JP2006010620A - Method of preparing cross-sectional specimen for microscopic observation and ultramicrotome - Google Patents
Method of preparing cross-sectional specimen for microscopic observation and ultramicrotome Download PDFInfo
- Publication number
- JP2006010620A JP2006010620A JP2004191171A JP2004191171A JP2006010620A JP 2006010620 A JP2006010620 A JP 2006010620A JP 2004191171 A JP2004191171 A JP 2004191171A JP 2004191171 A JP2004191171 A JP 2004191171A JP 2006010620 A JP2006010620 A JP 2006010620A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- cutting
- knife
- ultramicrotome
- arm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 7
- 238000005520 cutting process Methods 0.000 claims abstract description 32
- 239000011347 resin Substances 0.000 claims abstract description 11
- 229920005989 resin Polymers 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000007788 liquid Substances 0.000 claims abstract description 3
- 238000007664 blowing Methods 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims 1
- 239000000523 sample Substances 0.000 description 59
- 239000007789 gas Substances 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 244000145845 chattering Species 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005464 sample preparation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
Images
Landscapes
- Sampling And Sample Adjustment (AREA)
Abstract
Description
本発明は、固体試料の断面を作製するウルトラミクロトームであって、とくに樹脂包埋なしでドライ切削により、試料の断面を作製することができるウルトラミクロトームに係わる。 The present invention relates to an ultramicrotome for producing a cross section of a solid sample, and particularly to an ultramicrotome capable of producing a cross section of a sample by dry cutting without embedding a resin.
従来、ウルトラミクロトームは電子顕微鏡等や光学顕微鏡で観察する薄片化試料を作製する手段として用いられてきた。薄片化切片の作製法は試料を樹脂等に包埋した後、ウルトラミクロトームのアームに固定し、このアームを上下運動させてダイヤモンドやガラスのナイフで切削する。切削された切片はナイフボートに張られた水面上に浮かぶことになる。この切削片をメッシュにすくい取り透過電子顕微鏡の顕鏡試料として用いてきた。あるいは、切削により得られた試料ブロック断面を光学顕微鏡、レーザ顕微鏡、SPM、AFM、走査電子顕微鏡などの顕鏡試料として用いてきた。
しかしながら紙等の繊維状の試料を樹脂で包埋した場合、繊維間に浸透した樹脂により試料が膨潤し、構造が変質するという問題があった。また、レーザ顕微鏡、SPM、AFMなどを用い紙や、コート紙のコート層あるいは、顔料色材などの凹凸を評価する場合、包埋樹脂が紙繊維やコート層、顔料色材の隙間を埋めてしまうため、凹凸情報を得ることができなかった。本発明は上記問題を解決するために鋭意検討した結果得られたものであり、樹脂包埋によって変質してしまうような試料の評価に適した試料作成法を提供する。 However, when a fibrous sample such as paper is embedded with a resin, there is a problem that the sample swells due to the resin that has penetrated between the fibers and the structure is altered. Also, when using a laser microscope, SPM, AFM, etc. to evaluate irregularities such as paper, coated paper coating layers, or pigment color materials, the embedding resin fills the gaps between the paper fibers, coat layers, and pigment color materials. Therefore, unevenness information could not be obtained. The present invention was obtained as a result of intensive studies to solve the above problems, and provides a sample preparation method suitable for evaluation of samples that are altered by resin embedding.
このため本発明では、切削によって生じた切片を顕鏡試料とするのではなく、切削された試料ブロックの断面を観察する。この際、本発明は試料を樹脂包埋せずに、そのまま試料アームに固定することを第1の特徴とする。また水が試料に触れることも変質を生じる原因になるので、ナイフボートには水を入れずに使用する。このような状態で切削を行うと、薄片化された切片は、チャタリング等の発生により殆ど観察に適さない。しかしながら、残された試料ブロックは、膨潤等による変質がなく、試料本来の構造が保持されている。しかも、このようにして得られた断面は平坦で、光学顕微鏡、レーザ顕微鏡、走査プローブ顕微鏡、走査電子顕微鏡等の観察に理想的な状態であることが明らかになった。 For this reason, in the present invention, the section of the cut sample block is observed instead of using the section generated by cutting as a microscope sample. In this case, the first feature of the present invention is that the sample is directly fixed to the sample arm without being embedded in the resin. Also, touching the sample with water causes deterioration, so use the knife boat without water. When cutting is performed in such a state, the sliced section is hardly suitable for observation due to chattering or the like. However, the remaining sample block is not altered by swelling or the like, and the original structure of the sample is maintained. In addition, the cross section obtained in this way is flat, and it has been clarified that the cross section is ideal for observation with an optical microscope, a laser microscope, a scanning probe microscope, a scanning electron microscope, or the like.
