[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006039407A - Method for manufacturing glass plate, and pellicle - Google Patents

Method for manufacturing glass plate, and pellicle Download PDF

Info

Publication number
JP2006039407A
JP2006039407A JP2004222176A JP2004222176A JP2006039407A JP 2006039407 A JP2006039407 A JP 2006039407A JP 2004222176 A JP2004222176 A JP 2004222176A JP 2004222176 A JP2004222176 A JP 2004222176A JP 2006039407 A JP2006039407 A JP 2006039407A
Authority
JP
Japan
Prior art keywords
polishing
pellicle
glass plate
abrasive
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004222176A
Other languages
Japanese (ja)
Inventor
Hitoshi Mishiro
均 三代
Masabumi Ito
正文 伊藤
Hiroshi Kimura
宏 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2004222176A priority Critical patent/JP2006039407A/en
Publication of JP2006039407A publication Critical patent/JP2006039407A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Packaging Frangible Articles (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a glass plate having high parallelism and high smoothness and to provide a pellicle having a pellicle plate suitable for an F<SB>2</SB>laser exposure mask. <P>SOLUTION: A synthetic quartz glass plate having ≤0.1 μm/50 mm parallelism and ≤0.15 nm surface roughness (rms) is manufactured by polishing a glass plate by using an abrasive having 10 to 200 nm average particle size and a polishing cloth having ≤10% compression rate and ≤90% elastic compression modulus. A pellicle film 2 comprising the above synthetic quartz glass is adhered to one opening of a pellicle frame 1 in a frame form having openings on the upper face and the bottom face. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は集積回路の製造工程で使用されるマスクまたはレチクル(以降、両者をあわせてマスクと称す。)に装着されるペリクルに使用されるペリクル板の製造方法等に適用できるガラス板の製造方法に関する。   The present invention relates to a method of manufacturing a glass plate applicable to a method of manufacturing a pellicle plate used in a pellicle mounted on a mask or reticle (hereinafter, both referred to as a mask) used in an integrated circuit manufacturing process. About.

半導体プロセスのフォトリソグラフィ工程における露光装置によるウェハーへのパターン形成において、回路パターンが形成されたマスク(あるいはレチクル)表面の傷発生や異物付着を防止するため、ペリクルが取り付けられる。図1はペリクルの正面図およびA−A’線での断面図である。ペリクルは図1のように矩形枠体であるペリクルフレーム1とこれに接着剤3で貼り付けられるペリクル膜2で構成される。   In pattern formation on a wafer by an exposure apparatus in a photolithography process of a semiconductor process, a pellicle is attached in order to prevent generation of scratches or adhesion of foreign matters on the mask (or reticle) surface on which a circuit pattern is formed. FIG. 1 is a front view of the pellicle and a cross-sectional view taken along line A-A ′. As shown in FIG. 1, the pellicle includes a pellicle frame 1 that is a rectangular frame and a pellicle film 2 that is attached to the pellicle frame 1 with an adhesive 3.

一方、近年のパターン微細化や高密度化により波長157nmのFレーザー等の短波長の光を用いた露光が行われている。このため、ペリクル膜2もFレーザー等の短波長の光に対する耐久性が高い合成石英ガラスを用いることが検討されている。ペリクル膜として合成石英ガラスを用いる場合、透過率と加工精度を両立させるため、合成石英ガラスの厚さは0.1〜2.0mmの範囲で決定される。このため、合成石英ガラスを用いたペリクル膜の厚さは従来用いていたフッ素樹脂等からなるペリクル膜より厚いので、両者を区別するため本明細書では以下、合成石英ガラスを用いたペリクル膜を「ペリクル板」と称する。 On the other hand, exposure using short-wavelength light such as an F 2 laser having a wavelength of 157 nm has been performed due to recent pattern miniaturization and higher density. For this reason, the use of synthetic quartz glass having high durability against short-wavelength light such as an F 2 laser is also being studied for the pellicle film 2. When synthetic quartz glass is used as the pellicle film, the thickness of the synthetic quartz glass is determined in the range of 0.1 to 2.0 mm in order to achieve both transmittance and processing accuracy. For this reason, the thickness of the pellicle film using synthetic quartz glass is thicker than that of a pellicle film made of fluorine resin or the like that has been conventionally used. This is called a “pellicle plate”.

合成石英ガラスからなるペリクル板は、前述のように従来のペリクル膜より厚いため、ペリクル板の平行度が不十分な場合やペリクル板に反りがあった場合に露光光が屈折するなどして、ウェハーのパターンの寸法精度や位置精度を悪化させることがあった。このため、ペリクルフレーム上に接着されたペリクル板の反りは有効範囲内のP−V値(Peak Value値)で2μm以下、平行度で0.1μm/50mm以下であることが求められる。この技術的課題を解決するための手段としてペリクル板の加工方法が本発明者らによって考案されている(特許文献1参照)。また、ペリクル板とペリクルフレームの接着方法も本発明者らによって考案されている(特許文献2および特許文献3参照)。   Since the pellicle plate made of synthetic quartz glass is thicker than the conventional pellicle film as described above, the exposure light is refracted when the parallelism of the pellicle plate is insufficient or the pellicle plate is warped, etc. In some cases, the dimensional accuracy and position accuracy of the wafer pattern deteriorate. For this reason, the warpage of the pellicle plate adhered on the pellicle frame is required to be 2 μm or less in terms of the PV value (Peak Value value) within the effective range and 0.1 μm / 50 mm or less in parallelism. As means for solving this technical problem, a method for processing a pellicle plate has been devised by the present inventors (see Patent Document 1). In addition, a method for bonding the pellicle plate and the pellicle frame has been devised by the present inventors (see Patent Document 2 and Patent Document 3).

一方、マスク表面の傷発生や異物付着防止を目的としたペリクルの場合、その表面の傷や異物のレベルはマスク表面の傷や異物のへの要求レベルに比べ緩和されるとはいえ、傷や異物が表面にあると露光の障害となり得る。このため、ペリクル板の表面には38μm以上の大きさの傷が無いこと、更には8μm以上の大きさの異物の付着が無いことが求められている。
しかしながら、ガラス表面上の8μm程度の大きさの傷と付着異物を効率よく識別する手段はなく、結果的に8μm以上の大きさの傷についても無いことが実質的に求められている。
On the other hand, in the case of a pellicle for the purpose of preventing scratches on the mask surface and adhesion of foreign matter, the level of scratches and foreign matter on the surface is reduced compared to the required level for scratches and foreign matter on the mask surface. If there is a foreign substance on the surface, it may be an obstacle to exposure. For this reason, it is required that the surface of the pellicle plate should not be scratched with a size of 38 μm or more, and that no foreign matter with a size of 8 μm or more should be attached.
However, there is no means for efficiently discriminating scratches having a size of about 8 μm on the glass surface and adhering foreign substances, and as a result, there is virtually no demand for scratches having a size of 8 μm or more.

