by the relationship of Z = D * f / x using the focal distance f and the base line length D of the light-receiving lens 4. FIG.

この方式は、投光レンズ2及び受光レンズ4の幾何学的な位置の差を用いたもので、三角測距の原理に従っている。PSDなどからなる受光素子5は、光入射位置で光電流を発生するものであるが、両端電極までの導電部が抵抗成分を持つために、その光入射位置にしたがって2つの光電流信号I1,I2を出力する。これにより、受光位置xは両光電流信号I1,I2の比演算にて求められる。例えば、x=I1/(I1+I2)で与えられる。   This method uses a difference in geometric position between the light projecting lens 2 and the light receiving lens 4 and follows the principle of triangulation. The light receiving element 5 made of PSD or the like generates a photocurrent at the light incident position. However, since the conductive portion up to the both end electrodes has a resistance component, the two photocurrent signals I1, I2 are changed according to the light incident position. I2 is output. Thus, the light receiving position x is obtained by calculating the ratio between the two photocurrent signals I1 and I2. For example, x = I1 / (I1 + I2).

この様なアクティブ測距装置は、例えば以下の特許文献1ないし3に記載がある。
特開平01−199109号公報 特開平08−136247号公報 実開平05−043110号公報
Such an active distance measuring device is described in, for example, Patent Documents 1 to 3 below.
Japanese Patent Laid-Open No. 01-199109 JP 08-136247 A Japanese Utility Model Publication No. 05-043110

アクティブ測距装置の発光素子は、例えば赤外発光ダイオード(IRLED)が多用されている。赤外発光ダイオードは駆動電流に応じて発光し、アクティブ測距に必要な投光を生成している。アクティブ測距の精度はシグナル対ノイズ比(S/N比)で決まる。S/N比を高めて測距を安定に行うため、IRLEDの発光強度は高い方がよい。発光強度が大きいほど、対象物から反射した光の受光量が増し、外乱光などの光ノイズや電気的なノイズに影響を受けることなく、正確な測距を行うことができる。したがって、測距性能の向上の観点から、駆動電流を高めに設定し充分な発光強度を得ることが好ましい。一方、赤外発光ダイオードなど電流駆動型の発光素子は、発光量に応じて寿命が決まるという性質がある。累積の発光量が増加するほど輝度が低下して行き寿命が短くなる。したがって測距装置の耐久性の観点からは発光素子に供給する駆動電流を可能な限り抑制する事が好ましい。この様に、アクティブ測距装置は、測距性能の向上と装置の長寿命化とが両立せず、解決すべき課題となっている。   For example, an infrared light emitting diode (IRLED) is frequently used as the light emitting element of the active distance measuring device. The infrared light emitting diode emits light in accordance with the drive current, and generates light necessary for active distance measurement. The accuracy of active ranging is determined by the signal-to-noise ratio (S / N ratio). In order to increase the S / N ratio and perform stable ranging, it is better that the emission intensity of the IRLED is higher. As the emission intensity increases, the amount of light reflected from the object increases, and accurate ranging can be performed without being affected by optical noise such as ambient light or electrical noise. Therefore, from the viewpoint of improving the distance measurement performance, it is preferable to obtain a sufficient light emission intensity by setting the drive current higher. On the other hand, current-driven light-emitting elements such as infrared light-emitting diodes have a property that their lifetime is determined according to the amount of light emission. As the cumulative amount of light emission increases, the luminance decreases and the lifetime decreases. Therefore, from the viewpoint of durability of the distance measuring device, it is preferable to suppress the drive current supplied to the light emitting element as much as possible. As described above, the active distance measuring device is a problem to be solved because the improvement of the distance measuring performance and the life extension of the device are not compatible.

上述した従来の技術の課題に鑑み、本発明は測距性能の維持向上と発光素子の長寿命化とを両立可能なアクティブ方式の測距装置を提供することを目的とする。かかる目的を達成するために以下の手段を講じた。即ち本発明は、対象物に対して光束を投光する投光部と、対象物から反射して戻ってくる光束を受光して検出信号を出力する受光部と、該検出信号に基づいて該対象物までの測距を行う演算部と、該投光部及び受光部の動作を制御する制御部とからなる測距装置であって、前記投光部は、駆動電流に応じて光束を放射する発光素子と、該発光素子に駆動電流を供給する駆動回路とを含み、前記制御部は、該投光部の駆動回路を制御して該駆動電流を低レベルから高レベルに掃引しながら投光を行なうとともに、該受光部の受光量をモニタして測距に適したレベルに達したら該駆動電流の掃引を停止して測距を行うことを特徴とする。   SUMMARY OF THE INVENTION In view of the above-described problems of the prior art, an object of the present invention is to provide an active distance measuring device capable of achieving both improvement in distance measuring performance and extending the life of a light emitting element. In order to achieve this purpose, the following measures were taken. That is, the present invention includes a light projecting unit that projects a light beam onto an object, a light receiving unit that receives a light beam reflected and returned from the object and outputs a detection signal, and a detection signal based on the detection signal. A distance measuring device comprising a calculation unit for measuring a distance to an object and a control unit for controlling operations of the light projecting unit and the light receiving unit, wherein the light projecting unit emits a light beam according to a drive current. And a driving circuit that supplies a driving current to the light emitting element, and the control unit controls the driving circuit of the light projecting unit to sweep the driving current from a low level to a high level. In addition to performing light, the amount of light received by the light receiving unit is monitored, and when a level suitable for distance measurement is reached, sweeping of the drive current is stopped to perform distance measurement.

好ましくは、ゼロレベルより上の所定の低レベルから高レベルに向かって該駆動電流の掃引を開始する。又前記制御部は、該受光部の受光量が測距に適したレベルに達した時点における該駆動電流のレベルを所定時間だけ維持して測距を行う。又前記制御部は、該駆動電流を低レベルから高レベルに向かって指数関数的に掃引する。又前記演算部は、該受光部から出力された光束の受光位置を表す検出信号により三角測量の原理に基づいて測距を行う。   Preferably, the sweep of the drive current is started from a predetermined low level above the zero level to a high level. The controller performs distance measurement while maintaining the level of the drive current for a predetermined time when the amount of light received by the light receiver reaches a level suitable for distance measurement. The control unit sweeps the drive current exponentially from a low level to a high level. The arithmetic unit performs distance measurement based on the principle of triangulation using a detection signal indicating the light receiving position of the light beam output from the light receiving unit.

