[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006006756A - Biological ceramic composite structure - Google Patents

Biological ceramic composite structure Download PDF

Info

Publication number
JP2006006756A
JP2006006756A JP2004190567A JP2004190567A JP2006006756A JP 2006006756 A JP2006006756 A JP 2006006756A JP 2004190567 A JP2004190567 A JP 2004190567A JP 2004190567 A JP2004190567 A JP 2004190567A JP 2006006756 A JP2006006756 A JP 2006006756A
Authority
JP
Japan
Prior art keywords
core
composite structure
intermediate layer
molded body
calcium phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004190567A
Other languages
Japanese (ja)
Inventor
Izumi Wakebe
泉 分部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004190567A priority Critical patent/JP2006006756A/en
Publication of JP2006006756A publication Critical patent/JP2006006756A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biological ceramic composite structure with optimum mechanical strength and bio-compatibility as a biological bone prosthesis material. <P>SOLUTION: The biological ceramic composite structure consists of a single-core structure or a multi-core structure with a plurality of bundled single-core structures. The single-core structure comprises a long core material made of metal or high-strength ceramics, an intermediate layer made of calcium phosphate whose porosity is not more than 10%, or a mixture of calcium phosphate and at least one of the materials constituting the core material, and a facing material made of calcium phosphate whose porosity is at least 20%. The core material is covered with the intermediate layer, and the intermediate layer is covered with the facing material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、生体内に埋入する骨補填材料として好適な生体用セラミック構造体に関する。   The present invention relates to a living body ceramic structure suitable as a bone filling material to be embedded in a living body.

従来より、外傷などによって生じた骨の欠損部に骨補填材を用いて骨を修復させることが行われている。この骨補填材には骨形成の足場を提供するものやそれ自体が骨に吸収されつつ新生骨芽細胞の成長を促進するものなどが知られている。これらの材料に必要な特性としては無毒、安全でしかも機械的強度に優れていること、また生体組織に対して親和性があり骨組織の細胞や血管組織と結合しやすい材料であることが要求される。   2. Description of the Related Art Conventionally, bone has been repaired using a bone prosthetic material in a bone defect caused by trauma or the like. As this bone prosthetic material, those that provide a scaffold for bone formation and those that promote the growth of new osteoblasts while being absorbed by bone are known. The properties required for these materials are non-toxic, safe and excellent in mechanical strength, and must be compatible with living tissue and easily bind to bone tissue cells and vascular tissue. Is done.

このような材料として、これまでにリン酸三カルシウム(TCP)、ハイドロキシアパタイト(HAP)などの焼結体からなるリン酸カルシウム系焼結体が提案されている。しかし、これらのリン酸カルシウム系焼結体は生体親和性に優れているものの靭性値が極めて小さく、容易に破折するため信頼性のある実用材料として使用することが困難であった。   As such a material, a calcium phosphate-based sintered body made of a sintered body such as tricalcium phosphate (TCP) or hydroxyapatite (HAP) has been proposed so far. However, these calcium phosphate-based sintered bodies are excellent in biocompatibility, but have extremely low toughness values and easily break, making them difficult to use as reliable practical materials.

この破壊靱性値のリン酸カルシウム系焼結体の欠点をカバーする為に他の材料との複合化や、リン酸カルシウム自体の緻密化が試みられてきた。例えば特許文献1ではZrO、Al、TiO,SiC、Siからなる基体の全部または表面部に平均径0.1〜2mmの多数の空隙を設けて、該空隙内に多孔質のリン酸カルシウム系化合物を充填することにより高強度を保ちつつ良好な骨形成可能となることが開示されている。 In order to cover the defects of the calcium phosphate sintered body having this fracture toughness value, attempts have been made to combine it with other materials or to make the calcium phosphate itself dense. For example, in Patent Document 1, a large number of voids having an average diameter of 0.1 to 2 mm are provided in the entire or surface portion of a substrate made of ZrO 2 , Al 2 O 3 , TiO 2 , SiC, and Si 3 N 4. It is disclosed that filling with a porous calcium phosphate compound enables good bone formation while maintaining high strength.

また、特許文献2にはチタン粉末を細管に詰め、かつこの細管をリン酸カルシウムの1種であるハイドロキシアパタイト粉末を詰めた太い管の中心部に配置して回転させながら細管を抜くことによって、組成が傾斜した棒状の成形体を作製することができ、これに冷間静水圧プレス(CIP)を施し、続いて放電プラズマ(SPS)焼成することによって、中心部分(芯材部)がチタン金属で外周部がアパタイトセラミックスの傾斜した構造からなる焼結体が得られたことが記載されている。
特開平2−52664号公報 特開2001−259017号公報
Patent Document 2 discloses a composition in which titanium powder is packed in a thin tube, and this thin tube is placed in the center of a thick tube filled with hydroxyapatite powder, which is a kind of calcium phosphate, and the tube is pulled out while rotating. An inclined rod-shaped molded body can be produced, and this is subjected to cold isostatic pressing (CIP), followed by discharge plasma (SPS) firing, so that the central portion (core material portion) is made of titanium metal and has an outer periphery. It is described that a sintered body having an inclined structure of apatite ceramics was obtained.
JP-A-2-52664 JP 2001-259017 A

しかしながら、上記特許文献1に記載された基体に多数の空隙を形成する方法では基体の強度が低下する傾向にあり、上述の従来のセラミックスでは強度が不十分で生体部材が破損する恐れがあった。また、生体親和性に優れるリン酸カルシウム系化合物が局所的に分断された状態で存在するために血液の流れが滞ってしまい、骨芽細胞がなかなか形成されないという問題があった。   However, the method of forming a large number of voids in the substrate described in Patent Document 1 tends to lower the strength of the substrate, and the above-described conventional ceramics have insufficient strength and may cause damage to the biological member. . In addition, since the calcium phosphate compound having excellent biocompatibility exists in a state where it is locally divided, there is a problem that blood flow is delayed and osteoblasts are not easily formed.