ペリクル板を得るための一般的な方法を以下に記述する。合成石英ガラスは成形されたブロックからスライスして板に加工することから、ペリクル板として使用するためにはスライス後の板を研磨し所定の厚みまで加工する必要がある。研磨は、両面研磨装置を用いるのが一般的である。   A general method for obtaining a pellicle plate is described below. Since synthetic quartz glass is sliced from a molded block and processed into a plate, it is necessary to polish the plate after slicing and process it to a predetermined thickness in order to use it as a pellicle plate. For polishing, a double-side polishing apparatus is generally used.

ペリクル板の研磨は、粗削りであるラップ工程と鏡面出しであるポリシング工程からなる。何れの工程でも両面研磨装置を用い、1段もしくは複数段の加工を実施する。   The polishing of the pellicle plate includes a lapping process that is roughing and a polishing process that is mirrored. In either step, a double-side polishing apparatus is used to perform one-step or multi-step processing.

図2、3に両面研磨装置の一例を示す。研磨装置は下定盤6と上定盤7からなる。ラップ工程では鋳鉄等から出来ている定盤の表面自体でガラス板11が研磨される。ポリシング工程ではステンレス等から出来ている定盤に研磨布が貼られ、ガラス板11が研磨される。ガラス板保持具であるキャリア8は外周部がギアに加工されている。装置本体にある太陽ギア9とインターナルギア10の間にキャリア8をセットすることにより、キャリア8が自転しながら上下定盤の両方またはどちらか一方が回転し、ガラス板11の両面を同時に研磨できることを特徴としている。なお、図示はしていないが、上定盤7は研磨剤の供給孔を有しており研磨中にガラス板11に研磨剤を供給できるようになっている。   An example of a double-side polishing apparatus is shown in FIGS. The polishing apparatus includes a lower surface plate 6 and an upper surface plate 7. In the lapping process, the glass plate 11 is polished by the surface of the surface plate made of cast iron or the like. In the polishing process, a polishing cloth is applied to a surface plate made of stainless steel or the like, and the glass plate 11 is polished. The carrier 8 which is a glass plate holder has an outer peripheral portion processed into a gear. By setting the carrier 8 between the sun gear 9 and the internal gear 10 in the apparatus main body, both or either of the upper and lower surface plates rotate while the carrier 8 rotates, and both surfaces of the glass plate 11 can be polished simultaneously. It is characterized by. Although not shown, the upper surface plate 7 has an abrasive supply hole so that the abrasive can be supplied to the glass plate 11 during polishing.

ラップ工程では炭化珪素あるいは酸化アルミを主成分とした#400〜1500程度の粒径の研磨剤を用いることが一般的である。また、ポリシング工程では、研磨剤としては平均粒径0.8〜2.0μmの酸化セリウムを主成分とした研磨剤(以下、酸化セリウム研磨剤と記す)を使用するのが一般的である。   In the lapping process, it is common to use an abrasive having a particle size of about # 400 to 1500 mainly composed of silicon carbide or aluminum oxide. In the polishing step, it is common to use an abrasive mainly composed of cerium oxide having an average particle size of 0.8 to 2.0 μm (hereinafter referred to as cerium oxide abrasive) as the abrasive.

ポリシング工程は通常2段階で実施される。一段目のポリシング工程では、加工効率を重視して硬質の材料、例えば、硬質ベロア、発泡ウレタン、研磨剤を含浸させた発泡ウレタン、不織布などが研磨布として用いられる。二段目のポリシング工程では、表面粗さや傷の低減を目的として軟質な材料、例えば軟質ベロアやスウェードなどが研磨布として用いられる。   The polishing process is usually performed in two stages. In the first polishing step, a hard material, for example, hard velor, foamed urethane, foamed urethane impregnated with an abrasive, non-woven fabric, etc., is used as the polishing cloth with emphasis on processing efficiency. In the second polishing step, a soft material such as soft velor or suede is used as the polishing cloth for the purpose of reducing surface roughness and scratches.

ポリシング時、前述のガラス板の高平行度化を達成するためには、硬質の研磨布を使用し両面の研磨量を均一化する必要がある。しかしながら、硬質の研磨布を使用するとガラス板表面の粗さが大きくなり、同時に研磨によって発生する傷が増加する。一方、研磨により表面粗さを小さくする、あるいは傷を低減する目的で、軟質の研磨布を使用した場合には、研磨中の研磨布の表面平坦度が一定にならず、部分部分によって研磨速度が異なり研磨量が不均一となる。その結果、ガラス板の平坦度や平行度が劣化する。これは、一旦硬質の研磨布によって研磨されたガラス板について、仕上げに軟質の研磨布を使用した場合も生じる。即ち、研磨における平行度(あるいは平坦度)と表面粗さ(あるいは表面の傷)とは相反する条件に支配されていると言える。   At the time of polishing, in order to achieve the high parallelism of the glass plate described above, it is necessary to use a hard polishing cloth and make the polishing amount on both sides uniform. However, when a hard polishing cloth is used, the roughness of the glass plate surface increases, and at the same time, scratches generated by polishing increase. On the other hand, when a soft abrasive cloth is used for the purpose of reducing the surface roughness by polishing or reducing scratches, the surface flatness of the abrasive cloth being polished is not constant, and the polishing speed depends on the portion. However, the polishing amount becomes non-uniform. As a result, the flatness and parallelism of the glass plate are deteriorated. This also occurs when a soft polishing cloth is used for finishing the glass plate once polished with a hard polishing cloth. That is, it can be said that parallelism (or flatness) and surface roughness (or surface scratches) in polishing are governed by contradictory conditions.