本発明によれば、アクティブ測距装置は投光部を制御して駆動電流を低レベルから高レベルに掃引しながら投光を行うと共に、受光部の受光量をモニタして測距に適したレベルに達したら駆動電流の掃引を停止して測距を実行する。本発明では、受光量が測距に適したレベルに達した時点で駆動電流を固定し、発光量を抑えている。無駄な発光を節約する事で発光素子の長寿命化が図れる。また、駆動電流を抑えることで消費電流の節約に繋がる。一方、測距の対象物の状態に応じ、受光量が測距に適したレベルとなるように制御されている。これにより、測距性能を損なう恐れはない。以上により、発光素子の長寿命化と測距性能の維持を両立したアクティブ測距装置を得ることができる。なお、予め予備測距を行って対象物に応じた駆動電流を設定し、この設定した駆動電流で本測距を行う2段階方式も考えられる。しかしながら、予備投光と本投光を分けて行うと測距に必要なトータルの時間が長くなるという不都合がある。これに対し、本発明では1回の投光で対象物に応じた駆動電流を設定し且つ測距も行っている。これにより、測距時間の短縮化が可能になる。   According to the present invention, the active distance measuring device performs light projection while controlling the light projecting unit to sweep the drive current from a low level to a high level, and monitors the amount of light received by the light receiving unit and is suitable for distance measurement. When the level is reached, the drive current sweep is stopped and distance measurement is executed. In the present invention, when the amount of received light reaches a level suitable for distance measurement, the drive current is fixed and the amount of emitted light is suppressed. By saving unnecessary light emission, the life of the light emitting element can be extended. In addition, the current consumption can be saved by suppressing the drive current. On the other hand, the amount of received light is controlled so as to be at a level suitable for distance measurement according to the state of the object for distance measurement. Thereby, there is no possibility that the distance measurement performance is impaired. As described above, it is possible to obtain an active distance measuring device that achieves both long life of the light emitting element and maintenance of distance measuring performance. A two-stage method is also conceivable in which preliminary distance measurement is performed in advance to set a drive current corresponding to the object, and this distance measurement is performed using the set drive current. However, if the preliminary projection and the main projection are performed separately, there is an inconvenience that the total time required for the distance measurement becomes long. On the other hand, in the present invention, the driving current corresponding to the object is set and the distance is measured by one light projection. Thereby, the distance measurement time can be shortened.

以下図面を参照して本発明の実施の形態を詳細に説明する。まず最初に本発明の背景を明らかにする為、図1を参照して定電圧駆動方式のアクティブ測距装置を参考例として説明する。図示するように測距装置は、投光部6と受光部7と演算部を構成する演算回路8と制御部を構成するシーケンサー9とで構成されている。投光部6は対象物に対して光束を投光する。受光部7は対象物から反射して戻ってくる光束を受光して検出信号I1,I2を出力する。演算回路8は検出信号I1,I2に基づいて対象物までの測距を行う。具体的には、検出信号I1,I2の比演算を行って測距データを得る。測距データはサンプルホールド回路12で一旦サンプルホールドされた後、アンプA3を介して外部機器に出力される。シーケンサー9は投光部6及び受光部7の動作を制御する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First, in order to clarify the background of the present invention, a constant voltage driving type active distance measuring device will be described as a reference example with reference to FIG. As shown in the figure, the distance measuring device includes a light projecting unit 6, a light receiving unit 7, a calculation circuit 8 that forms a calculation unit, and a sequencer 9 that forms a control unit. The light projecting unit 6 projects a light beam onto the object. The light receiving unit 7 receives the light beam reflected and returned from the object and outputs detection signals I1 and I2. The arithmetic circuit 8 measures the distance to the object based on the detection signals I1 and I2. Specifically, distance measurement data is obtained by performing a ratio calculation of the detection signals I1 and I2. The distance measurement data is once sample-held by the sample hold circuit 12, and then output to an external device via the amplifier A3. The sequencer 9 controls the operations of the light projecting unit 6 and the light receiving unit 7.

投光部6は駆動電流Iledに応じて光束を放射する発光素子1と、発光素子1に駆動電流Iledを供給する駆動回路10とで構成されている。発光素子1は例えば赤外発光ダイオードを用いる事ができる。駆動回路10は二端子型発光素子1のカソードに接続した負荷抵抗Rledと駆動トランジスタTrとを含む。駆動トランジスタTrのベースはシーケンサー9に接続し、コレクタは負荷抵抗Rledの一端に接続し、エミッタは接地されている。駆動回路10はさらに増幅器AとトランジスタTr1とで構成された定電圧回路を含んでいる。二端子型増幅器A(オペアンプ)の一方の入力端子はシーケンサー9に接続しており、定電圧Vledの供給を受ける。増幅器Aの他方の入力端子は、二端子型発光素子1のアノードに接続している。増幅器Aの出力端子はトランジスタTr1のベースに接続している。トランジスタTr1のエミッタは電源Vccに接続し、コレクタは発光素子1のアノードに接続している。   The light projecting unit 6 includes a light emitting element 1 that emits a light beam in response to a driving current Iled, and a driving circuit 10 that supplies the driving current Iled to the light emitting element 1. For example, an infrared light emitting diode can be used as the light emitting element 1. The drive circuit 10 includes a load resistor Rled connected to the cathode of the two-terminal light emitting element 1 and a drive transistor Tr. The base of the drive transistor Tr is connected to the sequencer 9, the collector is connected to one end of the load resistor Rled, and the emitter is grounded. The drive circuit 10 further includes a constant voltage circuit composed of an amplifier A and a transistor Tr1. One input terminal of the two-terminal amplifier A (op-amp) is connected to the sequencer 9 and is supplied with a constant voltage Vled. The other input terminal of the amplifier A is connected to the anode of the two-terminal light emitting device 1. The output terminal of the amplifier A is connected to the base of the transistor Tr1. The emitter of the transistor Tr1 is connected to the power supply Vcc, and the collector is connected to the anode of the light emitting element 1.

増幅器AとトランジスタTr1からなる定電圧回路は、シーケンサー9から供給される制御電圧Vledに応じ、これと等しい定電圧Vledを発光素子1のアノードに印加し、これを定電圧駆動している。具体的には、発光素子1の電圧降下分をVf、駆動トランジスタTrの電圧降下分をVtrとすると、駆動電流Iledは(Vled−Vf−Vtr)/Rledで与えられる。実際には、シーケンサー9が駆動トランジスタTrのベースに制御パルスを印加すると、駆動トランジスタTrが導通し、発光素子1に上記の駆動電流Iledが流れ、結果的に制御電圧Vledに応じた輝度Lで発光素子1が発光する事になる。この様に従来のアクティブ測距装置は、対象物の条件によらず常に一定の制御電圧Vledで発光輝度Lを決めていた。   The constant voltage circuit composed of the amplifier A and the transistor Tr1 applies a constant voltage Vled equal to the control voltage Vled supplied from the sequencer 9 to the anode of the light emitting element 1 and drives it at a constant voltage. Specifically, if the voltage drop of the light emitting element 1 is Vf and the voltage drop of the drive transistor Tr is Vtr, the drive current Iled is given by (Vled−Vf−Vtr) / Rled. Actually, when the sequencer 9 applies a control pulse to the base of the drive transistor Tr, the drive transistor Tr becomes conductive, and the drive current Iled flows through the light emitting element 1, and as a result, the luminance L corresponds to the control voltage Vled. The light emitting element 1 emits light. As described above, the conventional active distance measuring device always determines the light emission luminance L with the constant control voltage Vled regardless of the condition of the object.

受光部7は例えばPSDからなる受光素子5と、その両端に接続された増幅器A1,A2とからなる。一方の増幅器A1は受光素子5の一端から出力された受光電流を増幅して検出電流I1を演算回路8に供給する。他方の増幅器A2は受光素子5の他方の電極から出力された受光電流を増幅して検出電流I2を演算回路8側に供給する。なお、各増幅器A1,A2の入出力間には定常電流引き抜き回路(DCC)が接続されている。この定常電流引き抜き回路DCCはシーケンサー9により制御されており、受光電流から周囲光などに起因する定常電流成分(直流成分)を引き抜き、信号成分のみを演算回路8側に供給できるようにしている。   The light receiving unit 7 includes a light receiving element 5 made of, for example, PSD and amplifiers A1 and A2 connected to both ends thereof. One amplifier A <b> 1 amplifies the light reception current output from one end of the light receiving element 5 and supplies the detection current I <b> 1 to the arithmetic circuit 8. The other amplifier A2 amplifies the light reception current output from the other electrode of the light receiving element 5 and supplies the detection current I2 to the arithmetic circuit 8 side. A steady current drawing circuit (DCC) is connected between the input and output of each amplifier A1, A2. The steady current extraction circuit DCC is controlled by the sequencer 9 so that a steady current component (DC component) caused by ambient light or the like is extracted from the received light current and only the signal component can be supplied to the arithmetic circuit 8 side.