また、上記特許文献2に記載されたチタン粉末を詰めた細管をハイドロキシアパタイト粉末を詰めた太い管の中心部に配置して回転させながら細管を抜いて組成が傾斜した棒状体を成形して焼成した焼結体では、焼結体の各部位における緻密度を制御することができず、生体材料としての機械的強度と生体親和性とを最適化するには至っていなかった。   In addition, a thin tube packed with titanium powder described in Patent Document 2 is placed in the center of a thick tube packed with hydroxyapatite powder, and the tube is pulled out while rotating to form a rod-shaped body with an inclined composition and fired. In the sintered body, the density at each part of the sintered body cannot be controlled, and the mechanical strength and biocompatibility as a biomaterial have not been optimized.

本発明は上記課題を解決するためになされたもので、その目的は、生体骨補填材料として最適な機械的強度と生体親和性とを兼ね備えた生体用セラミック複合構造体を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a ceramic composite structure for a living body that has both optimum mechanical strength and biocompatibility as a living bone substitute material.

本発明者らは上記課題について検討した結果、十分な強度を有する緻密な金属または高強度セラミックスを芯材とし、その表面を気孔率10%以下のリン酸カルシウムまたはリン酸カルシウムと前記芯材を構成する材料のうちの少なくとも1種との混合物からなる中間層にて被覆するとともに、該中間層の外周を気孔率20%以上のリン酸カルシウムからなる表皮材にて被覆してなる単芯構造体、もしくはこの単芯構造体を複数本集束した多芯構造体が、機械的強度が高く、かつ骨芽細胞が十分に成長することから、骨補填材料として好適なセラミック複合構造体となることを知見した。   As a result of examining the above problems, the present inventors have used a dense metal or high-strength ceramic having a sufficient strength as a core material, and the surface of the calcium phosphate or calcium phosphate having a porosity of 10% or less and a material constituting the core material. A single-core structure formed by coating with an intermediate layer made of a mixture of at least one of them, and covering the outer periphery of the intermediate layer with a skin material made of calcium phosphate having a porosity of 20% or more, or this single-core It has been found that a multi-core structure obtained by concentrating a plurality of structures has a high mechanical strength and sufficient osteoblasts grow, so that it becomes a ceramic composite structure suitable as a bone filling material.

すなわち、本発明の生体用セラミック複合構造体は、金属または高強度セラミックスからなる長尺状の芯材の外周を、気孔率10%以下のリン酸カルシウムまたはリン酸カルシウムと前記芯材を構成する材料のうちの少なくとも1種との混合物からなる中間層にて被覆するとともに、該中間層の外周を気孔率20%以上のリン酸カルシウムからなる表皮材にて被覆してなることを特徴とするものである。   That is, the biomedical ceramic composite structure according to the present invention has an outer periphery of a long core material made of metal or high-strength ceramic, and includes calcium phosphate having a porosity of 10% or less, or calcium phosphate and a material constituting the core material. The intermediate layer is coated with an intermediate layer made of a mixture of at least one kind, and the outer periphery of the intermediate layer is covered with a skin material made of calcium phosphate having a porosity of 20% or more.

ここで、前記複合構造体の横断面における前記芯材の面積比率cが0.2〜0.9、前記中間層の面積比率mが0.05〜0.5、前記表皮材の面積比sが0.05〜0.2である場合に特に骨補填材料としての強度および生体親和性のバランスがよく、骨補填材料としての効果が有効に発揮される。   Here, the area ratio c of the core material in the cross section of the composite structure is 0.2 to 0.9, the area ratio m of the intermediate layer is 0.05 to 0.5, and the area ratio s of the skin material. Is 0.05 to 0.2, the balance between strength and biocompatibility as a bone filling material is particularly good, and the effect as a bone filling material is effectively exhibited.

上記本発明の生体用セラミック複合構造体は、構造体各部位における組成と緻密度を最適な条件に制御したものであることから、機械的強度が高く、かつ骨芽細胞が十分に成長することから、骨補填材料として好適なセラミック複合構造体となる。   The biological ceramic composite structure of the present invention has a high mechanical strength and sufficient growth of osteoblasts because the composition and density in each part of the structure are controlled to the optimum conditions. Therefore, a ceramic composite structure suitable as a bone filling material is obtained.

本発明の複合構造体について、その一実施例である図を基に説明する。   The composite structure of the present invention will be described with reference to the drawings which are one example thereof.

図1(a)によれば、複合構造体1は、長尺状で好ましくは気孔率3%以下の緻密な金属または高強度セラミックスからなる芯材2の外周を、気孔率10%以下のリン酸カルシウムまたはリン酸カルシウムと前記芯材2を構成する材料のうちの少なくとも1種との混合物からなる中間層3にて被覆するとともに、中間層3の外周を気孔率20%以上のリン酸カルシウムからなる表皮材4にて被覆してなる単芯構造体5からなる。単芯構造体5は図1(b)の斜視図に示すように同心円断面を有する円柱状構造をなしている。   According to FIG. 1 (a), the composite structure 1 is a long, preferably calcium phosphate having a porosity of 10% or less around the outer periphery of a core material 2 made of a dense metal or high-strength ceramic with a porosity of 3% or less. Or it coats with the intermediate | middle layer 3 which consists of a mixture of calcium phosphate and at least 1 sort (s) of the material which comprises the said core material 2, and the outer periphery of the intermediate | middle layer 3 is covered with the skin material 4 which consists of calcium phosphate with a porosity of 20% or more. It consists of the single core structure 5 formed by coating. As shown in the perspective view of FIG. 1B, the single-core structure 5 has a cylindrical structure having a concentric cross section.