特開2001−312047号公報JP 2001-312047 A 特開2002−107915号公報JP 2002-107915 A 特開2003−307832号公報Japanese Patent Laid-Open No. 2003-307832

かかる現状に鑑み、本発明はFレーザー露光用マスクに好適なペリクルに用いられるペリクル板などに適用できるガラス板の製造方法を提供することを目的とする。 In view of the current situation, an object of the present invention is to provide a method for producing a glass plate that can be applied to a pellicle plate used for a pellicle suitable for an F 2 laser exposure mask.

発明者等は、ペリクル板の製造にあたって従来から使用されている両面研磨装置で試験を重ねた結果、高平行度を維持しつつ高平滑度を得る研磨条件を得るに至った。   As a result of repeated tests using a double-side polishing apparatus conventionally used in the manufacture of pellicle plates, the inventors have obtained polishing conditions for obtaining high smoothness while maintaining high parallelism.

本発明の態様1は、平均粒径が10〜200nmの範囲の研磨剤と、圧縮率が10%以下、圧縮弾性率が90%以下の研磨布と、を用いてガラス板を研磨し、平行度が0.1μm/50mm以下であって、表面粗さ(rms)が0.15nm以下であるガラス板を得ることを特徴とするガラス板の製造方法を提供する。   In aspect 1 of the present invention, a glass plate is polished using an abrasive having an average particle size in the range of 10 to 200 nm, and a polishing cloth having a compression rate of 10% or less and a compression modulus of 90% or less. There is provided a method for producing a glass plate, characterized in that a glass plate having a degree of 0.1 μm / 50 mm or less and a surface roughness (rms) of 0.15 nm or less is obtained.

本発明の態様2は、上面と底面とに開口部を有する枠体形状のペリクルフレームとペリクルフレームの一方の開口部に接着した合成石英ガラス製のガラス板からなるペリクルであって、前記ガラス板は態様1の発明のガラス板の製造方法で製造されているペリクルを提供する。   Aspect 2 of the present invention is a pellicle comprising a frame-shaped pellicle frame having openings on the top and bottom surfaces, and a glass plate made of synthetic quartz glass bonded to one opening of the pellicle frame, the glass plate Provides a pellicle manufactured by the glass plate manufacturing method of the invention of aspect 1.

即ち、従来通り、一段目のポリシングでは、硬質の研磨布と平均粒径0.8〜2.0μm程度の酸化セリウム研磨剤を用いて研磨を行い、ラップ加工で形成した平行度を維持、改善しつつ高い加工効率でラップ工程において生じたクラック層(一般には砂)を除去する。   That is, as usual, in the first stage polishing, polishing is performed using a hard polishing cloth and a cerium oxide abrasive having an average particle size of about 0.8 to 2.0 μm, and the parallelism formed by lapping is maintained and improved. However, the crack layer (generally sand) generated in the lapping process is removed with high processing efficiency.

次いで、二段目のポリシングでは、圧縮率が10%以下、圧縮弾性率が90%以下の硬質の研磨布を使用し、一般的なポリシングの研磨剤より粒径の小さい、平均粒径が10〜200nm範囲の研磨剤を使用する。これにより、平行度を劣化させることなく、表面粗さや傷のレベルが従来の軟質の研磨剤と酸化セリウム研磨剤を用いた場合のレベルに比べて同等以上の研磨面を得ることができることを見出した。具体的には、平行度が0.1μm/50mm以下であって、表面粗さ(rms)が0.15nm以下であるガラス板の製造方法を見出した。   Next, in the second stage polishing, a hard polishing cloth having a compression rate of 10% or less and a compression modulus of 90% or less is used, and the average particle size is 10 smaller than that of a general polishing abrasive. Use abrasives in the ~ 200 nm range. As a result, it has been found that a surface having a surface roughness or scratch level equal to or higher than that obtained when a conventional soft abrasive and cerium oxide abrasive is used can be obtained without degrading parallelism. It was. Specifically, the manufacturing method of the glass plate whose parallelism is 0.1 micrometer / 50 mm or less and whose surface roughness (rms) is 0.15 nm or less was discovered.

また、加工効率を無視すれば、ラップ工程後の一段目のポリシングを省略して、直接二段目のポリシングを実施しても当初の目的を達することができる。   If processing efficiency is ignored, the initial purpose can be achieved even if the first-stage polishing after the lapping process is omitted and the second-stage polishing is performed directly.

さらに、上記製造方法で得た合成石英ガラスをペリクル板とし、上面と底面に開口部を有する枠体形状のペリクルフレームの一方の開口部にそのペリクル板を接着することによって、Fレーザー露光用マスクに好適なペリクルを得ることができる。 Furthermore, the synthetic quartz glass obtained by the above manufacturing method is used as a pellicle plate, and the pellicle plate is bonded to one opening of a frame-shaped pellicle frame having openings on the top and bottom surfaces, thereby enabling F 2 laser exposure. A pellicle suitable for a mask can be obtained.

本発明によれば、平行度が0.1μm/50mmであって、表面粗さ(rms)が0.15nm以下のガラス板を得ることができる。   According to the present invention, a glass plate having a parallelism of 0.1 μm / 50 mm and a surface roughness (rms) of 0.15 nm or less can be obtained.

本発明において定義される平行度は、ガラス板面内の複数の点をマイクロメーターやレーザー変位計を用いて厚さを測定することで算出される厚み偏差、あるいは光学干渉を利用して2面間の平行度を測定することで求められる。   The parallelism defined in the present invention refers to two surfaces using a thickness deviation calculated by measuring the thickness of a plurality of points in a glass plate surface using a micrometer or a laser displacement meter, or optical interference. It is calculated | required by measuring the parallelism between.

また、表面粗さは、接触式表面粗さ計、光学式表面粗さ計などでも測定可能であるがAFM(原子間力顕微鏡)によって計測することが可能である。   The surface roughness can be measured with a contact surface roughness meter, an optical surface roughness meter, or the like, but can be measured with an AFM (atomic force microscope).

本発明では、前記のように、両面研磨装置と研磨布と研磨剤を用いて被研磨ガラス板の研磨を行うことが好ましい。   In the present invention, as described above, it is preferable to polish the glass plate to be polished using the double-side polishing apparatus, the polishing cloth, and the abrasive.

