JP2006037577A - Complementary rigid beam and its manufacturing method - Google Patents
Complementary rigid beam and its manufacturing method Download PDFInfo
- Publication number
- JP2006037577A JP2006037577A JP2004220990A JP2004220990A JP2006037577A JP 2006037577 A JP2006037577 A JP 2006037577A JP 2004220990 A JP2004220990 A JP 2004220990A JP 2004220990 A JP2004220990 A JP 2004220990A JP 2006037577 A JP2006037577 A JP 2006037577A
- Authority
- JP
- Japan
- Prior art keywords
- web
- flange portion
- members
- stiffening girder
- aluminum alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Bridges Or Land Bridges (AREA)
- Rod-Shaped Construction Members (AREA)
Abstract
Description
本発明は、アルミニウム合金製の補剛桁およびその製作方法に関する。 The present invention relates to a stiffening girder made of an aluminum alloy and a manufacturing method thereof.
一般に、鋼製橋梁などの桁材(所謂、橋桁)は鋼板が溶接されて製作されており、道路橋のような大規模なものになると、その重量が非常に大きくなり、したがってその支持構造および設置作業についても、大掛かりなものにならざるを得なかった。また、鋼材は耐腐食のための塗装が定期的に必要となり、そのコストは大きなものとなる。 In general, girders such as steel bridges (so-called bridge girders) are manufactured by welding steel plates, and when they become large-scale like road bridges, their weight becomes very large and therefore their supporting structures and The installation work was inevitably large. In addition, steel materials need to be periodically coated for corrosion resistance, and the cost is high.
最近、その重量、設置作業および塗装メンテナンスの軽減化を図るために、歩道橋などに鋼板の替わりにアルミニウム合金が用いられている。
このように、道路橋等の大型の桁材をアルミニウム合金を用いて製作しようとすると、鋼板を用いた製作方法に準拠することが考えられる。
Recently, in order to reduce the weight, installation work, and painting maintenance, aluminum alloys are used in place of steel plates in pedestrian bridges.
As described above, when an attempt is made to produce a large girder such as a road bridge using an aluminum alloy, it can be considered to comply with a production method using a steel plate.
例えば、背が高いI型桁を製作する場合には、図10に示すように、上下フランジ板51,52の間にウエブ板53を配置し、そして互いの接続箇所を両側からすみ肉溶接にて接合することになる。
For example, when manufacturing a tall I-shaped girder, as shown in FIG. 10, a
一般に、単純支持されたI型桁に荷重が加わると鉛直方向に撓み、曲げモーメントが生じることで、ウエブ板の上側に圧縮力が作用するとともに下側には引張力が作用する。また、せん断力が生じることでウエブ板全体(高さ方向の中央部、また、支点寄りのところで大きい)に斜め45度の方向の圧縮力(荷重点と支点を結ぶ向き)と引張力(荷重点と支点を結ぶ向きと直角の方向)が作用する。 In general, when a load is applied to a simply supported I-shaped girder, it is bent in the vertical direction and a bending moment is generated, so that a compressive force acts on the upper side of the web plate and a tensile force acts on the lower side. In addition, due to the shearing force, the entire web plate (in the center in the height direction and large near the fulcrum) has a compressive force (direction connecting the load point and the fulcrum) and a tensile force (load) The direction perpendicular to the direction connecting the point and the fulcrum) acts.
ところで、従来の補剛桁では、図11に示すように、曲げモーメントによるウエブ上側部分の桁長手方向の座屈に対処するために、水平補剛桁54がすみ肉溶接によりウエブ板53の上部に取り付けられており、また、水平補剛材54と下フランジ板52との間のウエブ板53においては、補強のない部分が広く、主に、この部分の斜め方向のせん断座屈に対処するために、垂直補剛材55がすみ肉溶接により所定間隔でもって密に配置されている(例えば、特許文献1参照)。
しかし、上述したように、鋼製の補剛桁に準拠してアルミニウム合金製のものを製作しようとすると、水平補剛材に加えて垂直補剛材も所定間隔おきに設けることになり、溶接線が長くなってしまう。したがって、アルミニウム合金製の補剛桁を製作する際に、溶接熱による影響を大きく受けて歪が大きくなってしまうとともに製作作業についても非常に面倒となり、さらに溶接熱による強度低下を補うために板厚が厚くなり重量化してしまうという問題が生じる。 However, as mentioned above, when trying to manufacture an aluminum alloy product in accordance with a steel stiffening girder, in addition to the horizontal stiffeners, vertical stiffeners are also provided at predetermined intervals. The line becomes long. Therefore, when manufacturing a stiffening girder made of aluminum alloy, it is greatly affected by the welding heat, resulting in a large distortion and a very troublesome manufacturing work. The problem arises that the thickness increases and the weight increases.