ここで、上記構成からなる本発明の生体用セラミック複合構造体1は、機械的強度が高く、かつ骨芽細胞が十分に成長することから、骨補填材料として好適な構造体となる。   Here, the living body ceramic composite structure 1 of the present invention having the above-described structure has a high mechanical strength and sufficiently grows osteoblasts, and thus is a structure suitable as a bone filling material.

すなわち、芯材2の気孔率が3%を越えると生体材料としての機械的強度が得られ難い。芯材2の気孔率の望ましい範囲は2%以下、さらに望ましい範囲は1%以下である。また、表皮材4の気孔率が20%未満であると、骨芽細胞の成長が抑制され生体親和性が損なわれて治癒に長時間を要することになる。表皮材4の気孔率の望ましい範囲は25%、さらに望ましい範囲は30%以上である。さらに、気孔率10%以下の中間層3が存在しないと、芯材2と表皮材4との界面で剥離が発生する恐れがあり、構造体としての信頼性が損なわれる。中間層3の気孔率の望ましい範囲は7%以下、さらに望ましい範囲は5%以下である。   That is, when the porosity of the core material 2 exceeds 3%, it is difficult to obtain mechanical strength as a biomaterial. A desirable range of the porosity of the core material 2 is 2% or less, and a more desirable range is 1% or less. Moreover, when the porosity of the skin material 4 is less than 20%, the growth of osteoblasts is suppressed, biocompatibility is impaired, and healing takes a long time. A desirable range of the porosity of the skin material 4 is 25%, and a more desirable range is 30% or more. Furthermore, if the intermediate layer 3 having a porosity of 10% or less does not exist, peeling may occur at the interface between the core material 2 and the skin material 4, and the reliability as a structure is impaired. A desirable range of the porosity of the intermediate layer 3 is 7% or less, and a more desirable range is 5% or less.

また、複合構造体1の横断面における芯材2の面積比率cが0.2〜0.9、望ましくは0.5〜0.9であり、かつ中間層3の面積比率mが0.05〜0.5、望ましくは0.1〜0.2であり、さらに表皮材4の面積比sが0.05〜0.2、望ましくは0.1〜0.2である場合に特に骨補填材料としての強度および生体親和性のバランスがよく、骨補填材料としての効果が有効に発揮される。   Further, the area ratio c of the core material 2 in the cross section of the composite structure 1 is 0.2 to 0.9, preferably 0.5 to 0.9, and the area ratio m of the intermediate layer 3 is 0.05. -0.5, preferably 0.1-0.2, and especially when the area ratio s of the skin material 4 is 0.05-0.2, preferably 0.1-0.2. The balance between strength and biocompatibility as a material is good, and the effect as a bone grafting material is effectively exhibited.

さらに、本発明によれば、生体用セラミック複合構造体としては図1の単芯構造体5に限定されるものではなく、図2(a)に示すように、単芯構造体5を複数本収束させた多芯構造体6であってもよく、この場合には生体親和性セラミックスの表皮材4が緻密に焼結したセラミックスあるいは金属の芯材2とその周囲を取り巻く中間層3の島状に点在する部分を連続的に取り囲む構造となる。   Furthermore, according to the present invention, the bio-ceramic composite structure is not limited to the single-core structure 5 of FIG. 1, and a plurality of single-core structures 5 are provided as shown in FIG. The converged multi-core structure 6 may be used. In this case, the skin material 4 of the biocompatible ceramics is a densely sintered ceramic or metal core 2 and an island shape of the intermediate layer 3 surrounding the periphery. It becomes the structure which continuously surrounds the part which is scattered in.

なお、複合構造体1が上記多芯構造体6からなることによって、複合構造体1のヤング率を調整することも可能であり、例えば生体骨のヤング率30GPa程度に制御することにより、骨補填材料としてより好適なものとなる。   In addition, it is also possible to adjust the Young's modulus of the composite structure 1 because the composite structure 1 is composed of the multi-core structure 6. It becomes a more suitable material.

この多芯構造体6の場合、多芯構造のために芯材2の気孔率は前記単芯構造体における芯材2の気孔率よりも若干大きくてもよい。すなわち、この場合の気孔率は5%以下であることが望ましく、さらに望ましい範囲は4%以下である。   In the case of this multi-core structure 6, the porosity of the core material 2 may be slightly larger than the porosity of the core material 2 in the single-core structure because of the multi-core structure. That is, the porosity in this case is preferably 5% or less, and more preferably 4% or less.

(表皮材および芯材)
本発明において用いる複合構造体1の芯材2の材質としては、生体為害性のない材料であり望ましくは生体適合性を有する気孔率3%以下の緻密なセラミックスあるいは金属であり、例えばステンレス鋼(例えば、SUS316、SUS316L)、コバルト−クロム合金、コバルト−クロム−ニッケル合金、チタン、チタン合金(例えばTi−6%Al−4%V、Ti−49〜51%Ni)等の耐食性に優れる金属を用いることができる。その中でも、特に形状記憶合金(Ti−49〜51%Ni)を用いるのが好ましい。この形状記憶合金は、繰り返し荷重に対する追従性、復元性、疲労特性が優れるため、長期の埋入において安定性、耐久性が向上する。
(Skin material and core material)
The material of the core material 2 of the composite structure 1 used in the present invention is a material that is not harmful to the living body and is preferably a dense ceramic or metal having a porosity of 3% or less that has biocompatibility, such as stainless steel ( For example, a metal having excellent corrosion resistance such as SUS316, SUS316L), cobalt-chromium alloy, cobalt-chromium-nickel alloy, titanium, titanium alloy (eg, Ti-6% Al-4% V, Ti-49-51% Ni). Can be used. Among them, it is particularly preferable to use a shape memory alloy (Ti-49 to 51% Ni). Since this shape memory alloy has excellent followability to repeated loads, resilience, and fatigue characteristics, stability and durability are improved during long-term embedding.

