[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006012202A - 光路補正装置とこれを用いた光ピックアップ - Google Patents

光路補正装置とこれを用いた光ピックアップ Download PDF

Info

Publication number
JP2006012202A
JP2006012202A JP2004183294A JP2004183294A JP2006012202A JP 2006012202 A JP2006012202 A JP 2006012202A JP 2004183294 A JP2004183294 A JP 2004183294A JP 2004183294 A JP2004183294 A JP 2004183294A JP 2006012202 A JP2006012202 A JP 2006012202A
Authority
JP
Japan
Prior art keywords
optical path
plate
birefringent plate
optical
linearly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004183294A
Other languages
English (en)
Inventor
Hiroshi Matsumoto
浩 松本
Masaki Iwamoto
将樹 岩本
Masayuki Oto
正之 大戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2004183294A priority Critical patent/JP2006012202A/ja
Publication of JP2006012202A publication Critical patent/JP2006012202A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)

Abstract

【課題】レーザ光の波長に関係なくモニター光検出器に一定の透過光が得られる光路補正装置とこれを用いた光ピックアップを提供する
【解決手段】本実施例において示した光路補正装置14は、各機能素子を積層一体化しており、第一の複屈折板15と、第一の波長板5と、第二の複屈折板2と、第二の波長板16とにより構成する。光路補正装置14は、複合光学素子17の前方に配置し、偏光方向が互いに平行であり光路が互いに平行である二つの異なる波長の直線偏光を第一の複屈折板15より入射し、光路補正を行うと共に透過するレーザ光を円偏光に変換して第二の波長板16より出射し、一方、円偏光されたレーザ光を第二の波長板16より入射し、所定の位置に光路変更して第一の複屈折板15より出射する
【選択図】 図1