本発明における研磨布の圧縮率および圧縮弾性率の測定方法は、研磨布がスェードの場合と研磨布がスェード以外の場合とで異なる。それぞれの測定方法は以下の通りである。なお、本発明ではスェード以外の研磨布とは、硬質ベロア、軟質ベロア、発泡ウレタン、研磨剤を含浸させたウレタン、不織布をいう。   The method for measuring the compressibility and compressive modulus of the polishing cloth in the present invention differs depending on whether the polishing cloth is a suede or a polishing cloth other than the suede. Each measuring method is as follows. In the present invention, the abrasive cloth other than suede means hard velor, soft velor, urethane foam, urethane impregnated with an abrasive, and nonwoven fabric.

まず、研磨布がスェードの場合の測定方法について説明する。研磨布を10cm×10cm程度に切り出し、測定試料とする。ショッパー型厚さ測定器にて直径1cmの加圧面を用い、100g/cmの圧力を測定試料に30秒間印加する。30秒印加後の測定試料の厚さtを測る。 First, a measurement method when the polishing pad is sued will be described. A polishing cloth is cut out to about 10 cm × 10 cm and used as a measurement sample. Using a pressure surface having a diameter of 1 cm with a shopper type thickness measuring device, a pressure of 100 g / cm 2 is applied to the measurement sample for 30 seconds. Measure the thickness t 0 of the measurement sample after 30 seconds of application.

さらに1120g/cmの圧力を測定試料に300秒間印加する。300秒印加後の測定試料の厚さtを測る。測定試料を加圧しない状態で300秒間放置し、再び測定試料100g/cmの圧力を測定試料に30秒間印加する。30秒印加後の測定試料の厚さt’を測る。以上のt、t、t’を用いて上記の式1および式2から研磨布の圧縮率および圧縮弾性率を求める。 Further, a pressure of 1120 g / cm 2 is applied to the measurement sample for 300 seconds. 300 seconds test sample after the application measuring a thickness t 1. The measurement sample is left unpressed for 300 seconds, and a pressure of 100 g / cm 2 is again applied to the measurement sample for 30 seconds. Measure the thickness t 0 ′ of the measurement sample after 30 seconds of application. Using the above t 0 , t 1 , t 0 ′, the compressibility and the compressive modulus of the polishing cloth are obtained from the above formulas 1 and 2.

Figure 2006039407
Figure 2006039407

Figure 2006039407
Figure 2006039407

次に研磨布がスェード以外の場合の測定方法について説明する。研磨布を10cm×10cm程度に切り出し、測定試料とする。ショッパー型厚さ測定器にて直径1cmの加圧面を用い、300g/cmの圧力を測定試料に30秒間印加する。30秒印加後の測定試料の厚さtを測る。 Next, a measurement method when the polishing cloth is other than suede will be described. A polishing cloth is cut out to about 10 cm × 10 cm and used as a measurement sample. Using a pressure surface having a diameter of 1 cm with a shopper type thickness measuring device, a pressure of 300 g / cm 2 is applied to the measurement sample for 30 seconds. Measure the thickness t 0 of the measurement sample after 30 seconds of application.

さらに1800g/cmの圧力を測定試料に60秒間印加する。60秒印加後の測定試料の厚さtを測る。測定試料を加圧しない状態で60秒間放置し、再び測定試料100g/cmの圧力を測定試料に30秒間印加する。30秒印加後の測定試料の厚さt’を測る。以上のt、t、t’を用いて上記の式1および式2から研磨布の圧縮率および圧縮弾性率を求める。 Further, a pressure of 1800 g / cm 2 is applied to the measurement sample for 60 seconds. The thickness t 1 of the measurement sample after application for 60 seconds is measured. The measurement sample is left unpressed for 60 seconds, and a pressure of 100 g / cm 2 of the measurement sample is again applied to the measurement sample for 30 seconds. Measure the thickness t 0 ′ of the measurement sample after 30 seconds of application. Using the above t 0 , t 1 , t 0 ′, the compressibility and the compressive modulus of the polishing cloth are obtained from the above formulas 1 and 2.

本発明に使用される研磨剤は、一般にガラス使用されている研磨剤を使用することができる。例えば、酸化セリウム、酸化ジルコニウム、ベンガラ、酸化アルミニウム、酸化クロム、コロイダルシリカ、ヒュームドシリカがあげられる。研磨剤自体と被研磨物であるガラスの相対的な硬度差が大きく、かつ、研磨剤の方がガラスより軟質であると、ガラスの表面粗さが小さくなる傾向がある。このため、上記研磨剤の中でも酸化セリウム、コロイダルシリカ、ヒュームドシリカ等を用いることがより好ましい。   As the abrasive used in the present invention, an abrasive generally used for glass can be used. Examples thereof include cerium oxide, zirconium oxide, bengara, aluminum oxide, chromium oxide, colloidal silica, and fumed silica. When the relative hardness difference between the abrasive itself and the glass to be polished is large and the abrasive is softer than the glass, the surface roughness of the glass tends to be small. For this reason, it is more preferable to use cerium oxide, colloidal silica, fumed silica or the like among the above abrasives.

実際に、これらの研磨剤を研磨に使用するには、水に研磨剤を分散させスラリー状態で使用するいわゆる湿式研磨が一般的である。研磨剤と水のほかに研磨の効率を向上させるための分散剤、例えば、アニオン・カチオン・非イオン系の界面活性剤や多価アルコール類、例えば、メチルアルコールやIPA(イソプロピルアルコール)、ガラス表面に対して侵食性の小さい酸やアルカリ、例えば、硝酸、硫酸、クエン酸等の有機酸を添加することもできる。   Actually, in order to use these abrasives for polishing, so-called wet polishing in which the abrasive is dispersed in water and used in a slurry state is generally used. In addition to abrasives and water, dispersants for improving polishing efficiency such as anionic, cationic and nonionic surfactants and polyhydric alcohols such as methyl alcohol and IPA (isopropyl alcohol), glass surface It is also possible to add an acid or alkali having a low erosive property, for example, an organic acid such as nitric acid, sulfuric acid or citric acid.

また、研磨剤中の巨大な粒子は傷の原因となるため、研磨剤の平均粒径は粒径の小さい側からの個数による積算粒径分布が50%となる粒径D50が10〜200nmの範囲であることが好ましく、90%となる粒径D90が同範囲であることがより好ましい。さらに99%となる粒径D99が同範囲であることが特に好ましい。本発明では、研磨剤の平均粒径とは、研磨剤のD50の値のことをいう。   Further, since the large particles in the abrasive cause scratches, the average particle size of the abrasive is 10 to 200 nm in the particle size D50 in which the integrated particle size distribution is 50% based on the number from the small particle size side. It is preferable that the particle size is within the range, and the particle size D90 that is 90% is more preferably within the same range. Further, it is particularly preferable that the particle size D99 that becomes 99% is in the same range. In the present invention, the average particle diameter of the abrasive refers to the value of D50 of the abrasive.