または、芯材2としては、例えばアルミナ(Al)、ジルコニア(ZrO)、シリカ(SiO)、チタニア(TiO)、窒化ケイ素(Si)、炭化ケイ素(SiC)等のセラミックス等の強度および硬度に優れる材料を用いることができる。ここで挙げられたセラミックスには適宜Ti、Mg、Zr、Hf、Y系などの助剤を含んでいても良い。 Alternatively, as the core material 2, for example, alumina (Al 2 O 3 ), zirconia (ZrO 2 ), silica (SiO 2 ), titania (TiO 2 ), silicon nitride (Si 3 N 4 ), silicon carbide (SiC), etc. A material having excellent strength and hardness, such as ceramics, can be used. The ceramics mentioned here may contain auxiliary agents such as Ti, Mg, Zr, Hf, and Y as appropriate.

一方、表皮材としては生体親和性の多孔質セラミックスとして一般的に知られているリン酸カルシウム化合物が好適で、例えばリン酸三カルシウムTCP(Ca(PO)、リン酸四カルシウム(Ca(POO)、リン酸八カルシウム(Ca(PO・5HO)、リン酸一水素カルシウム(CaHPO)、リン酸二水素カルシウム(Ca(HPO)・HO)、ハイドロキシアパタイトHAP(Ca10(PO(OH))、ジルコニア(ZrO)などの無機材質、または、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリアリルエーテルケトンのようなケトン系樹脂や、ポリフェニレンサルフィド、ポリサルフォン等の熱可塑性樹脂が挙げられる。本発明では、これらのうちの1種または2種以上を任意に組み合せて用いることができる。このような生体用樹脂材料8中には、例えば、安定剤、強化材のような各種添加剤が添加されていてもよい。 On the other hand, the skin material is suitable calcium phosphate compounds which are commonly known as biocompatible porous ceramic, for example tricalcium phosphate TCP (Ca 3 (PO 4) 2), tetracalcium phosphate (Ca 4 (PO 4) 2 O), octacalcium phosphate (Ca 8 H 2 (PO 4 ) 6 · 5H 2 O), calcium hydrogen phosphate (CaHPO 4), calcium dihydrogen phosphate (Ca (H 2 PO 4 ) · H 2 O), hydroxyapatite HAP (Ca 10 (PO 4 ) 6 (OH) 2 ), zirconia (ZrO 2 ), or other inorganic materials, or polyether ketone, polyether ether ketone, polyallyl ether ketone Examples of such ketone resins and thermoplastic resins such as polyphenylene sulfide and polysulfone. In the present invention, one or more of these can be used in any combination. Various additives such as stabilizers and reinforcing materials may be added to the biomedical resin material 8.

また、表皮材をなす焼結体の結晶粒子の平均二次粒径は、骨芽細胞を成長させるに必要な気孔を保持する為に10〜300μm、望ましくは50〜200μmであることがよい。一方、芯材をなす緻密なセラミックスあるいは金属は靭性および強度向上の点0.1〜10μm、特に0.5〜3μmであることが望ましい。   In addition, the average secondary particle size of the crystal particles of the sintered body forming the skin material is 10 to 300 μm, preferably 50 to 200 μm, in order to maintain pores necessary for growing osteoblasts. On the other hand, the dense ceramic or metal forming the core material is preferably 0.1 to 10 μm, particularly 0.5 to 3 μm in terms of improving toughness and strength.

さらに、複合構造体1のサイズは、図3に示すように補填する損傷した生体骨20の部位および形状に対応させて適宜変化させることができるが、表皮材4の多孔質リン酸カルシウムセラミックスの気孔サイズが50〜200μmであるため、単芯構造体5として0.5〜5mm程度が良い。   Furthermore, the size of the composite structure 1 can be changed as appropriate according to the site and shape of the damaged living bone 20 to be compensated as shown in FIG. 3, but the pore size of the porous calcium phosphate ceramics of the skin material 4 Is 50 to 200 μm, the single core structure 5 is preferably about 0.5 to 5 mm.

また、複合構造体の構成としては、図1および2に示す構造体の形態の他に、図4に示すような(a)複合構造体1をシート状に並べたもの9A、(b)(a)のシートを同じ方向に複数枚積層したもの9B、(c)(a)のシートを異なる方向に複数枚積層したもの9Cのいずれであってもよい。これらのシート状複合構造体は頭蓋骨や骨盤などに用いることが出来る。   In addition to the form of the structure shown in FIGS. 1 and 2, the structure of the composite structure is (A) a composite structure 1 as shown in FIG. Either 9B in which a plurality of sheets of a) are stacked in the same direction, or 9C in which a plurality of sheets of (c) and (a) are stacked in different directions may be used. These sheet-like composite structures can be used for skulls and pelvises.

(製造方法)
次に、本発明の複合構造体を製造する方法について、その一例である芯材がアルミナ、表皮材がハイドロキシアパタイトの場合について図5の模式図をもとに説明する。
(Production method)
Next, a method for producing the composite structure of the present invention will be described based on the schematic diagram of FIG. 5 in the case where the core material is alumina and the skin material is hydroxyapatite.

まず、平均粒径0.01〜3.5μmのアルミナ粉末に適宜助剤を添加・混合し、これにパラフィンワックス、ポリスチレン、ポリエチレン、エチレン−エチルアクリレ−ト、エチレン−ビニルアセテート、ポリブチルメタクリレート、ポリエチレングリコール、ジブチルフタレート等の有機バインダを添加、混錬して、プレス成形、押出成形または鋳込成形等の成形方法により円柱形状に芯材用成形体11を作製する。   First, an auxiliary agent is appropriately added to and mixed with alumina powder having an average particle diameter of 0.01 to 3.5 μm, and paraffin wax, polystyrene, polyethylene, ethylene-ethyl acrylate, ethylene-vinyl acetate, polybutyl methacrylate, polyethylene are added thereto. An organic binder such as glycol or dibutyl phthalate is added and kneaded, and the core material molded body 11 is formed into a cylindrical shape by a molding method such as press molding, extrusion molding, or cast molding.