そこで、上記課題を解決するため、本発明は、アルミニウム合金製の補剛桁を製作する際に、溶接線を少なくしてその製作作業を容易にし得るとともに、軽量化を図り得る補剛桁およびその製作方法を提供することを目的とする。 Therefore, in order to solve the above-described problems, the present invention provides a stiffening girder that can reduce the weight of the stiffening girder and reduce the weld line when manufacturing a stiffening girder made of aluminum alloy, and can reduce the weight. It aims at providing the production method.
上記課題を解決するため、本発明の補剛桁は、上フランジ部と下フランジ部との間にウエブ部が配置されてなるI型の補剛桁であって、
アルミニウム合金の押出成形によりフランジ部とウエブ部の一部とが一体成形された2個のT型端部材と、これら両T型端部材間に配置されて且つアルミニウム合金の押出成形により所定高さの中間ウエブ部の少なくとも一側面に水平補剛材が一体成形された複数の中間部材とから構成するとともに、
少なくとも上記T型端部材と中間部材とのウエブ部同士を、それぞれ摩擦攪拌接合方法を用いて接合したものである。
In order to solve the above problems, the stiffening girder of the present invention is an I-type stiffening girder in which a web portion is disposed between an upper flange portion and a lower flange portion,
Two T-type end members in which a flange portion and a part of the web portion are integrally formed by extrusion molding of an aluminum alloy, and a predetermined height disposed between the two T-type end members and extrusion molding of the aluminum alloy. And a plurality of intermediate members integrally formed with a horizontal stiffener on at least one side surface of the intermediate web portion,
At least the web portions of the T-shaped end member and the intermediate member are joined using a friction stir welding method.
また、本発明の他の補剛桁は、上フランジ部と下フランジ部との間にウエブ部が配置されてなるI型の補剛桁であって、
アルミニウム合金の押出成形によりフランジ部とウエブ部の一部とが一体成形された2個のT型端部材と、これら両T型端部材間に配置されて且つアルミニウム合金の押出成形により所定高さの中間ウエブ部の少なくとも一側面に水平補剛材が一体成形された複数の中間部材とから構成するとともに、
上記T型端部材と中間部材とのウエブ部同士および上下に隣接する中間部材のウエブ部同士を、それぞれ摩擦攪拌接合方法を用いて接合したものである。
Another stiffening girder of the present invention is an I-type stiffening girder in which a web portion is disposed between an upper flange portion and a lower flange portion,
Two T-type end members in which a flange portion and a part of the web portion are integrally formed by extrusion molding of an aluminum alloy, and a predetermined height disposed between the two T-type end members and extrusion molding of the aluminum alloy. A plurality of intermediate members integrally formed with a horizontal stiffener on at least one side surface of the intermediate web portion,
The web portions of the T-shaped end member and the intermediate member and the web portions of the intermediate members adjacent to each other in the vertical direction are joined using a friction stir welding method.
また、上記各補剛桁における複数の中間部材の断面形状を同一にしたものである。
また、上記各補剛桁におけるウエブ部の側面に配置される複数の補剛材を、上フランジ部と下フランジ部との間に均等間隔でもって配置したものである。
The cross-sectional shapes of the plurality of intermediate members in each stiffening girder are the same.
Further, a plurality of stiffeners arranged on the side surface of the web portion in each stiffening girder are arranged at equal intervals between the upper flange portion and the lower flange portion.
さらに、本発明の補剛桁の製作方法は、上フランジ部と下フランジ部との間にウエブ部が配置されてなるI型の補剛桁の製作方法であって、
アルミニウム合金の押出成形によりフランジ部とウエブ部の一部とが一体成形された2個のT型端部材と、これら両T型端部材間に配置されて且つアルミニウム合金の押出成形により所定高さの中間ウエブ部の少なくとも一側面に水平補剛材が一体成形された複数の中間部材とを製造し、
次に少なくとも上記T型端部材および中間部材のウエブ部同士を、それぞれ摩擦攪拌接合方法を用いて接合する方法である。
Furthermore, the method for producing a stiffening girder according to the present invention is a method for producing an I-type stiffening girder in which a web portion is disposed between an upper flange portion and a lower flange portion,
Two T-type end members in which a flange portion and a part of the web portion are integrally formed by extrusion molding of an aluminum alloy, and a predetermined height disposed between the two T-type end members and extrusion molding of the aluminum alloy. A plurality of intermediate members in which a horizontal stiffener is integrally formed on at least one side surface of the intermediate web portion,
Next, at least the web portions of the T-shaped end member and the intermediate member are each joined using a friction stir welding method.