Description

本発明は光路補正装置とこれを用いた光ピックアップに関し、特に2波長レーザ部が出射する偏光方向が互いに平行な二つの異なる波長の直線偏光の光路を補正した後、同一光路上を伝搬する前記出射光を円偏光とすると共に、光ディスクより反射するレーザ光を入射して光路補正した後にモニター光検出部に出射する光路補正装置とこれを用いた光ピックアップに関するものである。
光ディスク装置や光磁気ディスク装置に用いられる光ピックアップは、CDやDVDといった種類の異なる光ディスクに対応するため、波長の異なる複数のレーザ光を使用する構造となっている。
そこで従来、二つのレーザ光を同一光路で伝搬させるため、二つのレーザダイオード(以降、LDと称す)を光路が互いに直交するよう配置すると共に、その交点にダイクロイックプリズムを所定の光路方向で配置して、一方のレーザダイオードが出射するレーザ光はダイクロイックプリズムに入射して分離面を透過させ、直交配置された他方のレーザダイオードが出射するレーザ光は前記ダイクロイックプリズムに入射させて分離面で90°反射させることにより、前記二つのレーザ光を同じ光路で伝搬させて、二つのレーザ光に対応した光ピックアップを構成していた。
ところが、このような従来の2波長合成方法では、二つのLDを用いること、及びこれらの光路を互いに直交するよう配置しなければならないため、光ピックアップの小型化が困難であった。
一方、近年モノリシック型集積型の2波長レーザが提案され実用化されつつある。この2波長レーザは、一つの半導体基板上に二つの異なる波長(例えば、650nm、780nm)のレーザ光源を形成したものであり、二つのレーザ光源は所定の距離(数十〜百数十μm)だけ離れて配置され、二つの異なる波長の平行光を出射している。そこで、このような2波長レーザを光ピックアップに用いるためには、二つのレーザ光を同一光路に伝搬させるために光路補正機能が必要となる。
このような光路補正機能の手段として、特開2001−283457号公報に開示された手法がある。
図7は、特開2001−283457号公報に開示された従来の光路補正装置の原理を説明するための図である。図7において、光路補正装置1は、複屈折板2により構成しており、該複屈折板2は、2波長レーザ3から出射する波長650nmのレーザ光L1、波長780nmのレーザ光L2を入射し、且つ、レーザ光L1の偏波面とレーザ光L2の偏光方向とは互いに直交しているものとする。複屈折性を有する結晶である複屈折板2は、光学軸Aが主表面と45°の角度をなすよう板状に切り出したものである。
このように構成することで、レーザ光L2は光学軸Aに対して常光線となるので複屈折板2を直進して透過する。これに対し、レーザ光L1は光学軸Aに対して異常光線となるので複屈折板2にて屈折して透過することになる。この時、複屈折板2の板厚tを適切に設定することにより、二つのレーザ光を同一光路上に出射することが可能となる。
一方、図7に示した従来の光路補正手法は、二つのレーザ光の偏光方向が互いに直交していることが必要であるが、モノリシック集積型の2波長レーザは、一つの半導体基板に二つの異なる波長のレーザ光源を形成するので、出射する二つのレーザ光線の直線偏光の偏光方向が同じとなるのが一般的である。2波長レーザは、製造プロセス上の制約から偏光方向を互いに直交させることは容易ではなく量産に不向きで高価になるため、モノリシック集積型の2波長レーザを上記の光路補正手法に適用することは現実的ではなかった。
そこで、この点を解決する光路補正手法として、本願発明者らは特願2003−155617号において以下の手法を提起した。
図8は、特願2003−155617号により提起した光路補正装置の原理を説明するための図である。光路補正装置4は、波長板5と複屈折板2とを備えており、2波長レーザ6の前方に配置する。
2波長レーザ6から出射される波長650nmのレーザ光L1、及び波長780nmのレーザ光L2は互いに平行な偏光方向を有する直線偏光であり、光路間隔dにて平行に伝搬する。
波長板5は、複屈折性を有する結晶もしくは高分子フィルムであり、2波長レーザ6から出射された一方のレーザ光L2の偏光方向を90°回転させ、他方のレーザ光L1の偏光方向は回転しないままに透過させることにより、レーザ光L1とL2は互いに直交した直線偏光となるよう構成されている。
複屈折板2は、図7に示した複屈折板と同一のもので、複屈折性を有する結晶もしくは液晶からなり、その光学軸は一方のレーザ光L2の偏光方向と同一平面を有するよう構成されている。
この時、波長板5から入射するレーザ光L2は光学軸Aに対して常光線となるのでそのまま直進して複屈折板2を透過し、レーザ光L2と偏光方向が直交するレーザ光L1は、複屈折板2の光学軸Aに対して異常光線となるので屈折して透過することになる。この屈折したレーザ光L1が複屈折板2を出射する際にレーザ光L2と同じ光路を伝搬するよう複屈折板2の板厚tを設定してある。
このように波長板5と複屈折板2が協働して、所定の光路間隔dで平行に伝搬し、且つ同じ偏光方向を有する二つのレーザ光を、同一の光路上に伝搬するよう光路補正をすることが可能となる。
特開2001−283457号公報 特願2003−155617号
しかしながら従来の光路補正装置は、光ピックアップに用いる際に次のような問題を抱えていた。
図9は、2波長レーザを用いた従来の光路補正装置を光ピックアップに適応した場合の模式図の例を示すものである。光ピックアップ7は、偏光方向が互いに平行である二つの異なる波長の直線偏光を出射する2波長レーザ6と、一方の直線偏光の偏光方向を90°回転させる波長板5と、二つの直線偏光を同一の光路上に伝搬するよう光路補正をする複屈折板2と、該複屈折板2を透過する直線偏光のレーザ光を所定の比率で分離するハーフミラー8と、該ハーフミラー8が分離面で90°反射する前記レーザ光を光ディスク9のピット10に集光させる対物レンズ11と、光ディスク9に形成されたピット10上で反射された前記レーザ光を前記対物レンズ11と前記ハーフミラー8を経由して検出する光検出器12と、前記ハーフミラー8の分離面を透過する2波長レーザ6の出射レベルをモニターするモニター光検出器13とにより構成する。
図9の動作を説明すると、2波長レーザ6から出射される、例えば波長650nmのレーザ光L1、或いは波長780nmのレーザ光L2は互いに平行な偏光方向を有する直線偏光であり、光路間隔dにて平行に伝搬し、波長板5へ入射する。波長板5は、2波長レーザ6から出射された一方のレーザ光L2の直線偏光を90°回転させ、他方のレーザ光L1の直線偏光は回転しないままに透過することにより、レーザ光L1とL2は互いに直交した直線偏光を有するよう構成されている。次に波長板5を透過するレーザ光を複屈折板2に入射する。複屈折板2は、複屈折性を有しその主断面(光学軸と入射光軸とを含む面に平行な面)が一方の前記波長板5を通過したレーザ光L2の直線偏光と直交するよう構成されている。そこで、レーザ光L2は光学軸に対して直交するので常光線となりそのまま直進して複屈折板2を透過し、前記波長板5を通過したレーザ光L1の直線偏光はレーザ光L2の直線偏光と直交しているので複屈折板2の主断面に対して平行となるため異常光線となり屈折して透過する。従って、複屈折板2を透過したレーザ光L1とレーザ光L2は同じ光路を伝搬する。この時、複屈折板2を透過した二つのレーザ光の直線偏光は互いに直交しており、レーザ光L1の直線偏光をLa、レーザ光L2の直線偏光をLbとし、両者を総称してレーザ光L11とする。
次に、複屈折板2を透過したレーザ光L11はハーフミラー8に入射され、レーザ光L11のうちの約90%は分離面で90°反射するレーザ光L12として、前記レーザ光L11の約10%は分離面を透過するレーザ光L13として夫々分離される。レーザ光L12は、対物レンズ11により集光されて光ディスク9に形成されたピット10に照射され、ピット10上で反射したレーザ光L14は、反射光となって前記対物レンズ11を介してハーフミラー8に入射され、該レーザ光L14はそのまま透過して光検出器12に入射して光ディスクに書き込まれた情報を読み出す。