一方、平均粒径0.1〜10μmのハイドロキシアパタイト原料粉末に前述のバインダ等に加え適宜、分散剤・発泡剤・消泡剤を添加、混錬して、プレス成形、押出成形または鋳込成形等の成形方法により半割円筒形状の2本の中間層用成形体12を作製する。   On the other hand, a hydroxyapatite raw material powder having an average particle size of 0.1 to 10 μm is appropriately added with a dispersant, a foaming agent, and an antifoaming agent in addition to the above-mentioned binder and kneaded, and then press molding, extrusion molding or cast molding. Two intermediate layer shaped bodies 12 having a half-cylindrical shape are produced by a molding method such as the above.

他方、平均粒径0.1〜100μmのハイドロキシアパタイト原料粉末に前述のバインダ等に加え適宜、分散剤・発泡剤・消泡剤を添加、混錬して、プレス成形、押出成形または鋳込成形等の成形方法により半割円筒形状の2本の表皮材用成形体13を作製する。   On the other hand, a hydroxyapatite raw material powder having an average particle size of 0.1 to 100 μm is appropriately added with a dispersant, a foaming agent, and an antifoaming agent in addition to the above-mentioned binder and kneaded, and press molding, extrusion molding, or cast molding. The two half-cylindrical shaped moldings 13 for the skin material are produced by a molding method such as the above.

本発明によれば、中間層6の気孔率を10%以下に制御するために上記中間層用成形体12用の原料を混合するに際して、前記有機バインダの添加量を40〜95体積部、特に50〜90体積部とすることが望ましい。また、中間層用成形体用の前記ハイドロキシアパタイト原料粉末は二次粒子径が1〜50μm、特に2〜10μmに造粒しておくことが緻密な組織の焼結体を作製する点で望ましい。   According to the present invention, when mixing the raw material for the intermediate layer molded body 12 in order to control the porosity of the intermediate layer 6 to 10% or less, the amount of the organic binder added is 40 to 95 parts by volume, particularly 50 to 90 parts by volume are desirable. In addition, it is desirable that the hydroxyapatite raw material powder for the intermediate layer molded body is granulated to have a secondary particle diameter of 1 to 50 μm, particularly 2 to 10 μm, in order to produce a sintered body having a dense structure.

さらに、表皮材4の気孔率を20%以上に制御するために上記表皮材用成形体13用の原料を混合するに際して、前記有機バインダの添加量を100〜200体積部、特に120〜150体積部とすることが望ましい。さらには、表皮材用成形体用の前記ハイドロキシアパタイト原料粉末は二次粒子径が20〜400μm、特に50〜200μmに造粒しておいたほうが均一な気孔径および組織を作製する点で望ましい。   Furthermore, when mixing the raw material for the skin material molded body 13 in order to control the porosity of the skin material 4 to 20% or more, the amount of the organic binder added is 100 to 200 parts by volume, particularly 120 to 150 volumes. It is desirable to be a part. Furthermore, it is desirable that the hydroxyapatite raw material powder for the skin material molded body is granulated to have a secondary particle size of 20 to 400 μm, particularly 50 to 200 μm, in order to produce a uniform pore size and structure.

次に、芯材用成形体11の外周に2本の中間層用成形体12を配し、さらにこの中間層用成形体12の外周に表皮材用成形体13を配した複合成形体14を作製し、この複合成形体14を共押出成形する(芯材用成形体11、中間層用成形体12および表皮材用成形体13を同時に押出成形する)ことにより芯材用成形体11の外周に中間層用成形体12および表皮材用成形体13が順次被覆され細い径に伸延された単芯成形体15を作製する(工程(b)参照)。また、マルチ繊維(フィラメント)タイプの多芯成形体16を作製するには、上記共押出しした長尺状の単芯成形体15を複数本集束して再度共押出し成形すればよく、この方法によれば、成形体中の複合構造体同士のより強固な密着性を得ることができる。(図6参照)。   Next, a composite molded body 14 in which two intermediate layer molded bodies 12 are arranged on the outer periphery of the core material molded body 11 and a skin material molded body 13 is arranged on the outer periphery of the intermediate layer molded body 12 is provided. The composite molded body 14 is manufactured and coextruded (the core molded body 11, the intermediate layer molded body 12 and the skin material molded body 13 are simultaneously extruded) to form the outer periphery of the core molded body 11. The intermediate layer molded body 12 and the skin material molded body 13 are sequentially coated to produce a single core molded body 15 extended to a thin diameter (see step (b)). Further, in order to produce a multi-fiber (filament) type multi-core molded body 16, a plurality of the co-extruded long single-core molded bodies 15 may be collected and co-extruded again. According to this, it is possible to obtain stronger adhesion between the composite structures in the molded body. (See FIG. 6).

なお、上記共押出成形においては、口金を変えること等により、上記伸延された長尺状の成形体の断面形状を、円形、三角形、四角形または六角形等の所望の形状に成形することも可能である。   In the coextrusion molding, the cross-sectional shape of the elongated elongated shaped body can be formed into a desired shape such as a circle, a triangle, a quadrangle, or a hexagon by changing the die. It is.

