[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006022755A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2006022755A
JP2006022755A JP2004202667A JP2004202667A JP2006022755A JP 2006022755 A JP2006022755 A JP 2006022755A JP 2004202667 A JP2004202667 A JP 2004202667A JP 2004202667 A JP2004202667 A JP 2004202667A JP 2006022755 A JP2006022755 A JP 2006022755A
Authority
JP
Japan
Prior art keywords
exhaust gas
fuel ratio
air
gas purification
purification catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004202667A
Other languages
Japanese (ja)
Other versions
JP4301098B2 (en
Inventor
Hiroshi Tanada
浩 棚田
Yasuyuki Hatsuda
康之 初田
Kenji Morimoto
健児 守本
Kenji Hashimoto
賢治 橋本
Keisuke Tashiro
圭介 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2004202667A priority Critical patent/JP4301098B2/en
Publication of JP2006022755A publication Critical patent/JP2006022755A/en
Application granted granted Critical
Publication of JP4301098B2 publication Critical patent/JP4301098B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device, most efficiently performing reduction treatment of NOx and oxidation treatment of HC. <P>SOLUTION: This exhaust emission control device includes: the third oxygen sensor 23 disposed on the downstream side in the exhaust emission circulating direction of an HC adsorbing catalyst 13; a temperature sensor 24 for detecting whether or not the HC adsorbing catalyst 13 is equal to or higher than a specified temperature; and an ECU 30 for controlling a fuel injection device 100a so that the air-fuel ratio of exhaust gas from an engine 100 is lean state according to the information of the third oxygen sensor 23 when HC emission from the HC adsorbent catalyst 13 is decided, and then controlling the fuel injection device 100a so that the air-fuel ratio of exhaust gas from the engine 100 is stoichiometric state when the air fuel ratio of the lean state is detected by the third oxygen sensor 23. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、内燃機関からの排ガスを浄化する排ガス浄化装置に関する。   The present invention relates to an exhaust gas purification device that purifies exhaust gas from an internal combustion engine.

自動車等の内燃機関からの排ガスは、排気通路に設けられた三元触媒により、当該排ガス中のCOやNOxやHC(未燃成分)等の物質がH2O,CO2,N2に分解されて浄化処理された後、外部へ排出されている。特に、上記HCは、内燃機関の始動時等のような排ガス温度が低い場合(約300℃未満)、上記三元触媒で酸化されにくく、浄化処理されずに外部へ排出されてしまう可能性があることから、低温時には当該HCを吸着保持する一方、高温時には当該HCを放出すると同時に酸化処理するHC(未燃成分)吸着触媒を排気通路にさらに設けることにより、確実に浄化処理されるようになっている。 Exhaust gas from internal combustion engines such as automobiles is decomposed into H 2 O, CO 2 , and N 2 by substances such as CO, NOx, and HC (unburned components) in the exhaust gas by a three-way catalyst provided in the exhaust passage. After being purified, it is discharged to the outside. In particular, when the exhaust gas temperature is low (less than about 300 ° C.), such as when starting an internal combustion engine, the HC is not easily oxidized by the three-way catalyst, and may be discharged outside without being purified. For this reason, the HC is adsorbed and held at low temperatures, while the HC (unburned component) adsorption catalyst that oxidizes at the same time as the HC is released at high temperatures is further provided in the exhaust passage so that the HC is reliably purified. It has become.

特許第3412491号公報Japanese Patent No. 3412491

ところで、前述したようにしてHC吸着触媒から放出されるHCを酸化処理する際には、酸素が必要であることから、内燃機関の空燃比をリーン化(酸素過剰化)して、HC吸着触媒に酸素を供給するように内燃機関の空燃比を制御している。しかしながら、内燃機関の空燃比をリーン化(酸素過剰化)すると、三元触媒によるNOxの還元処理能力が低下してしまい、NOxを十分に還元処理することが難しくなってしまう。このため、NOxの還元処理とHCの酸化処理とのどちらか一方を優先しなければならず、従来は、リーン化(酸素過剰化)により発生するNOxの量が三元触媒でのNOxの還元処理能力を超えない程度に、HCを酸化処理するために行うリーン化の期間を抑えるように内燃機関の空燃比のリーン化を終了させて、HC吸着触媒から放出されるHCを当該リーン期間だけ酸化処理するようにしており、HCの十分な酸化処理を行うことができなかった。   By the way, since oxygen is required when oxidizing HC released from the HC adsorption catalyst as described above, the air-fuel ratio of the internal combustion engine is made lean (oxygen excess), and the HC adsorption catalyst. The air-fuel ratio of the internal combustion engine is controlled so as to supply oxygen. However, if the air-fuel ratio of the internal combustion engine is made lean (oxygen excess), the ability of NOx to be reduced by the three-way catalyst will be reduced, making it difficult to sufficiently reduce NOx. For this reason, priority must be given to either NOx reduction treatment or HC oxidation treatment. Conventionally, the amount of NOx generated by leaning (oxygen excess) is reduced by the three-way catalyst. The leaning of the air-fuel ratio of the internal combustion engine is terminated so as to suppress the leaning period to oxidize HC to the extent that the processing capacity is not exceeded, and the HC released from the HC adsorption catalyst is discharged only during the leaning period. Oxidation treatment was performed, and sufficient oxidation treatment of HC could not be performed.

このようなことから、本発明は、NOxの還元処理とHCの酸化処理とを両者共に最も効率よく行うことができる排ガス浄化装置を提供することを目的とする。   In view of the above, an object of the present invention is to provide an exhaust gas purification apparatus capable of performing both NOx reduction treatment and HC oxidation treatment most efficiently.

