[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006013144A - Manufacturing method for optical semiconductor package, and optical semiconductor package manufactured thereby - Google Patents

Manufacturing method for optical semiconductor package, and optical semiconductor package manufactured thereby Download PDF

Info

Publication number
JP2006013144A
JP2006013144A JP2004188366A JP2004188366A JP2006013144A JP 2006013144 A JP2006013144 A JP 2006013144A JP 2004188366 A JP2004188366 A JP 2004188366A JP 2004188366 A JP2004188366 A JP 2004188366A JP 2006013144 A JP2006013144 A JP 2006013144A
Authority
JP
Japan
Prior art keywords
substrate material
thin film
metal thin
package
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004188366A
Other languages
Japanese (ja)
Inventor
Shinobu Nakamura
忍 中村
Kazuomi Tsutsui
和臣 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Seimitsu Co Ltd
Original Assignee
Citizen Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Seimitsu Co Ltd filed Critical Citizen Seimitsu Co Ltd
Priority to JP2004188366A priority Critical patent/JP2006013144A/en
Publication of JP2006013144A publication Critical patent/JP2006013144A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for an optical semiconductor package which is inexpensive and has high quality. <P>SOLUTION: The manufacturing method is disclosed for the optical semiconductor package 30 manufactured by cutting the reverse surface of a reflecting substrate material 310 formed by coating with a metal thin film 313 the top surface of an upper insulating substrate material 312 having a plurality of reflecting holes 11 whose flanks slant in a cone shape. The top surface of a base substrate material 120 has a plurality of electrode plates on a lower insulating substrate material 121, is mounted with a plurality of light emitting elements 24 conducting to the electrode plates after a joined body, and is formed by putting the light emitting elements 24 in the reflecting holes 11. As the reflecting substrate material 310, a reflecting substrate material 310 is used which has the metal thin film 313 for a reflector formed in a package surface area 11P forming a portion of the top surface of the upper insulating substrate material 312 and on a wiring pattern 305 conducting to the package surface area 11P. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光半導体パッケージに関し、特にその製造方法に関する。   The present invention relates to an optical semiconductor package, and more particularly to a manufacturing method thereof.

光半導体パッケージとは、発光ダイオード(以下、LEDと称する)やフォトトランジスタの様な光半導体素子を、実装に便利なようにパッケージ化したものである。LEDはAlInGaPやGaNなどの化合物半導体をサファイヤ基板上でPN接合し、これに順方向電流を流して可視光または赤外光の発光を得るものであり、近年、表示をはじめ、通信、計測、制御などに広く利用されている。一方、最近の電子機器は、高性能化、多機能化と共に、小型化、軽量化をも追及している。更に放熱性・信頼性が重視される分野にも適用範囲が拡大している。このため、電子機器に使用される電子部品は、プリント配線基板上に表面実装できるように、LED素子をパッケージ化した部品が多く用いられるようになってきている。そのようなLEDパッケージは、一般的に略立方体形状をしており、プリント基板上の配線パターンにリフロー半田付けなどの固着手段で実装し利用するが、パッケージ化に際してはLED素子からの発光を高効率に利用することが求められる。   An optical semiconductor package is an optical semiconductor element such as a light emitting diode (hereinafter referred to as LED) or a phototransistor packaged for convenient mounting. An LED is a compound semiconductor such as AlInGaP or GaN that is PN-junctioned on a sapphire substrate, and a forward current is passed through it to obtain visible or infrared light emission. Recently, display, communication, measurement, Widely used for control. On the other hand, recent electronic devices are pursuing smaller size and lighter weight as well as higher performance and more functions. Furthermore, the range of application is expanding to fields where heat dissipation and reliability are important. For this reason, electronic components used in electronic devices are often used in the form of packaged LED elements so that they can be surface-mounted on a printed wiring board. Such an LED package generally has a substantially cubic shape, and is mounted and used on a wiring pattern on a printed circuit board by fixing means such as reflow soldering. It is required to use it efficiently.

光半導体パッケージの一種として光センサーがある。これは、発光素子(例えば赤外LED)を備えた発光部と、受光素子(例えばフォトトランジスタ)を備えた受光部とからなり、この両部をパッケージした部品である。この光センサーは発光部から光を放射し、この放射光の被検出物からの反射光(または透過光)を受光部において受光して被検出物の状態(有無等)を検出するものであり、各種の情報検出(例えば、複写機の紙検出等)に利用されている。光センサーパッケージも発光素子の光を高効率に外部に放射することが求められる点では、LEDパッケージの場合と同一である。以下の説明では光半導体パッケージの中で特にLEDパッケージを例にしながら図5、図6を用いて説明を行っていく。   One type of optical semiconductor package is an optical sensor. This is a component in which a light emitting unit including a light emitting element (for example, an infrared LED) and a light receiving unit including a light receiving element (for example, a phototransistor) are packaged. This optical sensor emits light from the light emitting part, and the reflected light (or transmitted light) of the emitted light from the object to be detected is received by the light receiving part to detect the state (existence etc.) of the object to be detected. It is used for various types of information detection (for example, paper detection of a copying machine). The optical sensor package is the same as the LED package in that it is required to emit light of the light emitting element to the outside with high efficiency. The following description will be made with reference to FIGS. 5 and 6 while taking an LED package as an example among optical semiconductor packages.

図5は、従来のLEDパッケージを示す斜視図で、図6は図5におけるLEDパッケージの要部断面図である。LEDパッケージ30の構成は大きく分けると、反射基板10とベース基板20から成る。反射基板10は、上面から下面に向けて小径となるスリバチ状の反射孔11を有する上絶縁基板12と、上絶縁基板12の上面並びに反射孔11の傾斜面を金属薄膜で被覆したリフレクター13(但し、リフレクター13は、後述する様に、その形成方法によりその構成が異なり、図6はメッキ法による断面形状の場合である)とから成る。また、ベース基板20は、下絶縁基板21の表面にアノード電極用とカソード電極用からなる一対のリードフレーム22、23を有する。また、リードフレーム23上で導通するように設けたLED素子24はワーヤー25を介してリードフレーム22と導通している。そして、ベース基板20の上面と反射基板10の下面とを、LED素子24が反射孔11に納まる様にしながら接着されている。また、LED素子24を囲う反射孔11は、接着後に封止材14をもって埋められている。以下、この様なLEDパッケージ30の製作方法を、主として図7、図8、図9を用いながら説明していくが、LEDパッケージ30は、予め、複数の反射基板部分を備えた反射基板材と複数のベース基板部分を備えたベース基板材を用意し、これを貼り合せておいてからLEDパッケージ30として切り出すので、先ず反射基板材の説明から始めることにする。   FIG. 5 is a perspective view showing a conventional LED package, and FIG. 6 is a cross-sectional view of a main part of the LED package in FIG. The configuration of the LED package 30 is roughly divided into a reflective substrate 10 and a base substrate 20. The reflective substrate 10 includes an upper insulating substrate 12 having a slit-like reflective hole 11 having a small diameter from the upper surface toward the lower surface, and a reflector 13 in which the upper surface of the upper insulating substrate 12 and the inclined surface of the reflective hole 11 are coated with a metal thin film. However, as will be described later, the reflector 13 has a different structure depending on its forming method, and FIG. 6 shows a cross-sectional shape by a plating method. The base substrate 20 has a pair of lead frames 22 and 23 for the anode electrode and the cathode electrode on the surface of the lower insulating substrate 21. Further, the LED element 24 provided so as to be conductive on the lead frame 23 is electrically connected to the lead frame 22 via the wire 25. Then, the upper surface of the base substrate 20 and the lower surface of the reflective substrate 10 are bonded together so that the LED element 24 fits in the reflective hole 11. The reflection hole 11 surrounding the LED element 24 is filled with the sealing material 14 after bonding. Hereinafter, a method for manufacturing such an LED package 30 will be described mainly with reference to FIGS. 7, 8, and 9. The LED package 30 includes a reflective substrate material having a plurality of reflective substrate portions in advance. Since a base substrate material having a plurality of base substrate portions is prepared and bonded together before being cut out as the LED package 30, first the description of the reflective substrate material will be started.