また、本発明によれば、図4に示したような、単芯成形体5、多芯成形体6をシート状に集束したシート状複合成形体を形成する場合には、前述のようにして作製した単芯成形体5、多芯成形体6を並べてシート状成形体とする。さらに、所望により、配列したシート状成形体を、シート状成形体中の単芯成形体5、多芯成形体6同士が平行、直交または45°等の所定の角度をなすように積層させた積層成形体とすることもできる。その場合、単芯成形体5、多芯成形体6間に所望により上記バインダなどの接着材を介在させ、さらに、このシート状成形体に冷間静水圧プレス(CIP)などによって圧力を印加することもでき、さらにはロール等を用いてシート状成形体をロール圧延成形することも可能である。さらにまた、シート状成形体を作製する場合、単芯成形体5または多芯成形体6を整列させる際に公知のラピッドプロトタイピング法などの成形法を用いることも可能である。   Further, according to the present invention, as shown in FIG. 4, when forming a sheet-like composite molded body in which the single-core molded body 5 and the multi-core molded body 6 are converged into a sheet shape, as described above. The produced single-core molded body 5 and multi-core molded body 6 are arranged to form a sheet-like molded body. Further, if desired, the arranged sheet-like molded bodies are laminated so that the single-core molded bodies 5 and the multi-core molded bodies 6 in the sheet-like molded bodies are parallel, orthogonal, or at a predetermined angle such as 45 °. It can also be set as a laminated molded body. In that case, an adhesive such as the binder is interposed between the single-core molded body 5 and the multi-core molded body 6 as desired, and pressure is applied to the sheet-shaped molded body by a cold isostatic pressing (CIP) or the like. It is also possible to roll-roll the sheet-like molded body using a roll or the like. Furthermore, when producing a sheet-like molded body, it is also possible to use a molding method such as a known rapid prototyping method when aligning the single-core molded body 5 or the multi-core molded body 6.

その後、前記成形体を脱バインダ処理した後、焼成することにより本発明の複合構造体を作製することができる。焼成方法は、芯材および表皮材によって、真空または雰囲気焼成、ガス圧焼成、ホットプレス、放電プラズマ焼結法などが用いられる。焼成温度は750℃〜1300℃とすることが望ましい。   Thereafter, the molded body is subjected to a binder removal treatment and then fired to produce the composite structure of the present invention. As the firing method, vacuum or atmosphere firing, gas pressure firing, hot press, discharge plasma sintering, or the like is used depending on the core material and the skin material. The firing temperature is desirably 750 ° C to 1300 ° C.

焼結後、レントゲンやMRI、CTなどを用いて測定した生体骨の欠損部に合致する形状に加工することにより骨補填材料として用いることが出来る。また、前記ラピッドプロトタイピング技術を用いてあらかじめ所望の形状に成形した後、焼結処理を行ってもよい。   After sintering, it can be used as a bone prosthetic material by processing it into a shape that matches the defect of the living bone measured using X-rays, MRI, CT, or the like. Moreover, after forming into a desired shape in advance using the rapid prototyping technique, a sintering process may be performed.

平均粒径0.3μmのチタン粉末に対して、バインダ、および滑剤を合計で85質量部の割合で添加、混錬した後、プレス成形により円柱形状の核材用成形体を作製した。次に、平均粒径0.2μmのハイドロキシアパタイト粉末に対して、バインダ、および滑剤を合計で50質量部の割合で添加、混錬した後、プレス成形により半割円筒状の中間層用成形体を2本作製し、芯材用成形体の周囲に中間層用成形体を配置した。また、平均粒径0.2μmのハイドロキシアパタイト粉末に対して、バインダ、および滑剤を合計で120質量部の割合で添加、混錬した後、プレス成形により半割円筒状の表皮材用成形体を2本作製し、中間層用成形体の周囲に表皮材用成形体を被覆した複合成形体を作製した。   After adding and kneading a binder and a lubricant in a total proportion of 85 parts by mass to titanium powder having an average particle size of 0.3 μm, a cylindrical shaped core material was produced by press molding. Next, after adding and kneading a binder and a lubricant in a proportion of 50 parts by mass to the hydroxyapatite powder having an average particle size of 0.2 μm, the molded product for a half-cylindrical intermediate layer is formed by press molding. 2 were prepared, and the intermediate layer molded body was disposed around the core body molded body. Further, after adding and kneading a binder and a lubricant in a ratio of 120 parts by mass in total to a hydroxyapatite powder having an average particle size of 0.2 μm, a half-cylindrical molded body for skin material is formed by press molding. Two composites were produced, and a composite molded body in which the molded body for the skin material was covered around the molded body for the intermediate layer.

そして、この複合成形体を共押出し成形することにより、芯材−中間層−表皮材の3重構造からなる単芯成形体を作製した。さらに、この単芯成形体を300〜700℃まで72時間で昇温させることによって脱バインダ処理を行った後、真空中、放電プラズマ焼結法にて1200℃で10分間焼成した。   And the single core molded object which consists of a triple structure of a core material-intermediate layer-skin material was produced by coextrusion molding of this composite molded object. Furthermore, this single-core molded body was subjected to binder removal treatment by raising the temperature to 300 to 700 ° C. in 72 hours, and then fired at 1200 ° C. for 10 minutes in a vacuum by a discharge plasma sintering method.

得られた複合構造体をφ10×30mmのサイズに加工し、JISR1601に基づく3点曲げ試験に供し曲げ強度を測定したところ100MPaであった。また、得られた複合構造体の研磨した横断面を金属顕微鏡または走査型電子顕微鏡にて観察し、画像解析法にて各部位の面積比率を算出したところ、芯材の面積比率cは0.75、中間層の面積比率mは0.17、前記表皮材の面積比sが0.08であった。   The obtained composite structure was processed into a size of φ10 × 30 mm, and subjected to a three-point bending test based on JIS R1601, and the bending strength was measured. Moreover, when the cross section which grind | polished the obtained composite structure was observed with the metal microscope or the scanning electron microscope, and the area ratio of each site | part was computed by the image-analysis method, the area ratio c of a core material is 0. 75, the area ratio m of the intermediate layer was 0.17, and the area ratio s of the skin material was 0.08.

また、この組織観察写真から芯材中に含まれる気孔の面積比率を測定して芯材中の気孔率を算出したところ0.2%であった。また、同様にして中間層の気孔率は5%、外皮材の気孔率は32%であった。   Moreover, when the area ratio of the pores contained in the core material was measured from the structure observation photograph and the porosity in the core material was calculated, it was 0.2%. Similarly, the porosity of the intermediate layer was 5%, and the porosity of the outer skin material was 32%.

