JP2006037139A - 6000 series aluminum alloy sheet for superplastic forming having excellent paint baking hardenability and its production method - Google Patents
6000 series aluminum alloy sheet for superplastic forming having excellent paint baking hardenability and its production method Download PDFInfo
- Publication number
- JP2006037139A JP2006037139A JP2004215814A JP2004215814A JP2006037139A JP 2006037139 A JP2006037139 A JP 2006037139A JP 2004215814 A JP2004215814 A JP 2004215814A JP 2004215814 A JP2004215814 A JP 2004215814A JP 2006037139 A JP2006037139 A JP 2006037139A
- Authority
- JP
- Japan
- Prior art keywords
- superplastic forming
- aluminum alloy
- series aluminum
- superplastic
- alloy sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 39
- 239000003973 paint Substances 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 238000005098 hot rolling Methods 0.000 claims abstract description 23
- 238000005097 cold rolling Methods 0.000 claims abstract description 12
- 238000000137 annealing Methods 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 238000010438 heat treatment Methods 0.000 claims description 10
- 238000000265 homogenisation Methods 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 abstract description 31
- 239000000956 alloy Substances 0.000 abstract description 31
- 230000002159 abnormal effect Effects 0.000 abstract description 26
- 229910052804 chromium Inorganic materials 0.000 abstract description 7
- 229910052796 boron Inorganic materials 0.000 abstract description 6
- 229910052748 manganese Inorganic materials 0.000 abstract description 6
- 229910052742 iron Inorganic materials 0.000 abstract description 3
- 229910052719 titanium Inorganic materials 0.000 abstract description 3
- 229910052802 copper Inorganic materials 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 abstract description 2
- 229910052718 tin Inorganic materials 0.000 abstract 1
- 238000000034 method Methods 0.000 description 21
- 230000000694 effects Effects 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 11
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 238000001816 cooling Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000000465 moulding Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910018140 Al-Sn Inorganic materials 0.000 description 2
- 229910018564 Al—Sn Inorganic materials 0.000 description 2
- 238000003483 aging Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000000071 blow moulding Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、自動車ボディパネル等において難しい成形加工が要求され、しかも焼付け塗装処理後に高強度が必要とされるような部材に適した超塑性成形用6000系アルミニウム合金板およびその製造方法に関するものである。 The present invention relates to a superplastic forming 6000 series aluminum alloy plate suitable for a member that requires difficult forming processing in an automobile body panel or the like and requires high strength after baking coating processing, and a method of manufacturing the same. is there.
近年、自動車車体の軽量化手段の一つとして、アルミニウム合金のボディパネルへの適用が進みつつある。しかし、一般にアルミニウム合金は鋼板に比べて成形性が低く、様々な加工方法の検討が行われている。その一つに超塑性現象を活用した加工方法が挙げられる。 In recent years, application of aluminum alloys to body panels has been progressing as one of means for reducing the weight of automobile bodies. However, in general, aluminum alloys have lower formability than steel plates, and various processing methods have been studied. One of them is a processing method utilizing the superplastic phenomenon.
超塑性現象とは、伸びが通常の加工条件では得られない程大きく、かつ変形応力も小さいことが特徴とされている。そこで、これらの特徴を利用した超塑性合金実用化のための研究開発が盛んに行われている。特にアルミニウム合金に関しては、軽量という特徴を有するものの、加工性に問題があることから積極的に開発が行われており、なかでも5000系アルミニウム合金(Al−Mg系合金)は適当な強度とともに耐食性や表面処理性に優れていることから注目され、実用化されている合金もある。 The superplastic phenomenon is characterized in that the elongation is so large that it cannot be obtained under normal processing conditions and the deformation stress is small. Therefore, research and development for practical application of superplastic alloys using these characteristics has been actively conducted. In particular, aluminum alloys are characterized by light weight, but are being actively developed due to problems with workability. Among them, 5000 series aluminum alloys (Al-Mg series alloys) have corrosion resistance and appropriate strength. Some alloys have attracted attention and are in practical use because of their excellent surface treatment properties.
超塑性現象を発現させるための条件としては、(1)安定で微細な等軸結晶粒(〜10μm)を有する合金を、(2)加熱温度TはT>0.5Tm(融点の絶対温度)、(3)低いひずみ速度(10-4/s〜)での加工などが適切であると一般的に言われている(非特許文献1参照)。そこで、これまでの合金開発は、結晶粒を微細化すること、高温での加工に際しても熱的に安定な組織にすること、延性を阻害するキャビティの発生を抑えること等を指針として行われ、特許文献1に開示されているような特殊な成分系の合金や、特許文献2に開示されているような特殊な製造条件を必要とするものが提案されているが、製造コスト面からは望ましいものではなかった。 Conditions for developing the superplastic phenomenon include (1) an alloy having stable and fine equiaxed crystal grains (-10 μm), (2) heating temperature T is T> 0.5 Tm (absolute temperature of melting point) (3) It is generally said that processing at a low strain rate (10 −4 / s˜) is appropriate (see Non-Patent Document 1). Therefore, alloy development so far has been carried out with guidelines such as making crystal grains finer, making a thermally stable structure even when processing at high temperature, suppressing the occurrence of cavities that impair ductility, etc. An alloy of a special component system as disclosed in Patent Document 1 or an alloy that requires special manufacturing conditions as disclosed in Patent Document 2 has been proposed, but is desirable from the viewpoint of manufacturing cost. It was not a thing.
また、加工条件でも、非特許文献2に記載されているような低ひずみ速度が必要であることから、生産性に対しても問題があった。 Further, even under the processing conditions, a low strain rate as described in Non-Patent Document 2 is necessary, so there is a problem with productivity.
しかし、本発明者らは、超塑性成形を行うに際して、500%や1000%といったような非常に大きな伸びが要求されることはまれであり、150〜200%程度の伸びが達成できれば実用的には十分である場合が多いことに着目し、特殊な条件を採用せずに製造が容易で、かつ生産性に優れた超塑性成形を可能とする5000系アルミニウム合金板およびその成形方法に関する発明を提案した(特許文献3参照)。ただし、この発明は非熱処理型の5000系アルミニウム合金板をベースとしているために、強度が要求されるような部材への適用は困難であった。 However, the present inventors rarely require a very large elongation such as 500% or 1000% when performing superplastic forming, and if an elongation of about 150 to 200% can be achieved, it is practical. In particular, the invention relates to a 5000 series aluminum alloy sheet that is easy to manufacture without adopting special conditions and that enables superplastic forming with excellent productivity, and an invention relating to a forming method thereof. Proposed (see Patent Document 3). However, since the present invention is based on a non-heat-treatment type 5000 series aluminum alloy plate, it has been difficult to apply it to members that require strength.
