JP2006037768A - Exhaust emission control device - Google Patents
Exhaust emission control device Download PDFInfo
- Publication number
- JP2006037768A JP2006037768A JP2004215764A JP2004215764A JP2006037768A JP 2006037768 A JP2006037768 A JP 2006037768A JP 2004215764 A JP2004215764 A JP 2004215764A JP 2004215764 A JP2004215764 A JP 2004215764A JP 2006037768 A JP2006037768 A JP 2006037768A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- exhaust
- nox
- catalyst
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Supercharger (AREA)
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
本発明は、排気浄化装置に関するものである。 The present invention relates to an exhaust emission control device.
従来より、排気管の途中に装備した排気浄化用触媒により排気浄化を図ることが行われており、この種の排気浄化用触媒としては、排気空燃比がリーンの時に排気ガス中のNOxを酸化して硝酸塩の状態で一時的に吸蔵し、排気ガス中のO2濃度が低下した時に未燃HCやCO等の介在によりNOxを分解放出して還元浄化する性質を備えたNOx吸蔵還元触媒が知られている。 Conventionally, exhaust purification is carried out with an exhaust purification catalyst installed in the middle of the exhaust pipe. As this type of exhaust purification catalyst, NOx in exhaust gas is oxidized when the exhaust air-fuel ratio is lean. Thus, a NOx occlusion reduction catalyst having the property of temporarily storing in the form of nitrate and decomposing and releasing NOx through the intervention of unburned HC, CO, etc. when the O 2 concentration in the exhaust gas decreases is reduced and purified. Are known.
この種のNOx吸蔵還元触媒としては、白金・バリウム・アルミナ触媒や、白金・カリウム・アルミナ触媒等が前述した如き性質を有するものとして既に知られている。 As this type of NOx occlusion reduction catalyst, platinum / barium / alumina catalyst, platinum / potassium / alumina catalyst, and the like have already been known.
そして、NOx吸蔵還元触媒においては、NOxの吸蔵量が増大して飽和量に達してしまうと、それ以上のNOxを吸蔵できなくなるため、定期的にNOx吸蔵還元触媒に流入する排気ガスのO2濃度を低下させてNOxを分解放出させる必要がある。 In the NOx occlusion reduction catalyst, when the occlusion amount of NOx increases and reaches the saturation amount, no more NOx can be occluded, and therefore, O 2 of the exhaust gas flowing into the NOx occlusion reduction catalyst periodically. It is necessary to decompose and release NOx by reducing the concentration.
例えば、ガソリン機関に使用した場合であれば、機関の運転空燃比を低下(機関をリッチ空燃比で運転)することにより、排気ガス中のO2濃度を低下し且つ排気ガス中の未燃HCやCO等の還元成分を増加してNOxの分解放出を促すことができるが、NOx吸蔵還元触媒をディーゼル機関の排気浄化装置として使用した場合には機関をリッチ空燃比で運転することが困難である。 For example, when used in a gasoline engine, the operating air-fuel ratio of the engine is reduced (the engine is operated at a rich air-fuel ratio), thereby reducing the O 2 concentration in the exhaust gas and unburned HC in the exhaust gas. It is possible to promote the decomposition and release of NOx by increasing reducing components such as CO and CO. However, when the NOx storage reduction catalyst is used as an exhaust purification device of a diesel engine, it is difficult to operate the engine at a rich air-fuel ratio. is there.
このため、NOx吸蔵還元触媒の上流側で排気ガス中に燃料(HC)を添加することにより、この添加燃料を還元剤としてNOx吸蔵還元触媒上でO2と反応させることで排気ガス中のO2濃度を低下させる必要がある(例えば、特許文献1参照)。
しかしながら、このようにNOx吸蔵還元触媒の上流側で燃料添加を行う方式では、その添加燃料が蒸発して生じたHCの一部がNOx吸蔵還元触媒の表面上で排気ガス中のO2と反応(燃焼)し、NOx吸蔵還元触媒の周囲の雰囲気中におけるO2濃度がほぼ零となってからNOxの分解放出が開始されることになるため、NOx吸蔵還元触媒の表面上でHCがO2と反応(燃焼)するのに必要な燃焼温度(約220〜250℃)が得られない運転条件下(例えば渋滞の多い都市内での徐行運転等)では、NOx吸蔵還元触媒からNOxを効率良く分解放出させることができず、NOx吸蔵還元触媒の再生が効率良く進まないことで触媒の容積中に占めるNOx吸蔵サイトの回復割合が小さくなって吸蔵能力が落ちるという問題があった。 However, in the method of adding fuel upstream of the NOx storage reduction catalyst in this way, a part of HC generated by evaporation of the added fuel reacts with O 2 in the exhaust gas on the surface of the NOx storage reduction catalyst. (Combustion), and NOx decomposition and release is started after the O 2 concentration in the atmosphere around the NOx storage reduction catalyst becomes almost zero, so that HC is O 2 on the surface of the NOx storage reduction catalyst. NOx is efficiently removed from the NOx occlusion reduction catalyst under operating conditions where the combustion temperature (about 220-250 ° C) required for reaction (combustion) with NOx cannot be obtained (for example, slow driving in cities with heavy traffic). There was a problem that the NOx occlusion reduction catalyst could not be decomposed and released, and the regeneration of the NOx occlusion reduction catalyst did not proceed efficiently, so that the recovery rate of the NOx occlusion site in the catalyst volume was reduced and the occlusion capacity was lowered.