受光部7側の受光素子5は対象物から反射した光の受光位置に応じた検出信号I1,I2を演算回路8側に出力する。演算回路8は検出信号I1,I2の比演算を行って測距データを得る。この段階でシーケンサー9はスイッチSW1を開閉制御し、サンプルホールド回路12に測距データをサンプルホールドする。サンプルホールドされた測距データは増幅器A3を介して装置の本体側に出力される。   The light receiving element 5 on the light receiving unit 7 side outputs detection signals I1 and I2 corresponding to the light receiving position of the light reflected from the object to the arithmetic circuit 8 side. The arithmetic circuit 8 calculates the ratio of the detection signals I1 and I2 to obtain distance measurement data. At this stage, the sequencer 9 controls the opening and closing of the switch SW1, and samples and holds the distance measurement data in the sample and hold circuit 12. The distance measurement data sampled and held is output to the main body of the apparatus via the amplifier A3.

図2はアクティブ測距装置の他の参考例を示す回路図である。図1に示したアクティブ測距装置が定電圧駆動を採用していたのに対し、図2に示した参考例は定電流駆動を採用している。受光部7、演算部8、シーケンサー9及びサンプルホールド回路12の部分は図1の参考例と同様であるが、投光部6の構成が相違している。   FIG. 2 is a circuit diagram showing another reference example of the active distance measuring device. The active distance measuring device shown in FIG. 1 employs constant voltage drive, whereas the reference example shown in FIG. 2 employs constant current drive. The light receiving unit 7, the calculation unit 8, the sequencer 9, and the sample hold circuit 12 are the same as those in the reference example of FIG. 1, but the configuration of the light projecting unit 6 is different.

図示するように投光部6は、駆動電流Iledに応じて光束を放射する発光素子1と、発光素子1に駆動電流Iledを供給する駆動回路10とを含む。発光素子1は例えば赤外LEDなどの二端子型デバイスである。駆動回路10は2入力1出力型の増幅器(オペアンプ)Aと駆動トランジスタTrと負荷抵抗Rledとで構成されている。駆動トランジスタTrのコレクタは二端子型発光素子1のカソードに接続している。なおアノードは電源Vccに接続している。駆動トランジスタTrのエミッタは負荷抵抗Rledを介して接地されている。駆動トランジスタTrのベースは増幅器Aの出力端子に接続されている。増幅器Aの一方の入力端子はシーケンサー9に接続されており、制御パルスの供給を受ける。この制御パルスは電圧がVrefで時間幅がTonとなっている。増幅器Aの他方の入力端子は駆動トランジスタTrのエミッタに接続している。駆動回路10はかかる構成により、発光素子1に対する定電流源となっている。シーケンサー9から供給される制御パルスに応じ、駆動回路10はIled=Vref/Rledで表される定電流Iledを所定の発光時間Tonだけ発光素子1に流す。発光素子1は一定の駆動電流Iledに応じた輝度で発光する。   As shown in the figure, the light projecting unit 6 includes a light emitting element 1 that emits a light beam in accordance with the driving current Iled, and a driving circuit 10 that supplies the driving current Iled to the light emitting element 1. The light emitting element 1 is a two-terminal device such as an infrared LED. The drive circuit 10 includes a 2-input 1-output type amplifier (op-amp) A, a drive transistor Tr, and a load resistor Rled. The collector of the driving transistor Tr is connected to the cathode of the two-terminal light emitting element 1. The anode is connected to the power source Vcc. The emitter of the drive transistor Tr is grounded via the load resistor Rled. The base of the drive transistor Tr is connected to the output terminal of the amplifier A. One input terminal of the amplifier A is connected to the sequencer 9 and receives a control pulse. This control pulse has a voltage Vref and a time width Ton. The other input terminal of the amplifier A is connected to the emitter of the drive transistor Tr. With this configuration, the drive circuit 10 is a constant current source for the light emitting element 1. In response to the control pulse supplied from the sequencer 9, the drive circuit 10 passes a constant current Iled expressed by Iled = Vref / Rled to the light emitting element 1 for a predetermined light emission time Ton. The light emitting element 1 emits light with a luminance corresponding to a constant driving current Iled.

図1及び図2に示した参考例にかかる測距装置は、赤外LEDなどの2端子型デバイスを発光素子に用いている。周知のように、LEDは発光量や発光時間の累積によって輝度が低下し、寿命に限りがある。LEDの寿命は、発光電流、温度、発光時間、繰り返し発光インターバルなどの諸パラメーターによって顕著な影響を受け、耐久性に限りがある。   The distance measuring device according to the reference example shown in FIGS. 1 and 2 uses a two-terminal device such as an infrared LED as a light emitting element. As is well known, the luminance of an LED decreases due to the amount of light emission and the time of light emission, and its lifetime is limited. The lifetime of the LED is significantly affected by various parameters such as light emission current, temperature, light emission time, and repetitive light emission interval, and its durability is limited.

従来の測距装置では用途によって要求される寿命がまず決定される。この要求寿命あるいは耐久性を満たすように、所定の発光電流レベルや発光時間が決まる。当然ながら、発光電流レベルを低めに設定し且つ発光時間を短く設定した方が、寿命の長期化に繋がる。   In a conventional distance measuring device, the life required by the application is first determined. A predetermined light emission current level and light emission time are determined so as to satisfy the required life or durability. Naturally, setting the light emission current level lower and setting the light emission time shorter leads to longer life.

反面アクティブ測距装置は周囲光(ノイズ)と発光(信号)との強度差が大きいほど、S/N比がよくなり、基本測距性能が高い。したがって、測距性能の観点からは可能な限り駆動電流を高めに設定して発光量を増やし、遠距離で且つ低反射率の対象物でも精度よく測れる事が好ましい。以上により、耐久性能の向上と基本測距性能の向上は互いに相反した関係となっている。現実的には、製品に要求される耐久性能により発光量が決められ、その規制の中で可能な限り精度を高める工夫がなされる。例えば許される範囲で同一の対象物に測距を繰り返し、得られた結果を平均演算処理して、最終的な距離データを得ているのが現状である。   On the other hand, the active distance measuring device has a higher S / N ratio and higher basic distance measuring performance as the difference in intensity between ambient light (noise) and light emission (signal) increases. Therefore, from the viewpoint of ranging performance, it is preferable that the driving current is set as high as possible to increase the amount of light emission, and it is possible to accurately measure an object at a long distance and low reflectance. As described above, the improvement in durability performance and the improvement in basic ranging performance are in a mutually contradictory relationship. In reality, the amount of light emission is determined by the durability performance required for the product, and ingenuity is devised to improve the accuracy as much as possible. For example, distance measurement is repeated on the same object within an allowable range, and the obtained result is averaged to obtain final distance data.