一方、ハーフミラー8を透過した前記レーザ光L13は、モニター光検出器13に入射して2波長レーザ6が出射するレーザ光の出射レベルをモニターする。光ピックアップにおいては、レーザ素子が出射するレーザ光の出射レベルを一定に保つことが必要であり、そこで、レーザ光の一部をモニター用の光検出器で受光してAPC(Auto Power Contorol)回路でレーザ素子の駆動回路を制御することにより、レーザ光の出射レベルを一定に保っている。図13に示した光ピックアップにおいては、レーザ光の出射レベルをモニターする手段として精度の高いフロントモニター方式を採用している。
ところで、前述したようなフロントモニター方式でレーザ光を受光する際は、レーザ光が前述したように直線偏光La、Lbのレーザ光からなっているため、ハーフミラー8で、例えば10%のレーザ光を分離面で透過させてモニター光検出器13へ入射させる場合、図10に示すように偏光方向の異なるLa、Lbのレーザ光に対して波長依存性を有しているので、波長λ1とλ2での透過率に差が生じ、レーザ光量を制御する際に要求されるモニター精度を満たすことが出来なかった。
図10は直線偏光La、Lbのレーザ光において、波長を可変した際の透過率の変化を示す図である。同図に示すように、ハーフミラー8の入射面に形成する光学薄膜において、LaとLbのレーザ光に対して波長λ1及びλ2における透過率を共に10%となるように透過特性を実現することは非常に困難である。
本発明は上述したような問題を解決するためになされたものであって、レーザ光の波長に関係なくモニター光検出器に一定の透過光が得られる光路補正装置とこれを用いた光ピックアップを提供することを目的とする。
上記目的を達成するために本発明に係わる光路補正装置とこれを用いた光ピックアップは、以下の構成をとる。
請求項1に記載の光路補正装置は、第一の複屈折板と、第一の波長板と、第二の複屈折板と、第二の波長板とを順に配置した構造を有し、偏光方向が互いに平行であり光路が互いに平行である二つの異なる波長の直線偏光レーザ光を第一の複屈折板より入射すると、同じ光路上を進む二つの円偏光レーザ光として第二の波長板より出射し、一方、同じ光路上を進む二つの異なる波長の円偏光レーザ光を第二の波長板より入射すると、二つの異なる光路を進む直線変更レーザ光として第一の複屈折板より出射する光路補正装置であって、 前記第一の複屈折板は、異常光線が入射した時の屈折による光路変更距離をd1、複屈折板の常光線に対する屈折率をn0、複屈折板の異常光線に対する屈折率をne、複屈折板の主面法線と光学軸とのなす角度をθ、複屈折板の板厚をt1とした時、
t1=d1・|(n0・tanθ+ne)/((n0−ne)・tanθ)|
を満足するものであり、
前記第一の波長板は、直線偏光レーザ光の一方に対しては2π・mの位相差を、他方の直線偏光レーザ光に対してはπ・(2n−1)の位相差を発生するものであり(m、nは整数)、前記第二の複屈折板は、その光学軸に対して入射した二つの直線偏光レーザ光の何れか一方が常光線、他方が異常光線となるよう配置し、前記二つの直線偏光レーザ光の光路間隔をd2、複屈折板の常光線に対する屈折率をn0、複屈折板の異常光線に対する屈折率をne、複屈折板の主面法線と光学軸とのなす角度をθ、複屈折板の板厚をt2とした時、
t2=d2・|(n0・tanθ+ne)/((n0−ne)・tanθ)|
を満足するものであり、
前記第二の波長板は、入射する何れの直線偏光レーザ光、或いは円偏光レーザ光に対してもπ/2・(2p−1)の位相差を発生する(pは整数)ものであるよう構成する。
請求項2に記載の光路補正装置は、第一の複屈折板と、第一の波長板と、第二の複屈折板と、第二の波長板と、グレーティングとを順に配置した構造を有し、偏光方向が互いに平行であり光路が互いに平行である二つの異なる波長の直線偏光レーザ光を第一の複屈折板より入射すると、同じ光路を進む二つの円偏光レーザ光とすると共に、3ビーム化してグレーティングより出射し、一方、同じ光路を進む二つの異なる波長の円偏光レーザ光をグレーティングより入射すると、二つの異なる光路を進む直線偏光レーザ光として第一の複屈折板より出射する光路補正装置であって、
前記第一の複屈折板は、異常光線が入射した時の屈折による光路変更距離をd1、複屈折板の常光線に対する屈折率をn0、複屈折板の異常光線に対する屈折率をne、複屈折板の主面法線と光学軸とのなす角度をθ、複屈折板の板厚をt1とした時、
t1=d1・|(n0・tanθ+ne)/((n0−ne)・tanθ)|
を満足するものであり、
前記第一の波長板は、直線偏光レーザ光の一方に対しては2π・mの位相差を、他方の直線偏光レーザ光に対してはπ・(2n−1)の位相差を発生するものであり(m、nは整数)、前記第二の複屈折板は、その光学軸に対して入射した二つの直線偏光レーザ光の何れか一方が常光線、他方が異常光線となるよう配置すると共に、前記第一の複屈折板と互いの主断面が直交するよう配置し、前記二つの直線偏光レーザ光の光路間隔をd2、複屈折板の常光線に対する屈折率をn0、複屈折板の異常光線に対する屈折率をne、複屈折板の主面法線と光学軸とのなす角度をθ、複屈折板の板厚をt2とした時、
t2=d2・|(n0・tanθ+ne)/((n0−ne)・tanθ)|
を満足するものであり、
前記第二の波長板は、入射する何れの直線偏光レーザ光、或いは円偏光レーザ光に対してもπ/2・(2p−1)の位相差を発生する(pは整数)ものであり、前記グレーティングは、入射した異なる波長の円偏光レーザ光の一方、若しくは両方ともに、0次光と±1次光の3ビームに回折するよう構成する。
請求項3に記載の光路補正装置は、前記第一の複屈折板と前記第一の波長板と前記第二の複屈折板と前記第二の波長板とを貼り合わせて一体化した構造を有するよう構成する。
請求項4に記載の光路補正装置は、前記第一の複屈折板と前記第一の波長板と前記第二の複屈折板と前記第二の波長板と前記グレーティングとを貼り合わせて一体化した構造を有するよう構成する。
請求項5に記載の光路補正装置は、前記第一の波長板及び第二の波長板が、複屈折性を有する結晶であるよう構成する。
請求項6に記載の光路補正装置は、前記第一の複屈折板及び第二の複屈折板が、リチウムナイオベート若しくはルチルであるよう構成する。
請求項7に記載の光ピックアップは、偏光方向が互いに平行である二つの異なる波長の直線偏光レーザ光を出射する2波長レーザ部と1対のモニター光検出部とを備えた複合光学素子と、前記2波長レーザ部から二つの直線偏光レーザ光を入射すると共に、モニター光検出部にモニター光を出射する請求項1乃至6の何れかに記載の光路補正装置と、該光路補正装置を出射した光線を光記憶媒体に集光する対物レンズとを備えるよう構成する。
請求項8に記載の光ピックアップは、偏光方向が互いに平行である二つの異なる波長の直線偏光レーザ光を出射する2波長レーザ部と1対のモニター光検出部とを備えた複合光学素子と、前記2波長レーザ部から二つの直線偏光レーザ光を入射すると共に、モニター光検出部にモニター光を出射する請求項1乃至6の何れかに記載の光路補正装置と、該光路補正装置を出射した光線を光記憶媒体に集光する対物レンズとを備え、前記複合光学素子と前記光路補正装置とを一体化した構造とするよう構成する。
請求項1、5、6に記載の発明は、光路補正装置の出射光を円偏光としたので、光路補正装置を光ピックアップに用いた際に、ハーフミラーのミラー面の光学薄膜の直線偏光に対する波長依存性を回避することが出来て光ピックアップの性能を向上させ、光ピックアップを構成する上で上で大きな効果を発揮する。