そこで、本発明者らは、実用的な超塑性成形能は確保して、かつ適用部材の一層の軽量化を実現するために、伸び150%以上を有して実用的な超塑性成形が可能であり、さらに超塑性成形後にT6処理等の適切な熱処理を施すことによって引張強度300MPa以上の高い強度を得ることができる熱処理型の6000系アルミニウム合金板に関する発明を提案した(特許文献4参照)。ここで、T6処理とは、溶体化処理後人工時効硬化処理したものを意味する。しかし、この発明では、超塑性成形加工の後に溶体化処理を行い、人工時効硬化処理を行うことによって大幅な高強度化は可能であるが、工程が増えてしまい製造コスト面からは望ましいものではなかった。そこで、本発明者は、さらに超塑性成形後に別途溶体化処理および人工時効処理を行わなくても、自動車製造工程等において通常行われるような塗装焼き付け処理を活用して高強度化が図れる6000系アルミニウム合金製高強度部材の超塑性成形加工方法に関する発明を提案した(特許文献5参照)。 Therefore, the present inventors are able to perform practical superplastic forming with an elongation of 150% or more in order to ensure practical superplastic forming ability and realize further weight reduction of the applied member. Furthermore, an invention relating to a heat treatment type 6000 series aluminum alloy sheet capable of obtaining a high strength of a tensile strength of 300 MPa or more by performing an appropriate heat treatment such as T6 treatment after superplastic forming has been proposed (see Patent Document 4). . Here, T6 process means what was subjected to artificial age hardening after solution treatment. However, in this invention, it is possible to achieve a significant increase in strength by performing a solution treatment after superplastic forming and performing an artificial age hardening treatment, but this is not desirable from the standpoint of manufacturing cost because it increases the number of processes. There wasn't. Therefore, the present inventor can further enhance the strength by utilizing a paint baking process that is usually performed in an automobile manufacturing process or the like without performing a separate solution treatment and artificial aging treatment after superplastic forming. An invention relating to a superplastic forming method of an aluminum alloy high-strength member has been proposed (see Patent Document 5).
また、低コスト化という点では、板製造において溶体化処理が施されていない熱処理型アルミニウム系超塑性合金を用いた超塑性ブロー成形法に関する発明が提案されている(特許文献6参照)。 Further, in terms of cost reduction, an invention relating to a superplastic blow molding method using a heat-treatable aluminum-based superplastic alloy that has not been subjected to a solution treatment in plate production has been proposed (see Patent Document 6).
一般的な結晶粒径のアルミニウム合金板を用いて超塑性成形を行う場合の問題点として、超塑性成形後に非常に粗大な再結晶粒が形成され(以下、異常粒成長と呼ぶ。)、成形後の製品外観を損なう場合があった。特に、生産性の観点から大きな歪み速度で超塑性成形する場合に異常粒成長は起き易い。従来の本発明者らの提案においても、この異常粒成長が稀ではあるが起きる場合があり、異常粒成長をさらに抑制する必要があった。 As a problem when superplastic forming is performed using an aluminum alloy plate having a general crystal grain size, very coarse recrystallized grains are formed after superplastic forming (hereinafter referred to as abnormal grain growth), and forming. There was a case where the appearance of the later product was damaged. In particular, abnormal grain growth tends to occur when superplastic forming is performed at a large strain rate from the viewpoint of productivity. Even in the conventional proposals by the present inventors, this abnormal grain growth sometimes occurs, but it is necessary to further suppress the abnormal grain growth.
また、超塑性成形は、特許文献6に記載の発明のように、480〜530℃で10〜20分加圧して行われる場合が多く、通常のプレス成形に比べて生産性は低く、素材の一層の低コスト化が望まれていた。 In addition, as in the invention described in Patent Document 6, superplastic forming is often performed by pressurizing at 480 to 530 ° C. for 10 to 20 minutes, and the productivity is lower than that of normal press forming. Further cost reduction has been desired.
そこで、本発明は、超塑性成形後の異常粒成長がほぼ完全に抑制され、一層の素材コスト低減が図れる塗装焼付け硬化性に優れた超塑性成形用6000系アルミニウム合金板およびその製造方法を提供することを目的とするものである。 Therefore, the present invention provides a 6000 series aluminum alloy plate for superplastic forming that has excellent paint bake hardenability, which can substantially reduce abnormal grain growth after superplastic forming, and can further reduce material costs, and a method for manufacturing the same. It is intended to do.
本発明者らは、6000系アルミニウム合金板に対して超塑性成形を行う際の異常粒成長現象について種々検討を行った。その結果、460〜580℃の温度範囲において10-4〜10/sの歪み速度で行う超塑性成形ならば、MnまたはCrを適切な量添加することによって異常粒成長をほぼ完全に抑制し得ることを見出した。また、上記のような条件で超塑性成形を行う場合には、異常粒成長抑制の目的で本系アルミニウム合金の溶質原子の他にMnまたはCrを規定量含有させても、合金成分全体を適切に規定することによって150%以上の伸びが得られ、実用的な超塑性成形能を十分に有していることを実験的に明らかにした。 The present inventors have made various studies on the abnormal grain growth phenomenon when superplastic forming is performed on a 6000 series aluminum alloy plate. As a result, in the case of superplastic forming performed at a strain rate of 10 −4 to 10 / s in a temperature range of 460 to 580 ° C., abnormal grain growth can be almost completely suppressed by adding an appropriate amount of Mn or Cr. I found out. In addition, when superplastic forming is performed under the above conditions, the entire alloy components are adequate even if Mn or Cr is contained in a prescribed amount in addition to the solute atoms of the present aluminum alloy for the purpose of suppressing abnormal grain growth. It was experimentally clarified that an elongation of 150% or more was obtained by prescribing to the above, and that practical superplastic forming ability was sufficiently obtained.