図1および図2に示した従来のアクティブ測距装置は、発光強度や発光時間を予め固定的に設定しており、対象物の状態とは関係なく測距を行うものである。しかしながら、実際の測距では対象物の距離が変化し、さらにその表面反射率も変化するものである。例えば、対象物が0.5〜3mの範囲で前後に位置し、表面反射率が9〜72%の間でばらつくと仮定すると、距離が3mで反射率が9%の対象物が最も受光量が少なくなる。これに対し、0.5mの位置にあり且つ表面反射率が72%の対象物は、受光量が先の例の288倍になる。この比率は光量的シミュレーションで得られるものである。換言すると、最良の条件下で必要とされる発光量は、最悪条件で必要とされる発光量の288分の1でよい事になる。例えば、距離が3mで表面反射率が9%の対象物の測距を行うため、1Aの駆動電流が必要な場合、0.5mで表面反射率が72%の対象物では約3.5mAの発光電流でよい事になる。   In the conventional active distance measuring device shown in FIGS. 1 and 2, the light emission intensity and the light emission time are fixedly set in advance, and distance measurement is performed regardless of the state of the object. However, in the actual distance measurement, the distance of the object changes, and the surface reflectance also changes. For example, if it is assumed that the object is positioned in the front and back in the range of 0.5 to 3 m and the surface reflectance varies between 9 and 72%, the object having the distance of 3 m and the reflectance of 9% is the most received light amount. Less. On the other hand, the amount of light received by an object at a position of 0.5 m and a surface reflectance of 72% is 288 times that of the previous example. This ratio is obtained by light quantity simulation. In other words, the light emission amount required under the best condition may be 1 / 288th of the light emission amount required under the worst condition. For example, when measuring a target with a distance of 3 m and a surface reflectance of 9%, when a driving current of 1 A is required, an object with a surface reflectance of 0.5 m and a reflectance of 72% is about 3.5 mA. The light emission current is good.

例えば図2に示したアクティブ測距装置で駆動電流を1Aに設定すると、距離が3mで表面反射率が9%の対象物では適正な発光量となるのに対し、0.5mで表面反射率が72%の対象物では1A−3.5mA=996.5mAの駆動電流分に相当する発光が不要なものとなる。このロスがあるため、アクティブ測距装置の耐久性を改善する事ができない。   For example, when the driving current is set to 1 A in the active distance measuring device shown in FIG. 2, an object having a distance of 3 m and a surface reflectance of 9% has an appropriate light emission amount, whereas the surface reflectance is 0.5 m. In the case of a 72% target, light emission corresponding to the drive current of 1A-3.5 mA = 996.5 mA becomes unnecessary. Due to this loss, the durability of the active distance measuring device cannot be improved.

図3は本発明にかかる測距装置の第一実施形態を示す回路図である。理解を容易にするため、図1及び図2に示した参考例にかかるアクティブ測距装置と対応する部分には対応する参照番号を付してある。図示するように、本アクティブ測距装置は、対象物に対して光束を投光する投光部6と、対象物から反射して戻ってくる光束を受光して検出信号I1,I2を出力する受光部7と、検出信号I1,I2に基づいて対象物までの測距を行う演算回路(演算部)8と、投光部6及び受光部7の動作を制御するシーケンサー(制御部)9とで構成されている。   FIG. 3 is a circuit diagram showing a first embodiment of the distance measuring apparatus according to the present invention. For easy understanding, portions corresponding to those of the active distance measuring device according to the reference example shown in FIGS. 1 and 2 are denoted by corresponding reference numerals. As shown in the figure, this active distance measuring device receives a light beam 6 reflected from the object and outputs detection signals I1 and I2 by projecting a light beam to the object. A light receiving unit 7, a calculation circuit (calculation unit) 8 that measures a distance to an object based on the detection signals I 1 and I 2, and a sequencer (control unit) 9 that controls operations of the light projecting unit 6 and the light receiving unit 7. It consists of

投光部6はLEDなどからなる発光素子1と駆動回路10とで構成されている。二端子型発光素子1のアノードは電源Vccに接続され、カソードは駆動回路10に接続されている。駆動回路10は2入力1出力型の増幅器(オペアンプ)Aと駆動トランジスタTrと負荷抵抗Rledとで構成されている。駆動トランジスタTrのコレクタは発光素子1のカソードに接続し、エミッタは負荷抵抗Rledを介して接地されている。トランジスタTrのベースは増幅器Aの出力端子に接続している。増幅器Aの一方の入力端子(以下本明細書では入力ノードと称する)には制御電圧Vrefが印加され、他方の入力端子はトランジスタTrのエミッタに接続している。これにより駆動回路10はIled=Vref/Rledで規定される駆動電流Iledを発光素子1に流す。この結果、発光素子1は制御電圧Vrefに応じた輝度Lで発光する。   The light projecting unit 6 includes a light emitting element 1 made of an LED or the like and a drive circuit 10. The anode of the two-terminal light emitting element 1 is connected to the power supply Vcc, and the cathode is connected to the drive circuit 10. The drive circuit 10 includes a 2-input 1-output type amplifier (op-amp) A, a drive transistor Tr, and a load resistor Rled. The collector of the drive transistor Tr is connected to the cathode of the light emitting element 1, and the emitter is grounded via the load resistor Rled. The base of the transistor Tr is connected to the output terminal of the amplifier A. A control voltage Vref is applied to one input terminal (hereinafter referred to as an input node in this specification) of the amplifier A, and the other input terminal is connected to the emitter of the transistor Tr. As a result, the drive circuit 10 passes a drive current Iled defined by Iled = Vref / Rled to the light emitting element 1. As a result, the light emitting element 1 emits light with a luminance L corresponding to the control voltage Vref.

入力ノードには定電流源iと負荷容量CとスイッチSWが接続しており、駆動回路10の一部となっている。定電流源iは電源Vccと入力ノードとの間に接続されている。負荷容量Cは入力ノードと接地ラインとの間に接続されている。スイッチSWも入力ノードと接地ラインとの間に接続されている。このスイッチSWの開閉はシーケンサー9から供給される制御パルスによって制御される。   A constant current source i, a load capacitor C, and a switch SW are connected to the input node and are a part of the drive circuit 10. The constant current source i is connected between the power supply Vcc and the input node. The load capacitor C is connected between the input node and the ground line. The switch SW is also connected between the input node and the ground line. The opening / closing of the switch SW is controlled by a control pulse supplied from the sequencer 9.

受光部7は受光素子5と一対の増幅器A1,A2とで構成されている。受光素子5は例えば位置検出素子(PSD)からなり、対象物から戻ってきた光の受光位置に応じた光信号を一対の電極から出力する。増幅器A1,A2は受光素子5の各両電極から出力された光信号を増幅し、検出信号I1,I2として演算回路8側に出力する。各増幅器A1,A2の入出力端子間には、定常成分を引き抜くためのDCCが接続されている。   The light receiving unit 7 includes a light receiving element 5 and a pair of amplifiers A1 and A2. The light receiving element 5 is composed of, for example, a position detecting element (PSD), and outputs an optical signal corresponding to the light receiving position of the light returned from the object from a pair of electrodes. The amplifiers A1 and A2 amplify optical signals output from both electrodes of the light receiving element 5, and output the amplified signals to the arithmetic circuit 8 side as detection signals I1 and I2. A DCC for extracting a steady component is connected between the input / output terminals of the amplifiers A1 and A2.

演算回路8は受光部7から出力された検出信号I1,I2の比演算を行って測距データを得る。この測距データはサンプルホールド回路12でサンプルホールドされた後、アンプA3を介して機器本体側に出力される。   The arithmetic circuit 8 calculates the ratio of the detection signals I1 and I2 output from the light receiving unit 7 to obtain distance measurement data. The distance measurement data is sampled and held by the sample and hold circuit 12 and then output to the apparatus main body via the amplifier A3.