請求項2に記載の発明は、請求項1記載の光路補正装置の効果の他、出射光を回折光としたので、光ピックアップの性能の向上に大きな効果を発揮する。
請求項3、4に記載の発明は、光路補正装置を構成する要素を張り合わせて積層一体化したことにより、光路補正装置を小型化すると共にコストを低減する事が出来、光ピックアップを構成する上で大きな効果を発揮する。
請求項7に記載の発明は、光路補正装置の出射光を円偏光とし、更には3ビーム化したため、光路補正装置を光ピックアップに用いた際に、ハーフミラーによる波長依存性を回避することが出来て光ピックアップの性能を向上させる共に、2波長レーザ部と1対のモニター光検出部を一体化して配置したので、部品点数が減少し光ピックアップの構造を小型か出来て光ピックアップを使用する上で上で大きな効果を発揮する。
請求項8に記載の発明は、複合光学素子と光路補正装置を一体化したことのより、光ピックアップを構成する上で小型化が図られ、光ピックアップを使用する上で大きな効果を発揮する。
以下、図示した実施例に基づいて本発明を詳細に説明する。
本発明は、2波長レーザ部から出射した波長の異なる二つの直線偏光のレーザ光を、本発明に係わる光路補正装置において複屈折板を用いて同一光路上に伝搬させると共に、1/4波長板を用いて該二つの直線偏光を円偏光に変換して出射したものである。光路補正装置が出射する二つの直線偏光を円偏光とすることにより、該光路補正装置を光ピックアップに使用した際に、ハーフミラーに形成した光学薄膜における直線偏光の波長依存性を回避できるので、レーザ光の波長に関係なくモニター光検出部に一定の透過光が得られることとなる。一方、本発明に係わる光路補正装置においては、該光路補正装置を光ピックアップに使用した際に、光ディスクのピットで反射したレーザ光を入射し、複屈折板を用いることにより光路変更して2波長レーザ部と一体化して構成された1対のモニター光検出部に入射する機能を有する。
図1は、本発明に係る光路補正装置の第一の実施例を示す構成図であり、図1(a)は、2波長レーザ部から入射する二つのレーザ光の光路を補正し円偏光されたレーザ光を出射する様子を説明するための図を示し、図1(b)は、光ディスクに形成したピットで反射したレーザ光を入射し、光路変更して2波長レーザ部と一体化して構成された1対のモニター光検出部に入射する様子を説明するための図を示す。本実施例において示した光路補正装置は、各機能素子を積層一体化したものを示し、光路補正装置14は、第一の複屈折板15と第一の波長板5と第二の複屈折板2と第二の波長板16とを備えており、複合光学素子17の前方に配置する。複合光学素子17は、異なる二つの波長のレーザ光を出射する2波長レーザ部18と2波長レーザのモニター光を検出する1対のモニター光検出部19とにより構成する。
図1(a)の動作を説明する。2波長レーザ部18から出射されるレーザ光を、例えば、光路1を伝搬する波長650nmのレーザ光L1、及び光路2を伝搬する波長780nmのレーザ光L2とすると、二つのレーザ光は互いに同じ偏光方向を有する直線偏光P1及びP2であり光路間隔d1にて平行に伝搬し、第一の複屈折板に入射する。
第一の複屈折板15は、複屈折性を有するリチウムナイオベート若しくはルチル等の結晶もしくは液晶からなり、その主断面は二つのレーザ光L1、L2の直線偏光P1、P2に対して直交となるよう構成する。従って、2波長レーザ部18が出射した二つのレーザ光L1、L2は光学軸Aに対して常光線となりそのまま直進して第一の複屈折板15を透過する。
次に、第一の複屈折板15を透過したレーザ光は、第一の波長板5に入射する。第一の波長板5は、複屈折性を有する結晶もしくは高分子フィルムであり、第一の複屈折板15を透過した一方の直線偏光P1の偏光方向を90°回転させて直線偏光S1とし、他方の直線偏光P2の偏光方向は回転しないままに透過させることにより、レーザ光L1とL2が互いに直交した直線偏光を有するよう構成する。
そこで第一の波長板5は、レーザ光L1に対して1/2波長板として機能するよう構成され、即ち、レーザ光L2に対しては2π・nの位相差を発生するように、レーザ光L1に対してはπ・(2m−1)の位相差を発生するような板厚に設定する。
又、前記第一の波長板5の構造としては、図2(a)に示す如く2枚の水晶製波長板を貼り合わせたもの、或いは図2(b)に示す如く1枚の平行平板状の水晶板のみで構成したもの等が使用される。更に、図2(c)に示す如くやや構造は複雑になるものの1枚の水晶板の一部を削って異なる厚みを有する構造としたものでも良いし、図2(d)に示す如く一方の波長の直線偏光に対してπの位相差を呈する位相差板をガラス基板の一部に貼り付けたもので実現しても良い。
次に、第一の波長板5を透過したレーザ光は、第二の複屈折板2に入射する。第二の複屈折板2は、第一の複屈折板15と同様に、複屈折性を有するリチウムナイオベート若しくはルチル等の結晶もしくは液晶からなり、その主断面は一方のレーザ光L2の直線偏光P2に対して平行であり、他方のレーザ光L1の直線偏光S1に対して直交するよう構成されている。
前記第一の波長板5より入射したレーザ光L1は光学軸Aに対して常光線となりそのまま直進し第二の複屈折板2を透過して光路1を伝搬し、レーザ光L1と偏光方向が直交するレーザ光L2の直線偏光は光学軸Aに対して異常光線となり屈折して透過することになる。この屈折したレーザ光L2が第二の複屈折板2を透過する際に、レーザ光L2が、レーザ光L1の伝搬光路である光路1を伝搬するよう第二の複屈折板2の板厚t2を設定し、レーザ光L1とレーザ光L2が同一光路を伝搬するよう光路補正を行う。
そこで、前記板厚t2と二つの直線偏光の光路間隔d2との間には次式(1)の関係が成立する。
t2=d2・|(n0・tanθ+ne)/((n0−ne)・tanθ)|・・・(1)
尚、n0:常光線に対する屈折率であり、ne:異常光線に対する屈折率であり、θ:複屈折板の主面法線と光学軸とのなす角度であり、通常45°に設定されるのが望ましい。
次に、第二の複屈折板2を透過したレーザ光は、第二の波長板16に入射する。第二の波長板16は、複屈折性を有する結晶もしくは高分子フィルムであり、第二の複屈折板2を透過した二つの直線偏光のS1及びP2入射すると、直線偏光の常光成分と異常光成分との位相差が90°となるよう作用するので、第二の波長板16の透過光は、互いに位相が90°ずれた常光成分と異常光成分とが合成されて、レーザ光L1、L2は互いに回転方向が異なる円偏光となり、光路補正装置14から出射される。
そこで、第二の波長板16は、1/4波長板として機能するよう構成され、波長板をレーザ光L1に対してはπ/2・(2p−1)の位相差を発生するように、又、レーザ光L2に対してもπ/2・(2p−1)の位相差を発生するような板厚に設定する。本実施例において必要な1/4波長板は、二つの波長のレーザ光に対応する広帯域の波長板であり、例えば、特開平10−68816号公報で提案されているような1/4波長板と1/2波長板とを張り合わせた構造が多く使用され、この二枚の波長板を所定の光学軸角度で張り合わせることにより所望の性能を得る。一方、WO03/091768号公報で提案されているような所望の複数の波長に対して1/4波長板として機能する波長板であってもよい。
以上説明したように本実施例における光路補正装置は、二つの波長のレーザ光を同一光路上に伝搬させると共に、出射する二つのレーザ光を円偏光としたものであり、光ピックアップに本光路補正装置を使用した際に、ハーフミラーに形成した光学薄膜における直線偏光の波長依存性を回避できる。
次に、図1(b)の動作について説明する。図1(b)は、光ディスクに形成されたピットにおいて反射されたモニター用のレーザ光を入射して光路補正を行い、1対のモニター光検出部に入射する場合の動作を示すもので、光ディスクに形成されたピットにおいて反射され、光路1を伝搬する円偏光のレーザ光L1’及びL2’は、光路補正装置14を出射した円偏光のレーザ光L1及びL2に対して回転方向が逆転して光路補正装置14を構成する第二の波長板16に入射される。