一方、6000系アルミニウム合金板の一般的な溶体化処理温度は480〜580℃の範囲であり、超塑性成形も上述のようにこのような温度範囲で行われることから、溶体化処理を省略することが可能と考えられる。ただし、塗装焼付け硬化性を得るためには超塑性成形後の冷却過程で溶質原子を過飽和に固溶させる必要があり、この際、大きな冷却速度で冷却しなくても効率的に溶質原子を固溶させる、すなわち、良好な焼入れ性を有していることも重要となる。塗装焼き付けの際に大きな強度上昇を得るためには、一般的にはMg2Si量や過剰Si量を増大させる必要があるが、非特許文献3で開示されているように、Mg2Si量や過剰Si量を増大させると逆に焼入れ性は低下するとされている。また、異常粒成長抑制のために添加するMnならびにCrは、塗装焼付け処理における強度上昇を小さくするといわれている。そこで、本発明者は塗装焼付け硬化性と焼き入れ性に及ぼす合金成分の影響について種々検討を行い、溶質原子MgおよびSiの成分範囲、ならびにMnまたはCrの異常粒成長抑制元素の添加量を適切に規定することによって、塗装焼付け硬化性と焼入れ性は両立し得ることを実験的に確認した。 On the other hand, the general solution treatment temperature of the 6000 series aluminum alloy plate is in the range of 480 to 580 ° C., and superplastic forming is also performed in such a temperature range as described above, so the solution treatment is omitted. It is considered possible. However, in order to obtain paint bake hardenability, it is necessary to dissolve solute atoms in a supersaturated state during the cooling process after superplastic forming. At this time, the solute atoms are effectively solidified without cooling at a high cooling rate. It is also important to dissolve, that is, to have good hardenability. In order to obtain a large increase in strength during paint baking, it is generally necessary to increase the amount of Mg 2 Si or the amount of excess Si, but as disclosed in Non-Patent Document 3, the amount of Mg 2 Si On the other hand, it is said that the hardenability decreases when the amount of excess Si is increased. Further, Mn and Cr added to suppress abnormal grain growth are said to reduce the strength increase in the coating baking process. Therefore, the present inventor has conducted various studies on the influence of the alloy components on the bake hardenability and hardenability of the paint, and appropriately set the component ranges of the solute atoms Mg and Si and the addition amount of the abnormal grain growth inhibiting element of Mn or Cr It was experimentally confirmed that the paint bake hardenability and the hardenability can be compatible.
また、塗装焼付け硬化性確保に必要な溶質原子の固溶量が増すと板の導電率が低下する現象を使って、種々の製法で製造した6000系アルミニウム合金板の溶体化処理前後の導電率を調査した。その結果、溶体化処理を施す前の状態での導電率が40〜60%IACSであれば、一般的な条件の超塑性成形を行うことによって溶体化処理を行うのと同等の溶質原子が固溶し、塗装焼付け硬化性が得られるようになることを見出した。なお、ここで用いた導電率の単位%IACSは、標準軟銅(比抵抗1.7241μΩ・cm/20℃)の導電率を100%とした時、同温同体積の物質の比で示したものであり、数値が大きいほど導伝性はよい。 In addition, the electrical conductivity before and after solution treatment of 6000 series aluminum alloy plates manufactured by various manufacturing methods using the phenomenon that the electrical conductivity of the plates decreases as the amount of solute atoms required to ensure the bake hardenability of coating increases. investigated. As a result, if the electrical conductivity before the solution treatment is 40 to 60% IACS, solute atoms equivalent to the solution treatment by solid plastic forming under general conditions are solidified. It was found that the coating bake curability can be obtained. The unit% IACS of conductivity used here is the ratio of substances with the same temperature and volume when the conductivity of standard soft copper (specific resistance 1.7241 μΩ · cm / 20 ° C.) is 100%. The higher the numerical value, the better the conductivity.
さらに、導電率40〜60%IACSを確保するためには、熱間圧延温度を適切に制御することによって、最終の溶体化処理以外にも、溶質原子の固溶促進に関連した工程である均質化焼鈍を省略することが可能であり、さらに熱間圧延後に冷間圧延を行って板を製造する場合に冷間圧延途中に施すことがある中間焼鈍をも省略し得ることを見出した。 Furthermore, in order to ensure the conductivity of 40 to 60% IACS, by controlling the hot rolling temperature appropriately, in addition to the final solution treatment, it is a process related to the promotion of solid solution of solute atoms. It has been found that the chemical annealing can be omitted, and further, the intermediate annealing that may be performed during the cold rolling in the case of producing a plate by performing the cold rolling after the hot rolling can be omitted.
すなわち、超塑性成形用の6000系アルミニウム合金板は、溶解鋳造後、適切な条件において熱間圧延を施し、さらに冷間圧延を行うことで製造された、冷間圧延ままの加工組織を有した板を適用することができる。 That is, the 6000 series aluminum alloy sheet for superplastic forming had a cold-rolled processed structure manufactured by hot rolling under appropriate conditions after melt casting and further cold rolling. A board can be applied.
本発明者らは、これらの知見をもとに超塑性成形後も粗大な異常粒が形成されない、一層の素材コスト低減が図れる塗装焼付け硬化性に優れた超塑性成形用6000系アルミニウム合金板およびその製造方法を発明するに至った。 Based on these findings, the present inventors do not form coarse abnormal grains even after superplastic forming, and can further reduce the material cost, and can be further reduced in material baking cost. It came to invent the manufacturing method.
本発明の要旨は以下のとおりである。 The gist of the present invention is as follows.
(1) 質量%で、Mg:0.4〜1.0%、Si:0.6〜1.4%、Mn:0.4超〜1.0%を含有し、残部はAlおよび不可避不純物からなり、冷間圧延ままの加工組織を有し、導電率が40〜60%IACSであることを特徴とする、塗装焼付け硬化性に優れた超塑性成形用6000系アルミニウム合金板。 (1) By mass%, Mg: 0.4 to 1.0%, Si: 0.6 to 1.4%, Mn: more than 0.4 to 1.0%, the balance being Al and inevitable impurities A 6000 series aluminum alloy plate for superplastic forming excellent in paint bake hardenability, comprising a cold-rolled processed structure and having an electrical conductivity of 40 to 60% IACS.
(2) 質量%で、さらに、Cr:0.02〜0.5%を含有することを特徴とする、上記(1)記載の塗装焼付け硬化性に優れた超塑性成形用6000系アルミニウム合金板。 (2) 6000 series aluminum alloy plate for superplastic forming excellent in paint bake hardenability as described in (1) above, further comprising Cr: 0.02 to 0.5% by mass .
(3) 質量%で、さらに、Ti:0.005〜0.15%、B:0.0001〜0.05%、Fe:0.03〜0.4%の1種または2種以上を含有することを特徴とする、上記(1)または(2)に記載の塗装焼付け硬化性に優れた超塑性成形用6000系アルミニウム合金板。 (3) By mass%, further containing one or more of Ti: 0.005-0.15%, B: 0.0001-0.05%, Fe: 0.03-0.4% A 6000 series aluminum alloy plate for superplastic forming excellent in paint bake hardenability as described in (1) or (2) above.
(4) 質量%で、さらに、Cu:0.1〜1.0%を含有することを特徴とする、上記(1)ないし(3)のいずれか1項に記載の塗装焼付け硬化性に優れた超塑性成形用6000系アルミニウム合金板。 (4) Excellent in bake hardenability according to any one of the above (1) to (3), characterized by containing Cu: 0.1 to 1.0% by mass%. 6000 series aluminum alloy plate for superplastic forming.
(5) 質量%で、さらに、Sn:0.01〜0.15%を含有することを特徴とする、上記(1)ないし(4)のいずれか1項に記載の塗装焼付け硬化性に優れた超塑性成形用6000系アルミニウム合金板。 (5) Excellent in bake hardenability according to any one of (1) to (4) above, characterized by containing Sn: 0.01 to 0.15% by mass%. 6000 series aluminum alloy plate for superplastic forming.