シーケンサー9は上述した制御パルスを投光部6側に供給すると共に、外付けで一対の比較器C1,C2を備えている。比較器C1の正入力端子には受光部7側から検出電流I1が供給され、他方の入力端子にはシーケンサー9側から所定の閾電圧Vthが供給される。比較器C1の出力端子はシーケンサー9に接続されている。同様に比較器C2の正入力端子は受光部7側から検出電流I2が供給され、負入力端子にはシーケンサー9側から所定の閾電圧Vthが供給され、出力端子はシーケンサー9に接続されている。かかる構成において、シーケンサー9及び一対の比較器C1,C2などで構成される制御部は、投光部6の駆動回路10を制御して駆動電流Iledを低レベルから高レベルに掃引しながら投光を行うと共に、受光部7の受光量をモニタして、測距に適したレベルに達したら駆動電流Iledの掃引を停止して測距を実行し、且つサンプルホールド回路12のスイッチSW1を制御して測距結果を確定する。   The sequencer 9 supplies the above-described control pulse to the light projecting unit 6 side, and includes a pair of external comparators C1 and C2. The detection current I1 is supplied from the light receiving unit 7 side to the positive input terminal of the comparator C1, and a predetermined threshold voltage Vth is supplied from the sequencer 9 side to the other input terminal. The output terminal of the comparator C1 is connected to the sequencer 9. Similarly, a detection current I2 is supplied to the positive input terminal of the comparator C2 from the light receiving unit 7 side, a predetermined threshold voltage Vth is supplied to the negative input terminal from the sequencer 9 side, and an output terminal is connected to the sequencer 9. . In such a configuration, the control unit composed of the sequencer 9 and the pair of comparators C1, C2, etc. controls the drive circuit 10 of the light projecting unit 6 and projects the light while sweeping the drive current Iled from the low level to the high level. The amount of light received by the light receiving unit 7 is monitored, and when the level reaches a level suitable for distance measurement, the sweep of the drive current Iled is stopped to perform distance measurement, and the switch SW1 of the sample hold circuit 12 is controlled. Confirm the distance measurement result.

図4は、図3に示した本発明にかかる測距装置の動作説明に供するタイミングチャートである。待機期間T0では、スイッチSWがオン状態にあり、入力ノードが接地されているのでVrefはゼロレベルにある。したがって駆動電流Iledが流れないので発光強度Lもゼロである。また、受光部7側は対象物から何ら受光しないので、比較器C1またはC2の出力はない。続いてタイミングT1で測距が起動すると、シーケンサー9は制御パルスを出力してスイッチSWをオンからオフにする。これにより、定電流源iから供給された電流が負荷容量Cに充電され始めるので、入力ノードの電位Vrefは低レベルから高レベルに向かって直線的に上昇していく。これに伴いIled=Vref/Rledで表される駆動電流が低レベルから高レベルに向かって掃引され、結果として発光強度Lが徐々に増加していく。これに合わせ、受光部7側での受光量も増加していく。   FIG. 4 is a timing chart for explaining the operation of the distance measuring apparatus according to the present invention shown in FIG. In the standby period T0, the switch SW is in the on state and the input node is grounded, so Vref is at the zero level. Therefore, since the drive current Iled does not flow, the light emission intensity L is also zero. Further, since the light receiving unit 7 side does not receive any light from the object, there is no output from the comparator C1 or C2. Subsequently, when ranging starts at timing T1, the sequencer 9 outputs a control pulse to turn the switch SW from on to off. As a result, the current supplied from the constant current source i starts to be charged into the load capacitor C, and the potential Vref of the input node rises linearly from the low level to the high level. Accordingly, the drive current represented by Iled = Vref / Rled is swept from the low level to the high level, and as a result, the light emission intensity L gradually increases. In accordance with this, the amount of light received on the light receiving unit 7 side also increases.

タイミングT2になると、受光量に対応した検出電流I1,I2のレベルが予め設定した閾電圧Vthを越えるようになる。この閾電圧Vthは受光量が測距に適した範囲となるように予めシーケンサー9側で設定されている。検出信号I1,I2のレベルがVthを越えた時点で、比較器C1,C2の出力がローレベルからハイレベルに反転する。これに応じシーケンサー9は制御パルスを解除し、スイッチSWはオフからオンになる。入力ノードはスイッチSWにより接地されるので、Vrefは急激にゼロレベルに落ちる。したがって発光強度Lもゼロとなる。タイミングT2の段階の発光強度Lにて測距を行うことで、必要な距離データが得られる。   At timing T2, the levels of the detection currents I1 and I2 corresponding to the amount of received light exceed the preset threshold voltage Vth. This threshold voltage Vth is set in advance on the sequencer 9 side so that the amount of received light is in a range suitable for distance measurement. When the levels of the detection signals I1 and I2 exceed Vth, the outputs of the comparators C1 and C2 are inverted from the low level to the high level. In response to this, the sequencer 9 releases the control pulse, and the switch SW is turned on from off. Since the input node is grounded by the switch SW, Vref suddenly falls to zero level. Therefore, the emission intensity L is also zero. Necessary distance data can be obtained by measuring the distance with the light emission intensity L at the timing T2.

以上の説明から明らかなように、発光スタートのタイミングT1でVrefの電圧を時間と共に拡大スイープする。例えば対応する駆動電流Iledが0mA〜1.2Aまで変化するようスイープする。同時に、受光部7側に戻ってくる反射光量を比較器C1,C2でモニタし、測距をするための光量として充分な受光量に達したら、スイープを停止して発光を終わらせる。受光部7側の受光量モニタリングは、検出電流I1,I2をそれぞれモニタし両方とも閾電圧Vth以上となることで、判定を下す。あるいは簡易的に、受光素子5の合計光量を表すI1+I2を一個の比較器でモニタしてもよい。また、判別のためのレベルを決めるVthは、周囲の明るさや温度などにより補正を適宜加えるようにしてもよい。   As is clear from the above description, the voltage Vref is swept with time at the light emission start timing T1. For example, the corresponding drive current Iled is swept so as to change from 0 mA to 1.2 A. At the same time, the amount of reflected light returning to the light receiving unit 7 is monitored by the comparators C1 and C2, and when the amount of light received is sufficient as the amount of light for distance measurement, the sweep is stopped and light emission is ended. The amount of received light on the light receiving unit 7 side is determined by monitoring the detection currents I1 and I2 and both are equal to or higher than the threshold voltage Vth. Alternatively, I1 + I2 representing the total light amount of the light receiving element 5 may be monitored with a single comparator. Further, Vth for determining the level for determination may be appropriately corrected according to ambient brightness, temperature, or the like.

図5は、本発明にかかるアクティブ測距装置の第二実施形態の主要部を示す回路図である。この主要部は投光部である。残りの部分は図3に示した第一実施形態と同一である。図5に示した投光部は基本的には図3に示した投光部と類似しており、理解を容易にするため対応する部分には対応する参照番号を付してある。異なる点は、負荷容量Cと接地ラインとの間にバイアス抵抗Rが接続されている事である。このバイアス抵抗Rの両端の電圧はV1に設定されている。   FIG. 5 is a circuit diagram showing a main part of the second embodiment of the active distance measuring device according to the present invention. The main part is a light projecting part. The remaining part is the same as that of the first embodiment shown in FIG. The light projecting unit shown in FIG. 5 is basically similar to the light projecting unit shown in FIG. 3, and corresponding parts are denoted by corresponding reference numerals for easy understanding. The difference is that a bias resistor R is connected between the load capacitor C and the ground line. The voltage across the bias resistor R is set to V1.