本発明は上述の実情に鑑みてなしたもので、比較的低い温度領域から高いNOx低減率を得られるようにした排気浄化装置を提供することを目的としている。 The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide an exhaust emission control device capable of obtaining a high NOx reduction rate from a relatively low temperature range.
本発明は、排気管の途中に並列に装備された一対のNOx吸蔵還元触媒と、該各NOx吸蔵還元触媒の何れか一方に排気ガスを振り分ける第一の排気切替手段と、該第一の排気切替手段より上流側で排気ガスの一部を抜き出して前記各NOx吸蔵還元触媒の入側に導くバイパス管と、該バイパス管の途中に装備されて燃料をH2とCOに分解する改質触媒と、該改質触媒の入側に還元剤として燃料を添加する燃料添加手段と、前記バイパス管により前記改質触媒を通して導いた排気ガスを前記各NOx吸蔵還元触媒の何れか一方に振り分ける第二の排気切替手段とを備えたことを特徴とする排気浄化装置、に係るものである。 The present invention provides a pair of NOx occlusion reduction catalysts installed in parallel in the middle of an exhaust pipe, first exhaust gas switching means for distributing exhaust gas to any one of the NOx occlusion reduction catalysts, and the first exhaust gas A bypass pipe that extracts a part of the exhaust gas upstream from the switching means and leads to the inlet side of each NOx storage reduction catalyst, and a reforming catalyst that is provided in the middle of the bypass pipe and decomposes the fuel into H 2 and CO And a fuel addition means for adding fuel as a reducing agent to the inlet side of the reforming catalyst, and a second for distributing exhaust gas guided through the reforming catalyst by the bypass pipe to any one of the NOx storage reduction catalysts. And an exhaust gas switching device.
而して、エンジンからの排気ガスの流れを第一の排気切替手段により一方のNOx吸蔵還元触媒に振り分けると共に、バイパス管により改質触媒を通して導いた排気ガスを第二の排気切替手段により他方のNOx吸蔵還元触媒に振り分け、前記燃料添加手段により改質触媒の入側に燃料を還元剤として添加すると、該燃料が改質触媒にて燃料と共存するO2と反応して雰囲気温度を上げ且つO2が消費された後に燃料中のHCがH2とCOに分解されて他方のNOx吸蔵還元触媒に導入されるので、その導入段階から雰囲気中のO2濃度がほぼ零となってNOxの分解放出が直ちに開始され、そのままNOx吸蔵還元触媒の表面上で反応性の高いH2及びCOにより従来のHCの燃焼温度より低い温度からNOxが効率良くN2に還元処理される。 Thus, the flow of the exhaust gas from the engine is distributed to one NOx storage reduction catalyst by the first exhaust switching means, and the exhaust gas guided through the reforming catalyst by the bypass pipe is sent to the other by the second exhaust switching means. When the fuel is added to the reforming catalyst as a reducing agent by the fuel addition means, the fuel reacts with the O 2 coexisting with the fuel in the reforming catalyst to raise the ambient temperature. After O 2 is consumed, HC in the fuel is decomposed into H 2 and CO and introduced into the other NOx occlusion reduction catalyst, so that the concentration of O 2 in the atmosphere becomes almost zero from the introduction stage and NOx is reduced. The decomposition and release are immediately started, and NOx is efficiently reduced to N 2 from a temperature lower than the combustion temperature of the conventional HC by H 2 and CO having high reactivity on the surface of the NO x storage reduction catalyst as it is.