また、本発明の他の補剛桁の製作方法は、上フランジ部と下フランジ部との間にウエブ部が配置されてなるI型の補剛桁の製作方法であって、
アルミニウム合金の押出成形によりフランジ部とウエブ部の一部とが一体成形された2個のT型端部材と、これら両T型端部材間に配置されて且つアルミニウム合金の押出成形により所定高さの中間ウエブ部の少なくとも一側面に水平補剛材が一体成形された複数の中間部材とを製造し、
次に上記T型端部材および中間部材のウエブ部同士並びに上下に配置された中間部材のウエブ部同士を、それぞれ摩擦攪拌接合方法を用いて接合する方法である。
Another method for producing a stiffening girder of the present invention is a method for producing an I-type stiffening girder in which a web portion is disposed between an upper flange portion and a lower flange portion,
Two T-type end members in which a flange portion and a part of the web portion are integrally formed by extrusion molding of an aluminum alloy, and a predetermined height disposed between the two T-type end members and extrusion molding of the aluminum alloy. A plurality of intermediate members in which a horizontal stiffener is integrally formed on at least one side surface of the intermediate web portion,
Next, the web portions of the T-shaped end member and the intermediate member and the web portions of the intermediate member disposed above and below are joined using a friction stir welding method.
上記の各構成によると、アルミニウム合金により補剛桁を製作する際に、フランジ部とウエブ部との接続部を含むT型端部材、およびウエブ部と水平補剛材との接続部を含む中間部材を、それぞれ押出成形にて製造することにより、例えば最大圧縮力および最大引張力が作用する端部材での溶接による入熱を無くして材料の強度低下を防止することができ、したがって水平補剛材を圧縮力が作用する側に偏って配置する必要がないので、すなわち複数の水平補剛材を補剛桁の全高において均等間隔で配置することにより、当該補剛桁の斜め方向での座屈に対する抵抗が増加するため(せん断や曲げに対する強度が高まる)、通常、必要とされる垂直補剛材を省略することができるとともに強度低下を補うための板厚の増加を避けることができ、より一層の製作の容易化および重量の軽減化を図ることができる。 According to each of the above configurations, when manufacturing a stiffening girder with an aluminum alloy, a T-shaped end member including a connection portion between the flange portion and the web portion, and an intermediate portion including a connection portion between the web portion and the horizontal stiffener. By producing the members by extrusion molding, for example, it is possible to eliminate heat input due to welding at the end members where the maximum compression force and maximum tensile force act, and to prevent the strength of the material from being lowered. Since it is not necessary to place the material biased to the side where the compressive force acts, that is, by arranging a plurality of horizontal stiffeners at equal intervals in the overall height of the stiffening girder, the stiffening girder is seated in an oblique direction. Because the resistance to bending increases (strength against shear and bending increases), it is usually possible to omit the required vertical stiffeners and avoid increasing the thickness to compensate for the strength reduction More it is possible to further facilitate and weight reduction of the fabrication.
[実施の形態]
以下、本発明の実施の形態に係る補剛桁およびその製作方法を、図面に基づき説明する。
[Embodiment]
Hereinafter, a stiffening girder according to an embodiment of the present invention and a manufacturing method thereof will be described with reference to the drawings.
この補剛桁は、例えば橋梁の桁材として用いられるもので、大型のI型桁材のウエブ部の側面に、水平補剛材が所定間隔でもって複数本設けられたものであり、また軽量化を図るためにアルミニウム合金製にされたものである。 This stiffening girder is used, for example, as a bridge girder, and is provided with a plurality of horizontal stiffeners at predetermined intervals on the side of the web portion of a large I-shaped girder. In order to make it easier, it is made of an aluminum alloy.