図6は図5に示した第二実施形態の動作説明に供するタイミングチャートである。待機期間T0を過ぎてタイミングT1に至ると測距が起動する。この時シーケンサーからの制御によりスイッチSWがオフし、定電流源iから負荷容量Cに対する充電が始まりVrefが上昇を開始する。このとき、ゼロレベルより上の所定の低レベルV1から高レベルに向かって制御電圧Vrefの掃引が開始される。すなわち、バイアス抵抗Rを加えることで、掃引開始電圧をV1だけ高くして下駄を履かせている。これにより、比較器C1,C2のレベルが反転するタイミングT2が短くなる。図4のタイミングチャートと比較すれば明らかなように、図6のタイミングチャートでは発光期間T1−T2が短くなっており、その分測距時間の短縮化が図れる。なお、初期電圧V1は測距に必要な最低発光輝度に対応させて設定する事が好ましい。   FIG. 6 is a timing chart for explaining the operation of the second embodiment shown in FIG. Ranging starts when timing T1 is reached after waiting period T0. At this time, the switch SW is turned off by the control from the sequencer, charging of the load capacitor C from the constant current source i starts and Vref starts to rise. At this time, sweeping of the control voltage Vref starts from a predetermined low level V1 above the zero level toward the high level. In other words, by adding the bias resistor R, the sweep start voltage is increased by V1 to put on clogs. As a result, the timing T2 at which the levels of the comparators C1 and C2 are inverted is shortened. As is clear from the timing chart of FIG. 4, in the timing chart of FIG. 6, the light emission period T1-T2 is shortened, and the distance measurement time can be shortened accordingly. The initial voltage V1 is preferably set so as to correspond to the minimum light emission luminance necessary for distance measurement.

図7は、本発明にかかる測距装置の第三実施形態の主要部となる投光部を示す回路図である。基本的には図5に示した第二実施形態と類似しており、対応する部分には対応する参照番号を付してある。異なる点は、負荷容量Cと平行にスイッチSW2と定電流源i2の直列接続を挿入した事である。図示するように、スイッチSW2の一端は負荷容量Cの一端に接続され、他端は定電流源i2の一端に接続されている。定電流源i2の他端は接地されている。スイッチSW2はスイッチSWと同じくシーケンサーにより開閉制御される。   FIG. 7 is a circuit diagram showing a light projecting unit as a main part of the third embodiment of the distance measuring apparatus according to the present invention. Basically, it is similar to the second embodiment shown in FIG. 5, and corresponding reference numerals are assigned to corresponding parts. The difference is that a series connection of a switch SW2 and a constant current source i2 is inserted in parallel with the load capacitance C. As shown, one end of the switch SW2 is connected to one end of the load capacitor C, and the other end is connected to one end of the constant current source i2. The other end of the constant current source i2 is grounded. As with the switch SW, the switch SW2 is controlled to open and close by a sequencer.

図8は、図7に示した第三実施形態の動作説明に供するタイミングチャートである。待機期間T0からタイミングT1になるとスイッチSWがオンからオフに切り替わり、入力ノードの電位VrefがV1から上昇し始める。この結果受光量が測距に適したレベルに到達した時点T2で、比較器C1,C2の出力が反転する。これに応じてスイッチSW2がオフからオンに切り替わる。この結果入力ノードに流れ込む定電流iと入力ノードから流れ出す定電流i2の比率に応じて入力ノードVrefの電位が一定に維持される。この後タイミングT3に至るとスイッチSW2がオフすると共にスイッチSWがオンになる。入力ノードがスイッチSWを介して接地されるので、Vrefはゼロレベルに戻る。以上の説明から明らかなように、タイミングT2で発光輝度Lが測距に適したレベルに達した後タイミングT2からタイミングT3までの所定の期間発光強度Lが維持される。この期間T2−T3で測距を行うことにより、安定した距離データが得られえる。この様に第三実施形態は、受光部の受光量が測距に適したレベルに達した時点における駆動電流のレベルを所定時間だけ維持して測距を安定に行うものである。   FIG. 8 is a timing chart for explaining the operation of the third embodiment shown in FIG. At the timing T1 from the waiting period T0, the switch SW is switched from on to off, and the potential Vref of the input node starts to rise from V1. As a result, at the time T2 when the amount of received light reaches a level suitable for distance measurement, the outputs of the comparators C1 and C2 are inverted. In response to this, the switch SW2 is switched from OFF to ON. As a result, the potential of the input node Vref is maintained constant according to the ratio of the constant current i flowing into the input node and the constant current i2 flowing out from the input node. Thereafter, at timing T3, the switch SW2 is turned off and the switch SW is turned on. Since the input node is grounded via the switch SW, Vref returns to the zero level. As is clear from the above description, the light emission intensity L is maintained for a predetermined period from the timing T2 to the timing T3 after the light emission luminance L reaches a level suitable for distance measurement at the timing T2. Stable distance data can be obtained by performing distance measurement in this period T2-T3. As described above, the third embodiment stably performs distance measurement while maintaining the level of the drive current for a predetermined time when the amount of light received by the light receiving unit reaches a level suitable for distance measurement.

図9は、本発明にかかる測距装置の第四実施形態の主要部を示す回路図である。図示するように、入力ノードと電源Vcc間に抵抗Rが接続する一方、入力ノードと接地ラインとの間に容量Cが接続されている。また容量Cと平行にスイッチSWが接続している。このスイッチSWのオンオフはシーケンサーにより制御される。   FIG. 9 is a circuit diagram showing the main part of the fourth embodiment of the distance measuring apparatus according to the present invention. As shown in the figure, a resistor R is connected between the input node and the power supply Vcc, while a capacitor C is connected between the input node and the ground line. A switch SW is connected in parallel with the capacitor C. The on / off of the switch SW is controlled by a sequencer.

図10は、図9に示した第四実施形態の動作説明に供するタイミングチャートである。図示するように待機期間T0から測距を起動するタイミングT1になるとスイッチSWがオンからオフに切り替わる。これにより、電源ラインVccから接地ラインに向かって時定数RCで決まる速度で容量が充電され、入力ノードの電位Vrefが上昇していく。このときの上昇カーブは時定数RCで定まり、指数関数的となる。これに伴って発光輝度も低レベルから高レベルに向かって指数関数的に上昇する。受光量が測距に適したレベルに到達した時点T2で比較器C1,C2の出力が反転し、スイッチSWがオンに切り替わってVrefをゼロにリセットする。この様に指数関数的に駆動電流を掃引する事で、第一実施形態のように直線的に掃引した場合に比べ、低レベルから高レベルに達するまでの時間を短縮化でき、結果として測距時間の短縮化に繋がる。   FIG. 10 is a timing chart for explaining the operation of the fourth embodiment shown in FIG. As shown in the figure, the switch SW is switched from on to off at the timing T1 when ranging starts from the waiting period T0. As a result, the capacitor is charged from the power supply line Vcc toward the ground line at a speed determined by the time constant RC, and the potential Vref of the input node increases. The rising curve at this time is determined by the time constant RC and becomes exponential. Along with this, the emission luminance also increases exponentially from the low level to the high level. At time T2 when the amount of received light reaches a level suitable for distance measurement, the outputs of the comparators C1 and C2 are inverted, the switch SW is turned on, and Vref is reset to zero. By sweeping the drive current exponentially in this way, the time to reach the high level from the low level can be shortened compared to the case where the drive current is swept linearly as in the first embodiment. It leads to shortening of time.