本発明の他の特徴はウルトラミクロトームにおいて、試料ブロックあるいはナイフへの送風機構を備えていることである。この送風機構により、試料を切断する際に試料ブロックあるいはナイフに付着する切片を除去することができる。上記したようにナイフボートに水を入れずにウルトラミクロトーム使用すると、切り出された切片がナイフの刃や試料に付着し、スムーズな切断を阻害したり切断面を傷つける場合があった。また試料表面に付着した切片が観察の障害になる場合もあった。これを防ぐために、本発明では試料アームに固定された試料がナイフに触れない位置に移動したときに、ナイフあるいは試料ブロックに送風し、付着した切片を吹き飛ばすことを特徴としている。試料アームの上下運動は観察したい試料位置に切断面が達するまで繰り返す必要があり、一般にはかなりの時間を要する。このため手動で送風するためには、切削工程中作業者がウルトラミクロトーム装置に拘束され、煩わしく、また非効率でもある。そこで本発明では試料が固定されたアームが上下運動を繰り返す行程において、前記アームの上下運動と同期し、試料がナイフに触れていない位置に移動したときに自動的に送風する機構を備えることを特徴とする。さらに本発明は前記送風機構において、送風方向がナイフ側とアームに固定された試料側の2つを自由に選択できるか、あるいは交互に送風方向を変えるたり、また試料の切削回数や、切削時間、あるいは1回の切削厚さと切削回数との積等により、試料の切削工程の終了をあらかじめ設定できることを特徴とする。 Another feature of the present invention is that an ultramicrotome is provided with a blowing mechanism for a sample block or a knife. By this air blowing mechanism, it is possible to remove a section attached to the sample block or the knife when the sample is cut. As described above, when an ultramicrotome is used without putting water into the knife boat, the cut section may adhere to the knife blade or the sample, which may hinder smooth cutting or damage the cut surface. In some cases, the section attached to the sample surface obstructs observation. In order to prevent this, the present invention is characterized in that when the sample fixed to the sample arm moves to a position where it does not touch the knife, it blows air to the knife or the sample block and blows off the attached section. The vertical movement of the sample arm must be repeated until the cut surface reaches the position of the sample to be observed, and generally requires a considerable amount of time. For this reason, in order to blow air manually, an operator is restrained by the ultra microtome device during the cutting process, which is troublesome and inefficient. Therefore, in the present invention, in the process in which the arm to which the sample is fixed repeats the vertical movement, it is provided with a mechanism that automatically blows air when the sample moves to a position where it does not touch the knife in synchronization with the vertical movement of the arm. Features. Furthermore, the present invention provides the air blowing mechanism in which the air blowing direction can be freely selected from the knife side and the sample side fixed to the arm, or the air blowing direction can be changed alternately, the number of times the sample is cut, and the cutting time. Alternatively, the end of the cutting process of the sample can be set in advance by the product of one cutting thickness and the number of cuttings.
なお、さらに詳細に説明すれば、本発明は下記の構成によって前記課題を解決できた。 In more detail, the present invention can solve the above problems by the following configuration.
(1)ウルトラミクロトームを用いて試料を切断する際、試料を樹脂等に包埋せず直接試料アームに固定し、ナイフボートには水等の液体を満たさない状態で前記試料を切断し、この切断によって形成された試料ブロック側の断面を顕微鏡観察に用いることを特徴とする顕微鏡観察用断面試料の作成方法。 (1) When cutting a sample using an ultramicrotome, the sample is not directly embedded in a resin or the like, but directly fixed to a sample arm, and the knife boat is cut without filling a liquid such as water. A method for preparing a cross-sectional sample for microscopic observation, wherein the cross section on the side of the sample block formed by cutting is used for microscopic observation.
(2)ウルトラミクロトームよって作製される試料切片が、切断される試料ブロックあるいは切断するナイフに付着することを防ぐ手段として、前記試料ブロックあるいは前記ナイフへの送風機構を備えることを特徴とするウルトラミクロトーム。 (2) An ultramicrotome comprising a blower mechanism for the sample block or the knife as a means for preventing the sample section produced by the ultramicrotome from adhering to the sample block to be cut or the knife to be cut. .
(3)試料が固定されたアームがナイフの位置で上下運動を繰り返すことによって、前記試料を切削する行程において、前記アームの上下運動と同期し、前記アームに固定された試料が前記ナイフに触れていない位置に移動したときのみに自動的に前記ナイフあるいは前記試料ブロックに送風する機構を備えることを特徴とするウルトラミクロトーム。 (3) The arm on which the sample is fixed repeats the vertical movement at the position of the knife, so that the sample fixed on the arm touches the knife in the process of cutting the sample in synchronization with the vertical movement of the arm. An ultramicrotome comprising a mechanism that automatically blows air to the knife or the sample block only when it is moved to a non-position.