図7中の(a)部は、従来の反射基板材の斜視図である。従来の反射基板材のリフレクター部分の成形方法にはメッキ法と蒸着法があり、図8は、従来のメッキ法で反射基板材を製造する時の、各製造工程における断面図、図9は、従来の蒸着法で反射基板材のリフレクター用の金属薄膜を形成する時の断面図である。   FIG. 7A is a perspective view of a conventional reflective substrate material. There are a plating method and a vapor deposition method as a method for forming a reflector part of a conventional reflective substrate material. FIG. 8 is a cross-sectional view in each manufacturing process when a reflective substrate material is produced by a conventional plating method, and FIG. It is sectional drawing when forming the metal thin film for reflectors of a reflective substrate material with the conventional vapor deposition method.

図7中の(a)部に示した反射基板材110は、樹脂板に複数の反射孔11が設けてある上絶縁基板材112の上面(反射孔表面を含む)をリフレクター13となる金属薄膜113で被覆したもので、金属薄膜113はその製造方法で構成が異なる。即ち、メッキ法による場合は、下地金属薄膜となるCu薄膜の上に、Ni薄膜およびAg薄膜を設けたものであり、蒸着法ではAg薄膜から成る。   The reflective substrate material 110 shown in part (a) in FIG. 7 is a metal thin film in which the upper surface (including the reflective hole surface) of the upper insulating substrate material 112 in which a plurality of reflective holes 11 are provided in a resin plate becomes the reflector 13. The metal thin film 113 has a different structure depending on its manufacturing method. That is, in the case of the plating method, a Ni thin film and an Ag thin film are provided on a Cu thin film as a base metal thin film, and in the vapor deposition method, it is composed of an Ag thin film.

先ず、図8を用いて、従来のメッキ法により製作した反射基板材110Mの製造方法を説明すると、図8の工程(a)に示した様な複数の反射孔11を有する上絶縁基板材112を射出成形を用いて製作し、工程(b)において、この上絶縁基板材112の全表面に無電解メッキ法を用いて、Cu薄膜113CUを形成する。そして、工程(c)においてCu薄膜113CU上にフォトレジスト115を塗布した後、上面側から紫外線116を照射し前記フォトレジスト115を露光(裏面側は露光しない)、更に露光後の現像により、露光されなかったフォトレジスト115を除去し、表面側にのみフォトレジスト115を残す。更に、工程(d)において、フォトレジスト被覆の無くなった裏面部分のCu薄膜113CUを剥離し、この後、工程(e)で露光されたフォトレジスト115を除去、Cu薄膜113CUを上絶縁基板材112の表面に現わした状態で、工程(f)において電解メッキ法を用いてCu薄膜113CUの表面に、Ni薄膜113NIとAg薄膜113AGを形成する。   First, the manufacturing method of the reflective substrate material 110M manufactured by the conventional plating method will be described with reference to FIG. 8. The upper insulating substrate material 112 having a plurality of reflective holes 11 as shown in the step (a) of FIG. In the step (b), a Cu thin film 113CU is formed on the entire surface of the upper insulating substrate material 112 by using an electroless plating method. In step (c), after applying a photoresist 115 on the Cu thin film 113CU, the photoresist 115 is exposed by irradiating ultraviolet rays 116 from the upper surface side (the back surface side is not exposed), and further exposed by development after exposure. The photoresist 115 that has not been removed is removed, leaving the photoresist 115 only on the surface side. Further, in the step (d), the Cu thin film 113CU on the back surface where the photoresist coating has been removed is peeled off, and then the photoresist 115 exposed in the step (e) is removed, and the Cu thin film 113CU is removed from the upper insulating substrate material 112. In step (f), the Ni thin film 113NI and the Ag thin film 113AG are formed on the surface of the Cu thin film 113CU using the electrolytic plating method.

次に、反射基板材110の別の製造方法について触れておく。図9は、従来の蒸着法でリフレクター部分を形成する時の反射基板材110Jの断面図である。この場合は、蒸着装置(図示省略)で加熱蒸発した蒸着金属(Ag)を上絶縁基板材112の上面に積層させてリフレクター13となるAg薄膜213AGを形成するが、メッキ法の場合と異なってCu等の下地膜は設けない。   Next, another method for manufacturing the reflective substrate material 110 will be described. FIG. 9 is a cross-sectional view of the reflective substrate material 110J when the reflector portion is formed by a conventional vapor deposition method. In this case, vapor deposited metal (Ag) heated and evaporated by a vapor deposition apparatus (not shown) is laminated on the upper surface of the upper insulating substrate material 112 to form an Ag thin film 213AG that becomes the reflector 13, but unlike the plating method. No underlying film such as Cu is provided.

図7中の(b)部に示したベース基板材120の主要構成部品である下絶縁基板材121の材料は、ガラスエポキシ樹脂、即ち、エポキシ樹脂にガラス繊維を混入したものである。これに更に、白色顔料を混入して、反射基板底面からの反射効率を高めることもある。ベース基板材120の別の構成部品であるリードフレームは、アノード用の電極板としてのリードフレーム22と、カソード用の電極板としてのリードフレーム23を一対にして構成し、Cu系やFe系等の金属板をプレス加工して略コの字型に成形し、その表面に、Cu、Ni、Ag、Au、Pd、Pt、Rh、Sn等の1種または2種のメッキを施している。なお、最表面には光反射率の高いAg、Au、Pt、Rh、Ni等のメッキを施す。このメッキは、光反射率の向上ばかりでなく、金属材料の腐食防止、導電性向上の役目も果たしている。そして、金型内に複数対(図7では6対)のリードフレーム22、23を配設しておいて、下絶縁基板材121となるプラスチックを射出してリードフレーム22、23をインサート成形してベース基板材120を成形する。この時、リードフレーム22、23の側面と下面及び上面は下絶縁基板材121の外に露出している。また、後工程において、このベース基板材120から複数個(図7では6個)のLEDパッケージ30を切り出すので、その都合を考慮して下絶縁基板材121には長穴120Hを形成しておく。またLED素子24の下面に設けられているカソード電極(図中省略)の端子とリードフレーム23の露出面とは半田付けなどの公知手法で接合されて導通し、また、LED素子24の上面に設けられているアノード電極(図中省略)の端子とリードフレーム22の露出面とはワイヤー25を介してワイヤーボンディングされ導通している。   The material of the lower insulating substrate material 121 which is the main component of the base substrate material 120 shown in part (b) of FIG. 7 is a glass epoxy resin, that is, an epoxy resin in which glass fibers are mixed. In addition, a white pigment may be mixed to improve the reflection efficiency from the bottom surface of the reflection substrate. A lead frame, which is another component of the base substrate material 120, includes a lead frame 22 as an electrode plate for an anode and a lead frame 23 as an electrode plate for a cathode as a pair. The metal plate is pressed into a substantially U shape, and the surface thereof is plated with one or two kinds of Cu, Ni, Ag, Au, Pd, Pt, Rh, Sn, or the like. The outermost surface is plated with Ag, Au, Pt, Rh, Ni or the like having a high light reflectance. This plating not only improves the light reflectivity, but also plays a role in preventing corrosion of metal materials and improving conductivity. Then, a plurality of pairs (six pairs in FIG. 7) of lead frames 22 and 23 are arranged in the mold, and the lead frames 22 and 23 are insert-molded by injecting plastic as the lower insulating substrate material 121. Thus, the base substrate material 120 is formed. At this time, the side surfaces, the lower surface, and the upper surface of the lead frames 22 and 23 are exposed to the outside of the lower insulating substrate material 121. Further, since a plurality of (six in FIG. 7) LED packages 30 are cut out from the base substrate material 120 in a subsequent process, an elongated hole 120H is formed in the lower insulating substrate material 121 in consideration of the convenience. . Also, the cathode electrode (not shown) terminal provided on the lower surface of the LED element 24 and the exposed surface of the lead frame 23 are joined and connected by a known method such as soldering, and the LED element 24 is connected to the upper surface of the LED element 24. A terminal of the anode electrode (not shown) provided and the exposed surface of the lead frame 22 are wire-bonded via a wire 25 and are electrically connected.