(6) 上記(1)ないし(5)のいずれか1項に記載の成分を有する鋳塊を均質化焼鈍を行わずに加熱後、450〜550℃の温度範囲で熱間圧延を開始し、350℃以下の温度で熱間圧延を終了し、冷間圧延を行って製造することを特徴とする、塗装焼付け硬化性に優れた超塑性成形用6000系アルミニウム合金板の製造方法。 (6) After heating the ingot having the component according to any one of (1) to (5) above without performing homogenization annealing, hot rolling is started in a temperature range of 450 to 550 ° C, A method for producing a 6000 series aluminum alloy plate for superplastic forming excellent in paint bake hardenability, characterized in that hot rolling is terminated at a temperature of 350 ° C. or less and cold rolling is performed.
本発明により、特に、自動車の超塑性成形用パネル材として好適な、超塑性成形後も異常粒成長が生じない、一層の素材コスト低減が図れる塗装焼付け硬化性に優れた6000系アルミニウム合金板およびその製造方法を提供することが可能となり、産業上の貢献が極めて顕著である。 According to the present invention, in particular, a 6000 series aluminum alloy plate excellent in paint bake hardenability, which is suitable as a panel material for superplastic forming of automobiles, does not cause abnormal grain growth even after superplastic forming, and can further reduce material cost, and The manufacturing method can be provided, and the industrial contribution is extremely remarkable.
以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
先ず、合金成分の限定理由を以下に示す。 First, the reasons for limiting the alloy components are shown below.
Mg、Siは、本発明の必須の基本成分であり、超塑性成形性の確保、ならびに成形加工後に塗装焼き付け処理を行った際の強度上昇、すなわち塗装焼付け硬化性を得るための基本合金成分である。Mgが0.4%未満、Siが0.6%未満では上述の効果に乏しく、またMgが1.0%超、Siが1.4%超では、超塑性成形性、加工後の冷却過程での焼き入れ性および塗装焼付け硬化性が両立できなくなる。そのため、Mg量を0.4〜1.0%、Si量を0.6〜1.4%の範囲とした。 Mg and Si are indispensable basic components of the present invention, and are the basic alloy components for securing superplastic formability and increasing the strength when the paint baking process is performed after the forming process, that is, for obtaining the paint bake hardenability. is there. When Mg is less than 0.4% and Si is less than 0.6%, the above-mentioned effects are poor, and when Mg is more than 1.0% and Si is more than 1.4%, superplastic formability, cooling process after processing It is impossible to achieve both hardenability and paint bake hardenability. Therefore, the Mg content is set to 0.4 to 1.0%, and the Si content is set to 0.6 to 1.4%.
Mnは、超塑性成形時に異常粒成長を抑制する効果を有する。Mn量の下限を0.4%超とするのは、0.4%以下では異常粒成長が十分に抑制できない場合があるためである。また、Mn量の上限を1.0%以下とする理由は、1.0%を超えると粗大な金属間化合物が多数形成され、超塑性成形中のキャビティの生成が著しく多くなり、超塑性成形性を損なうとともに成形後の機械的性質を損なってしまう恐れがあるためである。以上の理由から、Mn量は0.4超〜1.0%の範囲とした。 Mn has the effect of suppressing abnormal grain growth during superplastic forming. The reason why the lower limit of the amount of Mn exceeds 0.4% is that abnormal grain growth may not be sufficiently suppressed when the amount is 0.4% or less. Also, the reason why the upper limit of the amount of Mn is 1.0% or less is that if it exceeds 1.0%, a large number of coarse intermetallic compounds are formed, and the generation of cavities during superplastic forming is remarkably increased. This is because the mechanical properties after molding may be impaired as well as the properties. For the above reasons, the amount of Mn is set in the range of more than 0.4 to 1.0%.
本発明は、必要に応じて以下に示す元素を含有させてもよい。 The present invention may contain the following elements as required.
Crは、Mnと同様に超塑性成形時の異常粒成長抑制効果を有する元素である。Cr量が0.02%未満ではその効果が不十分であり、またCr量が0.5%を超えると粗大な金属間化合物が形成され、超塑性成形時にキャビティが多数形成されてしまい、超塑性成形性を損なうとともに成形後の機械的性質を損なう恐れがある。したがって、Cr量を0.02〜0.5%の範囲とした。 Cr, like Mn, is an element having an effect of suppressing abnormal grain growth during superplastic forming. If the Cr content is less than 0.02%, the effect is insufficient. If the Cr content exceeds 0.5%, a coarse intermetallic compound is formed, and many cavities are formed during superplastic forming. There is a risk of impairing the plastic formability and the mechanical properties after molding. Therefore, the Cr content is in the range of 0.02 to 0.5%.
また、本発明では、Ti、B、Feの1種またはは2種以上を必要に応じて含有させても良い。Ti、Bは、微量添加により鋳塊の結晶粒を微細化し、肌荒れ等を改善する効果を有する。Tiが0.005%未満、Bが0.0001%未満では鋳塊の結晶粒を微細化する効果がやや不十分である。また、Tiが0.15%、Bが0.05%を超えると粗大な晶出物を形成し、超塑性成形性が劣化することがある。そのため、Ti量を0.005〜0.15%、B量を0.0001〜0.05%の範囲とした。 Moreover, in this invention, you may contain 1 type, or 2 or more types of Ti, B, and Fe as needed. Ti and B have the effect of refining the crystal grain of the ingot by adding a small amount and improving rough skin. When Ti is less than 0.005% and B is less than 0.0001%, the effect of refining the crystal grains of the ingot is slightly insufficient. On the other hand, if Ti exceeds 0.15% and B exceeds 0.05%, a coarse crystallized product is formed, and the superplastic formability may deteriorate. Therefore, the Ti amount is set to 0.005 to 0.15%, and the B amount is set to 0.0001 to 0.05%.
Feは、強度向上に寄与する元素であり、ならびに超塑性成形時の異常粒成長抑制に効果のある元素である。その効果は、Fe量が0.03%未満では不十分である。一方、Fe量が0.4%を超えると粗大な晶出物が生成し、超塑性成形性を低下させ、超塑性成形時のキャビティ形成による成形後の機械的性質を劣化させてしまう恐れがある。したがって、Feを含有させる場合にはFe量を0.03〜0.4%の範囲とすることが好ましい。 Fe is an element that contributes to strength improvement and is an element that is effective in suppressing abnormal grain growth during superplastic forming. The effect is insufficient when the Fe content is less than 0.03%. On the other hand, if the amount of Fe exceeds 0.4%, a coarse crystallized product is generated, which may deteriorate superplastic formability and deteriorate mechanical properties after forming due to cavity formation during superplastic forming. is there. Therefore, when Fe is contained, the Fe content is preferably in the range of 0.03 to 0.4%.