第二の波長板16は、前述したように1/4波長板として機能するよう構成され、円偏光のレーザ光L1’は直線偏光P1に、円偏光のレーザ光L2’は直線偏光S2に変換され、互いに直交した直線偏光となる。
次に、第二の波長板16を透過して直線偏光されたレーザ光L1’及びL2’は、第二の複屈折板2に入射する。
第二の複屈折板2において、その主断面は一方のレーザ光L1’の直線偏光P1に対して平行であり、他方のレーザ光L2’の直線偏光S2に対して直交するよう構成されている。
前記第二の波長板16より第二の複屈折板2に入射したレーザ光L2’は光学軸Aに対して常光線となりそのまま直進して第二の複屈折板2を透過して光路1を伝搬し、レーザ光L2’と偏光方向が直交するレーザ光L1’の直線偏光は光学軸Aに対して異常光線となり屈折して透過し、光路2を伝播する。
次に、第二の複屈折板2を透過したレーザ光L1’、L2’は、第一の波長板5に入射する。第一の波長板5は、前述したように1/2波長板として機能するよう構成され、第二の複屈折板2を屈折して透過した一方のレーザ光L1’である直線偏光P1の偏光方向を90°回転させて直線偏光S1として透過し、他方のレーザ光L2’である直線偏光S2の偏光方向は回転しないままに透過させ、レーザ光L1’及びL2’を同一な偏光方向を有する直線偏光とする。
次に、第一の波長板5を透過したレーザ光L1’、L2’は、第一の複屈折板15に入射する。第一の複屈折板15においては、その主断面はレーザ光L1’の直線偏光S1及びレーザ光L2’の直線偏光S2に対して平行となるよう構成されている。又、第一の複屈折板15の主断面は、前記第二の複屈折板2の主断面と直交するよう配置されている。
そこで、前記第一の波長板5より入射したレーザ光L1’及びL2’の直線偏光は光学軸Aに対して異常光線となり屈折して透過することになる。この屈折したレーザ光L1’及びL2’が第一の複屈折板15を透過する際に、レーザ光L1’が光路4を伝搬するように、レーザ光L2’が光路3を伝搬するよう第一の複屈折板15の板厚t1を設定し、2波長レーザ部18のモニター光となるレーザ光L1’とレーザ光L2’が1対のモニター光検出部19の所定の位置に夫々入射するよう光路補正を行う。
前記板厚t1と二つの直線偏光の光路補正距離d1との間には次式(2)の関係が成立する。
t1=d1・|(n0・tanθ+ne)/((n0−ne)・tanθ)|・・・(2)
尚、n0:常光線に対する屈折率であり、ne:異常光線に対する屈折率であり、θ:複屈折板の主面法線と光学軸とのなす角度であり、通常45°に設定されるのが望ましい。
以上説明したように本発明に於ける光路補正装置14は、二つの波長のレーザ光を同一光路上に伝搬させると共に、出射する二つのレーザ光を円偏光としたものであり、光ピックアップに本光路補正装置を使用した際に、ハーフミラーに形成した光学薄膜における直線偏光の波長依存性を回避できる。又、光ディスクにおいて反射されたレーザ光L1’とL2’の光路を補正して、2波長レーザ部18と一体化して構成された1対のモニター光検出部19に、レーザ光L1’とL2’を入射させるようにした。従って、フロントモニター機能とレーザ光の発光機能とを一体化した複合光学素子17を使用可能とし、光ピックアップを構成する際に構造を小型化することが出来る。更に、複合光学素子17の入出射面全面に光路補正装置14を固定してモジュール化することも可能であり、後述する光ピックアップをアセンブルする際のハンドリング向上や小型化に大きな効果を発揮する。
次に、本発明に係わる光路補正装置を光ピックアップに用いた実施例を説明する。
図3は、本発明に係わる光路補正装置14を光ピックアップに適応した場合の模式図を示すものである。光ピックアップ20は、偏光方向が互いに平行である二つの異なる波長の直線偏光を出射する2波長レーザ部18と光ディスク9に形成したピット10において反射したモニター用のレーザ光を検出する1対のモニター光検出部19とを備えた複合光学素子17と、前記2波長レーザ部18が出射する二つの波長のレーザ光を同一光路上に伝搬させると共に出射する二つのレーザ光を円偏光とし、一方、光ディスク9に形成したピット10において反射されたレーザ光の光路を補正して1対のモニター光検出部19に入射させる光路補正装置14と、該光路補正装置14が出射するレーザ光を90°全反射すると共に光ディスク9に形成したピット10で反射したレーザ光を所定の比率で分離するハーフミラー21と、該ハーフミラー21の分離面で90°全反射するレーザ光を光ディスク9のピット10に集光させる対物レンズ11と、光ディスク9に形成されたピット10上で反射されたレーザ光を前記対物レンズ11及び前記ハーフミラー21を経由して検出する光検出器12とにより構成する。
図3の動作を説明すると、2波長レーザ部18から出射される、例えば、波長650nmのレーザ光L1、及び波長780nmのレーザ光L2は互いに同じ偏光方向を有する直線偏光であり、光路間隔d1にて平行に伝搬し、光路補正装置14へ入射する。光路補正装置14においては前述したように、前記二つの波長のレーザ光L1及びL2を同一光路上に伝搬させると共に、出射する二つのレーザ光を円偏光に変換する。そこで、これらのレーザ光を総称してレーザ光L15とする。
次に、光路補正装置14を透過したレーザ光L15はハーフミラー21に入射され、分離面で90°全反射したレーザ光L16は、対物レンズ11により集光されて光ディスク9に形成されたピット10に照射される。そこで、ピット10上で反射したレーザ光L17は、反射光となって前記対物レンズ11を介してハーフミラー21に入射され、レーザ光L17のうちの約90%は分離面を透過するレーザ光L18として、前記レーザ光L17の約10%は分離面を90°反射するレーザ光L19として夫々分離される。この時、ハーフミラー21に入射されるレーザ光は2波長共に円偏光であり、ハーフミラー21に形成した光学薄膜からなる分離面は、円偏光に対して波長依存性を持たないので、二つの波長のレーザ光に対して透過率及び反射率は変化しない。
ハーフミラー21を透過したレーザ光L18は、光検出器12に入射し、光ディスクに書き込まれた情報を読み出す。
一方、ハーフミラー21により90°反射したレーザ光L19は、2波長レーザ部18が出射するレーザ光L1及びL2のモニター光として使用するため、前記光路補正装置14が円偏光のレーザ光を出射する面に入射する。光路補正装置14は、前述したように光ディスク9に形成したピット10において反射されたレーザ光L19を構成するレーザ光L1’とL2’の光路を補正して、2波長レーザ部18と一体化して構成された1対のモニター光検出部19に、レーザ光L1’とL2’を入射し、モニター光を検出する。
以上説明したように、本光ピックアップ20においては、光路補正装置14が出射する二つの直線偏光を円偏光とすることにより、該光路補正装置14を光ピックアップに使用した際に、ハーフミラー21に形成した光学薄膜における直線偏光の波長依存性を回避できるので、レーザ光の波長に関係なくモニター光検出部19に一定の透過光が得られると共に、2波長レーザ部18と1対のモニター光検出部19とを一体化して複合光学素子17としたので部品点数が減少し、光ピックアップの構造を小型化することが出来る。
次に、本発明に係わる光路補正装置において、第二の実施例について説明する。
一般に、光ディスクを再生するためレーザ光を光ディスクに照射する際に、光ディスクに形成したピットに照射するデータ読み書き用の光と、ピットの両脇の溝に照射するトラッキング用の光とが必要である場合、レーザ光を3ビーム化することが要求され、第二の実施例は、光路補正装置の出射光を3ビーム化したものである。そこで、第一の実施例において説明した光路補正装置の円偏光されたレーザ光の出射側に、レーザ光を回折させるグレーティングを付加し、円偏光されたレーザ光を3ビーム化して出射させた。