既述した方法で製作した反射基板材110の下面と、ベース基板材120の上面とを、LED素子24が反射孔11内に納まる様に配設して、シート接着剤等を用いて接着して接合体を形成してから、反射孔11の底部に在るLED素子24と反射孔11の凹部を埋める形で図6に示した封止材14を設ける。封止材14は透明なエポキシ樹脂、シリコン樹脂などから成り、ポッティング方法等で形成する。封止材14はLED素子24等を破損から保護するだけでなく、LED素子24の放射光を分散して、LEDパッケージ30からの放射光を明るくする効果がある。これは、LED素子24からの発光が、透明樹脂を透過して抜けるときに屈折を起こし、屈折光が反射孔11の中で分散してリフレクター13で反射して更に分散してからLEDパッケージ30外に放射するためである。封止材14を充填後、図7のカッティングライン101に沿ってダイシングソー等を用いて接合体を分割すれば図5に示した様なLEDパッケージ30の製品が完成する。LEDパッケージ30は、リードフレーム22、23の下面をマザーボード基板やFPC基板に接合することでLED素子24と導通をとりながら電子部品等に利用する。   The lower surface of the reflective substrate material 110 manufactured by the above-described method and the upper surface of the base substrate material 120 are disposed so that the LED elements 24 are accommodated in the reflective holes 11, and are bonded using a sheet adhesive or the like. After the joined body is formed, the LED element 24 at the bottom of the reflection hole 11 and the sealing material 14 shown in FIG. The sealing material 14 is made of a transparent epoxy resin, silicon resin, or the like, and is formed by a potting method or the like. The sealing material 14 not only protects the LED elements 24 and the like from damage, but also has an effect of dispersing the emitted light of the LED elements 24 and brightening the emitted light from the LED package 30. This is because the light emitted from the LED element 24 is refracted when it passes through the transparent resin and is refracted, and the refracted light is dispersed in the reflection hole 11 and reflected by the reflector 13 and further dispersed. This is to radiate outside. After filling the sealing material 14, the product of the LED package 30 as shown in FIG. 5 is completed if the joined body is divided using a dicing saw or the like along the cutting line 101 of FIG. The LED package 30 is used for an electronic component or the like while being electrically connected to the LED element 24 by bonding the lower surfaces of the lead frames 22 and 23 to a mother board or an FPC board.

以上説明した様にLEDパッケージ30(光センサーパッケージでも同様)においては、光の反射効率を高めるために、リフレクター13を設ける場合が多い。そして、ほとんどの場合、このリフレクター13は、背景技術の項で説明した様に、メッキ法や蒸着法で成形した光反射率の高い金属薄膜113から成る。そして、この金属薄膜113の形成は上絶縁基板材112の上面(反射孔表面を含む)のみ行われ、下面には行わない。その理由は、もし下面に迄、金属薄膜113を設けると、ベース基板材120上に設けたカソード用のリードフレーム23とアノード用のリードフレーム22の間の絶縁がとれなくなるからである。しかし、この様に上絶縁基板材112の片面にのみ金属薄膜113を形成すると、上面と下面間の熱膨張率の違い等によって反射基板材110の中央部において上面側が凸になる反りが発生してしまう。図10は反りが発生した場合の図7におけるA−A断面図(メッキ法の場合を例にした)である。反射基板材110に反りが発生してしまうと反射基板材110とベース基板材120とを貼り合わせ時に、反射基板材110とベース基板材120の密着性が悪くなり、貼り合わせ作業がやり難くなる。又、LEDパッケージ30の組立精度も悪くなり、その結果、歩留まりが悪くなり易い。又、無理なストレスや歪が原因で、接着が不完全になり、その結果、密封性が破れ、LEDパッケージ30故障の原因となる等の不都合を生じた。   As described above, in the LED package 30 (the same applies to the optical sensor package), the reflector 13 is often provided in order to increase the light reflection efficiency. In most cases, the reflector 13 is composed of a metal thin film 113 having a high light reflectance formed by a plating method or a vapor deposition method, as described in the background art section. The metal thin film 113 is formed only on the upper surface (including the reflection hole surface) of the upper insulating substrate material 112 and not on the lower surface. The reason is that if the metal thin film 113 is provided up to the lower surface, insulation between the cathode lead frame 23 and the anode lead frame 22 provided on the base substrate material 120 cannot be obtained. However, when the metal thin film 113 is formed only on one surface of the upper insulating substrate material 112 in this way, a warp in which the upper surface side is convex occurs at the central portion of the reflective substrate material 110 due to a difference in thermal expansion coefficient between the upper surface and the lower surface. End up. FIG. 10 is a cross-sectional view taken along the line AA in FIG. 7 when warping occurs (an example of the plating method). If the reflection substrate material 110 is warped, the adhesion between the reflection substrate material 110 and the base substrate material 120 is deteriorated when the reflection substrate material 110 and the base substrate material 120 are bonded together, and the bonding operation becomes difficult. . In addition, the assembly accuracy of the LED package 30 also deteriorates, and as a result, the yield tends to deteriorate. In addition, due to excessive stress and strain, the adhesion is incomplete, resulting in inconvenience such as the sealing performance is broken and the LED package 30 is broken down.

また、製品製作の最終工程ではダイシングソー等のカッターを用いて、図7に示したカッティングライン101に沿って、反射基板材110とベース基板材120の接合体をカットすることで製品を切り出すが、この場合、カッターは上下絶縁基板材112、121と共にリフレクター13を構成する金属薄膜113をも切断しなくてはならず、カッター寿命が短くなってしまう問題もあった。   In the final step of product production, a product such as a dicing saw is used to cut the joined body of the reflective substrate material 110 and the base substrate material 120 along the cutting line 101 shown in FIG. In this case, the cutter must also cut the metal thin film 113 that constitutes the reflector 13 together with the upper and lower insulating substrate materials 112 and 121, resulting in a problem that the cutter life is shortened.

上記の課題を解決するための手段として、本発明の請求項1に記載の発明は、上面から下面に向けて、その投影面積が小さくなる様に側面が傾斜した反射孔を複数個有する上絶縁基板材の上側表面をリフレクター用の金属薄膜で被覆して形成した反射基板材の下面と、下絶縁基板材上にアノード用とカソード用を一対として成る電極板を複数対有し、該複数対の電極板と導通する複数個の発光素子を搭載したベース基板材の上面とを、前記発光素子が前記反射孔に格納する様に配置接着して接合体を形成した後、該接合体から切り出すことで製作する光半導体パッケージの製造方法において、前記反射基板材として、前記上絶縁基板材の上側表面の一部を成すパッケージ表面域および該パッケージ表面域と導通する配線パターン部とをメッキ法で成膜したリフレクター用の金属薄膜をもって形成した反射基板材を用いることを特徴とするものである。   As a means for solving the above problems, the invention according to claim 1 of the present invention is characterized in that the upper insulation has a plurality of reflection holes whose side surfaces are inclined so that the projected area decreases from the upper surface to the lower surface. A plurality of pairs of electrode plates each having a pair of anode and cathode are formed on the lower insulating substrate material and the lower surface of the reflective substrate material formed by coating the upper surface of the substrate material with a metal thin film for reflector. After forming the joined body by arranging and bonding the upper surface of the base substrate material on which the plurality of light emitting elements conducting with the electrode plate are mounted so that the light emitting elements are housed in the reflection holes, the joined body is cut out from the joined body. In the method of manufacturing an optical semiconductor package manufactured by the above method, the reflective substrate material is plated with a package surface area that forms part of the upper surface of the upper insulating substrate material and a wiring pattern portion that is electrically connected to the package surface area. In those characterized by using a reflective substrate material formed with a metal thin film for the formed reflector.