図11は、本発明にかかる測距装置を組み込んだカメラの一例を示す模式的な斜視図である。カメラ25はボディ26の前面にレンズ鏡筒27を備えている。ボディ26には投光部6及び受光部7を備えたアクティブ測距装置0が取り付けられている。投光部6は光軸方向に位置する対象物に対して光束を投光する。受光部7は、対象物から反射して戻ってくる光束を受光し、その受光位置に応じた検出信号を出力する。測距装置0は、受光部7から出力された検出信号に基づいて、対象物までの距離を判定するものであり、例えば三角測量の原理に基づき測距を行う。   FIG. 11 is a schematic perspective view showing an example of a camera incorporating the distance measuring device according to the present invention. The camera 25 includes a lens barrel 27 on the front surface of the body 26. An active distance measuring device 0 including a light projecting unit 6 and a light receiving unit 7 is attached to the body 26. The light projecting unit 6 projects a light beam onto an object located in the optical axis direction. The light receiving unit 7 receives a light beam reflected and returned from the object, and outputs a detection signal corresponding to the light receiving position. The distance measuring device 0 determines the distance to the object based on the detection signal output from the light receiving unit 7, and performs distance measurement based on the principle of triangulation, for example.

図12は、本発明にかかる測距装置の他の応用例を示す模式図であり、人検知センサーとして用いられる。図示するように、壁面32に備え付けられた小便器31には、小便器31に洗浄水を供給するための給水管33と、汚水を排出するための配水管34とが接続されている。給水管33の途中には電磁弁35が配設されている。電磁弁35は図示しないコイルと同コイルに設けた弁体とを有し、コイルの非励磁時(通常の状態)には閉弁されて給水管33を遮断すると共に、コイルの励磁と共に開弁して給水管33を開通させるようにオン/オフ制御される。そして、この電磁弁35の開弁動作によって給水管33を通して小便器31に洗浄水が供給される。小便器31の上方には本発明にかかる測距装置0が配設されており、これにて小便器31の使用者の有無が検知される。制御回路37はCPU,ROM,RAMなどを有するマイクロコンピュータであり、小便器31の上方において壁面32に埋設されている。同制御回路37には測距装置0及び電磁弁35が接続されており、制御回路37は測距装置0の検知結果を入力し、その検知結果に基づいて電磁弁35に対し駆動信号を出力する。即ち、使用者が所定の距離範囲に入った後、立ち去った時点で洗浄水を流すように制御する。   FIG. 12 is a schematic diagram showing another application example of the distance measuring device according to the present invention, which is used as a human detection sensor. As shown in the figure, a urinal 31 provided on the wall surface 32 is connected to a water supply pipe 33 for supplying washing water to the urinal 31 and a water distribution pipe 34 for discharging sewage. An electromagnetic valve 35 is disposed in the middle of the water supply pipe 33. The electromagnetic valve 35 has a coil (not shown) and a valve body provided in the coil, and is closed when the coil is not excited (normal state) to shut off the water supply pipe 33 and open with the excitation of the coil. Thus, on / off control is performed so that the water supply pipe 33 is opened. Then, the washing water is supplied to the urinal 31 through the water supply pipe 33 by the opening operation of the electromagnetic valve 35. The distance measuring device 0 according to the present invention is disposed above the urinal 31 so that the presence or absence of the user of the urinal 31 is detected. The control circuit 37 is a microcomputer having a CPU, ROM, RAM, and the like, and is embedded in the wall surface 32 above the urinal 31. A distance measuring device 0 and an electromagnetic valve 35 are connected to the control circuit 37, and the control circuit 37 inputs a detection result of the distance measuring device 0 and outputs a drive signal to the electromagnetic valve 35 based on the detection result. To do. That is, control is performed so that the washing water flows when the user leaves after entering the predetermined distance range.

図13は、本発明にかかる測距装置の他の応用例を示す模式図である。図13は、自動取引装置の1つの実施形態であるATMの外観構成を示す斜視図である。このATMは少なくとも前面部が屋外などに露出するように設置されるものであり、装置本体には、シャッタにより開閉自在な紙幣入出金口41、利用者との対話用の表示装置としてのCRT42及びキー入力部43、利用者認証用のカードが装着されるカード装着部44、装置本体の前面部に配設された対人センサとしての測距装置0などが備えられ、本体内には紙幣処理部が搭載されている。測距装置0は投光部6及び受光部7からなる。ATMは使用者が居ないとき待機状態もしくは節電状態におかれる。この場合でも測距装置0は動作状態にある。測距装置0が使用者の接近を感知すると、ATMは待機状態から稼動状態に復帰する。   FIG. 13 is a schematic diagram showing another application example of the distance measuring apparatus according to the present invention. FIG. 13 is a perspective view showing an external configuration of an ATM that is one embodiment of an automatic transaction apparatus. This ATM is installed so that at least the front surface is exposed to the outdoors, etc., and the apparatus main body includes a bill deposit / withdrawal port 41 that can be opened and closed by a shutter, a CRT 42 as a display device for dialog with a user, A key input unit 43, a card mounting unit 44 on which a user authentication card is mounted, a distance measuring device 0 as a personal sensor disposed on the front surface of the apparatus main body, and the like are provided. Is installed. The distance measuring device 0 includes a light projecting unit 6 and a light receiving unit 7. The ATM is placed in a standby state or a power saving state when there is no user. Even in this case, the distance measuring device 0 is in an operating state. When the distance measuring device 0 detects the approach of the user, the ATM returns from the standby state to the operating state.

測距装置の参考例を示す回路図である。It is a circuit diagram which shows the reference example of a distance measuring device. 測距装置の他の参考例を示す回路図である。It is a circuit diagram which shows the other reference example of a distance measuring device. 本発明にかかる測距装置の第一実施形態を示す回路図である。1 is a circuit diagram showing a first embodiment of a distance measuring device according to the present invention. 第一実施形態の動作説明に供するタイミングチャートである。It is a timing chart used for operation | movement description of 1st embodiment. 本発明にかかる測距装置の第二実施形態の主要部を示す回路図である。It is a circuit diagram which shows the principal part of 2nd embodiment of the distance measuring device concerning this invention. 第二実施形態の動作説明に供するタイミングチャートである。It is a timing chart used for operation | movement description of 2nd embodiment. 本発明にかかる測距装置の第三実施形態の主要部を示す回路図である。It is a circuit diagram which shows the principal part of 3rd embodiment of the distance measuring device concerning this invention. 第三実施形態の動作説明に供するタイミングチャートである。It is a timing chart used for operation | movement description of 3rd embodiment. 本発明にかかる測距装置の第四実施形態の主要部を示す回路図である。It is a circuit diagram which shows the principal part of 4th embodiment of the distance measuring device concerning this invention. 第四実施形態の動作説明に供するタイミングチャートである。It is a timing chart used for operation | movement description of 4th embodiment. 本発明にかかる測距装置の応用例を示す斜視図である。It is a perspective view which shows the application example of the distance measuring device concerning this invention. 同じく他の応用例を示す模式的な断面図である。It is a typical sectional view showing other application examples similarly. 同じく別の応用例を示す模式的な斜視図である。It is a typical perspective view which similarly shows another application example. 従来の測距装置の原理を示す模式図である。It is a schematic diagram which shows the principle of the conventional ranging apparatus.