(比較例1)
水素化チタン粉末0.2gをガラス製の円筒細管内に装填し、これをハイドロキシアパタイト粉末0.2gを充填したゴム製の円筒太管の中心部分に載置してガラス製細管を回転しながら抜き取った後、冷間静水圧プレスにて1000MPaの加圧を行った。そして、この複合成形体を300〜700℃まで72時間で昇温させることによって脱バインダ処理を行った後、真空中、放電プラズマ焼結法にて1200℃で10分間焼成して複合構造体を作製した。
(Comparative Example 1)
While loading 0.2 g of titanium hydride powder into a cylindrical cylindrical tube made of glass, this was placed on the central part of a cylindrical rubber tube filled with 0.2 g of hydroxyapatite powder while rotating the thin glass tube. After extracting, pressurization of 1000 MPa was performed with a cold isostatic press. And after performing binder removal processing by heating up this composite molded object to 300-700 degreeC in 72 hours, it baked at 1200 degreeC for 10 minutes by the discharge plasma sintering method in vacuum, and a composite structure is obtained. Produced.

得られた複合構造体に対して、実施例と同様に評価した結果、曲げ強度110MPaであった。また、得られた複合構造体の研磨した横断面を金属顕微鏡または走査型電子顕微鏡にて観察し、画像解析法にて芯材と表皮材との面積比率c/sを算出したところ、面積比率c/sは5であった。さらに、この組織観察写真から構造体の中心から構造体全体の半径Rに対して1/5の長さを半径とする構造体の中心円部分の面積領域中に含まれる気孔の面積比率を測定して中心部の気孔率を算出したところ1%であった。また、同様にして外周から構造体全体の半径Rに対して1/5の長さの外周リング部分について気孔率を測定したところ、気孔率は2%であり、生体親和性に乏しいことが確認された。   As a result of evaluating the obtained composite structure in the same manner as in the example, the bending strength was 110 MPa. Further, the polished cross section of the obtained composite structure was observed with a metal microscope or a scanning electron microscope, and the area ratio c / s between the core material and the skin material was calculated by an image analysis method. c / s was 5. Furthermore, from this structure observation photograph, the area ratio of pores included in the area of the central circle portion of the structure having a radius of 1/5 from the radius R of the entire structure from the center of the structure is measured. Then, the porosity of the central part was calculated to be 1%. Similarly, when the porosity of the outer peripheral ring portion having a length of 1/5 with respect to the radius R of the entire structure was measured from the outer periphery, it was confirmed that the porosity was 2% and the biocompatibility was poor. It was done.

(比較例2)
実施例の複合構造体に対して、中間層中の有機バインダの添加量を90重量部に変える以外は実施例と同様にして複合構造体を作製した。
(Comparative Example 2)
A composite structure was manufactured in the same manner as in the example except that the amount of the organic binder added in the intermediate layer was changed to 90 parts by weight with respect to the composite structure of the example.

実施例と同様に評価した結果、得られた複合構造体の研磨した横断面を金属顕微鏡または走査型電子顕微鏡にて観察し、画像解析法にて芯材と表皮材との面積比率c/sを算出したところ、面積比率c/sは5であった。さらに、この組織観察写真から、核材の気孔率0.2%、中間層の気孔率は15%、外皮材の気孔率は27%であった。   As a result of evaluation in the same manner as in Examples, the polished cross section of the obtained composite structure was observed with a metal microscope or a scanning electron microscope, and the area ratio c / s between the core material and the skin material was determined by image analysis. As a result, the area ratio c / s was 5. Furthermore, from this structure observation photograph, the porosity of the core material was 0.2%, the porosity of the intermediate layer was 15%, and the porosity of the skin material was 27%.

また、曲げ強度100MPaであったが、破断面を観察した結果、核材と中間層との界面で剥離が見られた。   Although the bending strength was 100 MPa, as a result of observing the fracture surface, peeling was observed at the interface between the core material and the intermediate layer.

本発明の生体用セラミック複合構造体の一実施態様である単芯構造体の一例を示す斜視図(b)および断面図(a)である。FIG. 2 is a perspective view (b) and a cross-sectional view (a) showing an example of a single core structure which is an embodiment of the biomedical ceramic composite structure of the present invention. 本発明の生体用セラミック複合構造体の他の実施態様である多芯構造体の一例を示す斜視図(b)および断面図(a)である。It is the perspective view (b) and sectional drawing (a) which show an example of the multi-core structure which is the other embodiment of the ceramic composite structure for biological bodies of this invention. 本発明の生体用セラミック複合構造体を実用する際の模式図である。It is a schematic diagram at the time of practical use of the ceramic composite structure for living body of the present invention. (a)〜(c)は本発明の生体用セラミック複合構造体の他の例を示す斜視図である。(A)-(c) is a perspective view which shows the other example of the ceramic composite structure for biological bodies of this invention. (a)(b)は本発明の生体用セラミック複合構造体の製造方法を説明するための工程図である。(A) (b) is process drawing for demonstrating the manufacturing method of the ceramic composite structure for biological bodies of this invention. 本発明の生体用セラミック構造体の製造方法の変形例を説明するための工程図である。It is process drawing for demonstrating the modification of the manufacturing method of the ceramic structure for biological bodies of this invention.