本発明ではCuを必要に応じて含有させてもよい。Cuは、超塑性成形後、塗装焼付けを行ったときの強度上昇に寄与する元素である。Cuが0.1%未満では強度上昇効果が十分に得られず、1.0%を超えてCuを添加すると、耐蝕性が大きく劣化してしまう。そのためにCu添加量は0.1〜1.0%の範囲とした。 In this invention, you may contain Cu as needed. Cu is an element that contributes to an increase in strength when paint baking is performed after superplastic forming. If Cu is less than 0.1%, the effect of increasing the strength is not sufficiently obtained. If Cu is added in excess of 1.0%, the corrosion resistance is greatly deteriorated. Therefore, the amount of Cu added is in the range of 0.1 to 1.0%.
さらに、本発明においてはSnを必要に応じて含有させてもよい。Snは、室温放置中の自然時効による強度上昇を抑制するとともに、焼入れ性を向上させる効果を有する。Snが0.01%未満ではその効果が小さく、また0.15%を超えると自然時効中の強度上昇抑制効果は飽和してしまうだけでなく、焼入れ性が大きく低下してしまう。そのため、Snの添加量を0.01〜0.15%とした。またSnの効果を有効に活用するためにはAl母相中にSnを均一に固溶させることが重要であり、そのためには溶解鋳造時にSnを、Al−Sn母合金として添加することが望ましい。なお、Al−Sn母合金中のSn含有量については特に規定する必要はない。 Furthermore, in the present invention, Sn may be included as necessary. Sn has the effect of suppressing the increase in strength due to natural aging during standing at room temperature and improving the hardenability. If Sn is less than 0.01%, the effect is small, and if it exceeds 0.15%, the effect of suppressing the increase in strength during natural aging is saturated, and the hardenability is greatly reduced. Therefore, the addition amount of Sn is set to 0.01 to 0.15%. In order to effectively use the effect of Sn, it is important to uniformly dissolve Sn in the Al matrix, and for that purpose, it is desirable to add Sn as an Al—Sn master alloy during melting and casting. . Note that the Sn content in the Al—Sn master alloy does not have to be specified.
なお、上記元素の他、不可避的不純物が含有されるが、本発明の効果を損なわない範囲の量であれば許容される。 In addition to the above elements, unavoidable impurities are contained, but the amount is within a range that does not impair the effects of the present invention.
次ぎに、本発明の製造方法に関して詳細に説明する。 Next, the production method of the present invention will be described in detail.
本6000系アルミニウム合金板の一般的な製造方法としては、溶解鋳造、均質化焼鈍、熱間圧延、冷間圧延、必要に応じて冷間圧延途中に焼鈍、溶体化処理を経るものである。これに対し、本発明では、溶質原子の固溶に関連した工程である溶体化処理、均質化焼鈍および冷間圧延の途中に施す中間焼鈍を省略することが可能であるため、本発明のアルミニウム合金板は、従来の一般的な方法にしたがって溶解鋳造された鋳塊を、本発明で規定した条件で熱間圧延を施し、冷間圧延を行うことにより製造される。 As a general manufacturing method of the present 6000 series aluminum alloy sheet, melt casting, homogenization annealing, hot rolling, cold rolling, and if necessary, annealing and solution treatment are performed during the cold rolling. On the other hand, in the present invention, it is possible to omit the solution annealing, homogenization annealing, and intermediate annealing performed in the middle of cold rolling, which are processes related to solid solution of solute atoms. The alloy plate is manufactured by subjecting an ingot melt-cast in accordance with a conventional general method to hot rolling under the conditions defined in the present invention and then cold rolling.
先ず、鋳塊を加熱し、熱間圧延を行う。冷間圧延ままの加工組織を有する最終製品板の導電率を40〜60%IACSとするためには、開始および終了温度範囲を適切に制御した熱間圧延を行う必要がある。熱間圧延における開始温度は、450〜550℃の範囲とする。熱間圧延開始温度が、450℃未満では溶質原子の固溶が不十分となる恐れがある。また、開始温度を550℃超とすると、熱間圧延前の加熱は加熱炉から熱間圧延機への鋳塊の搬送等による温度低下を考慮すると580℃以上で行うことになり、このような温度では共晶融解が起きる場合があり問題である。そこで、熱間圧延開始温度範囲を450〜550℃と規定した。一方、熱間圧延終了温度は350℃以下とする。350℃超では固溶量は多いものの、析出物は比較的大きくなり、超塑性成形時に再固溶し難くなってしまうためである。 First, the ingot is heated and hot rolled. In order to set the electric conductivity of the final product plate having the processed structure as cold rolled to 40 to 60% IACS, it is necessary to perform hot rolling with appropriately controlled start and end temperature ranges. The starting temperature in the hot rolling is in the range of 450 to 550 ° C. If the hot rolling start temperature is less than 450 ° C., the solute atoms may not be sufficiently dissolved. If the starting temperature is higher than 550 ° C., heating before hot rolling will be performed at 580 ° C. or higher in consideration of temperature drop due to ingot conveyance from the heating furnace to the hot rolling mill, etc. At temperature, eutectic melting may occur, which is a problem. Therefore, the hot rolling start temperature range was defined as 450 to 550 ° C. On the other hand, the hot rolling end temperature is set to 350 ° C. or lower. This is because although the amount of solid solution is large above 350 ° C., the precipitate becomes relatively large and it is difficult to re-dissolve at the time of superplastic forming.
なお、1パス毎の圧下率は特に規定はしないが、熱間圧延終了温度が上述の範囲となるように設定すればよい。 In addition, although the rolling reduction rate for each pass is not particularly defined, it may be set so that the hot rolling end temperature is in the above range.
この条件となるように制御した熱間圧延を行った後、冷間圧延を行って製造した本発明合金板は、40〜60%IACSの導電率を有するようになり、超塑性成形用材料として十分な成形性を有するとともに、良好な塗装焼き付け硬化性を示す。 The present invention alloy sheet manufactured by performing hot rolling controlled to satisfy this condition and then performing cold rolling has a conductivity of 40 to 60% IACS, and is used as a superplastic forming material. It has sufficient moldability and exhibits good paint bake hardenability.
以下には本発明のアルミニウム合金板の性能を十分に発揮させるための超塑性成形から塗装焼付け処理までの好適な条件について説明する。 In the following, suitable conditions from superplastic forming to paint baking treatment for sufficiently exerting the performance of the aluminum alloy plate of the present invention will be described.
超塑性成形条件としては、480〜580℃の温度範囲で、ひずみ速度dε/dsが10-4〜10/sのような広範な条件範囲でも、本発明に係るアルミニウム合金板は、異常粒成長を抑制するとともに、150%程度以上の全伸びを示し、実用上十分な超塑性成形能を有する。また、十分な溶体化が施される。 As the superplastic forming conditions, the aluminum alloy sheet according to the present invention has abnormal grain growth even in a wide range of conditions such as a strain rate dε / ds of 10 −4 to 10 / s in a temperature range of 480 to 580 ° C. In addition, it exhibits a total elongation of about 150% or more and has a practically sufficient superplastic forming ability. Moreover, sufficient solution treatment is performed.