図4は、本発明に係る光路補正装置の第二の実施例を示す構成図であり、図4(a)は、2波長レーザ部から入射する二つのレーザ光の光路を補正し円偏光すると共に3ビーム化したレーザ光を出射する様子を説明するための図を示し、図4(b)は、光ディスクに形成したピットで反射したレーザ光を入射し、光路変更して2波長レーザ部と一体化して構成されたモニター光検出部に入射する様子を説明するための図を示す。本実施例において示した光路補正装置は、各機能素子を積層一体化したものを示し、光路補正装置22は、第一の複屈折板15と第一の波長板5と第二の複屈折板2と第二の波長板16とグレーティング23とを備えており、複合光学素子17の前方に配置する。複合光学素子17は、第一の実施例において説明したものと同一のもので、2波長レーザ部18と1対の光検出部19とにより構成する。又、第二の実施例において、複合光学素子17の入出射面全面に光路補正装置22を固定してモジュール化することも可能であり、後述する光ピックアップをアセンブルする際のハンドリング向上や小型化に大きな効果を発揮する。
本第二の実施例は、図1に示した第一の実施例における光路補正装置と比べて、円偏光を出射する第二の波長板16の出射側にグレーティング23を付加したことのみ異なるので、グレーティング23の作用について説明し、他の要素の動作は第一の実施例と同一であるので説明を省略する。
図5は、グレーティングを付加してレーザ光を3ビーム化した例を示し、図5(a)は夫々異なる二つの波長λ1及びλ2のレーザ光共に3ビーム化した例を示し、図5(b)は一方の波長のレーザ光λ1はそのまま透過し、他方の波長のレーザ光λ2のみを3ビーム化した例を示す。尚、図5においては、波長λ1と波長λ2のレーザ光の光路を分離して記載しているが、これは説明を容易にするためで、実際は各波長のレーザ光は同一の光路を伝搬する。そこで、グレーティング23は、基板の片面に所定の屈折率を有する格子を所定の深さとピッチで一面に形成したもので、前記深さとピッチを適宜に設定することにより、所望の波長のレーザ光に対して、入射したレーザ光をメインビームとなる0次光と、サイドビームとなる二つの±1次光とに回折するものである。
そこで、図4に示した本実施例における光路補正装置22は、第二の波長板16が出射する円偏光のレーザ光を入射して3ビームのレーザ光に回折する。
図6は、本発明に係わる光路補正装置22を光ピックアップに適応した場合の模式図を示すものである。光ピックアップ24は、偏光方向が互いに平行である二つの異なる波長の直線偏光を出射する2波長レーザ部18と光ディスク9に形成したピット10において反射したレーザ光を検出する1対のモニター光検出部19とを備えた複合光学素子17と、前記2波長レーザ部18が出射する二つの波長のレーザ光を同一光路上に伝搬させると共に出射する二つのレーザ光を円偏光、且つ、3ビーム化し、一方、光ディスク9に形成したピット10において反射されたレーザ光の光路を補正して1対のモニター光検出部19に入射させる光路補正装置22と、該光路補正装置14が出射するレーザ光を90°全反射すると共に光ディスク9に形成したピット10で反射したレーザ光を所定の比率で分離するハーフミラー21と、該ハーフミラー21の分離面で90°全反射するレーザ光を光ディスク9のピット10に集光させる対物レンズ11と、光ディスク9に形成されたピット10上で反射されたレーザ光を前記対物レンズ11及び前記ハーフミラー21を経由して検出する光検出器12とにより構成する。
本第二の実施例は、図3に示した第一の実施例である光ピックアップ20と比べて光路補正装置14の出射側にグレーティング23が付加されていることのみ異なるので、これに関連した部分についてのみ説明し、他の部分の動作については第一の実施例と同一であるので説明を省略する。
光路補正装置22を透過し、回折作用により3ビーム化されたレーザ光L20はハーフミラー21に入射され、分離面で90°全反射したレーザ光L21は、対物レンズ11により集光されて光ディスク9に形成されたピット10に照射される。そこで、ピット10上で反射したレーザ光L22は、反射光となって前記対物レンズ11を介してハーフミラー21に入射され、レーザ光L22のうちの約90%は分離面を透過するレーザ光L23として、前記レーザ光L22の約10%は分離面を90°反射するレーザ光L24として夫々分離される。この時、ハーフミラー21に入射されるレーザ光は二つ共に円偏光され、且つ一方、或いは両方ともに3ビーム化されており、ハーフミラー21に形成した二つの光学薄膜は、円偏光に対して波長依存性を持たないため、二つの波長のレーザ光に対して透過率は変化しない。
ハーフミラー21を透過したレーザ光L23は、光検出器12に入射し、光ディスクに書き込まれた情報を読み出す。
一方、ハーフミラー21により90°反射したレーザ光24は、2波長レーザ部18が出射するレーザ光L1及びL2のモニター光として使用するため、前記光路補正装置22のグレーティング23の面に入射する。光路補正装置22は、光ディスク9において反射されたレーザ光L24を構成するレーザ光L1’とL2’の光路を補正して、2波長レーザ部18と一体化して構成された1対のモニター光検出部19に、レーザ光L1’とL2’を入射し、モニター光を検出する。
本実施例における光ピックアップ24は、ハーフミラー21に入射するレーザ光が円偏光であるためミラー面に形成した光学薄膜における波長依存性を回避できる。2波長レーザ部18の出射レベルをモニターする際に、精度の高いモニター光検出を行うことが出来ると共に、光ディスク9に形成したピット10に照射するレーザ光を3ビーム化することが出来る。又、2波長レーザ部18と1対のモニター光検出部19とを一体化して複合光学素子17としたので部品点数が減少し、光ピックアップの構造を小型化することが出来る。
以上、本発明について実施例を基に説明したが、本発明において使用している波長板、複屈折板の材料としては、例えば水晶、リチウムナイオベート(ニオブ酸リチウム)、サファイア、方解石、雲母、ルチル等の複屈折性を有する結晶、若しくは複屈折性を有する高分子フィルムや高分子ポリマー等が使用可能である。
本発明に係る光路補正装置の第一の実施例を示す構成図である。 第一の波長板の変形例を示す外観図である。 本発明に係わる光路補正装置14を光ピックアップに適応した場合の模式図を示すものである。 本発明に係る光路補正装置の第二の実施例を示す構成図である。 グレーティングを付加してレーザ光を3ビーム化した例を示す。 本発明に係わる光路補正装置22を光ピックアップに適応した場合の模式図を示すものである。 特開2001−283457号公報に開示された従来の光路補正装置の原理を説明するための図である。 特願2003−155617号により提起した光路補正装置の原理を説明するための図である。 2波長レーザを用いた従来の光路補正装置を光ピックアップに適応した場合の模式図の例を示すものである。 直線偏光La、Lbのレーザ光において、波長を可変した際の透過率の変化を示す図である。
符号の説明
1・・光路補正装置、 2・・複屈折板(第二の複屈折板)、
3・・2波長レーザ、 4・・光路補正装置、
5・・波長板(第一の波長板)、 6・・2波長レーザ、
7・・光ピックアップ、 8・・ハーフミラー、
9・・光ディスク、 10・・ピット、
11・・対物レンズ、 12・・光検出器、
13・・モニター光検出器、 14・・光路補正装置、
15・・第一の複屈折板、 16・・第二の波長板、
17・・複合光学素子、 18・・2波長レーザ部、
19・・1対のモニター光検出器、 20・・光ピックアップ、
21・・ハーフミラー、 22・・光路補正装置、
23・・グレーティング、 24・・光ピックアップ