符号の説明Explanation of symbols

0・・・測距装置、・・・1発光素子、5・・・受光素子、6・・・投光部、7・・・受光部、8・・・演算回路、9・・・シーケンサー、10・・・駆動回路、12・・・サンプルホールド回路   DESCRIPTION OF SYMBOLS 0 ... Distance measuring device ... 1 Light emitting element, 5 ... Light receiving element, 6 ... Light emitting part, 7 ... Light receiving part, 8 ... Arithmetic circuit, 9 ... Sequencer, 10 ... Drive circuit, 12 ... Sample hold circuit

Claims (5)

対象物に対して光束を投光する投光部と、対象物から反射して戻ってくる光束を受光して検出信号を出力する受光部と、該検出信号に基づいて該対象物までの測距を行う演算部と、該投光部及び受光部の動作を制御する制御部とからなる測距装置であって、
前記投光部は、駆動電流に応じて光束を放射する発光素子と、該発光素子に駆動電流を供給する駆動回路とを含み、
前記制御部は、該投光部の駆動回路を制御して該駆動電流を低レベルから高レベルに掃引しながら投光を行なうとともに、該受光部の受光量をモニタして測距に適したレベルに達したら該駆動電流の掃引を停止して測距を行うことを特徴とする測距装置。
A light projecting unit that projects a light beam onto the object, a light receiving unit that receives the light beam reflected and returned from the object and outputs a detection signal, and a measurement to the object based on the detection signal. A distance measuring device comprising a calculation unit that performs distance and a control unit that controls operations of the light projecting unit and the light receiving unit,
The light projecting unit includes a light emitting element that emits a light beam according to a driving current, and a driving circuit that supplies a driving current to the light emitting element,
The control unit controls the driving circuit of the light projecting unit to perform light projection while sweeping the drive current from a low level to a high level, and monitors the amount of light received by the light receiving unit and is suitable for distance measurement. A distance measuring device characterized in that when the level is reached, the sweep of the drive current is stopped and distance measurement is performed.
前記制御部は、ゼロレベルより上の所定の低レベルから高レベルに向かって該駆動電流の掃引を開始することを特徴とする請求項1記載の測距装置。   2. The distance measuring apparatus according to claim 1, wherein the control unit starts sweeping the drive current from a predetermined low level above a zero level toward a high level. 前記制御部は、該受光部の受光量が測距に適したレベルに達した時点における該駆動電流のレベルを所定時間だけ維持して測距を行うことを特徴とする請求項1記載の測距装置。   2. The distance measurement according to claim 1, wherein the controller performs distance measurement while maintaining the level of the drive current for a predetermined time when the amount of light received by the light receiver reaches a level suitable for distance measurement. Distance device. 前記制御部は、該駆動電流を低レベルから高レベルに向かって指数関数的に掃引することを特徴とする請求項1記載の測距装置。   The range finder according to claim 1, wherein the controller sweeps the drive current exponentially from a low level to a high level. 前記演算部は、該受光部から出力された光束の受光位置を表す検出信号により三角測量の原理に基づいて測距を行うことを特徴とする請求項1記載の測距装置。   2. The distance measuring device according to claim 1, wherein the calculation unit performs distance measurement based on a triangulation principle based on a detection signal indicating a light receiving position of a light beam output from the light receiving unit.
JP2004348738A 2004-12-01 2004-12-01 Distance measuring apparatus Pending JP2006153814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004348738A JP2006153814A (en) 2004-12-01 2004-12-01 Distance measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004348738A JP2006153814A (en) 2004-12-01 2004-12-01 Distance measuring apparatus

Publications (1)

Publication Number Publication Date
JP2006153814A true JP2006153814A (en) 2006-06-15

Family

ID=36632282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004348738A Pending JP2006153814A (en) 2004-12-01 2004-12-01 Distance measuring apparatus

Country Status (1)

Country Link
JP (1) JP2006153814A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097872A (en) * 2007-10-12 2009-05-07 Sharp Corp Optical range-finding sensor, object detection device, cleaning toilet seat, and manufacturing method of the optical range-finding sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59148811A (en) * 1983-02-15 1984-08-25 Copal Co Ltd Distance measuring device
JPS61226607A (en) * 1985-04-01 1986-10-08 Konishiroku Photo Ind Co Ltd Range finder
JPH01138406A (en) * 1987-08-21 1989-05-31 Omron Tateisi Electron Co Distance measuring instrument
JPH01206212A (en) * 1988-02-12 1989-08-18 Omron Tateisi Electron Co Measuring apparatus of distance
JPH0264486A (en) * 1988-08-30 1990-03-05 Omron Tateisi Electron Co Distance measuring apparatus
JPH07301521A (en) * 1994-05-09 1995-11-14 Tokai Rika Co Ltd Object detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59148811A (en) * 1983-02-15 1984-08-25 Copal Co Ltd Distance measuring device
JPS61226607A (en) * 1985-04-01 1986-10-08 Konishiroku Photo Ind Co Ltd Range finder
JPH01138406A (en) * 1987-08-21 1989-05-31 Omron Tateisi Electron Co Distance measuring instrument
JPH01206212A (en) * 1988-02-12 1989-08-18 Omron Tateisi Electron Co Measuring apparatus of distance
JPH0264486A (en) * 1988-08-30 1990-03-05 Omron Tateisi Electron Co Distance measuring apparatus
JPH07301521A (en) * 1994-05-09 1995-11-14 Tokai Rika Co Ltd Object detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097872A (en) * 2007-10-12 2009-05-07 Sharp Corp Optical range-finding sensor, object detection device, cleaning toilet seat, and manufacturing method of the optical range-finding sensor
US7760332B2 (en) 2007-10-12 2010-07-20 Sharp Kabushiki Kaisha Optical range-finding sensor, object detection device, self-cleaning toilet seat, and method for manufacturing optical range-finding sensor

Similar Documents

Publication Publication Date Title
US8735824B2 (en) Infrared sensor module
US6225910B1 (en) Smoke detector
US8629779B2 (en) Adapting a scanning point of a sample and hold circuit of an optical smoke detector
CN103080988A (en) Optical smoke detector
US6555806B2 (en) Photoelectric sensor having special display features
CN102384737A (en) Ranging device capable of raising signal to noise rate and method thereof
JP2006153814A (en) Distance measuring apparatus
JP2006153813A (en) Distance measuring apparatus
JP3885489B2 (en) Photoelectric sensor
JP2006242728A (en) Range finder
JP2007249520A (en) Fire sensor
CN110646059B (en) Liquid level detection method and device
JP2007121083A (en) Distance measurement apparatus
CN113382499A (en) Light control circuit for light-controlled LED lamp and light-controlled LED lamp circuit
US7385182B2 (en) Temperature sensing circuit having a controller for measuring a length of charging time
JP2836025B2 (en) Focus adjustment signal processor
JP3790659B2 (en) Optical detector
JP3594816B2 (en) Distance measuring device
US4494848A (en) Distance measuring device
JP2006010598A (en) Human body detector, and sanitary washer
JPS60189720A (en) Distance measuring device
JPS61284689A (en) Body detecting method
JP2004215315A (en) Photo-electric sensor and sensitivity setting method therefor
JP3762589B2 (en) Ranging device
JPS6139952Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A977 Report on retrieval

Effective date: 20100128

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601