本発明に係るアルミニウム合金板は優れた焼入れ性を有しているが、超塑性成形後200℃以下までは2℃/s以上で冷却することが好ましい。2℃/s未満では冷却過程でMg2Si相やSi相等が析出して過飽和固溶量が不足し、塗装焼付け硬化性が得られ難くなる場合がある。 Although the aluminum alloy plate according to the present invention has excellent hardenability, it is preferably cooled at 2 ° C./s or higher up to 200 ° C. or lower after superplastic forming. If it is less than 2 ° C./s, the Mg 2 Si phase, the Si phase, etc. may precipitate during the cooling process, the amount of supersaturated solid solution will be insufficient, and paint bake hardenability may be difficult to obtain.
また、塗装焼付け処理において大きく強度上昇させるためには、超塑性成形から塗装焼付け処理までの室温放置時間は短いほど好ましい。室温放置時間が長くなると、大きな塗装焼付け硬化性を得るためにはより高温で長時間の熱処理が必要となる。好ましくは、超塑性成形後12時間以内に塗装焼付け処理を行うことがよく、塗装焼付け条件も180℃以上で30分以上行うのが好ましい。 Further, in order to greatly increase the strength in the paint baking process, it is preferable that the room temperature standing time from the superplastic forming to the paint baking process is as short as possible. If the standing time at room temperature becomes longer, heat treatment at a higher temperature for a longer time is required to obtain a large paint bake hardenability. Preferably, the coating baking process is preferably performed within 12 hours after superplastic forming, and the baking conditions are preferably 180 ° C. or higher and 30 minutes or longer.
表1に示す成分組成を有する6000系アルミニウム合金を溶解し、DC鋳造法により鋳造した。得られた鋳塊を510℃で熱間圧延を開始し280℃で板厚を5mmとして熱間圧延を終了した。その後1mmまで冷間圧延を行って供試材とした。 A 6000 series aluminum alloy having the component composition shown in Table 1 was melted and cast by a DC casting method. The obtained ingot was hot-rolled at 510 ° C, and the hot-rolling was finished at 280 ° C with a plate thickness of 5 mm. Thereafter, it was cold-rolled to 1 mm to obtain a test material.
これらのアルミニウム合金圧延板に対して、超塑性成形条件に相当する温度500℃、歪み速度10-2/sで高温引張試験を行った。150%以上を良好な超塑性伸びとした。 These aluminum alloy rolled sheets were subjected to a high-temperature tensile test at a temperature corresponding to superplastic forming conditions of 500 ° C. and a strain rate of 10 −2 / s. 150% or more was regarded as good superplastic elongation.
これらのアルミニウム合金板に対して小型の高温ブロー成形試験機を用いて超塑性成形を行った。金型は一辺250mmの角筒金型を使い、板を500℃に1分間予備加熱した後、平均の歪み速度が10-2/s程度となるように加圧して高さ60mmの成形を行った。また、成形後は3℃/sの速度で冷却した。また、冷却の後、室温で8時間放置してから180℃×60分の塗装焼付け相当の熱処理を行った。超塑性成形後の強度を調査するために、角筒成形品の上面中央から圧延方向にJIS5号引張試験片を採取して引張試験を行った。5000系アルミニウム合金超塑性材を用いた場合の耐力は140MPa程度が上限であることから、耐力150MPa以上を良好な塗装焼付け硬化性と判定した。 These aluminum alloy plates were subjected to superplastic forming using a small high temperature blow molding tester. The mold is a square tube mold with a side of 250 mm, the plate is preheated to 500 ° C. for 1 minute, and then pressed to form an average strain rate of about 10 −2 / s to form a height of 60 mm. It was. Moreover, it cooled at the speed | rate of 3 degrees C / s after shaping | molding. Moreover, after cooling, it was left at room temperature for 8 hours, and then a heat treatment equivalent to coating baking at 180 ° C. for 60 minutes was performed. In order to investigate the strength after superplastic forming, a JIS No. 5 tensile test piece was sampled in the rolling direction from the center of the upper surface of the square tube molded product and subjected to a tensile test. Since the upper limit of the yield strength when a 5000 series aluminum alloy superplastic material is used is about 140 MPa, the yield strength of 150 MPa or more was determined to be good paint bake hardenability.
また、異常粒成長の有無を調査するために、角筒成形品の上面中央近傍から試験片を採取して、板断面に対してエッチングを施して結晶粒組織を板厚全面にわたって観察した。表2にその評価結果を示す。200μm以下の等軸再結晶粒であれば良好であるとし、表2に○で表記した。また、200μm超の粗大な結晶粒が部分的にでも認められた場合を異常粒成長が発生したとして、表2で×と表記した。 Further, in order to investigate the presence or absence of abnormal grain growth, a test piece was collected from the vicinity of the center of the upper surface of the rectangular tube molded product, and the cross section of the plate was etched to observe the crystal grain structure over the entire plate thickness. Table 2 shows the evaluation results. Equiaxial recrystallized grains of 200 μm or less are considered good, and are shown in Table 2 as ◯. Further, in the case where coarse crystal grains exceeding 200 μm were partially observed, abnormal grain growth occurred, and it was indicated as “x” in Table 2.
合金No.1〜12は、合金成分および製造条件が本発明の範囲内であり、150%以上の超塑性伸びを有し、また塗装焼付け硬化性に優れ、異常粒成長も認められなかった。 Alloy No. In Nos. 1 to 12, the alloy components and production conditions were within the scope of the present invention, had superplastic elongation of 150% or more, excellent paint bake hardenability, and no abnormal grain growth was observed.
一方、合金No.13はMg、Si量が本発明範囲よりも少ないために塗装焼付け硬化性が低く、またMnも規定量に満たないため、異常粒成長を起こしてしまった。合金No.14は、Mg量が少なく、SiおよびCr量が本発明の範囲よりも多いために、塗装焼付け硬化性が低かった。合金No.15では、MgおよびSi量が本発明の範囲外であるために塗装焼付け硬化性が低く、また、Mnも規定量以下のために異常粒成長が生じた。合金No.16は、Mg、Si量は本発明内であるが、Mn、Cr、Fe添加量が本発明の範囲よりも多いために塗装焼付け硬化性が低かった。合金No.17は、Sn量が本発明の範囲よりも多かったために焼入れ性が低下して、塗装焼付け硬化性が不十分であった。 On the other hand, Alloy No. In No. 13, the amount of Mg and Si was less than the range of the present invention, so the bake hardenability was low, and Mn was less than the specified amount, and therefore abnormal grain growth occurred. Alloy No. No. 14 had a low amount of Mg, and the amounts of Si and Cr were larger than the range of the present invention, so the paint bake hardenability was low. Alloy No. In No. 15, the amount of Mg and Si was outside the range of the present invention, so the paint bake hardenability was low, and abnormal grain growth occurred because Mn was less than the specified amount. Alloy No. In No. 16, the amount of Mg and Si was within the range of the present invention. Alloy No. In No. 17, since the Sn amount was larger than the range of the present invention, the hardenability was lowered and the paint bake curability was insufficient.