また、本発明の請求項2に記載の発明は、上面から下面に向けて、その投影面積が小さくなる様に側面が傾斜した反射孔を複数個有する上絶縁基板材の上側表面をリフレクター用の金属薄膜で被覆して形成した反射基板材の下面と、下絶縁基板材上にアノード用とカソード用を一対として成る電極板を複数対有し、該複数対の電極板と導通する複数個の発光素子を搭載したベース基板材の上面とを、前記発光素子が前記反射孔に格納する様に配置接着して接合体を形成した後、該接合体から切り出すことで製作する光半導体パッケージ製造方法において、前記反射基板材として、前記上絶縁基板材の上面の一部を成すパッケージ表面域を、蒸着法で成膜したリフレクター用の金属薄膜で形成した反射基板材を用いることを特徴とするものである。   According to the second aspect of the present invention, the upper surface of the upper insulating substrate material having a plurality of reflection holes whose side surfaces are inclined so that the projected area decreases from the upper surface to the lower surface is used for the reflector. A plurality of pairs of electrode plates each having a pair of anode and cathode electrodes on a lower surface of a reflective substrate material formed by coating with a metal thin film and a lower insulating substrate material; and a plurality of conductive plates electrically connected to the plurality of pairs of electrode plates A method for manufacturing an optical semiconductor package, wherein a bonded body is formed by arranging and bonding an upper surface of a base substrate material mounted with a light emitting element so that the light emitting element is stored in the reflection hole, and then cut out from the bonded body In this case, as the reflective substrate material, a reflective substrate material formed of a metal thin film for a reflector formed by vapor deposition on a package surface area forming a part of the upper surface of the upper insulating substrate material is used. In .

また、本発明の請求項3に記載の発明は、無電解メッキ法を用いて、前記上絶縁基板材の全表面を下地金属薄膜で被覆する工程と、前記下地金属薄膜をフォトレジスト膜で被覆してからマスクフィルムを介して前記フォトレジスト膜を露光し、更に現像することで、前記パッケージ表面域、および前記パッケージ表面域を連通する配線パターン部にフォトレジスト膜を残す工程と、下地金属薄膜の内、フォトレジスト膜で被覆してない部分を剥離液で剥離する工程と、残存するフォトレジスト膜を剥離する工程と、残存する下地金属薄膜の表面に電解メッキ法でリフレクター用金属薄膜を設ける工程、とを経ることで、前記反射基板材を製作することを特徴とするものである。   According to a third aspect of the present invention, there is provided a step of coating the entire surface of the upper insulating substrate material with a base metal thin film using an electroless plating method, and coating the base metal thin film with a photoresist film. Then, the photoresist film is exposed through a mask film, and further developed to leave the photoresist film in the package surface area and the wiring pattern portion that communicates with the package surface area, and an underlying metal thin film Among them, a step of peeling a portion not covered with the photoresist film with a peeling solution, a step of peeling off the remaining photoresist film, and providing a metal thin film for reflector on the surface of the remaining base metal thin film by electrolytic plating The reflective substrate material is manufactured through the steps.

また、本発明の請求項4に記載の発明は、前記上絶縁基板材のパッケージ表面域以外を被覆するマスクを用いて、前記パッケージ表面域に蒸着法でリフレクター用金属薄膜を形成して反射基板材を製作することを特徴とするものである。   According to a fourth aspect of the present invention, a reflective thin film is formed by forming a reflector metal thin film on the package surface area by a vapor deposition method using a mask that covers the upper insulating substrate material other than the package surface area. It is characterized by producing a plate material.

また、本発明の請求項5に記載の発明は、前記請求項1ないし4のいずれか一つに記載の製造方法を用いて製造した光半導体パッケージである。   According to a fifth aspect of the present invention, there is provided an optical semiconductor package manufactured by using the manufacturing method according to any one of the first to fourth aspects.

先ず、本発明の請求1記載に係わる発明では、メッキ法でリフレクターを形成する場合、
反射基板材に反りの発生が無くなるので、反射基板材とベース基板材を貼り合わせる時の貼り合わせの作業効率がアップし、また光半導体パッケージとしての組立精度も向上し、その結果として、製品歩留まりの向上へとつながる。また、製品の切り出しに際しては、金属薄膜をカットしないので、カッターの寿命が延び、生産性のアップにつながり、また、メッキ処理面積が必要最小限に押えられるので、材料費の削減につながる。
First, in the invention according to claim 1 of the present invention, when a reflector is formed by a plating method,
Since there is no warping of the reflective substrate material, the work efficiency of bonding when the reflective substrate material and the base substrate material are bonded is improved, and the assembly accuracy as an optical semiconductor package is also improved, resulting in product yield. It leads to improvement. Further, since the metal thin film is not cut when the product is cut out, the life of the cutter is extended, the productivity is increased, and the plating processing area is suppressed to the minimum necessary, which leads to a reduction in material costs.

また、本発明の請求2記載に係わる発明では、蒸着法でリフレクターを形成する場合、反り発生が無くなり組立精度が向上し、作業効率もアップし、歩留まりが向上につながる。
また製品の切り出しに際しては、金属薄膜をカットしないので、カッターの寿命が延び、生産性のアップにつながる。また蒸着処理面積が必要最小限に押えられるので、材料費の削減につながる。
Further, in the invention according to the second aspect of the present invention, when the reflector is formed by the vapor deposition method, the occurrence of warpage is eliminated, the assembly accuracy is improved, the working efficiency is increased, and the yield is improved.
Moreover, since the metal thin film is not cut when the product is cut out, the life of the cutter is extended and the productivity is increased. In addition, the vapor deposition area can be kept to a minimum, leading to a reduction in material costs.

また、本発明の請求3記載に係わる発明では、メッキ法を用いてリフレクターを形成する場合の製作工程を示した。この製作工程を経ると、島状に金属薄膜を形成する場合でも、パッケージ表面域は配線パターン部を介して全て導通しているので成膜速度の速い膜付けが可能になる。   Moreover, in the invention concerning Claim 3 of this invention, the manufacturing process in the case of forming a reflector using the plating method was shown. Through this manufacturing process, even when a metal thin film is formed in an island shape, since the entire package surface area is electrically connected through the wiring pattern portion, the film can be formed at a high film formation rate.

また、本発明の請求4記載に係わる発明では、蒸着法でリフレクターを形成する場合の製作方法を示した。この製作方法は蒸着を用いるため、メッキの場合の様な配線パターン部は必要ないし、メッキ法よりも膜付け速度が速い特徴がある。   Moreover, in the invention concerning Claim 4 of this invention, the manufacturing method in the case of forming a reflector by a vapor deposition method was shown. Since this manufacturing method uses vapor deposition, a wiring pattern portion as in the case of plating is not necessary, and the film forming speed is faster than the plating method.

また、本発明の請求5記載に係わる発明は、本発明の請求項1乃至4の製造方法で製造した光半導体パッケージであり、組立精度が高く、生産性が高くて安価な光半導体パッケージの提供が可能となった。   The invention according to claim 5 of the present invention is an optical semiconductor package manufactured by the manufacturing method of claims 1 to 4 of the present invention, and provides an optical semiconductor package with high assembly accuracy, high productivity and low cost. Became possible.

以下、本発明の最良の実施形態(以下、単に「実施形態」と略す)を図1〜図4を用いて説明する。図1は本発明の第1実施形態に係わる反射基板材の斜視図で、図2は図1の反射基板材の各製造工程におけるA−A断面図、図3は本発明の第2実施形態に係わる反射基板材の斜視図、図4は図3の反射基板材の蒸着工程におけるA−A断面図である。尚、背景技術で説明した構成部品と同一部品には同一符号を付し、又、背景技術で既に説明した内容は省略、もしくは簡単な説明に留めた。   BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best embodiment of the present invention (hereinafter simply referred to as “embodiment”) will be described with reference to FIGS. 1 is a perspective view of a reflective substrate material according to the first embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line AA in each manufacturing process of the reflective substrate material of FIG. 1, and FIG. 3 is a second embodiment of the present invention. FIG. 4 is a cross-sectional view taken along line AA in the reflective substrate material vapor deposition step of FIG. 3. In addition, the same code | symbol is attached | subjected to the same component as the component demonstrated by background art, and the content already demonstrated by background technology was abbreviate | omitted or kept only simple description.