(4)前記送風機構において、送風方向がナイフ側とアームに固定された試料側の2つを自由に選択できるか、あるいは交互に送風方向を変えることができることを特徴とする前記(2)記載のウルトラミクロトーム。 (4) In the air blowing mechanism, the air blowing direction can be freely selected from the knife side and the sample side fixed to the arm, or the air blowing direction can be changed alternately. Ultra microtome.
(5)試料の切削回数や、切削時間、あるいは1回の切削厚さと切削回数との積等により、試料の切削工程の終了をあらかじめ設定できることを特徴とする前記(2)または(3)に記載のウルトラミクロトーム。 (5) In the above (2) or (3), the end of the cutting process of the sample can be set in advance by the number of times of cutting of the sample, the cutting time, or the product of one cutting thickness and the number of times of cutting. The described ultramicrotome.
本発明により、試料の変質がなく、しかも切削による汚れのない顕微鏡観察に適した試料断面を効率的に作製することが可能になった。 According to the present invention, it is possible to efficiently produce a cross section of a sample that is suitable for microscopic observation without deterioration of the sample and without contamination due to cutting.
以下本発明を実施するための最良の形態を、実施例により詳しく説明する。 Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to examples.
送風機構は、圧縮空気、窒素ガス、回転羽を用いたファン等どのようなものであっても構わないが、切片を吹き飛ばすには一瞬であっても、強い風力が得られるものが望ましい。本実施例では圧縮窒素が充填された小型ボンベを用い、電磁弁の開閉により送風する方式を採用しており、送風圧力は圧力メータ7により、切り出された試料切片がナイフや試料ブロックに残らない圧力に調整した。 The blower mechanism may be anything such as compressed air, nitrogen gas, a fan using rotating blades, etc., but it is desirable that a strong wind force be obtained even in a moment to blow off the slice. In this embodiment, a small bomb filled with compressed nitrogen is used and air is blown by opening and closing a solenoid valve. The blower pressure is set by the pressure meter 7 so that a cut sample piece does not remain on the knife or the sample block. Adjusted to pressure.
図1を用いて本実施例を説明する。1はウルトラミクロトーム本体であり、本装置は、試料アーム2がナイフ5と接触する位置を予め入力できるようになっている。また、試料アーム2がナイフ5と接触する入力位置にあるとき、LED12が点灯するようになっている。
The present embodiment will be described with reference to FIG.
本実施例では、このLED12が点灯を開始する電気信号をトリガーとして、LED12が消灯している一定時間電磁弁7を開放して送風を行う機構とした。送風口は,ガスノズル支持棒9から図に示すように切断試料10とナイフ11の2方向に分岐設定されている。また、分岐部より先端部分の配管は、自由に変形して位置調整可能な蛇腹構造とし、さらにガス噴出口は細くしたものを用いた。本ウルトラームの本体は、切削回数等によってタイマーが設定できるようになっているので、このタイマーに応じて本送風機構も開始/停止が設定されている。
In this embodiment, the mechanism is such that the electric signal that starts turning on the LED 12 is used as a trigger, and the electromagnetic valve 7 is opened for a certain period of time when the LED 12 is turned off to blow air. As shown in the figure, the air blowing port is branched from the gas nozzle support rod 9 in the two directions of the
1 ウルトラミクロトーム本体
2 試料アーム
3 金属製試料チャック
4 試料
5 切断ナイフ
6 窒素ボンベ
7 圧力メータ
8 電磁弁
9 ガスノズル支持棒
10 試料側の蛇腹構造分岐配管とガス噴出口
11 ナイフ側の蛇腹構造分岐配管とガス噴出口
12 LED
13 ボンベ開閉バルブ
14 分岐前ガス導入配管
DESCRIPTION OF
13 Cylinder open /
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004191171A JP2006010620A (en) | 2004-06-29 | 2004-06-29 | Method of preparing cross-sectional specimen for microscopic observation and ultramicrotome |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004191171A JP2006010620A (en) | 2004-06-29 | 2004-06-29 | Method of preparing cross-sectional specimen for microscopic observation and ultramicrotome |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006010620A true JP2006010620A (en) | 2006-01-12 |
Family
ID=35778028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004191171A Withdrawn JP2006010620A (en) | 2004-06-29 | 2004-06-29 | Method of preparing cross-sectional specimen for microscopic observation and ultramicrotome |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006010620A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008076250A (en) * | 2006-09-21 | 2008-04-03 | Kurabo Ind Ltd | Thin section sample preparation method and apparatus |
JP2008164522A (en) * | 2006-12-28 | 2008-07-17 | Seiko Instruments Inc | Sliced piece preparing apparatus, cutting method of embedding block and sliced piece preparation method |
JP2018534584A (en) * | 2015-08-31 | 2018-11-22 | インヴィクロ, エルエルシーInvicro, Llc | Fluorescent tissue tomography (FHT) system and FHT method |
JP2020512529A (en) * | 2016-11-18 | 2020-04-23 | ティシュヴィジョン、インコーポレーテッド | Automated tissue section capture, indexing and storage system |
US11385222B2 (en) | 2015-05-21 | 2022-07-12 | Emit Imaging, Inc. | Fluorescence histo-tomography (FHT) systems and methods |
