JP2006001014A - Fluorine-containing thin film and manufacturing method of base material having fluorine-containing thin film - Google Patents
Fluorine-containing thin film and manufacturing method of base material having fluorine-containing thin film Download PDFInfo
- Publication number
- JP2006001014A JP2006001014A JP2004176398A JP2004176398A JP2006001014A JP 2006001014 A JP2006001014 A JP 2006001014A JP 2004176398 A JP2004176398 A JP 2004176398A JP 2004176398 A JP2004176398 A JP 2004176398A JP 2006001014 A JP2006001014 A JP 2006001014A
- Authority
- JP
- Japan
- Prior art keywords
- fluorine
- thin film
- substrate
- containing thin
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Laminated Bodies (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
本発明は基材表面に形成された含フッ素薄膜撥および該含フッ素薄膜を有する基材の製造方法に関する。 The present invention relates to a fluorine-containing thin film formed on the surface of a substrate and a method for producing a substrate having the fluorine-containing thin film.
形状が精密なプラスチック成形品を生産する場合、その精密な形状を損なうことなく成形金型から成形品を離型することは困難である。微細化が進む近年は特に離型が難しくなってきている。
従来から、成形品と金型の離型性を確保するため、(1)インラインで金型表面に離型剤を塗布するか、(2)予め金型表面に離型を容易にする表面処理を施して離型層を設けている。しかし、それぞれ以下のような問題がある。
When producing a plastic molded product having a precise shape, it is difficult to release the molded product from the molding die without impairing the precise shape. In recent years, miniaturization has become particularly difficult to release.
Conventionally, in order to ensure mold releasability between the molded product and the mold, (1) a release agent is applied to the mold surface in-line, or (2) a surface treatment that facilitates easy mold release on the mold surface in advance. To provide a release layer. However, each has the following problems.
上記(1)の方法は、従来から最も一般的な離型技術として行なわれてきているが、精密な形状を安定的に成形するための金型を得ることが難しく、サブミクロンオーダーの形状制御が必要なプラスチックレンズなどの光学部品等には適用できない。また補助材である離型剤のコストに加えて、金型に離型剤を塗布するための装置、あるいは工数が必要であり、さらに離型剤が製品に付着することが避けられないため、それを除去するための洗浄工程も必要になる。このため、コストおよび環境を悪くする。 The method (1) has been conventionally performed as the most general mold release technique, but it is difficult to obtain a mold for stably molding a precise shape, and shape control on the order of submicrons. Cannot be applied to optical parts such as plastic lenses. In addition to the cost of the release agent, which is an auxiliary material, a device or man-hour for applying the release agent to the mold is required, and further, it is inevitable that the release agent adheres to the product. A cleaning step is also required to remove it. For this reason, cost and an environment are made worse.
これに対し上記(2)の方法は、近年のプラスチック部品の高精度化に伴い、徐々に適用範囲を拡げている手法である。現在実用化されている離型層は、DLC(ダイヤモンド・ライク・カーボン)やTiN(窒化チタン)系の薄膜である(例えば特許文献1参照)。これらの薄膜は、熱的・機械的に安定であり、通常のプラスチック成形であれば数千ショットの耐久性を有している。しかしながら、いずれも成形品との離型性が不十分であり、成形品を取り出す際に形状を損なうことにより製品歩留まりが低下する。 On the other hand, the method (2) is a method that gradually expands the application range with the recent increase in accuracy of plastic parts. The release layer currently in practical use is a DLC (diamond-like carbon) or TiN (titanium nitride) -based thin film (see, for example, Patent Document 1). These thin films are thermally and mechanically stable, and have a durability of several thousand shots in ordinary plastic molding. However, in any case, the releasability from the molded product is insufficient, and the product yield is reduced by losing the shape when the molded product is taken out.
また、離型層の形成方法として、装置が簡易で安価であることから物理蒸着法(PVD)の一種である真空蒸着法が多用されている。
真空蒸着法は、10-4Pa程度をこえる高真空中で、真空蒸着装置内部に設置されたターゲット収容容器内に充填した固体または顆粒状のターゲットを加熱蒸発させ、この蒸気をターゲットに対向配置されて一定の温度に保持された基材表面に堆積させて薄膜を形成する方法である。
真空蒸着法は、高真空下で成膜することにより蒸着時に薄膜となる高分子の構造を変化させることなく高純度な薄膜が高い成膜速度で形成できる。ターゲットを蒸気とするためには加熱方式が多用され、その加熱方式には、抵抗加熱法、電子ビーム法、レーザ法(レーザブレーション)などがある。
上記真空蒸着法を用いた含フッ素薄膜形成方法として、レンズなど光学部材の表面に防汚性薄膜を形成する方法が開示されている(特許文献2参照)。
しかしながら、真空蒸着法により含フッ素薄膜を製造する場合以下の問題がある。
(1)含フッ素薄膜は基材との密着性が十分でない。基材に対して密着性を改善する官能基を持った含フッ素有機化合物では、基材に対しての密着性はあるが、膜表面がほとんどフッ素で終端するために、それ以上膜としては成長しない。そのため、付着が十分でないか、もしくは膜表面に曇りがついたようになる。
(2)膜厚が数nm〜数10nmと極めて薄いため、耐久性(耐磨耗性)が劣る。さらに数10nm以上の膜厚が必要とされる用途には使用できない。
(3)膜表面に成膜しなかった微粒子が付着しているため、成膜後の状態で曇っている。そのため、透明膜が必要な場合は拭き取る必要が生じたり、表面の平滑性に劣ったりする結果、拭き取り不可能な精密金型等には使用できず用途が限定されている。
Further, as a method for forming the release layer, a vacuum deposition method which is a kind of physical vapor deposition (PVD) is frequently used because the apparatus is simple and inexpensive.