最初に本発明の第1実施形態に係わる反射基板材の構成並びに製造方法を図1〜図2を用いて説明する。第1実施形態はメッキ法でリフレクター部を形成する場合である。本発明の第1実施形態の方法で作製した反射基板材の外観斜視図は図1に示した通りであり、板状をした上絶縁基板材312には反射孔11が複数個(図1では6個)設けられ、上絶縁基板材312の上側表面の一部を成すパッケージ表面域11P(LEDパッケージ製品の上側表面となる区域であり、反射孔11の傾斜面と、反射孔11の縁部とからなる)および該パッケージ表面域11Pと接続する配線パターン部305(縦パターン302、横パターン303、外周パターン304から成る)には金属薄膜313が形成され、これらは全て電気的に導通している。図1に示した反射基板材310のA−A断面形状は、図2の(f)の通りであり、ここに到るまでの加工工程を図2を用いながら以下に説明する。   First, the configuration and manufacturing method of the reflective substrate material according to the first embodiment of the present invention will be described with reference to FIGS. 1st Embodiment is a case where a reflector part is formed by the plating method. An external perspective view of the reflective substrate material produced by the method of the first embodiment of the present invention is as shown in FIG. 1, and a plurality of reflective holes 11 are formed in the plate-like upper insulating substrate material 312 (in FIG. 1). 6) and is a package surface area 11P (an area to be the upper surface of the LED package product, which is a part of the upper surface of the upper insulating substrate material 312; the inclined surface of the reflection hole 11 and the edge of the reflection hole 11) And a wiring pattern portion 305 (consisting of a vertical pattern 302, a horizontal pattern 303, and an outer peripheral pattern 304) connected to the package surface area 11P is formed with a metal thin film 313, all of which are electrically conductive. Yes. The AA cross-sectional shape of the reflective substrate material 310 shown in FIG. 1 is as shown in FIG. 2F, and the processing steps up to this point will be described below with reference to FIG.

工程(a);反射基板材310の主構造材となる上絶縁基板材312は、方形をした厚板の、上面側から下面側にかけ次第に直径が狭まっている反射孔11を複数有し、その複数の反射孔11は平面的に眺めると縦横に整列して配置している。このような形状の上絶縁基板材312は、無電解メッキが可能な樹脂材(液晶ポリマーや、ポリフタレアミド樹脂、ABS樹脂)に白色顔料などを混ぜ合わせたものを原料に、金型を用いて射出成形で製作する。射出成形で形成する反射孔11も金型から転写するが、その傾斜面は鏡面仕上になっている。
工程(b);この工程において、上絶縁基板材312にリフレクターの下地となる無電解メッキを施す。無電解メッキとは、電極をとらないで、メッキ液に浸漬することで表面にメッキ薄膜を形成する方法である。本工程では、この無電解メッキ法を用いて上絶縁基板材の全表面にCu薄膜313CU(下地金属薄膜)を形成する。
工程(c);Cu薄膜313CU上にフォトレジスト315を塗布した後、上面をマスクフィルム306で覆いながら、マスクフィルム306を介して紫外線316を照射しフォトレジスト315を露光する。更に露光後の現像により、露光されなかったフォトレジスト315を除去(ポジ型レジストの場合)する。そして、最終的に図1のパッケージ表面域11P及び配線パターン部305だけにフォトレジスト315を残す。
工程(d);工程(c)での処理の結果、フォトレジスト被覆の無くなった部分(即ち、下地金属薄膜が露出している部分)のCu薄膜313CUを剥離液に浸漬して剥離する。
工程(e);この後、露光されたフォトレジスト315を除去する。この結果、図1のパッケージ表面域11P及び配線パターン部305に形成したCu薄膜313CUが上絶縁基板材312の表面に現れる。
工程(f);電解メッキ法を用いてCu薄膜313CUの表面に、最初にNi薄膜313NIを、次にAg薄膜313AGを形成する。
Step (a): The upper insulating substrate material 312 which is the main structural material of the reflective substrate material 310 has a plurality of reflective holes 11 of a rectangular thick plate whose diameter gradually decreases from the upper surface side to the lower surface side. The plurality of reflection holes 11 are aligned in the vertical and horizontal directions when viewed in plan. The upper insulating substrate material 312 having such a shape is injected by using a mold from a raw material obtained by mixing a white pigment or the like with a resin material (liquid crystal polymer, polyphthalamide resin, ABS resin) capable of electroless plating. Produced by molding. The reflection hole 11 formed by injection molding is also transferred from the mold, but the inclined surface has a mirror finish.
Step (b): In this step, the upper insulating substrate material 312 is subjected to electroless plating as the base of the reflector. Electroless plating is a method of forming a plating thin film on the surface by immersing in a plating solution without taking electrodes. In this step, a Cu thin film 313CU (underlying metal thin film) is formed on the entire surface of the upper insulating substrate material using this electroless plating method.
Step (c): After applying a photoresist 315 on the Cu thin film 313CU, the photoresist 315 is exposed by irradiating with ultraviolet rays 316 through the mask film 306 while covering the upper surface with the mask film 306. Furthermore, the unexposed photoresist 315 is removed by development after exposure (in the case of a positive resist). Finally, the photoresist 315 is left only in the package surface area 11P and the wiring pattern portion 305 of FIG.
Step (d): As a result of the treatment in step (c), the Cu thin film 313CU in the portion where the photoresist coating is lost (that is, the portion where the underlying metal thin film is exposed) is immersed in a stripping solution and stripped.
Step (e); Thereafter, the exposed photoresist 315 is removed. As a result, the Cu thin film 313CU formed in the package surface area 11P and the wiring pattern portion 305 in FIG. 1 appears on the surface of the upper insulating substrate material 312.
Step (f): First, an Ni thin film 313NI and then an Ag thin film 313AG are formed on the surface of the Cu thin film 313CU by using an electrolytic plating method.

以上の工程を経て製作した反射基板材310は、その下面を、従来例で示したと同様の構成のベース基板材120(即ち、下絶縁基板材121の表面に金属板をプレス加工して略コの字型に成形し、その表面に、メッキを施して製作したアノード電極用とカソード電極用からなる一対のリードフレーム22、23を複数備え、且つ、該一対のリードフレーム22、23を介して導通する複数のLED素子24を搭載した物)の上面と、ベース基板材120上のLED素子24が反射基板材310の反射孔11に配設する様にして接着した接合体を形成した後、図1に示したカッティングライン301に沿って、接合体をカットすることで、従来例として図5に示した様なLEDパッケージ30を製作する。   The reflective substrate material 310 manufactured through the above steps has its lower surface substantially pressed by pressing a metal plate on the surface of the base substrate material 120 (that is, the lower insulating substrate material 121) having the same configuration as shown in the conventional example. A plurality of a pair of lead frames 22 and 23 for the anode electrode and the cathode electrode manufactured by plating are formed on the surface, and through the pair of lead frames 22 and 23 After forming a bonded body in which the LED element 24 on the base substrate material 120 and the LED element 24 on the base substrate material 120 are disposed in the reflection hole 11 of the reflective substrate material 310, and the upper surface of the LED element 24 on which the plurality of conductive LED elements 24 are mounted) By cutting the joined body along the cutting line 301 shown in FIG. 1, the LED package 30 as shown in FIG. 5 is manufactured as a conventional example.

第1実施形態では、図2の工程(c)以降が特に特徴的な工程である。この工程を経ることで、Cu薄膜313CUの上にNi薄膜313NIとAg薄膜313AGをもって積層したリフレクター用の金属薄膜313は、従来の様に上絶縁基板材312の上面の全域ではなく、メッキ法でリフレクターを形成する場合最低必要となる個所にのみ形成される。(配線パターン部305は電解メッキ法でパッケージ表面域11Pに島状に金属薄膜を形成する場合の通電経路となる)この結果、反射基板材310の反り発生の問題は回避され、反射基板材310とベース基板材120を貼り合わせる場合、貼り合わせの作業効率がアップし、またLEDパッケージ30としての組立精度も向上し、その結果として、製品歩留まりの向上へとつながる。また、製品の切り出しに際して、金属薄膜313をカットしないので、カッター寿命が延び、生産性のアップにつながり、又、メッキ処理面積が必要最小限に押えられるので、材料費の削減も可能になる。   In the first embodiment, the steps after step (c) in FIG. 2 are particularly characteristic steps. Through this process, the metal thin film 313 for the reflector laminated with the Ni thin film 313NI and the Ag thin film 313AG on the Cu thin film 313CU is not plated over the entire upper surface of the upper insulating substrate material 312 as in the prior art. When the reflector is formed, it is formed only at the minimum necessary place. (The wiring pattern portion 305 serves as an energization path when an island-shaped metal thin film is formed on the package surface region 11P by electrolytic plating.) As a result, the problem of warping of the reflective substrate material 310 is avoided, and the reflective substrate material 310 When the base substrate material 120 and the base substrate material 120 are bonded together, the working efficiency of the bonding is improved, and the assembly accuracy as the LED package 30 is also improved. As a result, the product yield is improved. Further, when the product is cut out, the metal thin film 313 is not cut, so that the cutter life is extended, the productivity is increased, and the plating processing area is suppressed to the minimum necessary, so that the material cost can be reduced.