前述した課題を解決するための、本発明に係る排ガス浄化装置は、内燃機関からの排ガスを流通させる排気通路に配設され、低温時には、排ガス中の未燃成分を吸着し、高温時には、吸着した未燃成分を放出する未燃成分吸着機能を有すると共に、排ガスがリーン状態のときには、排ガス中の酸素を吸着保持し、排ガスがリッチ状態のときには、吸着保持している酸素を放出する酸素貯蔵機能を有する排ガス浄化触媒を備えている排ガス浄化装置において、前記排ガス浄化触媒の前記排ガス流通方向下流側に配設されて当該排ガスの空燃比の検出を行う下流側空燃比検出手段と、前記排ガス浄化触媒が規定温度以上であるか否かを検知する排ガス浄化触媒温度検知手段と、前記排ガス浄化触媒温度検知手段からの情報に基づいて、前記排ガス浄化触媒から未燃成分が放出されていると判断すると、前記下流側空燃比検出手段からの情報に基づいて、前記内燃機関からの排ガスの空燃比を調整する空燃比調整手段を制御する制御手段とを備えていることを特徴とする。   An exhaust gas purification apparatus according to the present invention for solving the above-described problems is disposed in an exhaust passage through which exhaust gas from an internal combustion engine is circulated, and adsorbs unburned components in exhaust gas at low temperatures and adsorbs at high temperatures. It has an unburned component adsorption function that releases unburned components, and adsorbs and holds oxygen in the exhaust gas when the exhaust gas is lean, and stores oxygen that absorbs and holds the oxygen when the exhaust gas is rich. In the exhaust gas purifying apparatus having an exhaust gas purifying catalyst having a function, a downstream air-fuel ratio detecting means that is disposed downstream of the exhaust gas purifying catalyst in the exhaust gas flow direction and detects an air-fuel ratio of the exhaust gas, and the exhaust gas Based on information from the exhaust gas purification catalyst temperature detection means for detecting whether or not the purification catalyst is above a specified temperature, and the exhaust gas purification catalyst temperature detection means, the exhaust gas When it is determined that the unburned component is released from the catalyst, the control means for controlling the air-fuel ratio adjusting means for adjusting the air-fuel ratio of the exhaust gas from the internal combustion engine based on the information from the downstream air-fuel ratio detecting means It is characterized by having.

また、本発明に係る排ガス浄化装置は、上述した排ガス浄化装置において、前記規定温度が、前記排ガス浄化触媒が吸着した未燃成分を放出する温度であることを特徴とする。   The exhaust gas purifying apparatus according to the present invention is characterized in that, in the exhaust gas purifying apparatus described above, the specified temperature is a temperature at which the unburned components adsorbed by the exhaust gas purifying catalyst are released.

また、本発明に係る排ガス浄化装置は、上述した排ガス浄化装置において、前記制御手段が、前記排ガス浄化触媒温度検知手段からの情報に基づいて、前記排ガス浄化触媒から未燃成分が放出されていると判断すると、前記内燃機関からの排ガスの空燃比をリーン状態とするように前記空燃比調整手段を制御した後に、前記下流側空燃比検出手段でリーン状態の空燃比を検出したとき、前記内燃機関からの排ガスの空燃比をストイキ状態とするように当該空燃比調整手段を制御するものであることを特徴とする。   Further, the exhaust gas purification apparatus according to the present invention is the above-described exhaust gas purification apparatus, wherein the control means releases unburned components from the exhaust gas purification catalyst based on information from the exhaust gas purification catalyst temperature detection means. When the air-fuel ratio adjusting means is controlled to bring the air-fuel ratio of the exhaust gas from the internal combustion engine into a lean state, and the lean air-fuel ratio is detected by the downstream air-fuel ratio detecting means, the internal combustion engine The air-fuel ratio adjusting means is controlled so that the air-fuel ratio of the exhaust gas from the engine is in a stoichiometric state.

また、本発明に係る排ガス浄化装置は、上述した排ガス浄化装置において、前記制御手段が、前記内燃機関からの排ガスの空燃比をストイキ状態とするように前記空燃比調整手段を制御した後に、当該下流側空燃比検出手段でリッチ状態の空燃比を所定時間内に検出したとき、当該内燃機関からの排ガスの空燃比をリーン状態とするように当該空燃比調整手段を制御するものであることを特徴とする。   Further, the exhaust gas purifying apparatus according to the present invention is the above exhaust gas purifying apparatus, wherein the control means controls the air-fuel ratio adjusting means so that the air-fuel ratio of the exhaust gas from the internal combustion engine is in a stoichiometric state. When the air-fuel ratio in the rich state is detected within a predetermined time by the downstream air-fuel ratio detecting means, the air-fuel ratio adjusting means is controlled so that the air-fuel ratio of the exhaust gas from the internal combustion engine becomes lean. Features.

また、本発明に係る排ガス浄化装置は、上述した排ガス浄化装置において、前記排ガス浄化触媒の前記排ガス流通方向上流側に配設されて当該排ガスの空燃比の検出を行う上流側空燃比検出手段を備え、前記制御手段が、前記下流側空燃比検出手段からの情報に基づいて、前記内燃機関の空燃比を決定し、決定した当該空燃比となるように、前記上流側空燃比検出手段からの情報に基づいて、前記空燃比調整手段を制御するものであることを特徴とする。   Further, the exhaust gas purifying apparatus according to the present invention is the above-described exhaust gas purifying apparatus, further comprising an upstream side air-fuel ratio detecting means that is disposed upstream of the exhaust gas purifying catalyst in the exhaust gas circulation direction and detects the air-fuel ratio of the exhaust gas. And the control means determines the air-fuel ratio of the internal combustion engine based on information from the downstream air-fuel ratio detection means, and outputs the determined air-fuel ratio from the upstream air-fuel ratio detection means. The air-fuel ratio adjusting means is controlled based on the information.

本発明に係る排ガス浄化装置によれば、排ガス浄化触媒に対して、まず、酸素を飽和状態にまで吸着させるのに必要最小限のリーン状態での運転を行って、その後にストイキ状態での運転を行うことにより、リーン状態での運転を最も少なくしながら、排ガス浄化触媒で吸着した未燃成分をほぼすべて酸化処理することができるので、窒素酸化物の還元処理と未燃成分の酸化処理とを最も効率よく行うことができる。   According to the exhaust gas purification apparatus of the present invention, the exhaust gas purification catalyst is first operated in the minimum lean state necessary for adsorbing oxygen to the saturated state, and then operated in the stoichiometric state. As a result, it is possible to oxidize almost all the unburned components adsorbed by the exhaust gas purification catalyst while minimizing the operation in the lean state. Can be performed most efficiently.

本発明に係る排ガス浄化装置の実施形態を図1〜3に基づいて以下に説明する。図1は、排ガス浄化装置の概略構成図、図2は、排ガス浄化に係るフロー図、図3は、排ガス浄化の作用説明図である。   An embodiment of an exhaust gas purifying apparatus according to the present invention will be described below based on FIGS. FIG. 1 is a schematic configuration diagram of an exhaust gas purification device, FIG. 2 is a flow chart relating to exhaust gas purification, and FIG. 3 is an explanatory diagram of the operation of exhaust gas purification.

図1に示すように、内燃機関であるエンジン100に連結された排気通路101の途中には、排ガス浄化触媒器10が設けられている。この排ガス浄化触媒器10のケーシング11内の排ガス流通方向上流側には、当該排ガス中のCOやNOxやHC(未燃成分)等の物質をH2O,CO2,N2に分解して浄化処理する三元触媒12が配設されている。上記ケーシング11内の排ガス流通方向下流側には、低温時にHCを吸着保持する一方、高温時(例えば約150℃以上)に、吸着しているHCを放出すると同時に酸化処理すると共に、排ガスがリーン状態(酸素過剰)のときには、排ガス中の酸素を吸着保持する一方、排ガスがリッチ状態(酸素不足)のときには、吸着保持している酸素を放出する酸素貯蔵機能(Oxygen Storage Capability:OSC)を有する本発明に係る排ガス浄化触媒であるHC(未燃成分)吸着触媒13が配設されている。 As shown in FIG. 1, an exhaust gas purification catalyst device 10 is provided in the middle of an exhaust passage 101 connected to an engine 100 that is an internal combustion engine. On the upstream side in the exhaust gas flow direction in the casing 11 of the exhaust gas purification catalyst 10, substances such as CO, NOx and HC (unburned components) in the exhaust gas are decomposed into H 2 O, CO 2 and N 2. A three-way catalyst 12 for purification treatment is provided. On the downstream side in the exhaust gas flow direction in the casing 11, while adsorbing and holding HC at a low temperature, the adsorbed HC is released at a high temperature (for example, about 150 ° C. or more) and simultaneously oxidized, and the exhaust gas is lean. Oxygen Storage Capability (OSC) that adsorbs and holds oxygen in exhaust gas when exhausted (excess oxygen), and releases oxygen that is adsorbed and retained when exhaust gas is rich (oxygen deficient) An HC (unburned component) adsorption catalyst 13 which is an exhaust gas purification catalyst according to the present invention is provided.

前記排ガス浄化触媒器10の入口側、すなわち、三元触媒12及びHC吸着触媒13の排ガス流通方向上流側には、排ガス中の空燃比の検出を行う第一の酸素センサ21が配設されている。排ガス浄化触媒器10内の三元触媒12とHC吸着触媒13との間、すなわち、HC吸着触媒13の排ガス流通方向上流側には、排ガス中の空燃比の検出を行う本発明に係る上流側空燃比検出手段である第二の酸素センサ22が配設されている。排ガス浄化触媒器10の出口側、すなわち、HC吸着触媒13の排ガス流通方向下流側には、排ガス中の空燃比の検出を行う本発明に係る下流側空燃比検出手段である第三の酸素センサ23が配設されている。これら酸素センサ21〜23には、当該センサ21〜23の活性化を図るヒータ(図示省略)が設けられている。また、前記HC吸着触媒13の排ガス流通方向下流側には、当該HC吸着触媒13の温度を検出して規定温度以上であるか否かを検知する本発明に係る排ガス浄化触媒温度検知手段である温度センサ24が取り付けられている。   A first oxygen sensor 21 for detecting an air-fuel ratio in the exhaust gas is disposed on the inlet side of the exhaust gas purification catalyst device 10, that is, on the upstream side of the three-way catalyst 12 and the HC adsorption catalyst 13 in the exhaust gas flow direction. Yes. Between the three-way catalyst 12 and the HC adsorption catalyst 13 in the exhaust gas purification catalyst device 10, that is, upstream of the HC adsorption catalyst 13 in the exhaust gas flow direction, the upstream side according to the present invention that detects the air-fuel ratio in the exhaust gas. A second oxygen sensor 22 serving as air-fuel ratio detection means is provided. A third oxygen sensor which is a downstream air-fuel ratio detecting means according to the present invention for detecting an air-fuel ratio in the exhaust gas at the outlet side of the exhaust gas purification catalyst device 10, that is, downstream of the HC adsorption catalyst 13 in the exhaust gas flow direction. 23 is arranged. These oxygen sensors 21 to 23 are provided with heaters (not shown) for activating the sensors 21 to 23. Further, on the downstream side in the exhaust gas flow direction of the HC adsorption catalyst 13, there is an exhaust gas purification catalyst temperature detection means according to the present invention for detecting whether the temperature of the HC adsorption catalyst 13 is higher than a specified temperature. A temperature sensor 24 is attached.

前記センサ21〜24は、本発明に係る制御手段である電子コントロールユニット(ECU)30の入力部に電気的に接続されている。ECU30の出力部は、前記エンジン100の空燃比(A/F)を調整する空燃比調整手段である燃料噴射装置100aに電気的に接続しており、当該ECU30は、前記センサ21〜24等からの情報に基づいて、上記燃料噴射装置100aを制御して、エンジン100の空燃比を調整することができるようになっている(詳細は後述する)。また、ECU30の出力部には、前記ヒータが電気的に接続している。   The sensors 21 to 24 are electrically connected to an input unit of an electronic control unit (ECU) 30 that is a control unit according to the present invention. The output portion of the ECU 30 is electrically connected to a fuel injection device 100a that is an air-fuel ratio adjusting means for adjusting the air-fuel ratio (A / F) of the engine 100. The ECU 30 is connected to the sensors 21 to 24 and the like. Based on the above information, the fuel injection device 100a is controlled to adjust the air-fuel ratio of the engine 100 (details will be described later). In addition, the heater is electrically connected to the output portion of the ECU 30.

このような本実施形態に係る排ガス浄化装置の作動を図2に基づいて次に説明する。   Next, the operation of the exhaust gas purifying apparatus according to this embodiment will be described with reference to FIG.

イグニッションスイッチを作動してエンジン100を始動すると(S1)、前記ECU30は、前記ヒータを作動して酸素センサ21〜23の活性化を図ると共に(S2)、エンジン100での空燃比(エンジン100からの排ガスの空燃比)が目的の状態であるストイキ状態(理論空燃比)となるように、前記第一、第二の酸素センサ21,22からの情報に基づいて、エンジン100の燃料噴射装置100aをストイキフィードバック制御する(S3)。   When the ignition switch is operated to start the engine 100 (S1), the ECU 30 operates the heater to activate the oxygen sensors 21 to 23 (S2), and the air-fuel ratio in the engine 100 (from the engine 100). The fuel injection device 100a of the engine 100 is based on the information from the first and second oxygen sensors 21 and 22, so that the air-fuel ratio of the exhaust gas of the exhaust gas becomes a target stoichiometric state (theoretical air-fuel ratio). Is stoichiometric feedback controlled (S3).

続いて、上記ECU30は、前記温度センサ24からの情報に基づいて、排ガス浄化触媒器10のHC吸着触媒13が規定温度(150℃)以上であるか否かを判断し(S4)、当該規定温度(150℃)未満(例えば運転開始時等の低温時)の場合、すなわち、HC吸着触媒13が排ガス中のHCを吸着除去している場合には、そのままストイキフィードバック制御を継続する。   Subsequently, the ECU 30 determines whether or not the HC adsorption catalyst 13 of the exhaust gas purification catalyst device 10 is equal to or higher than a specified temperature (150 ° C.) based on information from the temperature sensor 24 (S4). When the temperature is lower than 150 ° C. (for example, at a low temperature such as the start of operation), that is, when the HC adsorption catalyst 13 adsorbs and removes HC in the exhaust gas, the stoichiometric feedback control is continued as it is.

そして、排ガス浄化触媒器10のHC吸着触媒13が規定温度(150℃)以上となると、前記ECU30は、HC吸着触媒13からHCが放出されていると判断し、エンジン100での空燃比(エンジン100からの排ガスの空燃比)が目的の状態であるリーン状態(酸素過剰)となるように、前記第一、第二の酸素センサ21,22からの情報に基づいて、エンジン100の燃料噴射装置100aをリーン制御する(S5)。   When the HC adsorption catalyst 13 of the exhaust gas purifying catalyst device 10 reaches a specified temperature (150 ° C.) or higher, the ECU 30 determines that HC is released from the HC adsorption catalyst 13, and the air-fuel ratio in the engine 100 (engine Based on the information from the first and second oxygen sensors 21, 22, the fuel injection device of the engine 100 is set so that the air-fuel ratio of the exhaust gas from 100 becomes a target lean state (oxygen excess). 100a is lean-controlled (S5).

すると、前記HC吸着触媒13は、排ガス中の酸素が過剰であることから、当該酸素を吸着保持するため、図3に示すように、入口側での排ガスがリーン状態(酸素過剰)であるものの、出口側での排ガスがストイキ状態(理論空燃比)となる(図3中のA領域)。   Then, because the oxygen in the exhaust gas is excessive, the HC adsorption catalyst 13 adsorbs and holds the oxygen, so that the exhaust gas on the inlet side is in a lean state (oxygen excess) as shown in FIG. Then, the exhaust gas on the outlet side becomes stoichiometric (theoretical air-fuel ratio) (A region in FIG. 3).

このようにして上記HC吸着触媒13が酸素を吸着して飽和状態になると、当該HC吸着触媒13の出口側での排ガスもリーン状態(酸素過剰)となる(図3中のB領域)。ここで、前記ECU30は、第三の酸素センサ23で検出された空燃比がリーン状態であるか否か判断して(S6)、当該第三の酸素センサ23でリーン状態の空燃比を検出すると、エンジン100での空燃比(エンジン100からの排ガスの空燃比)が目的の状態であるストイキ状態(理論空燃比)となるように、前記第一、第二の酸素センサ21,22からの情報に基づいて、エンジン100の燃料噴射装置100aをストイキフィードバック制御する(S7)。   When the HC adsorption catalyst 13 is saturated by adsorbing oxygen in this way, the exhaust gas on the outlet side of the HC adsorption catalyst 13 is also in a lean state (oxygen excess) (region B in FIG. 3). Here, the ECU 30 determines whether the air-fuel ratio detected by the third oxygen sensor 23 is in a lean state (S6), and detects the lean air-fuel ratio by the third oxygen sensor 23. Information from the first and second oxygen sensors 21 and 22 so that the air-fuel ratio in the engine 100 (the air-fuel ratio of the exhaust gas from the engine 100) becomes the target state (the stoichiometric air-fuel ratio). Based on the above, the fuel injection device 100a of the engine 100 is subjected to stoichiometric feedback control (S7).

エンジン100がストイキフィードバック制御され、エンジン100からの排ガスの空燃比がストイキ状態(理論空燃比)となると、上記HC吸着触媒13に吸着保持されていた酸素が、当該HC吸着触媒13に吸着保持されているHCと共に放出されて、当該HCと当該酸素とが酸化反応し、当該HCが浄化処理される(図3中のC領域)。
ここで、この排ガス浄化装置の原理を説明する。
When the engine 100 is subjected to stoichiometric feedback control and the air-fuel ratio of the exhaust gas from the engine 100 is in a stoichiometric state (theoretical air-fuel ratio), the oxygen adsorbed and held by the HC adsorption catalyst 13 is adsorbed and held by the HC adsorption catalyst 13. The HC is released together with the HC, and the HC and oxygen undergo an oxidation reaction, and the HC is purified (region C in FIG. 3).
Here, the principle of the exhaust gas purifying apparatus will be described.

エンジン100からの排ガスをリーン状態(酸素過剰)にすることにより、規定温度以上のHC吸着触媒13に吸着保持されているHCを酸化処理する場合、従来は、HC吸着触媒13から放出されるHCが、排ガス中の過剰な酸素と反応することにより浄化処理される、すなわち、リーン状態での運転中に酸化反応が進行すると考えていたため、HC吸着触媒13に吸着保持されているすべてのHCが酸化処理されるまでリーン状態で運転する必要があると考えられていた。   When oxidizing the HC adsorbed and held by the HC adsorption catalyst 13 at a specified temperature or higher by making the exhaust gas from the engine 100 lean (oxygen excess), conventionally, the HC released from the HC adsorption catalyst 13 is used. However, since it was considered that the oxidation reaction proceeds during the operation in the lean state, all the HC adsorbed and held by the HC adsorption catalyst 13 is removed. It was thought that it was necessary to operate in a lean state until it was oxidized.

ところが、本願発明者らが鋭意研究を行ったところ、HC吸着触媒13に吸着保持されているHCは、リーン状態での運転中に進行する酸化反応量がそれほど多くなく、リーン状態での運転からストイキ状態での運転に移行した後に酸化反応が著しく進行することが新たに判明した。   However, when the inventors of the present application have conducted intensive research, HC adsorbed and held on the HC adsorption catalyst 13 does not have a large amount of oxidation reaction during the operation in the lean state, and the operation from the lean state is not performed. It was newly found that the oxidation reaction proceeds significantly after shifting to the stoichiometric operation.

この理由は、定かではないが、HC吸着触媒13は、リーン状態であると、酸素を吸着保持しているために、触媒としての活性能力が阻害されて、HCの酸化処理能力が低下してしまうが、ストイキ状態であると、フィードバック制御の際のリッチ状態への変動時に、吸着保持している酸素を放出するために、触媒としての活性能力が十分に発揮できるようになって、放出した酸素を使用してHCを効率よく酸化処理するようになるからではないかと推察される。   The reason for this is not clear, but if the HC adsorption catalyst 13 is in a lean state, it absorbs and retains oxygen, so that the activity ability as a catalyst is hindered, and the HC oxidation treatment ability decreases. However, in the stoichiometric state, the active ability as a catalyst can be fully exerted to release the adsorbed and retained oxygen at the time of change to the rich state at the time of feedback control. It is presumed that oxygen may be efficiently oxidized using oxygen.

そこで、本願発明者らは、HC吸着触媒13に対して、まず、酸素を飽和状態にまで吸着させるのに必要最小限のリーン状態での運転を行って、その後にストイキ状態での運転を行うようにすれば、HC吸着触媒13で吸着したHCをほぼすべて酸化処理するにあたって、リーン状態での運転を最も少なくすることができる、すなわち、NOxの還元処理とHCの酸化処理とを最も効率よく行うことができると考え、本発明を完成したのである。   Accordingly, the inventors of the present application first operate the HC adsorption catalyst 13 in a lean state that is the minimum necessary to adsorb oxygen to a saturated state, and then perform an operation in a stoichiometric state. In this way, when almost all the HC adsorbed by the HC adsorption catalyst 13 is oxidized, the lean operation can be minimized, that is, the NOx reduction treatment and the HC oxidation treatment are most efficiently performed. The present invention has been completed by thinking that it can be performed.

上述したように、ステップS7においてストイキフィードバック制御を行った後、前記制御装置30は、第三の酸素センサ23で検出される空燃比が所定時間内にリッチ状態(酸素不足)となったか否か判断し(S8)、第三の酸素センサ23でリッチ状態(酸素不足)の空燃比を所定時間内に検出したとき、すなわち、HC吸着触媒13に吸着保持されている酸素がすべて放出されても、HC吸着触媒13にHCがまだ吸着保持されている場合には(図3中のD領域)、前記ECU30は、前述したステップS5に戻り、エンジン100での空燃比(エンジン100からの排ガスの空燃比)が目的の状態であるリーン状態(酸素過剰)となるように、前記第一、第二の酸素センサ21,22からの情報に基づいて、エンジン100の燃料噴射装置100aを再びリーン制御する。   As described above, after performing the stoichiometric feedback control in step S7, the control device 30 determines whether or not the air-fuel ratio detected by the third oxygen sensor 23 has become rich (oxygen shortage) within a predetermined time. Determination (S8), and when the third oxygen sensor 23 detects the rich air (oxygen deficient) air-fuel ratio within a predetermined time, that is, even if all the oxygen adsorbed and held by the HC adsorption catalyst 13 is released. When the HC is still adsorbed and held on the HC adsorption catalyst 13 (D region in FIG. 3), the ECU 30 returns to the above-described step S5, and the air-fuel ratio in the engine 100 (the exhaust gas from the engine 100). Based on the information from the first and second oxygen sensors 21 and 22, the fuel injection of the engine 100 is performed so that the air-fuel ratio becomes a target lean state (oxygen excess). The device 100a again lean control.

他方、第三の酸素センサ23でリッチ状態(酸素不足)の空燃比を所定時間内に検出しないときには、前記ECU30は、HC吸着触媒13に吸着保持されているHCがすべて酸化処理されたと判断し、通常モードの制御に移行する(S9)。   On the other hand, when the third oxygen sensor 23 does not detect the rich (oxygen-deficient) air-fuel ratio within a predetermined time, the ECU 30 determines that all the HC adsorbed and held by the HC adsorption catalyst 13 has been oxidized. Then, control is shifted to normal mode control (S9).

つまり、本実施形態は、先に説明したように、HC吸着触媒13に対して、まず、酸素を飽和状態にまで吸着させるのに必要最小限のリーン状態での運転を行って、その後にストイキ状態での運転を行うことにより、リーン状態での運転を最も少なくしながら、HC吸着触媒13で吸着したHCをほぼすべて酸化処理できるようにしたのである。   That is, in the present embodiment, as described above, the HC adsorption catalyst 13 is first operated in the minimum lean state necessary for adsorbing oxygen to the saturated state, and then stoichiometric. By performing the operation in the state, almost all the HC adsorbed by the HC adsorption catalyst 13 can be oxidized while the operation in the lean state is minimized.

したがって、本実施形態に係る排ガス浄化装置によれば、NOxの還元処理とHCの酸化処理とを最も効率よく行うことができる。   Therefore, according to the exhaust gas purifying apparatus according to the present embodiment, NOx reduction treatment and HC oxidation treatment can be performed most efficiently.

また、HC吸着触媒13で吸着したHCをほぼすべて酸化処理するにあたってのリーン状態での運転を最も少なくすることができるので、エンジン100の出力低下も大幅に抑制することができる。   Further, since the operation in the lean state when oxidizing almost all the HC adsorbed by the HC adsorption catalyst 13 can be minimized, the output reduction of the engine 100 can be greatly suppressed.

なお、本実施形態では、前記空燃比検出手段に酸素センサ21〜23を適用したが、他の実施形態として、前記空燃比検出手段に空燃比(A/F)センサを適用することも可能である。   In this embodiment, the oxygen sensors 21 to 23 are applied to the air-fuel ratio detection means. However, as another embodiment, an air-fuel ratio (A / F) sensor can be applied to the air-fuel ratio detection means. is there.

また、本実施形態では、排ガス浄化触媒温度検知手段に温度センサ24を適用したが、他の実施形態として、排ガス浄化触媒温度検知手段にタイマを適用することも可能である。   In this embodiment, the temperature sensor 24 is applied to the exhaust gas purification catalyst temperature detection means. However, as another embodiment, a timer can be applied to the exhaust gas purification catalyst temperature detection means.

また、本実施形態では、三元触媒12及びHC吸着触媒13をケーシング11に内装した排ガス浄化触媒器10の場合について説明したが、これら触媒12,13の機能を一体化させた単一の排ガス浄化触媒をケーシングに内装した排ガス浄化触媒器であっても、本実施形態の場合と同様にして適用することができる。このような場合には、前記第二の酸素センサ22を省略して、前記第一の酸素センサ21で対応するようにする。   Further, in the present embodiment, the case of the exhaust gas purification catalyst device 10 in which the three-way catalyst 12 and the HC adsorption catalyst 13 are housed in the casing 11 has been described, but a single exhaust gas in which the functions of these catalysts 12 and 13 are integrated. Even an exhaust gas purification catalyst device in which a purification catalyst is housed in a casing can be applied in the same manner as in this embodiment. In such a case, the second oxygen sensor 22 is omitted and the first oxygen sensor 21 is used.

本発明に係る排ガス浄化装置は、自動車等の内燃機関からの排ガス中のNOxの還元処理とHCの酸化処理とを最も効率よく行うことができるので、自動車産業等において極めて有益に利用することができる。   The exhaust gas purifying apparatus according to the present invention can perform the NOx reduction treatment and the HC oxidation treatment in the exhaust gas from an internal combustion engine such as an automobile most efficiently, and therefore can be used extremely beneficially in the automobile industry and the like. it can.

本発明に係る排ガス浄化装置の実施形態の概略構成図である。It is a schematic block diagram of embodiment of the exhaust gas purification apparatus which concerns on this invention. 本発明に係る排ガス浄化装置の実施形態に係る排ガス浄化のフロー図である。It is a flowchart of the exhaust gas purification which concerns on embodiment of the exhaust gas purification apparatus which concerns on this invention. 本発明に係る排ガス浄化装置の排ガス浄化の作用説明図である。It is operation | movement explanatory drawing of the exhaust gas purification of the exhaust gas purification apparatus which concerns on this invention.

符号の説明Explanation of symbols

10 排ガス浄化触媒器
11 ケーシング
12 三元触媒
13 HC(未燃成分)吸着触媒
21 第一の酸素センサ
22 第二の酸素センサ
23 第三の酸素センサ
24 温度センサ
30 電子コントロールユニット(ECU)
100 エンジン
100a 燃料噴射装置
101 排気通路
DESCRIPTION OF SYMBOLS 10 Exhaust gas purification catalyst device 11 Casing 12 Three-way catalyst 13 HC (unburned component) adsorption catalyst 21 First oxygen sensor 22 Second oxygen sensor 23 Third oxygen sensor 24 Temperature sensor 30 Electronic control unit (ECU)
DESCRIPTION OF SYMBOLS 100 Engine 100a Fuel injection apparatus 101 Exhaust passage

Claims (5)

内燃機関からの排ガスを流通させる排気通路に配設され、低温時には、排ガス中の未燃成分を吸着し、高温時には、吸着した未燃成分を放出する未燃成分吸着機能を有すると共に、排ガスがリーン状態のときには、排ガス中の酸素を吸着保持し、排ガスがリッチ状態のときには、吸着保持している酸素を放出する酸素貯蔵機能を有する排ガス浄化触媒を備えている排ガス浄化装置において、
前記排ガス浄化触媒の前記排ガス流通方向下流側に配設されて当該排ガスの空燃比の検出を行う下流側空燃比検出手段と、
前記排ガス浄化触媒が規定温度以上であるか否かを検知する排ガス浄化触媒温度検知手段と、
前記排ガス浄化触媒温度検知手段からの情報に基づいて、前記排ガス浄化触媒から未燃成分が放出されていると判断すると、前記下流側空燃比検出手段からの情報に基づいて、前記内燃機関からの排ガスの空燃比を調整する空燃比調整手段を制御する制御手段と
を備えていることを特徴とする排ガス浄化装置。
An exhaust passage through which the exhaust gas from the internal combustion engine is circulated has an unburned component adsorption function that adsorbs unburned components in the exhaust gas at low temperatures and releases the adsorbed unburned components at high temperatures. In a lean state, in an exhaust gas purification apparatus equipped with an exhaust gas purification catalyst having an oxygen storage function that adsorbs and holds oxygen in exhaust gas, and releases exhausted oxygen when the exhaust gas is rich,
A downstream air-fuel ratio detection means that is disposed downstream of the exhaust gas purification catalyst in the exhaust gas flow direction and detects the air-fuel ratio of the exhaust gas;
Exhaust gas purification catalyst temperature detection means for detecting whether or not the exhaust gas purification catalyst is above a specified temperature;
Based on the information from the exhaust gas purification catalyst temperature detection means, if it is determined that the unburned component is released from the exhaust gas purification catalyst, based on the information from the downstream air-fuel ratio detection means, And a control means for controlling an air-fuel ratio adjusting means for adjusting the air-fuel ratio of the exhaust gas.
請求項1において、
前記規定温度が、前記排ガス浄化触媒が吸着した未燃成分を放出する温度である
ことを特徴とする排ガス浄化装置。
In claim 1,
The specified temperature is a temperature at which an unburned component adsorbed by the exhaust gas purification catalyst is released.
請求項1又は請求項2において、
前記制御手段が、前記排ガス浄化触媒温度検知手段からの情報に基づいて、前記排ガス浄化触媒から未燃成分が放出されていると判断すると、前記内燃機関からの排ガスの空燃比をリーン状態とするように前記空燃比調整手段を制御した後に、前記下流側空燃比検出手段でリーン状態の空燃比を検出したとき、前記内燃機関からの排ガスの空燃比をストイキ状態とするように当該空燃比調整手段を制御するものである
ことを特徴とする排ガス浄化装置。
In claim 1 or claim 2,
When the control means determines that unburned components are released from the exhaust gas purification catalyst based on information from the exhaust gas purification catalyst temperature detection means, the air-fuel ratio of the exhaust gas from the internal combustion engine is made lean. After controlling the air-fuel ratio adjustment means, when the lean air-fuel ratio is detected by the downstream air-fuel ratio detection means, the air-fuel ratio adjustment is performed so that the air-fuel ratio of the exhaust gas from the internal combustion engine is stoichiometric. An exhaust gas purifying apparatus characterized by controlling the means.
請求項3において、
前記制御手段が、前記内燃機関からの排ガスの空燃比をストイキ状態とするように前記空燃比調整手段を制御した後に、当該下流側空燃比検出手段でリッチ状態の空燃比を所定時間内に検出したとき、当該内燃機関からの排ガスの空燃比をリーン状態とするように当該空燃比調整手段を制御するものである
ことを特徴とする排ガス浄化装置。
In claim 3,
After the control means controls the air-fuel ratio adjustment means so that the air-fuel ratio of the exhaust gas from the internal combustion engine is in a stoichiometric state, the downstream air-fuel ratio detection means detects the rich air-fuel ratio within a predetermined time. When this is done, the air-fuel ratio adjusting means is controlled so that the air-fuel ratio of the exhaust gas from the internal combustion engine is in a lean state.
請求項1から請求項4のいずれかにおいて、
前記排ガス浄化触媒の前記排ガス流通方向上流側に配設されて当該排ガスの空燃比の検出を行う上流側空燃比検出手段を備え、
前記制御手段が、前記下流側空燃比検出手段からの情報に基づいて、前記内燃機関の空燃比を決定し、決定した当該空燃比となるように、前記上流側空燃比検出手段からの情報に基づいて、前記空燃比調整手段を制御するものである
ことを特徴とする排ガス浄化装置。
In any one of Claims 1-4,
An upstream air-fuel ratio detection means that is disposed upstream of the exhaust gas purification catalyst in the exhaust gas flow direction and detects the air-fuel ratio of the exhaust gas;
The control means determines the air-fuel ratio of the internal combustion engine based on information from the downstream air-fuel ratio detection means, and uses the information from the upstream air-fuel ratio detection means so as to be the determined air-fuel ratio. Based on this, the exhaust gas purifying apparatus controls the air-fuel ratio adjusting means.
JP2004202667A 2004-07-09 2004-07-09 Exhaust gas purification device Expired - Lifetime JP4301098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004202667A JP4301098B2 (en) 2004-07-09 2004-07-09 Exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004202667A JP4301098B2 (en) 2004-07-09 2004-07-09 Exhaust gas purification device

Publications (2)

Publication Number Publication Date
JP2006022755A true JP2006022755A (en) 2006-01-26
JP4301098B2 JP4301098B2 (en) 2009-07-22

Family

ID=35796208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004202667A Expired - Lifetime JP4301098B2 (en) 2004-07-09 2004-07-09 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP4301098B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218096A (en) * 2006-02-14 2007-08-30 Mitsubishi Motors Corp Exhaust emission control device
WO2009133771A1 (en) * 2008-04-30 2009-11-05 いすゞ自動車株式会社 Exhaust gas purification method and exhaust gas purificaton system
KR100986071B1 (en) 2008-06-09 2010-10-07 현대자동차주식회사 System for purifying exhaust gas of vehicle and control method thereof
KR101567209B1 (en) 2014-04-24 2015-11-06 현대자동차주식회사 Exhaust processing device control method for vehicle
CN113446090A (en) * 2020-03-25 2021-09-28 丰田自动车株式会社 Control device for internal combustion engine
DE102023109329B4 (en) 2022-06-21 2024-04-18 Toyota Jidosha Kabushiki Kaisha Exhaust gas control device for internal combustion engine and exhaust gas control method for the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218096A (en) * 2006-02-14 2007-08-30 Mitsubishi Motors Corp Exhaust emission control device
WO2009133771A1 (en) * 2008-04-30 2009-11-05 いすゞ自動車株式会社 Exhaust gas purification method and exhaust gas purificaton system
JP2009270446A (en) * 2008-04-30 2009-11-19 Isuzu Motors Ltd Exhaust emission control method and exhaust emission control system
US8671661B2 (en) 2008-04-30 2014-03-18 Isuzu Motors Limited Exhaust gas purification method and exhaust gas purification system
KR100986071B1 (en) 2008-06-09 2010-10-07 현대자동차주식회사 System for purifying exhaust gas of vehicle and control method thereof
KR101567209B1 (en) 2014-04-24 2015-11-06 현대자동차주식회사 Exhaust processing device control method for vehicle
US9523321B2 (en) 2014-04-24 2016-12-20 Hyundai Motor Company Method and system of controlling exhaust after-treatment apparatus for vehicle
CN113446090A (en) * 2020-03-25 2021-09-28 丰田自动车株式会社 Control device for internal combustion engine
CN113446090B (en) * 2020-03-25 2023-06-20 丰田自动车株式会社 Control device for internal combustion engine
DE102023109329B4 (en) 2022-06-21 2024-04-18 Toyota Jidosha Kabushiki Kaisha Exhaust gas control device for internal combustion engine and exhaust gas control method for the same
US12025046B2 (en) 2022-06-21 2024-07-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine and exhaust gas control method for the same

Also Published As

Publication number Publication date
JP4301098B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JP4710856B2 (en) Exhaust gas purification device for internal combustion engine
JP5158214B2 (en) Exhaust gas purification device for internal combustion engine
JP2006189033A (en) Filter desulfation system and method
WO2010082306A1 (en) Exhaust purifying device for internal combustion engine
EP1321762B1 (en) Temperature control apparatus for humidity sensor
JP2010127151A (en) Exhaust emission control device for internal combustion engine
JP4301098B2 (en) Exhaust gas purification device
JP5285296B2 (en) Exhaust gas purification device
JPH0674019A (en) Exhaust emission control device
JP2010156277A (en) Exhaust emission purifying method and exhaust emission purifying system
JP5018687B2 (en) Exhaust gas purification device for internal combustion engine
JP2010005552A (en) Exhaust gas purifying apparatus of internal combustion engine
JP2010261387A (en) Exhaust emission control device of internal combustion engine
JP2010116821A (en) Emission control device for internal combustion engine
JP2019120144A (en) Engine system
JP3217130B2 (en) Engine exhaust purification device
JP3387792B2 (en) Exhaust gas purification device for internal combustion engine
JP3465584B2 (en) Exhaust gas purification device for internal combustion engine
JP2009197640A (en) Exhaust emission control device for internal combustion engine
JP2005147106A (en) Exhaust emission control device for internal combustion engine
JP4678352B2 (en) Engine exhaust gas purification device
JP2002038932A (en) Exhaust emission control device of internal combustion engine
JP4844469B2 (en) Exhaust gas purification device for internal combustion engine
JP2024123807A (en) Exhaust purification equipment
JP2006118358A (en) Degradation diagnostic device for exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4301098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term