図1および図2に示すように、この補剛桁1の構成を具体的に説明すると、上フランジ部2と下フランジ部3との間にウエブ部4が配置されるとともに、このウエブ部4の一方の側面に複数本、例えば2本の水平補剛材5が設けられたものである。また、上フランジ部2と下フランジ部3との間に配置される水平補剛材5の位置は、これら両フランジ部2,3間の高さHに対して均等間隔でもって配置されている。具体的に言うと、フランジ部2,3および水平補剛材5の各厚さ中心でもって等間隔となるようにされている。なお、上フランジ部2、下フランジ部3および水平補剛材5は板状に形成されている。
As shown in FIGS. 1 and 2, the configuration of the
そして、この補剛桁1の製作にあたっては、図3に示すように、上フランジ部2とウエブ部4の一部とが一体成形された2個のT型端部材6(6A,6B)と、これら上下のT型端部材6A,6B間に配置されるとともにそれぞれ所定高さhの中間ウエブ部4の一側面に水平補剛材5が突出して一体成形された2個の中間部材7(7A,7B)とに分割して製作され、しかもこれらの材料としてアルミニウム合金が用いられている。
When the
すなわち、これらT型端部材6A,6Bおよび中間部材7A,7Bは、アルミニウムの押出成形により製造され、これら押出成形により製造された上下2個のT型端部材6A,6B同士間に2個の中間部材7A,7Bが上下位置で且つフランジ部2,3と平行に配置されるとともに、摩擦攪拌接合方法により互いに接合されたものである。なお、図面上、Wは摩擦攪拌接合方法による接合部を示しており、また接合部を明瞭化するために、丸く膨らんだように図示したが、実際は、フランジ部の厚さに略一致されている。
That is, the T-shaped
ところで、この摩擦攪拌接合方法は、中心に突起のある硬質の丸棒を回転させて接合部に進入させ、その摩擦熱を接合部材に与えるとともに攪拌して接合させる方法であり、溶接時の余分な入熱を防止し得るとともに溶接時のシールドガスなどの供給および前処理作業などを必要とせず、したがって簡単な作業でしかも熱歪の発生を極力低減化し得る方法である。 By the way, this friction stir welding method is a method in which a hard round bar having a projection at the center is rotated to enter a joint, and the friction heat is applied to the joint member and stirred to join, and extra welding is performed. Thus, it is possible to prevent heat input and to supply shield gas at the time of welding and pre-treatment work, and therefore, it is a simple work and can reduce the occurrence of thermal distortion as much as possible.
以下、上記補剛桁1の製作方法を、図4に基づき、より具体的に説明する。なお、部材番号については新たに付して説明する。
まず、フランジ部11にウエブ部12の一部が一体に設けられてなるT型端部材13および所定高さhの中間ウエブ部14の一方の側面に水平補剛材15が一体に突設されてなる中間部材16を、アルミニウムの押出成形により、それぞれ2個ずつ製造する。
Hereinafter, the manufacturing method of the said
First, a
次に、上側のT型端部材13(13A)のウエブ部12の下端縁と上側の中間部材16(16A)の中間ウエブ部14の上端縁とを、および下側のT型端部材13(13B)のウエブ部12の上端縁と下側の中間部材16(16B)の中間ウエブ部14の下端縁とを、それぞれ摩擦攪拌接合方法により接合する。
Next, the lower end edge of the
次に、上側の中間部材16(16A)の中間ウエブ部14の下端縁と下側の中間部材16(16B)の中間ウエブ部14の上端縁とを、やはり摩擦攪拌接合方法により接合する。
Next, the lower end edge of the
この接合作業により、アルミニウム合金製の補剛桁を、従来の鋼製の補剛桁の場合に比べて、非常に少ない接合線でもってしかも少ない入熱量でもって、簡単に製作することができる。 By this joining operation, a stiffening girder made of aluminum alloy can be easily manufactured with a very small joining line and a small amount of heat input as compared with the case of a conventional stiffening girder made of steel.
なお、上記の説明においては、水平補剛材を2本配置したが、3本以上配置してもよい。勿論、この場合、中間ウエブ部の一側面に水平補剛材が突設された中間部材が3個以上製造されることになる。 In the above description, two horizontal stiffeners are arranged, but three or more may be arranged. Of course, in this case, three or more intermediate members having a horizontal stiffener protruding from one side surface of the intermediate web portion are manufactured.
また、上記の説明においては、T型端部材と中間部材とを接合した後、上下で隣接する中間部材同士を接合したが、先に、中間部材同士を接合しておき、次にこれら接合された中間部材の上下にT型端部材を接合するようにしてもよい。 In the above description, after joining the T-shaped end member and the intermediate member, the intermediate members adjacent to each other in the upper and lower sides are joined. However, the intermediate members are joined first, and then these are joined. The T-shaped end members may be joined to the upper and lower sides of the intermediate member.
上述したように、大型の補剛桁を軽量なアルミニウム合金製にするとともに、その製作にあたっては、押出成形により製造されたフランジ部とウエブ部との接続部が一体化されたT型端部材と、同じく押出成形により製造されたウエブ部と水平補剛材との接続部が一体化された中間部材とを、それぞれのウエブ部の対向端縁同士を介して接合したので、接合線を少なくすることができ、しかもその接合に際しては摩擦攪拌接合方法を用いたので、接合部で発生する熱量も少なくなり、熱歪の発生を極力抑えて強度低下を防止することができ、したがってアルミニウム合金にとっては有利になるとともに、強度低下に対する肉厚の増加を抑えることができる。 As described above, a large stiffening girder is made of a lightweight aluminum alloy, and in its manufacture, a T-type end member in which a connection portion between a flange portion and a web portion manufactured by extrusion molding is integrated; Also, since the web part manufactured by extrusion molding and the intermediate member in which the connection part of the horizontal stiffener is integrated are joined via the opposing edges of each web part, the joining line is reduced. In addition, since the friction stir welding method is used for the joining, the amount of heat generated at the joint is reduced, and the occurrence of thermal strain can be suppressed as much as possible to prevent the strength from being lowered. It becomes advantageous, and the increase in the thickness with respect to the strength reduction can be suppressed.