Claims (8)

  1. 第一の複屈折板と、第一の波長板と、第二の複屈折板と、第二の波長板とを順に配置した構造を有し、偏光方向が互いに平行であり光路が互いに平行である二つの異なる波長の直線偏光レーザ光を第一の複屈折板より入射すると、同じ光路上を進む二つの円偏光レーザ光として第二の波長板より出射し、一方、同じ光路上を進む二つの異なる波長の円偏光レーザ光を第二の波長板より入射すると、二つの異なる光路を進む直線変更レーザ光として第一の複屈折板より出射する光路補正装置であって、
    前記第一の複屈折板は、異常光線が入射した時の屈折による光路変更距離をd1、複屈折板の常光線に対する屈折率をn0、複屈折板の異常光線に対する屈折率をne、複屈折板の主面法線と光学軸とのなす角度をθ、複屈折板の板厚をt1とした時、
    t1=d1・|(n0・tanθ+ne)/((n0−ne)・tanθ)|
    を満足するものであり、
    前記第一の波長板は、直線偏光レーザ光の一方に対しては2π・mの位相差を、他方の直線偏光レーザ光に対してはπ・(2n−1)の位相差を発生するものであり(m、nは整数)、
    前記第二の複屈折板は、その光学軸に対して入射した二つの直線偏光レーザ光の何れか一方が常光線、他方が異常光線となるよう配置し、前記二つの直線偏光レーザ光の光路間隔をd2、複屈折板の常光線に対する屈折率をn0、複屈折板の異常光線に対する屈折率をne、複屈折板の主面法線と光学軸とのなす角度をθ、複屈折板の板厚をt2とした時、
    t2=d2・|(n0・tanθ+ne)/((n0−ne)・tanθ)|
    を満足するものであり、
    前記第二の波長板は、入射する何れの直線偏光レーザ光、或いは円偏光レーザ光に対してもπ/2・(2p−1)の位相差を発生する(pは整数)ものであることを特徴とする光路補正装置。
  2. 第一の複屈折板と、第一の波長板と、第二の複屈折板と、第二の波長板と、グレーティングとを順に配置した構造を有し、偏光方向が互いに平行であり光路が互いに平行である二つの異なる波長の直線偏光レーザ光を第一の複屈折板より入射すると、同じ光路を進む二つの円偏光レーザ光とすると共に、3ビーム化してグレーティングより出射し、一方、同じ光路を進む二つの異なる波長の円偏光レーザ光をグレーティングより入射すると、二つの異なる光路を進む直線偏光レーザ光として第一の複屈折板より出射する光路補正装置であって、
    前記第一の複屈折板は、異常光線が入射した時の屈折による光路変更距離をd1、複屈折板の常光線に対する屈折率をn0、複屈折板の異常光線に対する屈折率をne、複屈折板の主面法線と光学軸とのなす角度をθ、複屈折板の板厚をt1とした時、
    t1=d1・|(n0・tanθ+ne)/((n0−ne)・tanθ)|
    を満足するものであり、
    前記第一の波長板は、直線偏光レーザ光の一方に対しては2π・mの位相差を、他方の直線偏光レーザ光に対してはπ・(2n−1)の位相差を発生するものであり(m、nは整数)、
    前記第二の複屈折板は、その光学軸に対して入射した二つの直線偏光レーザ光の何れか一方が常光線、他方が異常光線となるよう配置すると共に、前記第一の複屈折板と互いの主断面が直交するよう配置し、前記二つの直線偏光レーザ光の光路間隔をd2、複屈折板の常光線に対する屈折率をn0、複屈折板の異常光線に対する屈折率をne、複屈折板の主面法線と光学軸とのなす角度をθ、複屈折板の板厚をt2とした時、
    t2=d2・|(n0・tanθ+ne)/((n0−ne)・tanθ)|
    を満足するものであり、
    前記第二の波長板は、入射する何れの直線偏光レーザ光、或いは円偏光レーザ光に対してもπ/2・(2p−1)の位相差を発生する(pは整数)ものであり、
    前記グレーティングは、入射した異なる波長の円偏光レーザ光の一方、若しくは両方ともに、0次光と±1次光の3ビームに回折することを特徴とする光路補正装置。
  3. 前記第一の複屈折板と前記第一の波長板と前記第二の複屈折板と前記第二の波長板とを貼り合わせて一体化した構造を有することを特徴とする請求項1記載の光路補正装置。
  4. 前記第一の複屈折板と前記第一の波長板と前記第二の複屈折板と前記第二の波長板と前記グレーティングとを貼り合わせて一体化した構造を有することを特徴とする請求項2記載の光路補正装置。
  5. 前記第一の波長板及び第二の波長板は、複屈折性を有する結晶であることを特徴とする請求項1乃至4記載の光路補正装置。
  6. 前記第一の複屈折板及び第二の複屈折板は、リチウムナイオベート若しくはルチルであることを特徴とする請求項1乃至6記載の光路補正装置。
  7. 偏光方向が互いに平行である二つの異なる波長の直線偏光レーザ光を出射する2波長レーザ部と1対のモニター光検出部とを備えた複合光学素子と、
    前記2波長レーザ部から二つの直線偏光レーザ光を入射すると共に、モニター光検出部にモニター光を出射する請求項1乃至6の何れかに記載の光路補正装置と、
    該光路補正装置を出射した光線を光記憶媒体に集光する対物レンズとを備えたことを特徴とする光ピックアップ。
  8. 偏光方向が互いに平行である二つの異なる波長の直線偏光レーザ光を出射する2波長レーザ部と1対のモニター光検出部とを備えた複合光学素子と、
    前記2波長レーザ部から二つの直線偏光レーザ光を入射すると共に、モニター光検出部にモニター光を出射する請求項1乃至6の何れかに記載の光路補正装置と、
    該光路補正装置を出射した光線を光記憶媒体に集光する対物レンズとを備え
    前記複合光学素子と前記光路補正装置とを一体化した構造とすることを特徴とする光ピックアップ。
JP2004183294A 2004-06-22 2004-06-22 光路補正装置とこれを用いた光ピックアップ Pending JP2006012202A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004183294A JP2006012202A (ja) 2004-06-22 2004-06-22 光路補正装置とこれを用いた光ピックアップ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004183294A JP2006012202A (ja) 2004-06-22 2004-06-22 光路補正装置とこれを用いた光ピックアップ