研磨剤の平均粒径D50の測定方法は以下の通りである。研磨剤をエタノール等も有機溶剤中に希釈、分散させる。このとき、研磨剤の濃度は0.1〜0.3重量%が望ましい。この希釈した溶液をSEM(走査型電子顕微鏡)観察用の試料台に塗布し、有機溶剤を蒸発・乾燥させる。しかる後、試料に白金−パラジウムを蒸着し計測用試料を作成する。この計測用試料をSEMを使用し倍率5万倍〜10万倍で観察し、写真を撮影する。この写真より粒径を求めることができる。SEMの視野を移動したり、複数の試料を観察することで分布を求めるが、正確な分布を求めるためには観察する粒子数500個以上、望ましくは1000個以上、さらに望ましくは2000個以上になるようにする。この計測結果を集計し、粒径の小さい方から頻度(%)を加算していくことで積算粒度分布を求めることができる。この積算した頻度が50%になる粒径をD50、90%になる粒径をD90、99%になる粒径をD99として本発明における粒径を求めることができる。   The measuring method of the average particle diameter D50 of an abrasive | polishing agent is as follows. Abrasives such as ethanol are diluted and dispersed in an organic solvent. At this time, the concentration of the abrasive is preferably 0.1 to 0.3% by weight. This diluted solution is applied to a sample stage for SEM (scanning electron microscope) observation, and the organic solvent is evaporated and dried. Thereafter, platinum-palladium is deposited on the sample to prepare a measurement sample. This measurement sample is observed using a SEM at a magnification of 50,000 to 100,000, and a photograph is taken. The particle size can be determined from this photograph. The distribution is obtained by moving the field of view of the SEM or observing a plurality of samples, but in order to obtain an accurate distribution, the number of particles to be observed is 500 or more, preferably 1000 or more, more preferably 2000 or more. To be. By integrating the measurement results and adding the frequency (%) from the smaller particle size, the integrated particle size distribution can be obtained. The particle diameter in the present invention can be obtained by setting D50 as the particle diameter at which the integrated frequency is 50%, D90 as the particle diameter at 90%, and D99 as the particle diameter at 99%.

特に研磨による表面粗さを小さくするには、D50が10〜80nmの範囲であることが好ましく、D90が同範囲であることがより好ましく、D99が同範囲であることが特に好ましい。但し、酸化セリウムなど、一次粒子が凝集し二次粒子が存在するような研磨剤の場合は、二次粒子の粒度分布で研磨剤の粒径を決定することが好ましい。   In particular, in order to reduce the surface roughness due to polishing, D50 is preferably in the range of 10 to 80 nm, D90 is more preferably in the same range, and D99 is particularly preferably in the same range. However, in the case of an abrasive such as cerium oxide in which primary particles are aggregated and secondary particles are present, it is preferable to determine the particle size of the abrasive by the particle size distribution of the secondary particles.

研磨剤を使用する濃度は、実用的には数質量%から40質量%程度であるが、研磨剤が希薄であると傷が発生しやすく、高濃度の場合は経済的に不利であるため10〜30質量%が好ましく、10〜20質量%がより好ましい。   The concentration at which the abrasive is used is practically about several to 40% by mass. However, if the abrasive is dilute, scratches are likely to occur, and a high concentration is economically disadvantageous. -30 mass% is preferable, and 10-20 mass% is more preferable.

研磨布は硬質であるものが選択される。具体的には、研磨布は圧縮率が10%以下であり、かつ、圧縮弾性率が90%以下であることが好ましく、圧縮率が3%〜8%であり、かつ、圧縮弾性率が60〜90%であることがより好ましい。   A polishing cloth that is hard is selected. Specifically, the polishing cloth preferably has a compressibility of 10% or less and a compressive modulus of 90% or less, a compressibility of 3% to 8%, and a compressive modulus of 60. More preferably, it is -90%.

前述の一般的に硬質な研磨布の例の中にあげた硬質ベロア、発泡ウレタン、研磨剤を含浸させた発泡ウレタン、不織布、等が使用可能であるが、発泡ウレタンや研磨剤を含浸させた発泡ウレタンなどは、発泡の開口部の大きさの精度が不十分であり、粗さが不均一になるおそれがある。硬質ベロアや不織布が好適である。   Hard velours, foamed urethane, foamed urethane impregnated with abrasive, non-woven fabric, etc. can be used in the above-mentioned examples of generally hard abrasive cloth, but impregnated with foamed urethane or abrasive. Urethane foam or the like has insufficient accuracy in the size of the opening of the foam, and the roughness may be uneven. A hard velor or non-woven fabric is preferred.

これらの硬質の研磨布を使用する場合、一般的にはスラリーの流れを良くするために研磨布上に切断、熱変形、圧縮などの手段で溝を設ける。このときの溝は、研磨布上に升目状に加工するのが一般的である。   When these hard polishing cloths are used, grooves are generally provided on the polishing cloth by means of cutting, thermal deformation, compression or the like in order to improve the flow of the slurry. The grooves at this time are generally processed in a grid shape on the polishing cloth.

しかし、研磨布の溝で形成された凹部は研磨力がほとんどない。また、図3に示したキャリア11と定盤6とがそれぞれ回転した場合、ガラス板11上の所定の点と定盤6上の所定の点が周期的に重なり合う。特に研磨布の溝パターンが升目状の場合、研磨布の溝部が一定周期で被研磨ガラス板上で同一軌跡を描くことが多い。このため、ガラス板面内に研磨が不十分な部分が現れるおそれがある。したがって、本発明のような高平行かつ高平滑なガラス板を得るには、升目状の溝パターンよりむしろ、溝加工のない研磨布を使用することが好ましい。さらには、スラリーの流れを良くするために、定盤の中心より外周に向けて放射状の溝を研磨布に設けることがより好ましい。   However, the recess formed by the groove of the polishing cloth has little polishing power. In addition, when the carrier 11 and the surface plate 6 shown in FIG. 3 are rotated, a predetermined point on the glass plate 11 and a predetermined point on the surface plate 6 are periodically overlapped. In particular, when the groove pattern of the polishing cloth has a grid shape, the groove portion of the polishing cloth often draws the same locus on the glass plate to be polished at a constant period. For this reason, there exists a possibility that the part with insufficient grinding | polishing may appear in a glass plate surface. Therefore, in order to obtain a highly parallel and highly smooth glass plate as in the present invention, it is preferable to use a polishing cloth without groove processing rather than a grid-like groove pattern. Furthermore, in order to improve the flow of the slurry, it is more preferable to provide radial grooves on the polishing cloth from the center of the surface plate toward the outer periphery.