次に、本発明の第2実施形態に係わる反射基板材の製造方法を図3、図4を用いて説明する。第2実施形態は、蒸着法を用いてリフレクターを製造する際に「発明が解決しようとする課題」を解決する製造方法であり、図3は本発明の第2実施形態の方法を用いて完成した反射基板材の斜視図であり、また、図4は図3の反射基板材のA−A断面図を用いながら、リフレクター形成の製造工程の一部を示したものである。   Next, the manufacturing method of the reflective substrate material concerning 2nd Embodiment of this invention is demonstrated using FIG. 3, FIG. The second embodiment is a manufacturing method for solving the “problem to be solved by the invention” when manufacturing a reflector using the vapor deposition method, and FIG. 3 is completed by using the method of the second embodiment of the present invention. 4 is a perspective view of the reflecting substrate material, and FIG. 4 shows a part of the manufacturing process for forming the reflector, using the AA sectional view of the reflecting substrate material of FIG.

第2実施形態の蒸着法で製作し、図3に示した反射基板材410は、上絶縁基板材412の上面の反射孔11の周辺に金属薄膜413でリフレクター部分を形成するが、このリフレクター部分は上絶縁基板材412の上面の内、パッケージ表面域11Pだけに形成している。(カッティングライン401部分には形成しない)この反射基板材410の製造方法を図4を用いて説明する。反射基板材410の主構造材となる上絶縁基板材412は、実施形態1と同様に、方形の厚板に反射孔11を整列して複数設けたものであり、この上絶縁基板材412は、無電解メッキが可能な液晶ポリマー等の樹脂材に白色顔料などを混ぜ合わせたものを原料に、金型を用いて射出成形し、反射孔11も金型から転写し、その傾斜面は鏡面仕上になっている。そして、本第2実施形態では、蒸着装置(図示せず)と上絶縁基板材412との間に、成膜したいパターン形状に穴部を設けたマスク406を介在させておき、蒸着装置で加熱蒸発させ、マスク穴部406Aを通過してきた蒸着金属(Ag)を上絶縁基板材の上面に積層させて金属薄膜(Ag薄膜413AG)を成膜する。膜厚は1000〜1500オングストローム位である。尚、蒸着手法でリフレクター部を成膜する場合は、メッキ手法と異なってCu等の下地金属薄膜は設けない。   The reflective substrate material 410 manufactured by the vapor deposition method of the second embodiment and shown in FIG. 3 has a reflector portion formed of a metal thin film 413 around the reflective hole 11 on the upper surface of the upper insulating substrate material 412, and this reflector portion. Is formed only in the package surface area 11P of the upper surface of the upper insulating substrate material 412. A method of manufacturing the reflective substrate material 410 (not formed on the cutting line 401) will be described with reference to FIG. Similar to the first embodiment, the upper insulating substrate material 412 serving as the main structural material of the reflective substrate material 410 is a rectangular thick plate provided with a plurality of reflective holes 11 aligned. In addition, a mixture of a resin material such as liquid crystal polymer that can be electrolessly plated with a white pigment or the like is used as a raw material, and injection molding is performed using a mold. The reflection hole 11 is also transferred from the mold, and its inclined surface is a mirror surface. Finished. In the second embodiment, a mask 406 provided with a hole in a pattern shape to be deposited is interposed between the vapor deposition apparatus (not shown) and the upper insulating substrate material 412 and heated by the vapor deposition apparatus. A metal thin film (Ag thin film 413AG) is formed by laminating the evaporated metal (Ag) that has evaporated and passed through the mask hole 406A on the upper surface of the upper insulating substrate material. The film thickness is about 1000-1500 angstroms. In addition, when forming a reflector part by a vapor deposition method, unlike a plating method, a base metal thin film, such as Cu, is not provided.

以上の蒸着方法で製作した反射基板材410は、その下面を、実施形態1で説明したと同じ構成のベース基板材120の上面に、ベース基板材120上のLED素子24が反射基板材410の反射孔11に配設する様にして接着した接合体を形成した後、図3に示したカッティングライン401に沿って、接合体をカットすることで、図5に示したようなLEDパッケージ30が製作される。   The reflective substrate material 410 manufactured by the above vapor deposition method has a lower surface on the upper surface of the base substrate material 120 having the same configuration as that described in Embodiment 1, and the LED elements 24 on the base substrate material 120 are formed on the reflective substrate material 410. After the bonded assembly is formed so as to be disposed in the reflection hole 11, the bonded package is cut along the cutting line 401 shown in FIG. 3, so that the LED package 30 as shown in FIG. Produced.

第2実施形態で示した方法を用いることにより、蒸着法でリフレクター部を形成する場合でも、実施形態1の効果と同様の効果を得ることができる。即ち、反射基板材410の反り発生が無くなることで貼り合せの作業効率がアップし、LEDパッケージの組立精度が向上する。また、金属薄膜413をカットしないので、カッターの寿命が延び、生産性のアップにつながるし、蒸着処理面積が必要最小限に押えられるので、材料費削減が可能になるメリットもある。   By using the method shown in the second embodiment, the same effect as that of the first embodiment can be obtained even when the reflector portion is formed by the vapor deposition method. That is, the occurrence of warping of the reflective substrate material 410 is eliminated, so that the working efficiency of the bonding is improved and the assembly accuracy of the LED package is improved. In addition, since the metal thin film 413 is not cut, the life of the cutter is extended, the productivity is increased, and the vapor deposition processing area can be suppressed to a necessary minimum, so that there is an advantage that the material cost can be reduced.

また、第1、第2実施形態の方法を用いて製作した光半導体パッケージは、無理なストレスや歪を内包していないので、パッケージの密封耐久性が高く、その分、故障発生率が低くなる効果がある。   In addition, since the optical semiconductor package manufactured using the method of the first and second embodiments does not contain excessive stress or distortion, the package has high sealing durability, and the failure rate is reduced accordingly. effective.

実施形態1においては、リフレクター部はCu薄膜313CUの上にNi薄膜313NIを付け、更に最表面には光反射率の高いAg薄膜313AGを用いたが、Agの代わりとしてAl、Au、Ptを用いても良いし、Cu薄膜313CUの上に形成したNi薄膜313NIを最表面にもってきても良い。またAg薄膜313AGは高い反射率が得られる反面、酸化し易い欠点があるので、実施形態1、2共に、Agが最表面に露出する場合はAg面に酸化防止膜を塗布すると良い。   In the first embodiment, the reflector portion is provided with the Ni thin film 313NI on the Cu thin film 313CU, and the Ag thin film 313AG having a high light reflectance is used on the outermost surface, but Al, Au, and Pt are used instead of Ag. Alternatively, the Ni thin film 313NI formed on the Cu thin film 313CU may be brought to the outermost surface. In addition, the Ag thin film 313AG provides high reflectance, but has a defect that it is easily oxidized. Therefore, in both Embodiments 1 and 2, it is preferable to apply an antioxidant film to the Ag surface when Ag is exposed on the outermost surface.

LED素子24と接続する電極板として、実施形態1(及び実施形態2)では、金属板をプレス加工して略コの字型に成形し、その表面に、メッキを施して製作したリードフレーム22、23を用いる場合で説明したが、金属板の代わりに、下絶縁基板材121上に蒸着法、スパッタリング法、イオンプレーティング法等を用いて厚めに形成することも可能である。また、これまでの説明に使用した図面では、反射孔11は全て丸孔であったが、形状はこれに限らない。   In the first embodiment (and the second embodiment), as an electrode plate to be connected to the LED element 24, a lead frame 22 produced by pressing a metal plate into a substantially U-shape and plating the surface thereof. However, instead of the metal plate, it may be formed thicker on the lower insulating substrate material 121 by using a vapor deposition method, a sputtering method, an ion plating method, or the like. In the drawings used for the description so far, the reflection holes 11 are all round holes, but the shape is not limited thereto.