The vacuum deposition method heats and evaporates a solid or granular target filled in a target container installed in a vacuum deposition apparatus in a high vacuum exceeding about 10 −4 Pa, and this vapor is disposed opposite to the target. In this method, the thin film is formed by depositing on the surface of the substrate maintained at a constant temperature.
In the vacuum evaporation method, a high-purity thin film can be formed at a high film formation rate without changing the structure of a polymer that becomes a thin film during vapor deposition by forming the film under a high vacuum. In order to use the target as a vapor, a heating method is often used. Examples of the heating method include a resistance heating method, an electron beam method, and a laser method (laser ablation).
As a fluorine-containing thin film forming method using the vacuum deposition method, a method of forming an antifouling thin film on the surface of an optical member such as a lens is disclosed (see Patent Document 2).
However, when producing a fluorine-containing thin film by a vacuum deposition method, there are the following problems.
(1) The fluorine-containing thin film has insufficient adhesion to the substrate. Fluorine-containing organic compounds with functional groups that improve adhesion to the substrate have adhesion to the substrate, but the film surface is almost terminated with fluorine, so the film grows further. do not do. Therefore, the adhesion is not sufficient, or the film surface appears clouded.
(2) Since the film thickness is as thin as several nanometers to several tens of nanometers, the durability (abrasion resistance) is inferior. Furthermore, it cannot be used for applications requiring a film thickness of several tens of nm or more.
(3) Since fine particles that have not been formed are adhered to the film surface, the film is cloudy in the state after film formation. For this reason, when a transparent film is required, it is necessary to wipe off the surface or the surface is inferior in smoothness. As a result, it cannot be used for a precision mold that cannot be wiped off, and its application is limited.
Ar,He,Ne等の不活性ガスを励起させたイオンビームを基材に照射させた状態で含フッ素薄膜を製造する成膜方法が知られているが、イオンビームによって堆積しているフッ素樹脂が分解もしくはスパッタリングされてしまい高効率で堆積させるのが困難である。
解決しようとする問題点は、基材との密着性に優れ、精密金型としての寸法精度、離型性に優れた含フッ素薄膜撥が得られていないという点である。 The problem to be solved is that a fluorine-containing thin film repellent that is excellent in adhesion to a substrate and excellent in dimensional accuracy as a precision mold and releasability is not obtained.
本発明の含フッ素薄膜は、基材表面に形成され、該含フッ素薄膜は基材表面に蒸着法によって堆積できる含フッ素有機物質と、イオンビームスパッタ法によって堆積できる物質とが同時に堆積されてなることを特徴とする。
また、上記含フッ素有機物質がパーフルオロ系高分子であり、該高分子は、少なくとも1個の二重結合もしくは三重結合炭素、−COOH基、または、−Si(OR)3基(Rはアルキル基を表す)を分子内に含むことを特徴とする。
また、上記含フッ素有機物質が非晶質パーフルオロ樹脂であることを特徴とする。
The fluorine-containing thin film of the present invention is formed on a substrate surface, and the fluorine-containing thin film is formed by simultaneously depositing a fluorine-containing organic material that can be deposited on the substrate surface by a vapor deposition method and a material that can be deposited by an ion beam sputtering method. It is characterized by that.
The fluorine-containing organic substance is a perfluoro polymer, and the polymer includes at least one double bond or triple bond carbon, —COOH group, or —Si (OR) 3 group (R is an alkyl group). Which represents a group) in the molecule.
The fluorine-containing organic substance is an amorphous perfluoro resin.
本発明の他の含フッ素薄膜は、基材表面に形成される含フッ素薄膜であって、該含フッ素薄膜は上記基材表面に少なくとも1種類の含フッ素有機化合物をアルゴンスパッタエッチングを行ないながら堆積されてなることを特徴とする。 Another fluorine-containing thin film of the present invention is a fluorine-containing thin film formed on the substrate surface, and the fluorine-containing thin film is deposited on the substrate surface while performing argon sputter etching on at least one kind of fluorine-containing organic compound. It is characterized by being made.