また、両面研磨装置は上下定盤とキャリアがそれぞれ回転する4WAY型、あるいは下定盤とキャリアのみ回転する3WAY型のどちらを使用してもよいが、研磨布を貼り付ける前の定盤の真直度が、2μm/100mm以下であることが好ましい。被研磨物の直径がキャリアの有効径の1/2以上の場合、キャリアの回転中心が被研磨ガラス板の面内に位置するため、被研磨ガラス板の面内にキャリアの回転による加工が寄与しないポイントが発生する。言い換えれば、加工を促すための定盤の回転による単位時間内の移動距離とキャリアの回転による単位時間内の移動距離の合成された移動距離が前者のみとなるポイントが被研磨ガラス板内に存在することになり、周囲との研磨速度の差が生じるために平面度が悪くなる場合がある。よって、研磨機の大きさは被研磨物の直径の2倍以上の有効径を持つキャリアが装填できることが好ましい。   Further, the double-side polishing apparatus may use either a 4-way type in which the upper and lower surface plates and the carrier rotate, or a 3-way type in which only the lower surface plate and the carrier rotate, but the straightness of the surface plate before the polishing cloth is attached. Is preferably 2 μm / 100 mm or less. When the diameter of the object to be polished is ½ or more of the effective diameter of the carrier, the center of rotation of the carrier is located in the plane of the glass plate to be polished, so the processing by rotation of the carrier contributes to the surface of the glass plate to be polished. The point that does not occur. In other words, there is a point in the glass plate to be polished that the combined travel distance of the travel distance within the unit time due to the rotation of the surface plate for promoting machining and the travel distance within the unit time due to the rotation of the carrier is only the former. As a result, a difference in polishing rate from the surroundings may occur, resulting in poor flatness. Therefore, it is preferable that the size of the polishing machine can be loaded with a carrier having an effective diameter that is twice or more the diameter of the workpiece.

以上に説明した本実施形態に係る加工方法は、合成石英ガラス製ペリクル板に使用することができる。また、高温ポリシリコンTFT用合成石英ガラス基板、半導体製造工程のうちリソグラフィ工程に使用される、特にはEUVリソグラフィに使用される反射型マスクの基材である超低膨張ガラス基板または超低膨張結晶化ガラス基板等も、本発明による製造方法より得ることができる。   The processing method according to this embodiment described above can be used for a synthetic quartz glass pellicle plate. Also, a synthetic quartz glass substrate for high-temperature polysilicon TFT, an ultra-low expansion glass substrate or ultra-low expansion crystal that is a base material for a reflective mask used in lithography processes, particularly used in EUV lithography, in the semiconductor manufacturing process A glass substrate or the like can also be obtained from the production method according to the present invention.

次に本発明の比較例と実施例について説明する。以下の例1は実施例であり、例2、3は比較例である。   Next, comparative examples and examples of the present invention will be described. Example 1 below is an example, and Examples 2 and 3 are comparative examples.

公知の方法で合成された合成石英ガラス材料のインゴットをワイヤーソウで125mm×152mm×t1.2mmに切断した後、市販のNC面取り機で外形寸法が122mm×149mmでかつ、端面部がR形状になるよう面取り加工を実施したペリクル板用材料45枚を準備した。   After a synthetic quartz glass material ingot synthesized by a known method is cut into 125 mm × 152 mm × t1.2 mm with a wire saw, the outer dimensions are 122 mm × 149 mm and the end face is R-shaped with a commercially available NC chamfering machine. Forty-five pellicle plate materials that had been chamfered were prepared.

次に、これらの材料について切断によるクラックおよび面取りによるクラックの進行を止めるため、5質量%HF溶液に浸漬した。それぞれを0.85mmになるまでラップ加工を施した。その際、研磨剤としてフジミコーポレーション製FO#1200(商品名)を濾過水に18〜20質量%懸濁させたスラリーを用い、スピードファム製20B両面ラップ機を使用した。   Next, these materials were immersed in a 5% by mass HF solution to stop the progress of cracks due to cutting and chamfering. Each was lapped to 0.85 mm. At that time, a slurry obtained by suspending 18-20% by mass of FO # 1200 (trade name) manufactured by Fujimi Corporation in filtered water was used as a polishing agent, and a 20B double-sided lapping machine manufactured by Speed Fam was used.

更に、ラップ後の材料に対して前述と同様のエッチング処理を行った。続いて、スピードファム製20B両面ポリッシュ機を使用し、研磨布はローデル・ニッタ社製MH−C15A(商品名)を用い、研磨剤として三井金属社製ミレーク801A(商品名)を10〜12質量%懸濁させたスラリーを用いて、厚み0.805mmになるまで研磨し、1段目のポリッシュ後のサンプル45枚を採取した。このときの研磨布の圧縮率は3.3%、圧縮弾性率は89%であった。これら45枚のサンプルを15枚ずつに分け、それぞれ研磨条件の変えて2段目のポリッシュを実施し、以下の例1〜例3のサンプルを得た。   Further, the same etching treatment as described above was performed on the lapped material. Subsequently, a speed femme 20B double-side polish machine was used, the polishing cloth used was MH-C15A (trade name) manufactured by Rodel Nitta, and Mille 801A (trade name) manufactured by Mitsui Kinzoku Co., Ltd. was used as the abrasive. Polishing was performed to a thickness of 0.805 mm using 45% suspended slurry, and 45 samples after the first stage polishing were collected. At this time, the compressibility of the polishing pad was 3.3%, and the compressive modulus was 89%. These 45 samples were divided into 15 pieces each, and the polishing of the second stage was carried out under different polishing conditions, and the following samples of Examples 1 to 3 were obtained.