US11519832B2 (en) | 2015-03-11 | 2022-12-06 | Tissuevision, Inc. | Systems and methods for serial staining and imaging |
-
2004
- 2004-06-29 JP JP2004191171A patent/JP2006010620A/en not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008076250A (en) * | 2006-09-21 | 2008-04-03 | Kurabo Ind Ltd | Thin section sample preparation method and apparatus |
JP2008164522A (en) * | 2006-12-28 | 2008-07-17 | Seiko Instruments Inc | Sliced piece preparing apparatus, cutting method of embedding block and sliced piece preparation method |
US11519832B2 (en) | 2015-03-11 | 2022-12-06 | Tissuevision, Inc. | Systems and methods for serial staining and imaging |
US11385222B2 (en) | 2015-05-21 | 2022-07-12 | Emit Imaging, Inc. | Fluorescence histo-tomography (FHT) systems and methods |
JP2018534584A (en) * | 2015-08-31 | 2018-11-22 | インヴィクロ, エルエルシーInvicro, Llc | Fluorescent tissue tomography (FHT) system and FHT method |
JP2020169999A (en) * | 2015-08-31 | 2020-10-15 | エミット イメージング インコーポレイテッド | Fluorescence histo-tomography (fht) systems and fht methods |
JP7093086B2 (en) | 2015-08-31 | 2022-06-29 | エミット イメージング インコーポレイテッド | Fluorescent Tissue Tomography (FHT) System and FHT Method |
JP2020512529A (en) * | 2016-11-18 | 2020-04-23 | ティシュヴィジョン、インコーポレーテッド | Automated tissue section capture, indexing and storage system |
JP7197477B2 (en) | 2016-11-18 | 2022-12-27 | ティシュヴィジョン、インコーポレーテッド | Automated tissue section capture, indexing and storage system |
US12135261B2 (en) | 2016-11-18 | 2024-11-05 | Tissuevision, Inc. | Automated tissue section capture, indexing and storage system and methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6188068B1 (en) | Methods of examining a specimen and of preparing a specimen for transmission microscopic examination | |
Chang et al. | Fabrication of mechanically durable superhydrophobic wood surfaces using polydimethylsiloxane and silica nanoparticles | |
Tyrrell et al. | Images of nanobubbles on hydrophobic surfaces and their interactions | |
Sommers et al. | Creating micro-scale surface topology to achieve anisotropic wettability on an aluminum surface | |
US8728799B2 (en) | Apparatus and method for isolating histological sections produced with a microtome | |
US7041985B1 (en) | Manipulator for microscopy sample preparation and methods for making and use thereof | |
US8790594B2 (en) | Patterning of surfaces to control the storage, mobility and transport of liquids for microfluidic applications | |
JP2006010620A (en) | Method of preparing cross-sectional specimen for microscopic observation and ultramicrotome | |
US20100181495A1 (en) | Device and method for preparing specimens | |
WO2008051880B1 (en) | Method and apparatus for sample extraction and handling | |
US7482587B1 (en) | Circular silicon substrates with thin film membranes for electron microscopy | |
Hagler | Ultramicrotomy for biological electron microscopy | |
Deladi et al. | Fabrication of micromachined fountain pen with in situ characterization possibility of nanoscale surface modification | |
JP2005321758A (en) | Scanning probe apparatus and scanning probe processing method | |
Vieira et al. | Through-drop imaging of moving contact lines and contact areas on opaque water-repellent surfaces | |
Langford et al. | Focused ion beam micromachining of three-dimensional structures and three-dimensional reconstruction to assess their shape | |
Han et al. | Force controlled SU-8 micropipettes fabricated with a sideways process | |
Youn et al. | Maskless pattern fabrication on Pyrex 7740 glass surface by using nano-scratch with HF wet etching | |
CN104089963A (en) | Detection method of subsurface defect of optical glass | |
Bascom | Scanning electron microscopy of rubber tear | |
Rem et al. | Incubation Time Measurements in Thin‐Film Deposition | |
JP4831545B2 (en) | Extension device and extension method | |
Beard et al. | An atomic force microscope nanoscalpel for nanolithography and biological applications | |
Madsen et al. | Optimizing the fabrication of aluminum-coated fiber probes and their application to optical near-field lithography | |
CN210487654U (en) | Coating sample capable of observing section morphology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20070904 |