すなわち、アルミニウム合金により補剛桁を製作する際に、フランジ部とウエブ部との接続部を含むT型端部材、およびウエブ部と水平補剛材との接続部を含む中間部材を、それぞれ押出成形により製造することにより、例えば最大圧縮力および最大引張力が作用する端部材での溶接による入熱を無くして材料の強度低下を防止することができ、したがって水平補剛材を圧縮力が作用する側に偏って配置する必要がないので、複数の水平補剛材を補剛桁の全高(例えば、上下フランジ部の中心間高さ、またはウエブ部の全高)において均等間隔で配置することができ、しかもこの水平補剛材を均等間隔でもって配置することにより、当該補剛桁の斜め方向での座屈(せん断座屈)に対する抵抗が増加するため、通常、必要とされる垂直補剛材を省略することができ(水平補剛材だけでよい)、より一層の製作の容易化および重量の軽減化を図ることができる。 That is, when manufacturing a stiffening girder with an aluminum alloy, a T-shaped end member including a connection portion between the flange portion and the web portion and an intermediate member including a connection portion between the web portion and the horizontal stiffener are respectively extruded. By manufacturing by molding, for example, heat input due to welding at the end member where the maximum compressive force and maximum tensile force act can be eliminated, and the strength of the material can be prevented from being lowered. Since there is no need to be biased to the side to be arranged, a plurality of horizontal stiffeners can be arranged at equal intervals at the overall height of the stiffening girder (for example, the height between the centers of the upper and lower flange portions or the overall height of the web portion). In addition, by arranging the horizontal stiffeners at even intervals, the resistance to buckling (shear buckling) in the diagonal direction of the stiffening girder increases, so that the normal vertical stiffening is usually required. Material It can be omitted (or only horizontal stiffeners), it is possible to more facilitate and weight reduction of further fabrication.
ここで、本発明に係る補剛桁およびその製作方法により得られる効果について、詳細に述べておく。
上述したように、従来の補剛桁では、せん断座屈に対する抵抗を大きくするのに、垂直補剛材を設けたが、本発明に係る補剛桁では、垂直補剛材ではなく、水平補剛材をウエブ部の下側にも配置して複数の水平補剛材とすることで対処しようとするものである。すなわち、せん断力はウエブ部の各部分に対して水平方向と垂直方向とに同じ大きさで作用するものであり、力学的には、せん断力については、従来の補剛桁では垂直方向で抵抗するのに対し、本発明の補剛桁では水平方向で抵抗するものである。
Here, the effect obtained by the stiffening girder according to the present invention and the manufacturing method thereof will be described in detail.
As described above, in the conventional stiffening girder, the vertical stiffener is provided to increase the resistance to shear buckling. However, the stiffening girder according to the present invention is not a vertical stiffener but a horizontal stiffener. A rigid material is also arranged on the lower side of the web portion to make up a plurality of horizontal stiffeners. That is, the shearing force acts on each part of the web portion in the horizontal and vertical directions, and mechanically, the shearing force resists in the vertical direction in the conventional stiffening girder. In contrast, the stiffening girder of the present invention resists in the horizontal direction.
ところで、荷重が過大となり、せん断座屈が発生した場合、従来の補剛桁では、図5(c)および(d)に示すように、水平補剛桁54と垂直補剛桁55とで区切られたウエブ部の各部分においては、斜め方向のせん断座屈波形S2,S3が現われる。一方、図5(a)および(b)に示すように、本発明の補剛桁に現われるせん断座屈波形S1は、水平補剛材5,5同士の間隔が狭いために、従来型のせん断座屈波形、特にウエブ板の下部に現われるせん断座屈波形S3に比べると、波長が小さいものとなる。なお、図5の(a)および(c)は補剛桁の正面図、(b)および(d)は側面図である。
When the load becomes excessive and shear buckling occurs, the conventional stiffening girder is divided into a
一般に、棒や平板は波長の大きい波形(波の数が少ない波形)で座屈しやすいことから、本発明の構成のように、せん断座屈波形の波長が小さくなることは、せん断座屈に対して、より強度が高くなっていることを示している。 In general, rods and flat plates are likely to buckle with a waveform with a large wavelength (a waveform with a small number of waves). This indicates that the strength is higher.