表1の本発明合金1および11の鋳塊を表3に示した条件で熱間圧延、冷間圧延を行って供試材とした。表3には熱間圧延開始温度および終了温度、またで熱間圧延終了板厚を記す。この熱間圧延板に対して冷間圧延を施して1mm厚として供試材とした。 The ingots of the alloys 1 and 11 of the present invention shown in Table 1 were subjected to hot rolling and cold rolling under the conditions shown in Table 3 to obtain test materials. Table 3 shows the hot rolling start temperature and end temperature, and the hot rolling end plate thickness. The hot-rolled sheet was cold-rolled to obtain a test material having a thickness of 1 mm.
このようにして製造された供試材を実施例1と同じ高温ブロー試験機を用いて表4に示す条件で超塑性成形および角筒成形品の冷却を行った。この際、金型も実施例1と同じものを用い、成形高さもまた同じ60mmとした。 The specimens thus produced were cooled using the same high-temperature blow test machine as in Example 1 under the conditions shown in Table 4 and superplastic forming and square tube molding. At this time, the same mold as in Example 1 was used, and the molding height was also set to 60 mm.
なお、供試材の超塑性伸びは、超塑性成形温度において、超塑性成形と同等の歪み速度で高温引張試験を行って求めた。また、塗装焼付け硬化性および異常粒成長の有無の評価は実施例1と同様に行った。表5にその評価結果を示す。 The superplastic elongation of the test material was obtained by performing a high-temperature tensile test at the superplastic forming temperature at a strain rate equivalent to that of superplastic forming. Moreover, evaluation of the presence of paint baking curability and abnormal grain growth was performed in the same manner as in Example 1. Table 5 shows the evaluation results.
合金No.1の成分を有する鋳塊を方法A〜Dで製造した本発明合金板に対して条件アで超塑性成形を行った場合は、150%以上の超塑性伸びを有し、また塗装焼付け硬化性に優れ、異常粒成長も認められなかった。一方、本発明外の方法E、Fで製造した場合は、同じ超塑性成形条件でも良好な塗装焼付け硬化性が得られなかった。 Alloy No. When superplastic forming is performed on the alloy plate of the present invention produced by the methods A to D under the condition A, the ingot having the component 1 has superplastic elongation of 150% or more, and paint bake hardenability. And no abnormal grain growth was observed. On the other hand, when manufactured by the methods E and F outside the present invention, good paint bake hardenability was not obtained even under the same superplastic forming conditions.
また、合金No.11の成分を有する鋳塊を本発明の製法A〜Dで製造した合金板に対して条件イで超塑性成形を行った場合も、150%以上の超塑性伸びを有し、また、塗装焼付け硬化性に優れ、異常粒成長も認められなかった。しかし、本発明外の方法E、Fで製造した場合には、同じ超塑性成形条件でも塗装焼付け硬化性が低くなってしまった。 In addition, Alloy No. Even when the ingot having 11 components is superplastically formed on the alloy plate produced by the manufacturing methods A to D of the present invention under the condition (a), it has a superplastic elongation of 150% or more, and is baked by coating. Excellent curability and no abnormal grain growth was observed. However, when manufactured by the methods E and F outside the present invention, the paint bake hardenability was lowered even under the same superplastic forming conditions.
Claims (6)
Mg:0.4〜1.0%、
Si:0.6〜1.4%、
Mn:0.4超〜1.0%
を含有し、残部はAlおよび不可避不純物からなり、冷間圧延ままの加工組織を有し、導電率が40〜60%IACSであることを特徴とする、塗装焼付け硬化性に優れた超塑性成形用6000系アルミニウム合金板。 % By mass
Mg: 0.4 to 1.0%,
Si: 0.6 to 1.4%,
Mn: more than 0.4 to 1.0%
The balance is made of Al and inevitable impurities, has a cold-rolled processed structure, and has an electrical conductivity of 40 to 60% IACS, superplastic forming with excellent paint bake hardenability 6000 series aluminum alloy plate.
Cr:0.02〜0.5%
を含有することを特徴とする、請求項1に記載の塗装焼付け硬化性に優れた超塑性成形用6000系アルミニウム合金板。 In mass%,
Cr: 0.02-0.5%
The 6000 series aluminum alloy plate for superplastic forming with excellent paint bake hardenability according to claim 1, characterized in that
Ti:0.005〜0.15%、
B :0.0001〜0.05%、
Fe:0.03〜0.4%
の1種または2種以上を含有することを特徴とする、請求項1または2に記載の塗装焼付け硬化性に優れた超塑性成形用6000系アルミニウム合金板。 In mass%,
Ti: 0.005 to 0.15%,
B: 0.0001 to 0.05%,
Fe: 0.03-0.4%
The 6000 series aluminum alloy plate for superplastic forming excellent in paint bake hardenability according to claim 1 or 2, characterized by containing one or more of the following.