符号の説明Explanation of symbols

1 複合構造体
2 芯材
3 中間層
4 表皮材
5 単芯構造体
6 多芯構造体
9 シート状複合構造体
11 芯材用成形体
12 中間層用成形体
13 表皮材成形体
14 複合成形体
15 単芯成形体
16 多芯成形体
17 シート状成形体
18 積層成形体
20 損傷した生体骨
DESCRIPTION OF SYMBOLS 1 Composite structure 2 Core material 3 Intermediate | middle layer 4 Skin material 5 Single core structure 6 Multi-core structure 9 Sheet-like composite structure 11 Molded body 12 Core material molded body 13 Skin material molded body 14 Composite molded body 15 Single-core molded body 16 Multi-core molded body 17 Sheet-shaped molded body 18 Laminated molded body 20 Damaged living bone

Claims (2)

金属または高強度セラミックスからなる長尺状の芯材の外周を、気孔率10%以下のリン酸カルシウムまたはリン酸カルシウムと前記芯材を構成する材料のうちの少なくとも1種との混合物からなる中間層にて被覆するとともに、該中間層の外周を気孔率20%以上のリン酸カルシウムからなる表皮材にて被覆してなる生体用セラミック複合構造体。 The outer periphery of a long core material made of metal or high-strength ceramic is coated with an intermediate layer made of calcium phosphate having a porosity of 10% or less or a mixture of calcium phosphate and at least one of the materials constituting the core material. In addition, a bio-ceramic composite structure in which the outer periphery of the intermediate layer is covered with a skin material made of calcium phosphate having a porosity of 20% or more. 前記セラミック複合構造体の横断面における前記芯材の面積比率cが0.2〜0.9、前記中間層の面積比率mが0.05〜0.5、前記表皮材の面積比sが0.05〜0.2であることを特徴とする請求項1記載の生体用セラミック複合構造体。

The area ratio c of the core material in the cross section of the ceramic composite structure is 0.2 to 0.9, the area ratio m of the intermediate layer is 0.05 to 0.5, and the area ratio s of the skin material is 0. The biocomposite ceramic composite structure according to claim 1, which is 0.05 to 0.2.

JP2004190567A 2004-06-28 2004-06-28 Biological ceramic composite structure Pending JP2006006756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004190567A JP2006006756A (en) 2004-06-28 2004-06-28 Biological ceramic composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004190567A JP2006006756A (en) 2004-06-28 2004-06-28 Biological ceramic composite structure

Publications (1)

Publication Number Publication Date
JP2006006756A true JP2006006756A (en) 2006-01-12

Family

ID=35774625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004190567A Pending JP2006006756A (en) 2004-06-28 2004-06-28 Biological ceramic composite structure

Country Status (1)

Country Link
JP (1) JP2006006756A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108411A1 (en) * 2006-03-17 2007-09-27 Hi-Lex Corporation Medical material
JP2008307071A (en) * 2007-06-12 2008-12-25 Univ Nihon Concentric, functionally gradient material for living body
WO2012015226A2 (en) * 2010-07-27 2012-02-02 Soonchunhyang University Industry Academy Cooperation Foundation Fabrication method of a novel artificial cortical bone using a multi-pass extrusion process

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108411A1 (en) * 2006-03-17 2007-09-27 Hi-Lex Corporation Medical material
JPWO2007108411A1 (en) * 2006-03-17 2009-08-06 株式会社ハイレックスコーポレーション Medical materials
JP2008307071A (en) * 2007-06-12 2008-12-25 Univ Nihon Concentric, functionally gradient material for living body
WO2012015226A2 (en) * 2010-07-27 2012-02-02 Soonchunhyang University Industry Academy Cooperation Foundation Fabrication method of a novel artificial cortical bone using a multi-pass extrusion process
WO2012015226A3 (en) * 2010-07-27 2012-05-03 Soonchunhyang University Industry Academy Cooperation Foundation Fabrication method of a novel artificial cortical bone using a multi-pass extrusion process
KR101241642B1 (en) * 2010-07-27 2013-03-11 순천향대학교 산학협력단 Fabrication Method of a Novel Artificial Cortical Bone using a Multi-pass Extrusion Process
US9114011B2 (en) 2010-07-27 2015-08-25 Soonchunhyang University Industry Academy Cooperation Foundation Fabrication method of a novel artificial cortical bone using a multi-pass extrusion process
DE112011102494B4 (en) * 2010-07-27 2016-01-21 Soonchunhyang University Industry Academy Cooperation Foundation A method for producing a novel artificial cortical bone using a multiple extrusion method

Similar Documents

Publication Publication Date Title
EP2195131B1 (en) Method for producing a three-dimensional macroporous filament construct based on phase inversion and construct thereby obtained
US5125971A (en) Living hard tissue replacement, its preparation
Miranda et al. Mechanical properties of calcium phosphate scaffolds fabricated by robocasting
JP4929286B2 (en) Composite bone
US6993406B1 (en) Method for making a bio-compatible scaffold
Jiang et al. Coating of hydroxyapatite on highly porous Al2O3 substrate for bone substitutes
Kim et al. Synthesis of functional gradient BCP/ZrO2 bone substitutes using ZrO2 and BCP nanopowders
US10328181B2 (en) Ceramic bone substitute material and method for the production thereof
Yang et al. Micro-porous calcium phosphate coatings on load-bearing zirconia substrate: Processing, property and application
JP2006006756A (en) Biological ceramic composite structure
KR101186370B1 (en) Porous bio-material with multi-layer structure and method for manufacturing the same
JP2005185433A (en) Bioceramic composite structure
WO2009004069A1 (en) Porous dental implant
JP3994152B2 (en) Hard tissue substitute material and manufacturing method thereof
JP3769427B2 (en) Ceramic biomaterial
JP5947564B2 (en) Method for producing compressed fiber structure
KR20110129007A (en) Graular porous bone substitute and method for preparing the same
JP2005278874A (en) Artificial joint
JPH0449972A (en) Preparation of substitute and composite molded body of hard tissue of human body
Senan et al. Functional biomimetic dental restoration
JP2005312506A (en) Implant for bone compensation
JP2005278875A (en) Artificial bone and artificial joint
Darvishian Haghighi et al. Effect of Manufacturing Route on Microstructure and Mechanical Properties of Calcium Phosphate/Gelatin-Starch Composite Scaffold
Alhajj et al. A novel moldless porous titanium formulae for dental post system: Part 1–Development and characterization
Hu Dense/porous bioceramic composites