この際、燃料添加手段による燃料の添加は、バイパス管により導かれる比較的少ない流量の排気ガスに対して行われるだけなので、従来より少ない添加量でも排気ガス中の空気過剰率が効果的に低下することになり、必要最小限の燃料の添加により効率良くNOx吸蔵還元触媒の再生が図られる。 At this time, the addition of fuel by the fuel addition means is only performed to the exhaust gas having a relatively small flow rate guided by the bypass pipe, so that the excess air ratio in the exhaust gas is effectively reduced even when the addition amount is smaller than the conventional amount. Therefore, the NOx storage reduction catalyst can be efficiently regenerated by adding the minimum amount of fuel.
そして、このように一方のNOx吸蔵還元触媒でNOxの吸蔵を行わせている間に他方のNOx吸蔵還元触媒を再生するようにすれば、常にNOx吸蔵還元触媒の一方を使用可能な状態として連続的にNOxの低減化を図りながら一対のNOx吸蔵還元触媒を片方ずつ交互に再生することが可能となる。 If the other NOx occlusion reduction catalyst is regenerated while the NOx occlusion reduction catalyst is performing the NOx occlusion reduction in this way, one of the NOx occlusion reduction catalysts is always kept in a usable state. Thus, it is possible to alternately regenerate the pair of NOx storage reduction catalysts one by one while reducing NOx.
更に、本発明においては、ターボチャージャのタービンを迂回するようにバイパス管が設けられていることが好ましく、このようにすれば、還元剤として添加した燃料が改質触媒にてH2とCOに分解される際に生じた熱で排気ガスが昇温しても、その昇温した排気ガスがタービンを迂回して一方のNOx吸蔵還元触媒に導入されるので、タービンの異常回転が未然に回避されてトルク変動が防止されることになり、しかも、このようにした場合には、タービンで仕事をする前のエンジンから排出されたばかりの比較的温度の高い排気ガスがバイパス管に抜き出されるので、排気ガスの持つ熱が有効に活用されて改質触媒での燃料の分解反応が最大限に促進されることになる。 Furthermore, in the present invention, it is preferable that a bypass pipe is provided so as to bypass the turbine of the turbocharger. In this way, the fuel added as a reducing agent is converted into H 2 and CO by the reforming catalyst. Even if the temperature of the exhaust gas rises due to the heat generated during the decomposition, the heated exhaust gas bypasses the turbine and is introduced into one NOx storage reduction catalyst, thus preventing abnormal turbine rotation in advance. In this case, the exhaust gas having a relatively high temperature that has just been exhausted from the engine before working in the turbine is extracted into the bypass pipe. Thus, the heat of the exhaust gas is effectively utilized to promote the fuel decomposition reaction at the reforming catalyst to the maximum extent.
上記した本発明の排気浄化装置によれば、下記の如き種々の優れた効果を奏し得る。 According to the exhaust emission control device of the present invention described above, various excellent effects as described below can be obtained.
(I)本発明の請求項1に記載の発明によれば、還元剤として添加した燃料を改質触媒にてH2とCOに分解させ、これらの反応性の高いH2及びCOにより比較的低い温度領域から必要最小限の燃料添加で効率良く各NOx吸蔵還元触媒の再生を交互に図ることができるので、例えば渋滞の多い都市内での徐行運転等のように低負荷で排気温度が低い運転状態が継続され易い運転条件下であっても、車外に排出される排気ガス中に含まれるNOxを従来より効果的に低減することができ、NOx吸蔵還元触媒を用いた排気浄化装置の実用性を大幅に向上することができる。
(I) According to the invention described in
(II)本発明の請求項2に記載の発明によれば、還元剤として添加した燃料が改質触媒にてH2とCOに分解される際に生じた熱で排気ガスが昇温しても、その昇温した排気ガスをタービンを迂回させて一方のNOx吸蔵還元触媒に導入することができるので、タービンの異常回転を未然に回避し得てトルク変動を確実に防止することができ、しかも、エンジンから排出されたばかりの高温の排気ガスの熱を有効に利用することで改質触媒での燃料の分解反応を最大限に促進させることができるので、燃料から効率良くH2及びCOを生成することができる。
(II) According to the invention described in
以下本発明の実施の形態を図面を参照しつつ説明する。 Embodiments of the present invention will be described below with reference to the drawings.