また、本発明の構成により、複数の水平補剛材を等間隔または等間隔状に配置することは、曲げモーメントに対する抵抗の度合いである断面2次モーメントを大きくすることにもになり、すなわち曲げモーメントによる座屈に対しても有効である。 Further, according to the configuration of the present invention, arranging a plurality of horizontal stiffeners at equal intervals or at equal intervals also increases the cross-sectional secondary moment, which is the degree of resistance to the bending moment, that is, bending It is also effective against buckling due to moment.
また、本発明の構成のように、アルミニウム合金により補剛桁を製作する際に、フランジ部とウエブ部との接続部を含むT型端部材、およびウエブ部と水平補剛材との接続部を含む中間部材を、それぞれ押出成形により製造することにより、例えば最大圧縮力および最大引張力が作用する端部材での溶接による入熱を無くして部材の歪みおよび材料の強度低下を防止することができ、さらに端部材と中間部材との接合に、摩擦攪拌接合方法を用いることにより、溶接による入熱を無くして桁全体の歪みおよび接合部の強度低下を防止することができる。 Moreover, when manufacturing a stiffening girder with an aluminum alloy as in the configuration of the present invention, a T-shaped end member including a connecting portion between the flange portion and the web portion, and a connecting portion between the web portion and the horizontal stiffener Can be produced by extrusion molding, for example, to eliminate heat input due to welding at the end member on which the maximum compressive force and maximum tensile force act, for example, to prevent member distortion and material strength reduction. Further, by using a friction stir welding method for joining the end member and the intermediate member, heat input due to welding can be eliminated, and distortion of the entire girder and strength reduction of the joint can be prevented.
すなわち、せん断や曲げに対する強度を高めることができ、しかも押出成形(押出し材)と摩擦攪拌接合方法とを用いることで、強度低下を補うための板厚の増加を避けることができるので、従来例の補剛桁に比べて、材料を薄肉化でき、したがって全体の軽量化を図ることができる。 That is, the strength against shearing and bending can be increased, and by using extrusion molding (extruded material) and the friction stir welding method, it is possible to avoid an increase in the plate thickness to compensate for the strength reduction. Compared with the stiffening girders, the thickness of the material can be reduced, and the overall weight can be reduced.
また、従来例に係る補剛桁の製作においては、フランジ板とウエブ板、垂直補剛材とこの垂直補剛材に分断された形の水平補剛材を、それぞれすみ肉溶接により接合することにより行われるため、溶接作業に時間がかかる。 In the manufacture of stiffening girders according to the conventional example, the flange plate and web plate, the vertical stiffener and the horizontal stiffener divided into the vertical stiffeners are joined by fillet welding, respectively. Therefore, it takes time for the welding work.
これに対し、本発明の補剛桁の製作方法によれば、基本的には、押出し材の製造およびその押出し材の桁長手方向のみへの摩擦攪拌接合方法を用いた接合であり、また垂直補剛材も省略されており、より、一層の製作の容易化を図ることができる。 On the other hand, according to the method for manufacturing a stiffening girder of the present invention, basically, the extrusion material is manufactured and bonded using the friction stir welding method only in the longitudinal direction of the extruded material. The stiffener is also omitted, and it is possible to further facilitate the production.
ところで、上記実施の形態においては、T型端部材と水平補剛材が設けられた2個の中間部材とを接合したものとして説明したが、例えば図6に示すように、T型端部材6に中間部材7が摩擦攪拌接合方法Wにより接合されてなる結合部材8,8の中間部材7,7同士を、例えば長方形状の添板21を介して、ボルト・ナット(リベットまたはMIG溶接などの溶接)22により、接合したものであってもよい。この構成に係る補剛桁は、当該補剛桁が大型化した場合、分割して搬送する必要上、現地で接合することにより、製作し得るようにしたものである。
By the way, in the said embodiment, although demonstrated as what joined the T-shaped end member and the two intermediate members provided with the horizontal stiffener, for example, as shown in FIG. The
また、上記実施の形態においては、ウエブ部の一方の側面にだけ、水平補剛材を設けるように説明したが、例えば図7に示すように、ウエブ部4の両側に水平補剛材5を突設してもよい。
In the above embodiment, the horizontal stiffener is provided only on one side of the web portion. However, as shown in FIG. 7, for example, the
また、上記実施の形態においては、水平補剛材5を板状として説明したが、例えば図8に示すように、その断面がL字形状(かぎ状)の水平補剛材5′であってもよく、また図9に示すように、その断面が角形の中に中空部が形成された水平補剛材5″であってもよい。
In the above embodiment, the
1 補剛桁
2 上フランジ部
3 下フランジ部
4 ウエブ部
5 水平補剛材
5′ 水平補剛材
5″ 水平補剛材
6 T型端部材
7 中間部材
DESCRIPTION OF
Claims (6)
アルミニウム合金の押出成形によりフランジ部とウエブ部の一部とが一体成形された2個のT型端部材と、これら両T型端部材間に配置されて且つアルミニウム合金の押出成形により所定高さの中間ウエブ部の少なくとも一側面に水平補剛材が一体成形された複数の中間部材とから構成するとともに、
少なくとも上記T型端部材と中間部材とのウエブ部同士を、それぞれ摩擦攪拌接合方法を用いて接合してなることを特徴とする補剛桁。 An I-type stiffening girder having a web portion disposed between an upper flange portion and a lower flange portion,
Two T-type end members in which a flange portion and a part of the web portion are integrally formed by extrusion molding of an aluminum alloy, and a predetermined height disposed between the two T-type end members and extrusion molding of the aluminum alloy. And a plurality of intermediate members integrally formed with a horizontal stiffener on at least one side surface of the intermediate web portion,
A stiffening girder characterized in that at least the web portions of the T-shaped end member and the intermediate member are joined together using a friction stir welding method.