Publications (1)

Publication Number Publication Date
JP2006012202A true JP2006012202A (ja) 2006-01-12

Family

ID=35779298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004183294A Pending JP2006012202A (ja) 2004-06-22 2004-06-22 光路補正装置とこれを用いた光ピックアップ

Country Status (1)

Country Link
JP (1) JP2006012202A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101325071B (zh) * 2007-06-11 2011-04-13 索尼株式会社 光学拾波器和光盘装置
CN109579995A (zh) * 2018-11-05 2019-04-05 西安交通大学 一种增强静态双折射干涉光谱分辨率的方法及其装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101325071B (zh) * 2007-06-11 2011-04-13 索尼株式会社 光学拾波器和光盘装置
CN109579995A (zh) * 2018-11-05 2019-04-05 西安交通大学 一种增强静态双折射干涉光谱分辨率的方法及其装置
CN109579995B (zh) * 2018-11-05 2020-04-28 西安交通大学 一种增强静态双折射干涉光谱分辨率的方法及其装置

Similar Documents

Publication Publication Date Title
KR0144569B1 (ko) 광학소자 및 그것을 포함하는 광픽업장치
KR100569633B1 (ko) 위상자 및 이것을 탑재한 광헤드 장치
US6584060B1 (en) Optical pick-up device for recording/reading information on optical recording medium
KR20060130512A (ko) 광로 보정 장치와 이를 이용한 광 픽업
JP5012171B2 (ja) 反射回折偏光子および光学装置
US20030058759A1 (en) Optical system for detecting data signal and tracking error signal
JP5316409B2 (ja) 位相差素子および光ヘッド装置
US7564504B2 (en) Phase plate and an optical data recording/reproducing device
US7710849B2 (en) Optical head device and optical information recording or reproducing device
JP4534907B2 (ja) 光ヘッド装置
KR101097078B1 (ko) 회절 소자 및 광헤드 장치
JP4613651B2 (ja) 階段状回折素子および光ヘッド装置
JP2002311242A (ja) 偏光分離素子、半導体レーザユニットおよび光ピックアップ装置
JPH11306581A (ja) 広帯域偏光分離素子とその広帯域偏光分離素子を用いた光ヘッド
CN102073087B (zh) 1/2波长板、光拾取装置、偏振转换元件及投影型显示装置
JP2006012202A (ja) 光路補正装置とこれを用いた光ピックアップ
JP5131244B2 (ja) 積層位相板及び光ヘッド装置
JP4985799B2 (ja) 偏光回折素子および積層光学素子
JP2011233208A (ja) 波長選択波長板、波長選択回折素子および光ヘッド装置
JP2012009096A (ja) 波長選択波長板、波長選択回折素子および光ヘッド装置
JP2008262662A (ja) 光ピックアップ用1/4波長板及び光ヘッド装置
JP4876826B2 (ja) 位相差素子および光ヘッド装置
JP2005302082A (ja) 光路補正装置とこれを用いた光ピックアップ
JP4337510B2 (ja) 回折素子および光ヘッド装置
KR100990347B1 (ko) 위상판 및 광정보 기록재생 장치