図1及び図2は本発明を実施する形態の一例を示すもので、図1に示す如く、本形態例の排気浄化装置においては、ディーゼルエンジン1から排気マニホールド2を介して排出される排気ガス3が流通する排気管4の途中に、フロースルー方式のハニカム構造を有する一対のNOx吸蔵還元触媒5がケーシング6に抱持されて並列に装備されており、このケーシング6の内部空間の前半部分は、前記各NOx吸蔵還元触媒5に個別に排気ガス3を流し得るよう仕切板7により二分割されている。
FIG. 1 and FIG. 2 show an example of an embodiment for carrying out the present invention. As shown in FIG. 1, in the exhaust purification apparatus of this embodiment, the exhaust gas discharged from the
また、前記ケーシング6の入口部分には、排気ガス3の流れを前記各NOx吸蔵還元触媒5の何れか一方に振り分ける排気切替バルブ8(第一の排気切替手段)が回動自在に設けられており、この排気切替バルブ8は、ケーシング6の外部に配置したアクチュエータ9によりレバー及びリンク機構を介し駆動されるようになっている。
An exhaust switching valve 8 (first exhaust switching means) that distributes the flow of the
また、ここに図示している例では、前記各NOx吸蔵還元触媒5の後段に酸化触媒を一体的に担持したパティキュレートフィルタ10が配置されており、各NOx吸蔵還元触媒5を経た排気ガス3が通されて該排気ガス3中のパティキュレートが捕集されるようにしてある。
Further, in the example shown here, a
更に、前記排気切替バルブ8により排気ガス3の流れを振り分けられる各NOx吸蔵還元触媒5の入側に対し、ターボチャージャ11のタービン12より上流の排気マニホールド2の出口部から排気ガス3の一部を抜き出して導くバイパス管13が途中で分岐した上で接続されるようにしてあり、このバイパス管13の分岐位置より上流の適宜位置には、軽油をH2とCOに分解する改質触媒14が装備されている。
Further, a part of the
ここで、この種の改質触媒14には、例えばアルミナやシリカ等の酸化物又はゼオライト等の複合酸化物を担体として、Pd、Pt、Rh等を活性金属として担持させたものを用いれば良い。
Here, as this type of reforming
更に、前記バイパス管13における改質触媒14の入側に噴射ノズル15が貫通設置され、該噴射ノズル15と所要場所に設けた軽油タンク16との間が軽油供給管17により接続されており、該軽油供給管17の途中に装備した供給ポンプ18の駆動と軽油噴射弁19の開作動とにより軽油タンク16内の軽油20(還元剤としての燃料)を前記噴射ノズル15を介し改質触媒14の入側に添加し得るようにしてあり、これら噴射ノズル15、軽油タンク16、軽油供給管17、供給ポンプ18、軽油噴射弁19により燃料添加手段21が構成されている。
Further, an injection nozzle 15 is provided on the inlet side of the reforming
そして、エンジン制御コンピュータ(ECU:Electronic Control Unit)を成す制御装置24において、ディーゼルエンジン1の機関回転数を検出する回転センサ22からの回転数信号22aと、アクセルセンサ23(アクセルペダルの踏み込み角度を検出するセンサ)からの負荷信号23aとから判断される現在の運転状態に基づき軽油20の適切な添加量と噴射タイミングが決定され、この適切な添加量と噴射タイミングでの軽油20の添加が実行されるように前記制御装置24から供給ポンプ18への駆動指令信号18aと軽油噴射弁19への開弁指令信号19aとが出力されるようになっている。
And in the
また、前記バイパス管13の分岐された各流路には、前記改質触媒14を通して導いた排気ガス3を前記各NOx吸蔵還元触媒5の何れか一方に振り分け得るよう開閉バルブ25(第二の排気切替手段)が夫々装備されており、これら開閉バルブ25は、前記制御装置24からのアクチュエータ9に向けた切替指令信号9aにより切り替わる排気切替バルブ8と連動し、該排気切替バルブ8によりディーゼルエンジン1からの排気ガス3が堰き止められた側のNOx吸蔵還元触媒5へ改質触媒14を経た排気ガス3を導き得るように開閉指令信号25aにより開閉制御されるようになっている。
In addition, in each branched flow path of the
尚、図1中における26はバイパス管13の上流側に装備された流量調整バルブ、27は吸気管、28はインタークーラを夫々示している。
In FIG. 1,
而して、ディーゼルエンジン1からの排気ガス3の流れを排気切替バルブ8により一方のNOx吸蔵還元触媒5に振り分けると共に、バイパス管13により改質触媒14を通して導いた排気ガス3を開閉バルブ25により他方のNOx吸蔵還元触媒5に振り分け、前記燃料添加手段21により改質触媒14の入側に軽油20を還元剤として添加すると、該軽油20が改質触媒14にて軽油20と共存するO2と反応して雰囲気温度を上げ且つO2が消費された後に軽油20中のHCがH2とCOに分解されて他方のNOx吸蔵還元触媒5に導入されるので、その導入段階から雰囲気中のO2濃度がほぼ零となってNOxの分解放出が直ちに開始され、そのままNOx吸蔵還元触媒5の表面上で反応性の高いH2及びCOにより従来のHCの燃焼温度より低い温度からNOxが効率良くN2に還元処理される。