アルミニウム合金の押出成形によりフランジ部とウエブ部の一部とが一体成形された2個のT型端部材と、これら両T型端部材間に配置されて且つアルミニウム合金の押出成形により所定高さの中間ウエブ部の少なくとも一側面に水平補剛材が一体成形された複数の中間部材とから構成するとともに、
上記T型端部材と中間部材とのウエブ部同士および上下に隣接する中間部材のウエブ部同士を、それぞれ摩擦攪拌接合方法を用いて接合してなることを特徴とする補剛桁。 An I-type stiffening girder having a web portion disposed between an upper flange portion and a lower flange portion,
Two T-type end members in which a flange portion and a part of the web portion are integrally formed by extrusion molding of an aluminum alloy, and a predetermined height disposed between the two T-type end members and extrusion molding of the aluminum alloy. And a plurality of intermediate members integrally formed with a horizontal stiffener on at least one side surface of the intermediate web portion,
A stiffening girder formed by joining the web portions of the T-shaped end member and the intermediate member and the web portions of the intermediate members adjacent to each other using a friction stir welding method.
アルミニウム合金の押出成形によりフランジ部とウエブ部の一部とが一体成形された2個のT型端部材と、これら両T型端部材間に配置されて且つアルミニウム合金の押出成形により所定高さの中間ウエブ部の少なくとも一側面に水平補剛材が一体成形された複数の中間部材とを製造し、
次に少なくとも上記T型端部材および中間部材のウエブ部同士を、それぞれ摩擦攪拌接合方法を用いて接合することを特徴とする補剛桁の製作方法。 A method of manufacturing an I-type stiffening girder in which a web portion is disposed between an upper flange portion and a lower flange portion,
Two T-type end members in which a flange portion and a part of the web portion are integrally formed by extrusion molding of an aluminum alloy, and a predetermined height disposed between the two T-type end members and extrusion molding of the aluminum alloy. A plurality of intermediate members in which a horizontal stiffener is integrally formed on at least one side surface of the intermediate web portion,
Next, at least the web portions of the T-shaped end member and the intermediate member are joined using a friction stir welding method, respectively.
アルミニウム合金の押出成形によりフランジ部とウエブ部の一部とが一体成形された2個のT型端部材と、これら両T型端部材間に配置されて且つアルミニウム合金の押出成形により所定高さの中間ウエブ部の少なくとも一側面に水平補剛材が一体成形された複数の中間部材とを製造し、
次に上記T型端部材および中間部材のウエブ部同士並びに上下に配置された中間部材のウエブ部同士を、それぞれ摩擦攪拌接合方法を用いて接合することを特徴とする補剛桁の製作方法。
A method of manufacturing an I-type stiffening girder in which a web portion is disposed between an upper flange portion and a lower flange portion,
Two T-type end members in which a flange portion and a part of the web portion are integrally formed by extrusion molding of an aluminum alloy, and a predetermined height disposed between the two T-type end members and extrusion molding of the aluminum alloy. A plurality of intermediate members in which a horizontal stiffener is integrally formed on at least one side surface of the intermediate web portion,
Next, a method for producing a stiffening girder characterized in that the web portions of the T-shaped end member and the intermediate member and the web portions of the intermediate member arranged above and below are joined using a friction stir welding method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004220990A JP2006037577A (en) | 2004-07-29 | 2004-07-29 | Complementary rigid beam and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004220990A JP2006037577A (en) | 2004-07-29 | 2004-07-29 | Complementary rigid beam and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006037577A true JP2006037577A (en) | 2006-02-09 |
Family
ID=35902849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004220990A Pending JP2006037577A (en) | 2004-07-29 | 2004-07-29 | Complementary rigid beam and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006037577A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007262730A (en) * | 2006-03-28 | 2007-10-11 | Kawada Industries Inc | Girder manufacturing method, girder manufactured by the manufacturing method, and structure including the girder manufactured by the manufacturing method |
WO2007136039A1 (en) * | 2006-05-22 | 2007-11-29 | Osaka University | Panel structure for transportation device or panel structure for building structural member, and method of producing the same |
KR100944005B1 (en) | 2008-02-22 | 2010-02-24 | 연세대학교 산학협력단 | Pre-stressed Steel Girder and Method for introducing pre-stress into the steel girder |