<例1>
1段目のポリッシュ後の材料15枚を、スピードファム製20B両面ポリッシュ機で研磨布はロデール社製SUBA800(商品名)を用い、研磨剤としてフジミコーポレーション社製コンポール80(商品名)を10〜12質量%懸濁させたスラリーを用いて両面で5μm研磨した。このときの研磨布の圧縮率は3%であり、圧縮弾性率は73%であった。研磨剤の平均粒径D50は80nmであった。
<Example 1>
15 pieces of material after the first stage polishing were processed with a Speedfam 20B double-sided polishing machine, the polishing cloth used was SUBA800 (trade name) manufactured by Rodel, and 10 to 10 compol 80 (trade name) manufactured by Fujimi Corporation was used as an abrasive. Polishing was performed at 5 μm on both sides using a slurry in which 12% by mass was suspended. At this time, the compressibility of the polishing pad was 3%, and the compressive elastic modulus was 73%. The average particle diameter D50 of the abrasive was 80 nm.

<例2>
1段目のポリッシュ後の材料15枚を、スピードファム製20B両面ポリッシュ機で研磨布は硬質の材料であるロデール社製SUBA800(商品名)を用い、研磨剤としてミレーク801Aを10〜12質量%懸濁させたスラリーを用いて両面で5μm研磨した。このときの研磨布の圧縮率は3%、圧縮弾性率は73%であった。研磨剤の平均粒径D50は0.86μmであった。
<Example 2>
15 pieces of the material after the first stage polishing is made of Rodel's SUBA800 (trade name), which is a hard material made of a speed fam 20B double-side polish machine, and Mille 801A is used as an abrasive in an amount of 10 to 12% by mass. 5 μm was polished on both sides using the suspended slurry. At this time, the compressibility of the polishing pad was 3%, and the compressive elastic modulus was 73%. The average particle diameter D50 of the abrasive was 0.86 μm.

<例3>
1段目のポリッシュ後の材料15枚を、スピードファム製20B両面ポリッシュ機で研磨布は軟質な材料であるカネボウ社製BELLATRIX N7512(商品名)を、研磨剤は前述のミレーク801Aを10〜12質量%懸濁させたスラリーを用いて両面で5μm研磨した。このときの研磨布は物性値のバラツキが大きく、圧縮率は5.3±2.0%、圧縮弾性率は80±20%であった。研磨剤の平均粒径D50は例1と同様に0.86μmであった。
<Example 3>
15 Polished materials in the first stage were polished with BELATRIX N7512 (trade name) manufactured by Kanebo Co., Ltd., which is a soft material using a SpeedBam 20B double-sided polishing machine, and the above-mentioned Mille 801A was used as a polishing agent. Polishing was performed on both sides by 5 μm using a slurry in which the mass% was suspended. The abrasive cloth at this time had large variations in physical properties, the compression rate was 5.3 ± 2.0%, and the compression modulus was 80 ± 20%. The average particle diameter D50 of the abrasive was 0.86 μm as in Example 1.

以上のような手段で得た研磨後のペリクル板について中性界面活性剤を主要な洗浄剤として用いた多段式洗浄機で洗浄、乾燥を行い、表面粗さの評価として原子間力顕微鏡(AFM)セイコーインスツルメンツ社製SPI3800N(商品名)、傷の評価として暗室化したクリーンルーム内での目視検査、平行度の評価としてレーザー光を利用した厚み測定器((株)キーエンス社製レーザーフォーカス変位計)を行った。なお、目視検査では、10万Lux以上の光源を使用することで、おおよそ10μm以上の傷や異物が検出可能であることが、顕微鏡の観察結果と対比することで確認されている。   The polished pellicle plate obtained by the above means is washed and dried with a multi-stage washing machine using a neutral surfactant as a main cleaning agent, and an atomic force microscope (AFM) is used to evaluate the surface roughness. ) SPI3800N (trade name) manufactured by Seiko Instruments Inc., visual inspection in a clean room darkened as an evaluation of scratches, a thickness measuring instrument using laser light as an evaluation of parallelism (Laser Focus Displacement Meter manufactured by Keyence Corporation) Went. In the visual inspection, it has been confirmed by comparing with the observation result of the microscope that it is possible to detect scratches and foreign matters of approximately 10 μm or more by using a light source of 100,000 Lux or more.

例1から例3のそれぞれの結果を表1、表2および表3に示す。   The results of Examples 1 to 3 are shown in Table 1, Table 2, and Table 3, respectively.

硬質な研磨布と粒径の小さな研磨剤を使用した例1のサンプルは、いずれの項目でも良好な結果が得られ、本発明の有効性が確認できた
硬質な研磨布と粒径の大きな研磨剤を使用した例2のサンプルは、平行度は平均で0.081(μm/50mm)と良好であるが、表面粗さが平均で0.31nmと悪く、傷も1枚あたり100個以上で多いという結果であった。
The sample of Example 1 using a hard polishing cloth and an abrasive having a small particle diameter gave good results in all items, and the effectiveness of the present invention was confirmed. In the sample of Example 2 using the agent, the average parallelism is as good as 0.081 (μm / 50 mm), but the average surface roughness is as bad as 0.31 nm, and there are many scratches of 100 or more per sheet. It was the result.

次に軟質な研磨布と粒径の大きな研磨剤を用いた例3のサンプルは、表面粗さが平均で0.13nmで、傷は1枚あたり0.3個と共に良好であるが、平行度は平均で0.289(μm/50mm)であり、例1のサンプルと比較して悪化している。   Next, the sample of Example 3 using a soft abrasive cloth and an abrasive having a large particle diameter has an average surface roughness of 0.13 nm, and 0.3 scratches per sheet are good. Is 0.289 (μm / 50 mm) on average, which is worse than the sample of Example 1.

なお、上記の実施例で用いた装置、研磨剤、研磨布に限らず、同等の性能、目的を果たすものであれば種類は問わない。   In addition, not only the apparatus, abrasive | polishing agent, and polishing cloth used in said Example but a kind will be ask | required if equivalent performance and the objective are fulfilled.

Figure 2006039407
Figure 2006039407

Figure 2006039407
Figure 2006039407

Figure 2006039407
Figure 2006039407

本発明の、平行度が0.1μm/50mm以下であって、表面粗さ(rms)が0.15nm以下であるガラス板は、Fレーザー露光用マスク用ペリクルのペリクル板に好適に利用できる。 The glass plate of the present invention having a parallelism of 0.1 μm / 50 mm or less and a surface roughness (rms) of 0.15 nm or less can be suitably used as a pellicle plate for an F 2 laser exposure mask pellicle. .