Thus, the flow of the
この際、燃料添加手段21による軽油20の添加は、バイパス管13により導かれる比較的少ない流量の排気ガス3に対して行われるだけなので、従来より少ない添加量でも排気ガス3中の空気過剰率が効果的に低下することになり、必要最小限の軽油20の添加により効率良くNOx吸蔵還元触媒5の再生が図られる。
At this time, the addition of the
そして、このように一方のNOx吸蔵還元触媒5でNOxの吸蔵を行わせている間に他方のNOx吸蔵還元触媒5を再生するようにすれば、常にNOx吸蔵還元触媒5の一方を使用可能な状態として連続的にNOxの低減化を図りながら一対のNOx吸蔵還元触媒5を片方ずつ交互に再生することが可能となる。
If the other NOx
更に、特に本形態例においては、ターボチャージャ11のタービン12を迂回するようにバイパス管13が設けられているので、還元剤として添加した軽油20が改質触媒14にてH2とCOに分解される際に生じた熱で排気ガス3が昇温しても、その昇温した排気ガス3がタービン12を迂回して一方のNOx吸蔵還元触媒5に導入されるので、タービン12の異常回転が未然に回避されてトルク変動が防止されることになり、しかも、このようにした場合には、タービン12で仕事をする前のディーゼルエンジン1から排出されたばかりの比較的温度の高い排気ガス3がバイパス管13に抜き出されるので、排気ガス3の持つ熱が有効に活用されて改質触媒14での軽油20の分解反応が最大限に促進されることになる。
Further, particularly in this embodiment, since the
従って、上記形態例によれば、還元剤として添加した軽油20を改質触媒14にてH2とCOに分解させ、これらの反応性の高いH2及びCOにより比較的低い温度領域から必要最小限の軽油20の添加で効率良く各NOx吸蔵還元触媒5の再生を交互に図ることができるので、例えば渋滞の多い都市内での徐行運転等のように低負荷で排気温度が低い運転状態が継続され易い運転条件下であっても、車外に排出される排気ガス3中に含まれるNOxを従来より効果的に低減することができ、NOx吸蔵還元触媒5を用いた排気浄化装置の実用性を大幅に向上することができる。
Therefore, according to the above embodiment, the
事実、本発明者が行った実験結果によれば、図2のグラフに示す如く、軽油20から生成されたHCをそのままNOx吸蔵還元触媒5上で反応させたケースAと、軽油20から生成されたHCをH2とCOに分解させてNOx吸蔵還元触媒5上で反応させたケースBとを比較したところ、ケースAよりもケースBの方が低い温度領域から高いNOx低減率を得られることが確認された。尚、図2のグラフにおける縦軸はNOx低減率を、横軸は排気温度を夫々示している。
In fact, according to the results of experiments conducted by the present inventor, as shown in the graph of FIG. 2, the HC produced from the
また、還元剤として添加した軽油20が改質触媒14にてH2とCOに分解される際に生じた熱で排気ガス3が昇温しても、その昇温した排気ガス3をタービン12を迂回させて一方のNOx吸蔵還元触媒5に導入することができるので、タービン12の異常回転を未然に回避し得てトルク変動を確実に防止することができ、しかも、エンジンから排出されたばかりの高温の排気ガス3の熱を有効に利用することで改質触媒14での軽油20の分解反応を最大限に促進させることができるので、軽油20から効率良くH2及びCOを生成することができる。
Further, even if the
尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、還元剤として添加される燃料には、一般的なディーゼルエンジン用燃料である軽油を用いる以外に、灯油等の異種燃料を用いても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 The exhaust emission control device of the present invention is not limited to the above-described embodiment. For fuel added as a reducing agent, in addition to using light oil that is a general diesel engine fuel, kerosene or the like. Of course, different types of fuels may be used, and various modifications can be made without departing from the scope of the present invention.