本発明の第1実施形態に係わる反射基板材の斜視図である。It is a perspective view of the reflective board | substrate material concerning 1st Embodiment of this invention. 図1の反射基板材の製造工程図で、図2(a)は、射出成形した上絶縁基板材の断面図、図2(b)は、上絶縁基板材の表面にCu薄膜を形成した時の断面図、図2(c)は、Cu薄膜上にフォトレジストを塗布し、マスクフィルムを介して紫外線を照射し、フォトレジストを露光・現像後に未露光フォトレジストを除去して、パッケージ表面域および配線パターン部のみにフォトレジストを残した時の断面図、図2(d)は、フォトレジスト被覆の無くなった部分のCu薄膜を剥離した時の断面図、図2(e)は、露光済フォトレジストを除去した時の断面図、図2(f)はCu薄膜の表面に、Ni薄膜とAg薄膜を形成した時の断面図である。FIG. 2A is a cross-sectional view of an injection-molded upper insulating substrate material, and FIG. 2B is a view when a Cu thin film is formed on the surface of the upper insulating substrate material. FIG. 2C is a cross-sectional view of FIG. 2C, where a photoresist is coated on a Cu thin film, irradiated with ultraviolet rays through a mask film, unexposed photoresist is removed after exposure / development of the photoresist, and package surface area FIG. 2D is a cross-sectional view when the photoresist is left only in the wiring pattern portion, FIG. 2D is a cross-sectional view when the portion of the Cu thin film where the photoresist coating has been removed is peeled, and FIG. FIG. 2F is a cross-sectional view when the Ni thin film and the Ag thin film are formed on the surface of the Cu thin film. 本発明の第2実施形態に係わる反射基板材の斜視図である。It is a perspective view of the reflective substrate material concerning 2nd Embodiment of this invention. 図3の反射基板材の蒸着工程における断面図である。It is sectional drawing in the vapor deposition process of the reflective substrate material of FIG. 従来のLEDパッケージの斜視図である。It is a perspective view of the conventional LED package. 図5におけるLEDパッケージの要部断面図である。It is principal part sectional drawing of the LED package in FIG. 従来の反射基板材及びベース基板材の斜視図である。It is a perspective view of the conventional reflective substrate material and base substrate material. 従来のメッキ法で反射基板材を製造する時の製造工程図で、図8(a)は、射出成形した上絶縁基板材の断面図、図8(b)は、上絶縁基板材の表面にCu薄膜を形成した時の断面図、図8(c)は、Cu薄膜上にフォトレジストを塗布し、上面から紫外線を照射し、フォトレジストを露光・現像後に未露光フォトレジストを除去して、上絶縁基板材の上面側のみにフォトレジストを残した時の断面図、図8(d)は、フォトレジスト被覆の無い部分のCu薄膜を剥離した時の断面図、図8(e)は、露光済フォトレジストを除去した時の断面図、図8(f)はCu薄膜の表面に、Ni薄膜とAg薄膜を形成した時の断面図である。FIG. 8A is a cross-sectional view of an injection-molded upper insulating substrate material, and FIG. 8B is a surface view of the upper insulating substrate material. FIG. 8 (c) is a cross-sectional view when a Cu thin film is formed, and a photoresist is applied on the Cu thin film, irradiated with ultraviolet rays from the upper surface, the photoresist is exposed and developed, and the unexposed photoresist is removed. FIG. 8D is a cross-sectional view when the photoresist is left only on the upper surface side of the upper insulating substrate material, FIG. 8D is a cross-sectional view when the Cu thin film in a portion without the photoresist coating is peeled, and FIG. FIG. 8F is a cross-sectional view when the Ni thin film and the Ag thin film are formed on the surface of the Cu thin film. FIG. 従来の蒸着法で上絶縁基板材にリフレクター用の金属薄膜を形成する時の断面図である。It is sectional drawing when forming the metal thin film for reflectors on the upper insulation board | substrate material by the conventional vapor deposition method. 従来の方法で製作した反射基板材の変形が発生した場合の反射基板材の断面図である。It is sectional drawing of a reflective substrate material when the deformation | transformation of the reflective substrate material manufactured by the conventional method generate | occur | produced.

符号の説明Explanation of symbols

10 反射基板
11 反射孔
11P パッケージ表面域
12 上絶縁基板
13 リフレクター
20 ベース基板
21 下絶縁基板
22、23 リードフレーム
24 LED素子
30 LEDパッケージ
120 ベース基板材
121 下絶縁基板材
305 配線パターン部
306 マスクフィルム
310、410 反射基板材
312、412 上絶縁基板材
313、413 金属薄膜
313CU Cu薄膜
313NI Ni薄膜
313AG、413AG Ag薄膜
315 フォトレジスト膜
406 マスク
10 reflective substrate 11 reflective hole 11P package surface area
12 Upper insulating substrate 13 Reflector 20 Base substrate 21 Lower insulating substrate 22, 23 Lead frame 24 LED element
30 LED package 120 Base substrate material 121 Lower insulating substrate material 305 Wiring pattern portion 306 Mask film 310, 410 Reflecting substrate material 312, 412 Upper insulating substrate material 313, 413 Metal thin film 313CU Cu thin film 313NI Ni thin film 313AG, 413AG Ag thin film 315 Photo Resist film 406 Mask

Claims (5)