KR100958906B1 (en) * | 2008-02-22 | 2010-05-19 | 연세대학교 산학협력단 | Method for introducing pre-stress into the steel girder |
KR100960091B1 (en) * | 2008-02-22 | 2010-05-31 | 연세대학교 산학협력단 | Method for constructing a system structure by using of the pre-stressed steel girder |
CN104847051A (en) * | 2015-04-23 | 2015-08-19 | 成都科创佳思科技有限公司 | Combined beam structure |
CN112900742A (en) * | 2021-01-15 | 2021-06-04 | 西南交通大学 | I-shaped beam |
-
2004
- 2004-07-29 JP JP2004220990A patent/JP2006037577A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007262730A (en) * | 2006-03-28 | 2007-10-11 | Kawada Industries Inc | Girder manufacturing method, girder manufactured by the manufacturing method, and structure including the girder manufactured by the manufacturing method |
WO2007136039A1 (en) * | 2006-05-22 | 2007-11-29 | Osaka University | Panel structure for transportation device or panel structure for building structural member, and method of producing the same |
KR100944005B1 (en) | 2008-02-22 | 2010-02-24 | 연세대학교 산학협력단 | Pre-stressed Steel Girder and Method for introducing pre-stress into the steel girder |
KR100958906B1 (en) * | 2008-02-22 | 2010-05-19 | 연세대학교 산학협력단 | Method for introducing pre-stress into the steel girder |
KR100960091B1 (en) * | 2008-02-22 | 2010-05-31 | 연세대학교 산학협력단 | Method for constructing a system structure by using of the pre-stressed steel girder |
CN104847051A (en) * | 2015-04-23 | 2015-08-19 | 成都科创佳思科技有限公司 | Combined beam structure |
CN112900742A (en) * | 2021-01-15 | 2021-06-04 | 西南交通大学 | I-shaped beam |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8978338B2 (en) | Structural trusses with monolithic connector plate members | |
JP2009079401A (en) | Girder structure using corrugated steel plate web | |
KR101697234B1 (en) | Rigid joint structure for beam to column connection | |
KR20170090610A (en) | Connection unit for coupling main steel girder and ancillary steel girder and, connection methods using the same | |
KR100722809B1 (en) | Reinforced beam for stiffness, the construction structure and bridge construction method using the same | |
KR100758994B1 (en) | Reinforced beam with vertical h-steel or i-steel for stiffness, the construction structure and bridge construction method using the same | |
JP2006037577A (en) | Complementary rigid beam and its manufacturing method | |
KR20100024768A (en) | Deck plate and arranging structure thereof | |
KR101223145B1 (en) | Welded beam having corrugated web and its manufacturing method | |
KR100887742B1 (en) | Manufacturing method of reinforced steel beam for stiffness | |
JP2001081729A (en) | Composite floor slab | |
JP6769549B2 (en) | Beam joining method, beam joining structure, and support members | |
JP5767782B2 (en) | Bridge main girder connection structure | |
JP7237668B2 (en) | Receiving material for deck and mounting method of the receiving material for deck | |
JP2009180043A (en) | Folding plate panel structure | |
KR102000114B1 (en) | Modular truss girder for temporary bridge and installation structure thereof | |
KR20090087678A (en) | Steel beam and steel-concrete hybrid structure using a folded steel plate for improved tensile strength | |
KR20110065731A (en) | Steel built up beam and steel concrete composite beam using the same | |
JP2005325637A (en) | Bearing wall frame | |
KR20060071525A (en) | Beam connections on street structure | |
KR102633906B1 (en) | Temporary bridge and construction method using the same | |
KR20180068592A (en) | Girder for bridge and construction method of the same | |
JP4374790B2 (en) | Method for replacing joint plate of beam joint and reinforcing connecting device for beam joint | |
JP7390993B2 (en) | Beam joint structures and buildings | |
JP2019085803A (en) | Steel beam slab construction method, and steel beam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070216 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080430 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081218 |
|
A131 | Notification of reasons for refusal |
Effective date: 20090106 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20090512 Free format text: JAPANESE INTERMEDIATE CODE: A02 |