1 ディーゼルエンジン(エンジン)
3 排気ガス
4 排気管
5 NOx吸蔵還元触媒
8 排気切替バルブ(第一の排気切替手段)
11 ターボチャージャ
12 タービン
13 バイパス管
14 改質触媒
20 軽油(燃料)
21 燃料添加手段
24 制御装置
25 開閉バルブ(第二の排気切替手段)
1 Diesel engine (engine)
3 Exhaust gas 4
11
21 Fuel addition means 24
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004215764A JP2006037768A (en) | 2004-07-23 | 2004-07-23 | Exhaust emission control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004215764A JP2006037768A (en) | 2004-07-23 | 2004-07-23 | Exhaust emission control device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006037768A true JP2006037768A (en) | 2006-02-09 |
Family
ID=35903024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004215764A Pending JP2006037768A (en) | 2004-07-23 | 2004-07-23 | Exhaust emission control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006037768A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007278162A (en) * | 2006-04-06 | 2007-10-25 | Hino Motors Ltd | Exhaust emission control device for diesel engine |
JP2012117510A (en) * | 2010-12-02 | 2012-06-21 | Hyundai Motor Co Ltd | Method for predicting regeneration of nitrogen oxide reducing catalyst, and exhaust system using the same |
KR101324437B1 (en) | 2007-12-14 | 2013-10-31 | 현대자동차주식회사 | System for clarifying exhaust gas of direct injection engines and control method thereof |
JP2015121170A (en) * | 2013-12-24 | 2015-07-02 | 三菱自動車工業株式会社 | Drainage system of internal combustion engine |
US9133746B2 (en) | 2010-12-02 | 2015-09-15 | Hyundai Motor Company | Method for predicting NOx loading at DeNOx catalyst and exhaust system using the same |
JP2016513198A (en) * | 2013-02-04 | 2016-05-12 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | Exhaust system using reforming catalyst |
-
2004
- 2004-07-23 JP JP2004215764A patent/JP2006037768A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007278162A (en) * | 2006-04-06 | 2007-10-25 | Hino Motors Ltd | Exhaust emission control device for diesel engine |
KR101324437B1 (en) | 2007-12-14 | 2013-10-31 | 현대자동차주식회사 | System for clarifying exhaust gas of direct injection engines and control method thereof |
JP2012117510A (en) * | 2010-12-02 | 2012-06-21 | Hyundai Motor Co Ltd | Method for predicting regeneration of nitrogen oxide reducing catalyst, and exhaust system using the same |
US9133746B2 (en) | 2010-12-02 | 2015-09-15 | Hyundai Motor Company | Method for predicting NOx loading at DeNOx catalyst and exhaust system using the same |
JP2016513198A (en) * | 2013-02-04 | 2016-05-12 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | Exhaust system using reforming catalyst |
JP2015121170A (en) * | 2013-12-24 | 2015-07-02 | 三菱自動車工業株式会社 | Drainage system of internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101921885B1 (en) | METHOD FOR REGENERATING NOx STORAGE CATALYTIC CONVERTERS OF DIESEL ENGINES WITH LOW-PRESSURE EGR | |
JP3277881B2 (en) | Exhaust gas purification device for internal combustion engine | |
WO2009087818A1 (en) | Exhaust emission control device for internal combustion engine | |
JP3945335B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH1150836A (en) | Catalyst recovery device for internal combustion engine | |
JP2007291980A (en) | Exhaust emission control device | |
JP2007177672A (en) | Exhaust emission control device | |
JP2004204699A (en) | Exhaust gas purifying device | |
JP2009264282A (en) | Exhaust emission control device for internal combustion engine | |
JP2006242020A (en) | Exhaust emission control device | |
US8745974B2 (en) | Exhaust system | |
JP5006805B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2006037768A (en) | Exhaust emission control device | |
JP2010196551A (en) | Exhaust emission control device of internal combustion engine | |
JP5070964B2 (en) | NOx purification system and control method of NOx purification system | |
JP2007009718A (en) | Exhaust emission control device | |
JP4934082B2 (en) | Exhaust purification device | |
JP2002081311A (en) | Exhaust emission control device for internal combustion engine | |
JP2008025438A (en) | Exhaust emission control device | |
JP2005233065A (en) | Exhaust emission control device | |
JP5029841B2 (en) | Exhaust purification device | |
JP2010150978A (en) | Exhaust emission control device | |
JP4893493B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2004132222A (en) | Emission control device | |
JP2008051009A (en) | Exhaust emission control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080630 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080715 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081202 |