ペリクルの一例の正面図と断面図Front view and sectional view of an example of a pellicle 両面研磨装置の一例を示す要部側面図Side view of essential parts showing an example of a double-side polishing machine 両面研磨装置の一例を示す要部斜視図Perspective view of main part showing an example of a double-side polishing apparatus

符号の説明Explanation of symbols

1.ペリクルフレーム
2.ペリクル膜
3.接着剤
6.下定盤
7.上定盤
8.キャリア
9.太陽ギア
10.インターナルギア
11.ガラス板
1. 1. Pellicle frame 2. Pellicle membrane Adhesive 6. Lower surface plate7. Upper surface plate8. Carrier 9. Sun gear 10. Internal gear 11. Glass plate

Claims (2)

平均粒径が10〜200nmの範囲の研磨剤と、
圧縮率が10%以下、圧縮弾性率が90%以下の研磨布と、
を用いてガラス板を研磨し、
平行度が0.1μm/50mm以下であって、表面粗さ(rms)が0.15nm以下であるガラス板を得ることを特徴とするガラス板の製造方法。
An abrasive having an average particle size in the range of 10 to 200 nm;
A polishing cloth having a compression rate of 10% or less and a compression modulus of 90% or less;
Polish the glass plate using
A method for producing a glass plate, comprising obtaining a glass plate having a parallelism of 0.1 μm / 50 mm or less and a surface roughness (rms) of 0.15 nm or less.
上面と底面とに開口部を有する枠体形状のペリクルフレームと
ペリクルフレームの一方の開口部に接着した合成石英ガラス製のガラス板からなるペリクルであって、前記ガラス板は請求項1記載のガラス板の製造方法で製造されているペリクル。
A pellicle comprising a frame-shaped pellicle frame having openings on an upper surface and a bottom surface, and a glass plate made of synthetic quartz glass bonded to one opening of the pellicle frame, wherein the glass plate is the glass according to claim 1. A pellicle manufactured by a plate manufacturing method.
JP2004222176A 2004-07-29 2004-07-29 Method for manufacturing glass plate, and pellicle Pending JP2006039407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222176A JP2006039407A (en) 2004-07-29 2004-07-29 Method for manufacturing glass plate, and pellicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004222176A JP2006039407A (en) 2004-07-29 2004-07-29 Method for manufacturing glass plate, and pellicle

Publications (1)

Publication Number Publication Date
JP2006039407A true JP2006039407A (en) 2006-02-09

Family

ID=35904443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222176A Pending JP2006039407A (en) 2004-07-29 2004-07-29 Method for manufacturing glass plate, and pellicle

Country Status (1)

Country Link
JP (1) JP2006039407A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100816557B1 (en) * 2007-06-18 2008-03-25 순창군 Method for preparing rubus coreanus soybean paste
JP2013016217A (en) * 2011-06-30 2013-01-24 Konica Minolta Advanced Layers Inc Glass substrate for hdd, manufacturing method of glass substrate for hdd, and magnetic recording media for hdd
WO2014112218A1 (en) * 2013-01-18 2014-07-24 株式会社フジミインコーポレーテッド Article with metal-oxide-containing film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100816557B1 (en) * 2007-06-18 2008-03-25 순창군 Method for preparing rubus coreanus soybean paste
JP2013016217A (en) * 2011-06-30 2013-01-24 Konica Minolta Advanced Layers Inc Glass substrate for hdd, manufacturing method of glass substrate for hdd, and magnetic recording media for hdd
WO2014112218A1 (en) * 2013-01-18 2014-07-24 株式会社フジミインコーポレーテッド Article with metal-oxide-containing film
CN104919076A (en) * 2013-01-18 2015-09-16 福吉米株式会社 Article with metal-oxide-containing film
JPWO2014112218A1 (en) * 2013-01-18 2017-01-19 株式会社フジミインコーポレーテッド Articles with metal oxide-containing films
US10450651B2 (en) 2013-01-18 2019-10-22 Fujimi Incorporated Article comprising metal oxide-containing coating

Similar Documents

Publication Publication Date Title
JP4858154B2 (en) A method for polishing a glass substrate for mask blanks.
JP5332249B2 (en) Glass substrate polishing method
KR101862139B1 (en) Method for manufacturing semiconductor wafer
KR101704811B1 (en) Method of processing synthetic quartz glass substrate for semiconductor
JP5557506B2 (en) Polishing both sides of a semiconductor wafer
WO2004008247A1 (en) Glass substrate for mask blank and method of producing the same
TW201209002A (en) Synthetic quartz glass substrate and making method
JP2006237055A (en) Method of manufacturing semiconductor wafer and method of specularly chamfering semiconductor wafer
WO2015145887A1 (en) Substrate for mask blanks, mask blank, transfer mask, and production method for these
TW201438087A (en) Method for polishing a semiconductor material wafer
JP5090633B2 (en) Glass substrate polishing method
JP6206831B2 (en) Manufacturing method of mask blank substrate for EUV lithography, manufacturing method of substrate with multilayer reflective film for EUV lithography, manufacturing method of mask blank for EUV lithography, and manufacturing method of transfer mask for EUV lithography
JP2008307631A (en) Method of polishing glass substrate
JP2016113356A (en) Method for finish-working the surface of pre-polished glass substrate surface
JP3764734B2 (en) Manufacturing method of mask blanks
JP3943869B2 (en) Semiconductor wafer processing method and semiconductor wafer
TWI615238B (en) Method for preparing substrate
JP2006039407A (en) Method for manufacturing glass plate, and pellicle
TWI399804B (en) Verfahren zur herstellung einer halbleiterscheibe
JP7494799B2 (en) Double-sided polishing method
KR100728887B1 (en) Method of polishing double side of silicon wafer
KR101350714B1 (en) Method for polishing substrate for mask blank and substrate for mask blank and mask blank
JP5792932B2 (en) Glass substrate polishing method and glass substrate manufacturing method using the glass substrate polishing method
JP4435500B2 (en) Substrate double-side polishing method, double-side polishing guide ring and substrate double-side polishing apparatus
JP6973280B2 (en) Synthetic quartz glass substrate for imprint mold