Cu:0.1〜1.0%
を含有することを特徴とする、請求項1ないし3のいずれか1項に記載の塗装焼付け硬化性に優れた超塑性成形用6000系アルミニウム合金板。 In mass%,
Cu: 0.1 to 1.0%
The 6000 series aluminum alloy plate for superplastic forming excellent in paint bake hardenability according to any one of claims 1 to 3, characterized by comprising:
Sn:0.01〜0.15%
を含有することを特徴とする、請求項1ないし4のいずれか1項に記載の塗装焼付け硬化性に優れた超塑性成形用6000系アルミニウム合金板。 In mass%,
Sn: 0.01 to 0.15%
The 6000 series aluminum alloy plate for superplastic forming excellent in paint bake hardenability according to any one of claims 1 to 4, characterized by comprising:
After heating the ingot having the component according to any one of claims 1 to 5 without performing homogenization annealing, hot rolling is started in a temperature range of 450 to 550 ° C, and at a temperature of 350 ° C or less. A method for producing a 6000 series aluminum alloy plate for superplastic forming excellent in paint bake hardenability, characterized in that hot rolling is finished and cold rolling is carried out.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004215814A JP4201745B2 (en) | 2004-07-23 | 2004-07-23 | 6000 series aluminum alloy plate for superplastic forming excellent in paint bake hardenability and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004215814A JP4201745B2 (en) | 2004-07-23 | 2004-07-23 | 6000 series aluminum alloy plate for superplastic forming excellent in paint bake hardenability and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006037139A true JP2006037139A (en) | 2006-02-09 |
JP4201745B2 JP4201745B2 (en) | 2008-12-24 |
Family
ID=35902449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004215814A Expired - Fee Related JP4201745B2 (en) | 2004-07-23 | 2004-07-23 | 6000 series aluminum alloy plate for superplastic forming excellent in paint bake hardenability and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4201745B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009030106A (en) * | 2007-07-26 | 2009-02-12 | Furukawa Sky Kk | Aluminum alloy panel and manufacturing method therefor |
WO2014003074A1 (en) | 2012-06-27 | 2014-01-03 | 株式会社Uacj | Aluminum alloy sheet for blow molding and production method therefor |
WO2014132925A1 (en) * | 2013-02-26 | 2014-09-04 | 株式会社神戸製鋼所 | Aluminum alloy having excellent characteristic after room temperature aging |
EP2817429A1 (en) * | 2012-02-23 | 2014-12-31 | Amag Rolling GmbH | Age-hardenable aluminium alloy and method for improving the ability of a semi-finished or finished product to age artificially |
JP2015116846A (en) * | 2013-12-16 | 2015-06-25 | 日本軽金属株式会社 | Suspension component for automobile, and method of manufacturing the same |
CN104975207A (en) * | 2015-03-13 | 2015-10-14 | 宝山钢铁股份有限公司 | Al-Mg-Si aluminum alloy material, aluminum alloy plate, and preparation methods of Al-Mg-Si aluminum alloy material and aluminum alloy plate |
CN105264102A (en) * | 2013-06-19 | 2016-01-20 | 力拓加铝国际有限公司 | Aluminum alloy composition with improved elevated temperature mechanical properties |
JP2020033608A (en) * | 2018-08-30 | 2020-03-05 | 昭和電工株式会社 | MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET |
-
2004
- 2004-07-23 JP JP2004215814A patent/JP4201745B2/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009030106A (en) * | 2007-07-26 | 2009-02-12 | Furukawa Sky Kk | Aluminum alloy panel and manufacturing method therefor |
EP2817429A1 (en) * | 2012-02-23 | 2014-12-31 | Amag Rolling GmbH | Age-hardenable aluminium alloy and method for improving the ability of a semi-finished or finished product to age artificially |
EP2868760A4 (en) * | 2012-06-27 | 2016-04-13 | Uacj Corp | Aluminum alloy sheet for blow molding and production method therefor |
WO2014003074A1 (en) | 2012-06-27 | 2014-01-03 | 株式会社Uacj | Aluminum alloy sheet for blow molding and production method therefor |
US10907241B2 (en) | 2012-06-27 | 2021-02-02 | Uacj Corporation | Aluminum alloy sheet for blow molding and production method therefor |
US20150152536A1 (en) * | 2012-06-27 | 2015-06-04 | Uacj Corporation | Aluminum alloy sheet for blow molding and production method therefor |
JP2014162962A (en) * | 2013-02-26 | 2014-09-08 | Kobe Steel Ltd | Aluminum alloy sheet having excellent characteristic after room temperature aging |
US9932658B2 (en) | 2013-02-26 | 2018-04-03 | Kobe Steel, Ltd. | Aluminum alloy having excellent characteristic after natural aging at room temperature |
WO2014132925A1 (en) * | 2013-02-26 | 2014-09-04 | 株式会社神戸製鋼所 | Aluminum alloy having excellent characteristic after room temperature aging |
CN105264102A (en) * | 2013-06-19 | 2016-01-20 | 力拓加铝国际有限公司 | Aluminum alloy composition with improved elevated temperature mechanical properties |
JP2015116846A (en) * | 2013-12-16 | 2015-06-25 | 日本軽金属株式会社 | Suspension component for automobile, and method of manufacturing the same |
CN104975207A (en) * | 2015-03-13 | 2015-10-14 | 宝山钢铁股份有限公司 | Al-Mg-Si aluminum alloy material, aluminum alloy plate, and preparation methods of Al-Mg-Si aluminum alloy material and aluminum alloy plate |
JP2020033608A (en) * | 2018-08-30 | 2020-03-05 | 昭和電工株式会社 | MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET |
Also Published As
Publication number | Publication date |
---|---|
JP4201745B2 (en) | 2008-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6689291B2 (en) | High strength 5xxx aluminum alloy and method of making same | |
JP6955483B2 (en) | High-strength aluminum alloy extruded material with excellent corrosion resistance and good hardenability and its manufacturing method | |
JP2011252212A (en) | Method for forming processing of 6000 series aluminum alloy material, and forming processed product | |
JP6871990B2 (en) | Aluminum alloy plate and its manufacturing method | |
WO2019025227A1 (en) | 6xxxx-series rolled sheet product with improved formability | |
JP2011144396A (en) | High strength aluminum alloy extruded material having excellent stress corrosion cracking resistance | |
JP7442304B2 (en) | Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method | |
JP4201745B2 (en) | 6000 series aluminum alloy plate for superplastic forming excellent in paint bake hardenability and method for producing the same | |
JP6316747B2 (en) | Aluminum alloy plate for blow molding and manufacturing method thereof | |
JP6719219B2 (en) | High strength aluminum alloy sheet excellent in formability and method for producing the same | |
JP5111966B2 (en) | Method for manufacturing aluminum alloy panel | |
KR20230043868A (en) | New 6XXX aluminum alloy and its manufacturing method | |
JP2008062255A (en) | SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET | |
JP2001032031A (en) | Aluminum alloy sheet for structural material, excellent in stress corrosion cracking resistance | |
JP6340170B2 (en) | Aluminum alloy plate and aluminum alloy member | |
JP4022497B2 (en) | Method for manufacturing aluminum alloy panel | |
JP5823010B2 (en) | High-strength aluminum alloy extruded material for automotive structural members with excellent stress corrosion cracking resistance | |
JP2019056163A (en) | Aluminum alloy plate and method of producing the same | |
JP2005139494A (en) | Aluminum alloy sheet for forming, and its production method | |
JP2005139495A (en) | Aluminum alloy sheet for forming, and its production method | |
JP5631379B2 (en) | High strength aluminum alloy extruded material for bumper reinforcement with excellent stress corrosion cracking resistance | |
TW201738390A (en) | Method for producing al-mg-Si alloy plate | |
JPH0718389A (en) | Production of al-mg series alloy sheet for forming | |
JP2011144410A (en) | METHOD FOR MANUFACTURING HIGHLY FORMABLE Al-Mg-Si-BASED ALLOY SHEET | |
JP2007070672A (en) | Method for producing aluminum alloy thick plate having excellent fatigue property |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061101 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080917 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080930 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081007 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4201745 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111017 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121017 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121017 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131017 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131017 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131017 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131017 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |