[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006015431A - ロボットの制御装置及び制御方法 - Google Patents

ロボットの制御装置及び制御方法 Download PDF

Info

Publication number
JP2006015431A
JP2006015431A JP2004193485A JP2004193485A JP2006015431A JP 2006015431 A JP2006015431 A JP 2006015431A JP 2004193485 A JP2004193485 A JP 2004193485A JP 2004193485 A JP2004193485 A JP 2004193485A JP 2006015431 A JP2006015431 A JP 2006015431A
Authority
JP
Japan
Prior art keywords
robot
correction value
target trajectory
position command
hand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004193485A
Other languages
English (en)
Inventor
Koji Kamiya
孝二 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Wave Inc
Original Assignee
Denso Wave Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Wave Inc filed Critical Denso Wave Inc
Priority to JP2004193485A priority Critical patent/JP2006015431A/ja
Publication of JP2006015431A publication Critical patent/JP2006015431A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

【課題】 ロボットの手先部を設定された目標軌道に追従させるように制御するものにあって、目標軌道に対する実際のロボットの軌道のずれを効果的に低減する。
【解決手段】 ロボットコントローラのCPUは、所定のサンプリング時間毎に、目標軌道を細分化して途中目標点を設定し、その途中目標点にロボット本体の手先部を移動させるように位置指令(角度指令)Ptを出力するようになっている。このとき、現在(k)から所定のサンプリング時間先(k+n)のロボット本体の手先部の位置をモデルを用いて推定し、推定された位置と目標軌道とのずれを求めて位置指令の補正値を算出し、算出した補正値により現在の位置指令Pt(k)を補正する。このとき、推定されたロボット本体の手先部の位置から、目標軌道上に下ろした垂線ベクトルPαを補正値とする。
【選択図】 図1

Description

本発明は、ロボットの手先部を、設定された目標軌道に追従させるように制御するロボットの制御装置及び制御方法に関する。
例えば加工や組立、シーリング、溶接などの作業を行う多関節(6軸)型ロボットにおいては、ロボットの制御装置により、ロボットの手先部の位置を予め設定(教示)された目標軌道に追従させるように、各軸のサーボモータを制御することが行われる。一般に、この制御には、フィードバック制御方式が採用されている。ところが、一般的なフィードバック制御では、どうしても各サーボモータに応答遅れが生ずるため、ロボットの実際の軌道に、目標軌道からのずれが生ずる問題がある。
そこで、近年では、フィードバック制御における軌道のずれを解消するために、特許文献1のように、教示軌跡と実際のロボットを動作させた際の軌跡との誤差を求めて、実際のロボットの軌跡が所望の教示軌跡に沿ったものとなるように、教示点を補正する調整を行う技術が考えられている。また、特許文献2には、ロボットにより補間動作を行う場合に、サーボ系の遅れを低減するために、フィードフォワード制御を採用し、ロボットの位置を指令位置に常に一致するように制御する技術が示されている。
特開平11−48176号公報 特開平8−99278号公報
しかしながら、上記特許文献1に記載された技術では、ロボットの動作毎に、繰返し動作による調整が必要となるため、動作速度などの動作条件変更時にも調整が必要となる。また、外部条件等により動作を変更する場合に、全ての動作に対する調整が必要となり、調整工数が膨大なものとなってしまう欠点があった。
また、特許文献2に示されたようなフィードフォワード制御では、多関節型ロボットのような複雑な形状を有し、重力の影響や慣性力、負荷変動等のために特性が非線形となるものについては、偏差を零とすることは困難である。そして、目標位置指令に対してロボットの位置を常に一致させるように制御するため、位置指令が急激に変化することがあり、この場合、位置指令に無理に追従しようとして、ロボットに振動が発生し、結局、軌道のずれ低減の効果が十分に得られない不具合がある。
本発明は上記事情に鑑みてなされたもので、その目的は、ロボットの手先部を設定された目標軌道に追従させるように制御するものにあって、目標軌道に対する実際のロボットの軌道のずれを効果的に低減することができるロボットの制御装置及び制御方法を提供するにある。
ロボットの手先部を設定された目標軌道に追従させながら実行する作業においては、例えば加工工具によりワークに対する加工を行う場合や、シール剤の塗布作業、溶接作業などのように、目標軌道上における時間についてはさほどの厳密性を要求されず、目標軌道上を正しく追従することがより重要となる場合がある。本発明者は、ロボットの手先部を設定された目標軌道に追従させるように制御するにあたり、フィードフォワード制御のように位置指令に常に一致させるのではなく、時間遅れを許容しながら、ロボットの手先部の位置を目標軌道上にのせるような制御を行うことに着目し、これにより、位置指令の急激な変化をなくし、容易に目標軌道に追従させることが可能となることを確認し、本発明を成し遂げたのである。
即ち、本発明のロボットの制御装置は、ロボットの手先部を設定された目標軌道に追従させるように制御するものにあって、サンプリング時間毎に前記目標軌道を細分化した途中目標点にロボットの手先部を移動させるように位置指令を出力する位置指令出力手段と、前記位置指令に基づいてロボットの各軸を制御する制御部と、現在から所定のサンプリング時間先のロボットの手先部の位置を推定する推定手段と、この推定手段により推定された位置と前記目標軌道とのずれを求めて前記位置指令の補正値を算出する補正値算出手段と、この補正値算出手段の算出した補正値により現在の位置指令を補正する補正手段と
を備えるところに特徴を有する(請求項1の発明)。
また、本発明のロボットの制御方法は、サンプリング時間毎に、設定された目標軌道を細分化した途中目標点にロボットの手先部を移動させるように位置指令を出力し、その位置指令に基づいてロボットの各軸を制御することにより、前記ロボットの手先部を前記目標軌道に追従させるように制御する方法にあって、現在から所定のサンプリング時間先のロボットの手先部の位置を推定し、推定された位置と前記目標軌道とのずれを求めて前記位置指令の補正値を算出し、算出された補正値により現在の位置指令を補正するところに特徴を有する(請求項3の発明)。
本発明のロボットの制御装置及び制御方法によれば、ロボットの手先部を目標軌道に追従させるにあたり、ロボットの現在位置から所定のサンプリング時間先の、ロボットの位置の目標軌道とのずれが推定され、その推定されたずれに応じて現在の位置指令が補正されるようになる。これにより、先に発生すると推定されるロボットの位置ずれを、その手前における位置指令の補正によって、前以て吸収するような制御がなされることになり、ロボットの目標軌道との位置ずれを減少させることができる。このとき、サンプリング時間毎の途中目標点に対しては一定の遅れをもった制御となるが、指令値への無理な追従による振動を防止することができると共に、目標軌道からのずれを効果的に防止し、ロボットの手先部の実際の位置を精度良く追従させることができる。
尚、「所定のサンプリング時間先」については、ロボットの特性を考慮して、適当な時間を予め実験的(あるいは経験的)に決定しておくことができる。また、ロボットの手先部の位置を推定するための手段としては、ロボットの近似的モデルを構築し、モデルを解いて離散化するといった周知の手法を用いることができる。
そして、本発明においては、上記補正値を算出するにあたり、推定されたロボットの手先部の位置から、目標軌道上に下ろした垂線ベクトルを補正ベクトルとして補正値を算出するように構成することができる(請求項2、4の発明)。これによれば、最も効率的な補正値を求めることができ、より効果的となる。
以下、本発明を組立用の多関節型ロボットに適用した一実施例について、図面を参照しながら説明する。図5は、ロボットのシステムの外観構成を概略的に示している。このシステムは、ロボット本体1と、このロボット本体1を制御する本実施例に係る制御装置たるロボットコントローラ2とを備えて構成され、更に前記ロボットコントローラ2にはティーチングペンダント3が接続されている。
前記ロボット本体1は、この場合組立用の6軸の小形垂直多関節型ロボットとして構成されている。具体的には、前記ロボット本体1は、ベース部4にショルダ部5を垂直軸を中心に回動(旋回)可能に備え、そのショルダ部5の左右両端部に、図で上方に延びる一対の下アーム部6が水平軸を中心に回動可能に連結されており、この下アーム部6の上端部に両側から挟まれるようにして、中間アーム部7の前端部が水平軸を中心に回動可能に連結されている。
また、前記中間アーム部7の前端部には、前方に延びる上アーム部8の後端部が同軸回転可能に連結されており、その上アーム部8の前端側は、左右に二又をなすように延びており、それらの間に位置してリスト部9が水平軸を中心に回動可能に連結されている。さらに、前記リスト部9の前端部には、円形のフランジ部10が同軸回転可能に連結されている。図示はしないが、前記フランジ部10には、ワークを把持するハンドや、加工用工具、シール材塗布ヘッド、溶接ヘッド等のツールが取付けられるようになっている。尚、このフランジ部10のツール取付面の中心部が手先部とされる。
そして、このロボット本体1内には、各軸を駆動するための駆動源であるサーボモータ11(図4にのみ図示)や、図示しないベルト伝達機構や減速機等の伝動機構が組込まれている。また、図4に示すように、各サーボモータ11には、位置検出センサとしてのロータリエンコーダ12が設けられている。これら各軸のサーボモータ11が、前記ロボットコントローラ2により制御されるようになっている。尚、図4では、ショルダ部5、下アーム部6、中間アーム部7、上アーム部8、リスト部9を可動部として1つのブロックで示し、サーボモータ11も、1個のみを代表させて示している。
一方、図4に示すように、前記ロボットコントローラ2は、制御手段としてのCPU13、このCPU13に接続されたROM14、RAM15、インターフェース16を備えると共に、前記各サーボモータ11を駆動する駆動手段としての駆動回路(サーボ制御部)17、位置検出手段としての位置検出回路18などを備えて構成される。前記ROM14には、ロボット全体の制御プログラムなどが記憶されており、前記RAM15には、前記ティーチングペンダント3による教示データ等に基づいて設定された動作プログラムが記憶されるようになっている。また、前記インターフェース16には、前記ティーチングペンダント3が接続されると共に、図示しない画像処理装置、モニタ装置、パソコン等の周辺機器を接続することも可能とされている。
前記位置検出回路18は、前記ロータリエンコーダ12からのパルス信号に基づいて各軸のサーボモータ11の現在位置(各関節の回転角度)を検出するようになっており、検出された位置情報は、前記駆動回路17及びCPU13に与えられるようになっている。前記駆動回路17は、CPU13から与えられる位置指令と、位置検出回路18から与えられる現在位置(角度)とを比較し、その偏差に応じた電流をサーボモータ11に供給して駆動(フィードバック制御)する制御部として機能するようになっている。これにより、ロボット本体1の手先部の位置(三次元の位置及び向きを含む概念である)が、前記動作プログラムに設定された目標軌道L(図3に実線で示す)に追従するように制御され、もって所定の作業(組立作業など)を行うようになっているのである。
さて、前記ロボットコントローラ2は、CPU13の処理を中心としたソフトウエア的構成により、所定のサンプリング時間(例えば8ms)毎に、前記目標軌道Lを細分化して途中目標点(図3に黒丸で示す)を設定し、その途中目標点にロボット本体1の手先部を移動させるように位置指令(角度指令)Ptを出力するようになっている。このとき、本実施例では、後の作用説明でも述べるように、ロボットコントローラ2(CPU13)は、現在(k)から所定のサンプリング時間先(k+n)のロボット本体1の手先部の位置(図3に白丸で示す)を推定し、推定された位置と前記目標軌道Lとのずれを求めて前記位置指令の補正値を算出し、算出した補正値により現在の位置指令Ptを補正するようになっている。
従って、CPU13が位置指令出力手段、推定手段、補正値算出手段及び補正手段として機能するようになっている。さらに、本実施例では、図3に示すように、上記補正値を算出するにあたり、推定されたロボット本体1の手先部の位置から、目標軌道L上に下ろした垂線ベクトルPαを補正値とするようになっている。尚、上記所定のサンプリング時間先については、ロボット本体1の特性等を考慮して、例えば50ms先といったように、適当な時間を予め実験的に決定しておくことができる。ロボット本体1の手先部の位置を推定するための手段としては、ロボット本体1の近似的モデルを構築し、モデルを解いて離散化するといった周知の手法を用いることができる。
次に、上記構成の作用について、図1ないし図3も参照して述べる。今、図3に示すように、設定された動作プログラムにおいて、ロボット本体1の手先部を目標軌道Lに追従させるように制御するものとすると、サンプリング時間(k、k+1、k+2、‥、k+n、‥)毎に、ロボット本体1の手先部が途中目標点に来るように位置指令(Pt(k))が出力される。
しかし、通常のフィードバック制御を行った場合には、どうしても各サーボモータ11に応答遅れが生ずるため、図3に破線で示すように、ロボット本体1の手先部の実際の軌道に、目標軌道Lからずれが生ずる事情がある。図3中、白丸は、通常のフィードバック制御を行った場合に、各サンプリング時間(k、k+1、k+2、‥、k+n、‥)におけるロボット本体1の手先部が実際に移動する位置の例を示している。
そこで、本実施例では、図1の制御ブロック図に示されるように、位置指令(Pt)の補正が行われてロボット本体1の位置制御が行われる。
即ち、まず、位置指令(指令角度Pt(k+n))が、推定モデル部19に入力される。この場合、位置指令Pt(k+n)は、現在(k)の途中目標点に対してnサンプルだけ先行して出力されることになる。推定モデル部19では、nサンプル後の各軸の位置(関節の角度)がモデルを使って推定され、推定位置(角度)が軌跡ずれ推定部20に入力される。軌跡ずれ推定部20では、nサンプル後の推定位置と、目標軌道Lとのずれが求められる。そして、軌跡補正ベクトル計算部21では、補正指令値Pαが算出される。ここでは、図3に示すように、nサンプル先の推定位置から目標軌道L上に下ろした垂線ベクトルを補正ベクトルとするようになっている。算出された補正値Pαは、加算器23に入力される。
一方、上記位置指令(指令角度Pt(k+n))は、遅れ要素22に入力され、この遅れ要素からは、現在のサンプリング時間(k)における位置指令Pt(k)が出力される。そして、加算器23にて、その位置指令Pt(k)に前記補正値Pαが加算され、位置指令がPt(k)+Pαとされて、ロボットの制御ループ24に入力される。詳しい図示は省略しているが、このロボットの制御ループ24は、一般的なフィードバック制御を行うループである。
また、図2のフローチャートは、上記した制御における位置指令の補正の手順を示すものである。即ち、ステップS1では、動作プログラムに設定された目標軌道Lから、現在からnサンプル先の位置指令値が算出される。次のステップS2では、nサンプル先のロボット本体1の手先部の位置が推定される。そして、ステップS3では、軌跡ずれの推定値(垂線ベクトル)が算出され、ステップS4では、現在の位置指令Pt(k)を、上記軌跡ずれの推定値(補正値Pα)により補正することが行われる。
これにより、nサンプリング時間先に発生すると推定されるロボット本体1の手先部の目標軌道Lからの位置ずれを、その手前(現在)における位置指令Pt(k)の補正によって、前以て吸収するような制御がなされるようになる。この場合、ロボット本体1の手先部を設定された目標軌道Lに追従させるように制御するにあたり、フィードフォワード制御のように位置指令に常に一致させるのではなく、時間遅れを許容しながら、ロボット本体1の手先部の位置を目標軌道L上にのせるような制御が行われることになる。
従って、各サーボモータ11の応答遅れに起因する、ロボット本体1の手先部の目標軌道Lとの位置ずれ減少させることができ、ロボット本体1の手先部の実際の位置を目標軌道Lに精度良く追従させることができる。このとき、サンプリング時間毎の途中目標点に対しては一定の遅れをもった制御となるが、従来のフィードフォワード制御とは異なり、指令値への無理な追従による振動を防止することができる。しかも、予め教示軌跡と実際のロボット本体1を動作させた際の軌跡との誤差を求めて、教示点を補正するような調整を行うものと異なり、繰返し動作による調整作業の必要がないことは勿論である。
このように本実施例によれば、ロボット本体1の手先部を設定された目標軌道に追従させるように制御するものにあって、目標軌道Lに対する実際のロボット本体1の軌道のずれを効果的に低減することができる。この結果、加工工具によりワークに対する加工を行う場合や、シール剤の塗布作業、溶接作業などのように、目標軌道L上における時間についてはさほどの厳密性を要求されず、目標軌道L上を正しく追従することがより重要となる場合に有効となる。また、特に本実施例では、補正値を算出するにあたり、推定されたロボット本体1の手先部の位置から目標軌道L上に下ろした垂線ベクトルを補正ベクトルとするようにしたので、最も効率的な補正値を求めることができ、より効果的となるものである。
尚、上記実施例では、推定されたロボット本体1の手先部の位置から目標軌道L上に下ろした垂線ベクトルを補正値とするようにしたが、例えば、推定位置からnサンプリング時間先の途中目標点に向かうベクトルを補正値とすることも可能である。その他、例えばロボット本体のハードウエア構成などについても様々な変形が可能である等、本発明は上記した実施例に限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施し得るものである。
本発明の一実施例を示すもので、位置指令の補正の制御ブロック図 位置指令の補正の手順を示すフローチャート 目標軌道と実際の軌道とのずれが生ずる様子を示す図 ロボットコントローラの電気的構成を概略的に示すブロック図 ロボットの外観を概略的に示す斜視図
符号の説明
図面中、1はロボット本体、2はロボットコントローラ(制御装置)、11はサーボモータ、12はロータリエンコーダ、13はCPU、17は駆動回路、18は位置検出回路、Lは目標軌道を示す。

Claims (4)

  1. ロボットの手先部を、設定された目標軌道に追従させるように制御するロボットの制御装置であって、
    サンプリング時間毎に、前記目標軌道を細分化した途中目標点にロボットの手先部を移動させるように位置指令を出力する位置指令出力手段と、
    前記位置指令に基づいてロボットの各軸を制御する制御部と、
    現在から所定のサンプリング時間先のロボットの手先部の位置を推定する推定手段と、
    この推定手段により推定された位置と前記目標軌道とのずれを求めて前記位置指令の補正値を算出する補正値算出手段と、
    この補正値算出手段の算出した補正値により現在の位置指令を補正する補正手段を備えることを特徴とするロボットの制御装置。
  2. 前記補正値算出手段は、前記推定手段により推定された位置から、前記目標軌道上に下ろした垂線ベクトルを補正ベクトルとして補正値を算出することを特徴とする請求項1記載のロボットの制御装置。
  3. サンプリング時間毎に、設定された目標軌道を細分化した途中目標点にロボットの手先部を移動させるように位置指令を出力し、その位置指令に基づいてロボットの各軸を制御することにより、前記ロボットの手先部を前記目標軌道に追従させるように制御するロボットの制御方法であって、
    現在から所定のサンプリング時間先のロボットの手先部の位置を推定し、
    推定された位置と前記目標軌道とのずれを求めて前記位置指令の補正値を算出し、
    算出された補正値により現在の位置指令を補正することを特徴とするロボットの制御方法。
  4. 前記補正値は、推定されたロボットの手先部の位置から、前記目標軌道上に下ろした垂線ベクトルを補正ベクトルとして算出されることを特徴とする請求項3記載のロボットの制御方法。

JP2004193485A 2004-06-30 2004-06-30 ロボットの制御装置及び制御方法 Pending JP2006015431A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004193485A JP2006015431A (ja) 2004-06-30 2004-06-30 ロボットの制御装置及び制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004193485A JP2006015431A (ja) 2004-06-30 2004-06-30 ロボットの制御装置及び制御方法

Publications (1)

Publication Number Publication Date
JP2006015431A true JP2006015431A (ja) 2006-01-19

Family

ID=35790120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004193485A Pending JP2006015431A (ja) 2004-06-30 2004-06-30 ロボットの制御装置及び制御方法

Country Status (1)

Country Link
JP (1) JP2006015431A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084131A (ja) * 2006-09-28 2008-04-10 Toshiba Corp 目標軌道生成装置及び目標軌道生成方法
JP2008142786A (ja) * 2006-12-06 2008-06-26 Nidec Sankyo Corp ロボットシスシステム及びロボット制御装置
WO2012026279A1 (ja) * 2010-08-25 2012-03-01 三菱電機株式会社 軌跡制御装置
WO2013140679A1 (ja) * 2012-03-21 2013-09-26 三菱電機株式会社 軌跡制御装置
CN105900027A (zh) * 2014-01-07 2016-08-24 三菱电机株式会社 轨迹控制装置
JPWO2017064851A1 (ja) * 2015-10-14 2018-09-06 川崎重工業株式会社 ロボット教示方法及びロボットアーム制御装置
EP3376312A1 (en) 2017-03-14 2018-09-19 Omron Corporation Processing device, parameter adjusting method, and parameter adjusting program
WO2018168229A1 (ja) 2017-03-14 2018-09-20 オムロン株式会社 制御システム
CN111095132A (zh) * 2017-09-08 2020-05-01 三菱电机株式会社 伺服控制装置
CN111195908A (zh) * 2018-11-16 2020-05-26 丰田自动车株式会社 轨道生成装置
CN116277161A (zh) * 2023-05-25 2023-06-23 山东中济鲁源机械有限公司 一种基于三维模型坐标的机械臂动态偏移监测系统

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084131A (ja) * 2006-09-28 2008-04-10 Toshiba Corp 目標軌道生成装置及び目標軌道生成方法
JP2008142786A (ja) * 2006-12-06 2008-06-26 Nidec Sankyo Corp ロボットシスシステム及びロボット制御装置
WO2012026279A1 (ja) * 2010-08-25 2012-03-01 三菱電機株式会社 軌跡制御装置
CN103080859A (zh) * 2010-08-25 2013-05-01 三菱电机株式会社 轨迹控制装置
DE112011102790T5 (de) 2010-08-25 2013-06-13 Mitsubishi Electric Corporation Bahnsteuerungsvorrichtung
JP5340486B2 (ja) * 2010-08-25 2013-11-13 三菱電機株式会社 軌跡制御装置
US9098077B2 (en) 2010-08-25 2015-08-04 Mitsubishi Electric Corporation Trajectory control device
DE112011102790B4 (de) 2010-08-25 2022-12-15 Mitsubishi Electric Corporation Bahnsteuerungsvorrichtung
WO2013140679A1 (ja) * 2012-03-21 2013-09-26 三菱電機株式会社 軌跡制御装置
CN104204977A (zh) * 2012-03-21 2014-12-10 三菱电机株式会社 轨迹控制装置
US9757834B2 (en) 2012-03-21 2017-09-12 Mitsubishi Electric Corporation Track control apparatus
CN105900027B (zh) * 2014-01-07 2018-09-21 三菱电机株式会社 轨迹控制装置
US10481580B2 (en) 2014-01-07 2019-11-19 Mitsubishi Electric Corporation Trajectory control device
CN105900027A (zh) * 2014-01-07 2016-08-24 三菱电机株式会社 轨迹控制装置
JPWO2017064851A1 (ja) * 2015-10-14 2018-09-06 川崎重工業株式会社 ロボット教示方法及びロボットアーム制御装置
EP3376312A1 (en) 2017-03-14 2018-09-19 Omron Corporation Processing device, parameter adjusting method, and parameter adjusting program
WO2018168229A1 (ja) 2017-03-14 2018-09-20 オムロン株式会社 制御システム
US10384344B2 (en) 2017-03-14 2019-08-20 Omron Corporation Processing device, parameter adjusting method, and storage medium
US10926411B2 (en) 2017-03-14 2021-02-23 Omron Corporation Control system
DE112017008009T5 (de) 2017-09-08 2020-07-09 Mitsubishi Electric Corporation Servosteuervorrichtung
DE112017008009B4 (de) 2017-09-08 2022-03-31 Mitsubishi Electric Corporation Servosteuerungsvorrichtung
CN111095132A (zh) * 2017-09-08 2020-05-01 三菱电机株式会社 伺服控制装置
CN111095132B (zh) * 2017-09-08 2023-04-18 三菱电机株式会社 伺服控制装置
US11630425B2 (en) 2017-09-08 2023-04-18 Mitsubishi Electric Corporation Servo control device
JP2020082219A (ja) * 2018-11-16 2020-06-04 トヨタ自動車株式会社 軌道生成装置
CN111195908A (zh) * 2018-11-16 2020-05-26 丰田自动车株式会社 轨道生成装置
JP7067435B2 (ja) 2018-11-16 2022-05-16 トヨタ自動車株式会社 軌道生成装置
US11493928B2 (en) 2018-11-16 2022-11-08 Toyota Jidosha Kabushiki Kaisha Trajectory generation apparatus
CN116277161A (zh) * 2023-05-25 2023-06-23 山东中济鲁源机械有限公司 一种基于三维模型坐标的机械臂动态偏移监测系统
CN116277161B (zh) * 2023-05-25 2023-12-08 山东理工职业学院 一种基于三维模型坐标的机械臂动态偏移监测系统

Similar Documents

Publication Publication Date Title
JP4736607B2 (ja) ロボット制御装置
EP2835228B1 (en) Robot apparatus and robot controlling method
US20180243918A1 (en) Robot system and method of operating the same
EP1696294A2 (en) Method and apparatus for generating teaching data for a robot
JP6392825B2 (ja) 学習制御機能を備えたロボット制御装置
WO2019116891A1 (ja) ロボットシステム及びロボット制御方法
JP4504228B2 (ja) ロボットの制御装置および制御方法
JP2008296310A (ja) 加工ロボットの制御装置
JP2006015431A (ja) ロボットの制御装置及び制御方法
JPH1133960A (ja) ロボット制御方法
JP2012135835A (ja) ロボットの制御装置及びロボットの姿勢補間方法
JP4189445B2 (ja) ロボットの制御方法および制御装置
US11878423B2 (en) Robot system
JP6088601B2 (ja) 走行軸付きロボットにおけるツール先端の振れを抑制するロボット制御装置
JP5382148B2 (ja) ロボットの動作制御装置及びその動作制御方法
JP2011062763A (ja) ロボット制御装置
CN108475051B (zh) 用于在工业机器人的编程期间对准工具的方法和系统
JP4222338B2 (ja) 適応型ビジュアルフィードバック制御方法
JP4992702B2 (ja) ロボットの動作制御装置及びその動作制御方法
JP2010036293A (ja) 多関節ロボット
JP2009178835A (ja) ロボット制御装置及びロボット制御方法
JP7426333B2 (ja) ロボット制御装置
JP2009279725A (ja) ロボット制御装置
JPH0285906A (ja) 産業用ロボットの制御装置
JP2003178107A (ja) 産業用多関節ロボットの設計・解析支援装置及び設計・解析支援プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090202

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090220