上面から下面に向けて、その投影面積が小さくなる様に側面が傾斜した反射孔を複数個有する上絶縁基板材の上側表面をリフレクター用の金属薄膜で被覆して形成した反射基板材の下面と、下絶縁基板材上にアノード用とカソード用を一対として成る電極板を複数対有し、該複数対の電極板と導通する複数個の発光素子を搭載したベース基板材の上面とを、前記発光素子が前記反射孔に格納する様に配置接着して接合体を形成した後、該接合体から切り出すことで製作する光半導体パッケージの製造方法において、
前記反射基板材として、前記上絶縁基板材の上側表面の一部を成すパッケージ表面域および該パッケージ表面域と導通する配線パターン部とをメッキ法で成膜したリフレクター用の金属薄膜をもって形成した反射基板材を用いることを特徴とする光半導体パッケージの製造方法。
The lower surface of the reflective substrate material formed by coating the upper surface of the upper insulating substrate material having a plurality of reflective holes whose side surfaces are inclined so that the projected area decreases from the upper surface to the lower surface with a metal thin film for reflectors; A plurality of pairs of anode and cathode electrode plates on the lower insulating substrate material, and an upper surface of a base substrate material on which a plurality of light-emitting elements that conduct with the plurality of pairs of electrode plates are mounted, In the manufacturing method of the optical semiconductor package manufactured by cutting out from the bonded body after forming the bonded body by arranging and bonding so that the light emitting element is stored in the reflection hole,
Reflection formed with a metal thin film for a reflector formed by plating a package surface area that forms part of the upper surface of the upper insulating substrate material and a wiring pattern portion that is electrically connected to the package surface area as the reflective substrate material A method of manufacturing an optical semiconductor package, comprising using a substrate material.
上面から下面に向けて、その投影面積が小さくなる様に側面が傾斜した反射孔を複数個有する上絶縁基板材の上側表面をリフレクター用の金属薄膜で被覆して形成した反射基板材の下面と、下絶縁基板材上にアノード用とカソード用を一対として成る電極板を複数対有し、該複数対の電極板と導通する複数個の発光素子を搭載したベース基板材の上面とを、前記発光素子が前記反射孔に格納する様に配置接着して接合体を形成した後、該接合体から切り出すことで製作する光半導体パッケージ製造方法において、
前記反射基板材として、前記上絶縁基板材の上面の一部を成すパッケージ表面域を、蒸着法で成膜したリフレクター用の金属薄膜で形成した反射基板材を用いることを特徴とする光半導体パッケージの製造方法。
The lower surface of the reflective substrate material formed by coating the upper surface of the upper insulating substrate material having a plurality of reflective holes whose side surfaces are inclined so that the projected area decreases from the upper surface to the lower surface with a metal thin film for reflectors; A plurality of pairs of anode and cathode electrode plates on the lower insulating substrate material, and an upper surface of a base substrate material on which a plurality of light-emitting elements that conduct with the plurality of pairs of electrode plates are mounted, In a method for manufacturing an optical semiconductor package, in which a light emitting element is disposed and bonded so as to be stored in the reflection hole to form a joined body, and then cut out from the joined body.
An optical semiconductor package using a reflective substrate material formed by a metal thin film for a reflector formed by vapor deposition in a package surface area forming a part of the upper surface of the upper insulating substrate material as the reflective substrate material Manufacturing method.
無電解メッキ法を用いて、前記上絶縁基板材の全表面を下地金属薄膜で被覆する工程と、前記下地金属薄膜をフォトレジスト膜で被覆してからマスクフィルムを介して前記フォトレジスト膜を露光し、更に現像することで、前記パッケージ表面域、および前記パッケージ表面域を連通する配線パターン部にフォトレジスト膜を残す工程と、下地金属薄膜の内、フォトレジスト膜で被覆してない部分を剥離液で剥離する工程と、残存するフォトレジスト膜を剥離する工程と、残存する下地金属薄膜の表面に電解メッキ法でリフレクター用金属薄膜を設ける工程、とを経ることで、前記反射基板材を製作することを特徴とする請求項1に記載の光半導体のパッケージ製造方法。 A step of coating the entire surface of the upper insulating substrate material with a base metal thin film using an electroless plating method, and coating the base metal thin film with a photoresist film, and then exposing the photoresist film through a mask film And further developing to leave a photoresist film on the package surface area and the wiring pattern portion that communicates with the package surface area, and peeling the portion of the underlying metal thin film that is not covered with the photoresist film The reflective substrate material is manufactured through a step of peeling with a liquid, a step of peeling off the remaining photoresist film, and a step of providing a metal thin film for reflector on the surface of the remaining base metal thin film by electrolytic plating. The method of manufacturing an optical semiconductor package according to claim 1. 前記上絶縁基板材のパッケージ表面域以外を被覆するマスクを用いて、前記パッケージ表面域に蒸着法でリフレクター用金属薄膜を形成して反射基板材を製作することを特徴とする請求項2に記載の光半導体のパッケージ製造方法。 The reflective substrate material is manufactured by forming a metal thin film for a reflector on the package surface region by a vapor deposition method using a mask that covers a region other than the package surface region of the upper insulating substrate material. Optical semiconductor package manufacturing method. 前記請求項1ないし4のいずれか一つに記載の製造方法を用いて製造した光半導体パッケージ。 An optical semiconductor package manufactured by using the manufacturing method according to claim 1.
JP2004188366A 2004-06-25 2004-06-25 Manufacturing method for optical semiconductor package, and optical semiconductor package manufactured thereby Pending JP2006013144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004188366A JP2006013144A (en) 2004-06-25 2004-06-25 Manufacturing method for optical semiconductor package, and optical semiconductor package manufactured thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004188366A JP2006013144A (en) 2004-06-25 2004-06-25 Manufacturing method for optical semiconductor package, and optical semiconductor package manufactured thereby

Publications (1)

Publication Number Publication Date
JP2006013144A true JP2006013144A (en) 2006-01-12

Family

ID=35780014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004188366A Pending JP2006013144A (en) 2004-06-25 2004-06-25 Manufacturing method for optical semiconductor package, and optical semiconductor package manufactured thereby

Country Status (1)

Country Link
JP (1) JP2006013144A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172125A (en) * 2007-01-15 2008-07-24 Citizen Electronics Co Ltd Chip type led light-emitting device and its manufacturing method
JP2010206034A (en) * 2009-03-05 2010-09-16 Panasonic Corp Lead frame for optical semiconductor device, package for the optical semiconductor device, the optical semiconductor device, production method of lead frame for optical semiconductor device, production method of package for the optical semiconductor device, and production method of the optical semiconductor device
JP2011077275A (en) * 2009-09-30 2011-04-14 Toppan Printing Co Ltd Led package and manufacturing method of the same
JP2011171508A (en) * 2010-02-18 2011-09-01 Toppan Printing Co Ltd Lead frame for led light-emitting element, led package, and method for manufacturing lead frame for led light-emitting element
JP2016086059A (en) * 2014-10-24 2016-05-19 日亜化学工業株式会社 Light emitting device, package, and manufacturing methods of light emitting device and package
CN112262482A (en) * 2018-05-16 2021-01-22 欧司朗Oled股份有限公司 Optoelectronic component

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172125A (en) * 2007-01-15 2008-07-24 Citizen Electronics Co Ltd Chip type led light-emitting device and its manufacturing method
JP2010206034A (en) * 2009-03-05 2010-09-16 Panasonic Corp Lead frame for optical semiconductor device, package for the optical semiconductor device, the optical semiconductor device, production method of lead frame for optical semiconductor device, production method of package for the optical semiconductor device, and production method of the optical semiconductor device
JP2011077275A (en) * 2009-09-30 2011-04-14 Toppan Printing Co Ltd Led package and manufacturing method of the same
JP2011171508A (en) * 2010-02-18 2011-09-01 Toppan Printing Co Ltd Lead frame for led light-emitting element, led package, and method for manufacturing lead frame for led light-emitting element
JP2016086059A (en) * 2014-10-24 2016-05-19 日亜化学工業株式会社 Light emitting device, package, and manufacturing methods of light emitting device and package
CN112262482A (en) * 2018-05-16 2021-01-22 欧司朗Oled股份有限公司 Optoelectronic component
JP2021523574A (en) * 2018-05-16 2021-09-02 オスラム オーエルイーディー ゲゼルシャフト ミット ベシュレンクテル ハフツングOSRAM OLED GmbH Optoelectronic parts
JP7458994B2 (en) 2018-05-16 2024-04-01 オスラム オーエルイーディー ゲゼルシャフト ミット ベシュレンクテル ハフツング optoelectronic components
US12057539B2 (en) 2018-05-16 2024-08-06 Osram Oled Gmbh Optoelectronic component and the connectivity thereof

Similar Documents

Publication Publication Date Title
US6534330B2 (en) Light irradiating device manufacturing method
WO2012102266A1 (en) Resin-attached lead frame, method for manufacturing same, and lead frame
JP4034241B2 (en) LIGHT SOURCE DEVICE AND LIGHT SOURCE DEVICE MANUFACTURING METHOD
US20130001633A1 (en) Light-emitting element mounting substrate and led package
JP3930710B2 (en) Chip-type light emitting diode and manufacturing method thereof
JP2000223752A (en) Optical semiconductor device and its forming method
JP2005167086A (en) Substrate for mounting light emitting element and fabrication method thereof
JP2009099680A (en) Optical device and method of manufacturing the same
JP2004079750A (en) Light emitting device
US20080101072A1 (en) Light emitter, image display, and fabrication method thereof
US7126163B2 (en) Light-emitting diode and its manufacturing method
KR101265642B1 (en) Light emitting device package and method of making the same
TWI403234B (en) Installation substrate and method for manufacturing thin illumination device using the same
US20070278483A1 (en) Light emitting device and method of manufacturing the same
JP2000323755A (en) Semiconductor light-emitting device
US8941139B2 (en) Light-emitting element mounting package, light-emitting element package, and method of manufacturing the same
US8030753B2 (en) Semiconductor device and method for making the same
US11532773B2 (en) Semiconductor light emitting device
JP2006013144A (en) Manufacturing method for optical semiconductor package, and optical semiconductor package manufactured thereby
KR100958329B1 (en) Light emitting diode package substrate having side reflective surface coated with metals using mask and manufacturing method thereof
JP2006066504A (en) Surface-mounting white led
JP5912471B2 (en) Semiconductor device
JP2915706B2 (en) Light emitting device
US10249804B2 (en) Semiconductor device, base, and method for manufacturing same
JPH09135040A (en) Light-emitting diode