本発明の含フッ素薄膜を有する基材の製造方法は、表面に含フッ素薄膜を有する基材の製造方法であって、該基材を所定の薄膜形成装置内に配置する工程と、含フッ素有機物質を蒸着法により、非フッ素含有物質をイオンビームスパッタ法により、同時に基材表面に堆積させる工程とを備えることを特徴とする。
上記蒸着法は真空蒸着法であることを特徴とする。また、真空蒸着法による堆積速度が前記イオンビームスパッタ法による堆積速度の10倍以上であることを特徴とする。また、基材表面に堆積させる工程がアルゴンスパッタエッチを行いながら成膜する工程であることを特徴とする。
The method for producing a substrate having a fluorine-containing thin film according to the present invention is a method for producing a substrate having a fluorine-containing thin film on the surface, the step of arranging the substrate in a predetermined thin film forming apparatus, and a fluorine-containing organic material. And a step of depositing a non-fluorine-containing substance on the surface of the substrate simultaneously by an evaporation method and a non-fluorine-containing substance by an ion beam sputtering method.
The vapor deposition method is a vacuum vapor deposition method. Further, the deposition rate by a vacuum evaporation method is 10 times or more the deposition rate by the ion beam sputtering method. In addition, the step of depositing on the substrate surface is a step of forming a film while performing argon sputter etching.
本発明の他の含フッ素薄膜を有する基材の製造方法は、表面に含フッ素薄膜を有する基材の製造方法であって、該基材を所定の薄膜形成装置内に配置する工程と、含フッ素有機物質をアルゴンスパッタエッチングを行ないながら蒸着法により、基材表面に堆積させる工程とを備えることを特徴とする。 Another method for producing a substrate having a fluorine-containing thin film of the present invention is a method for producing a substrate having a fluorine-containing thin film on the surface, the step of placing the substrate in a predetermined thin film forming apparatus, And a step of depositing a fluorine organic material on the surface of the substrate by vapor deposition while performing argon sputter etching.
本発明の含フッ素薄膜は、蒸着法によって堆積できる含フッ素有機物質と、イオンビームスパッタ法によって堆積できる物質とが同時に基材表面に堆積されることにより形成されるので、また、アルゴンスパッタエッチングを行ないながら蒸着法により堆積されるので、従来例で膜厚が数10nmであったのに対して、数100nm〜数μmオーダーの膜厚を持った膜を形成できる。このため、例えば樹脂成形の離型剤として使用した場合の金型寿命が数倍に向上する。 The fluorine-containing thin film of the present invention is formed by simultaneously depositing a fluorine-containing organic material that can be deposited by an evaporation method and a material that can be deposited by an ion beam sputtering method on the substrate surface. Since the film is deposited by vapor deposition while performing, a film having a film thickness on the order of several hundred nm to several μm can be formed, whereas the film thickness is several tens of nm in the conventional example. For this reason, the mold life when used as a mold release agent for resin molding is improved several times.
含フッ素薄膜が形成される基材としては、金属、セラミック等が挙げられる。精密成形の金型としては、金属材料が好ましく、例えばステンレス材、アルミニウムまたはその合金材、マグネシウムまたはその合金材、鉄または鉄合金材等が挙げられる。これらの中で基板への接着、剥離性に優れるステンレス材が好ましい。 Examples of the substrate on which the fluorine-containing thin film is formed include metals and ceramics. As the mold for precision molding, a metal material is preferable, and examples thereof include stainless steel, aluminum or an alloy material thereof, magnesium or an alloy material thereof, iron or an iron alloy material, and the like. Among these, a stainless material excellent in adhesion to the substrate and peelability is preferable.
本発明に使用できる含フッ素有機物質は、平均して1個以上のフッ素原子を含む単位モノマーの重合体または共重合体であって、被膜形成能のある有機高分子であれば使用できる。例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン−パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−エチレン共重合体、トリフルオロクロロエチレン重合体、トリフルオロクロロエチレン−エチレン共重合体、ポリビニルフルオライド、ポリビニリデンフルオライド、フルオロポリエーテル重合体、ポリフルオロシリコーン、脂肪族環構造を有するパーフルオロ重合体等が例示できる。 The fluorine-containing organic material that can be used in the present invention is a polymer or copolymer of unit monomers containing an average of one or more fluorine atoms and can be used as long as it is an organic polymer capable of forming a film. For example, polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer Polymer, tetrafluoroethylene-ethylene copolymer, trifluorochloroethylene polymer, trifluorochloroethylene-ethylene copolymer, polyvinyl fluoride, polyvinylidene fluoride, fluoropolyether polymer, polyfluorosilicone, aliphatic ring Examples thereof include perfluoropolymer having a structure.
上記含フッ素有機物質の中で、パーフルオロ系高分子が好ましく、更に少なくとも1個の二重結合もしくは三重結合炭素、−COOH基、または、−Si(OR)3基を分子内に含むことが好ましい。Rは炭素数1〜3のアルキル基が好ましい。このパーフルオロ系高分子を用いることにより、基板との密着性に優れる。 Among the above-mentioned fluorine-containing organic substances, perfluoro polymers are preferable, and at least one double bond or triple bond carbon, —COOH group, or —Si (OR) 3 group may be included in the molecule. preferable. R is preferably an alkyl group having 1 to 3 carbon atoms. By using this perfluoro polymer, the adhesion to the substrate is excellent.
好適に用いられる含フッ素有機物質として、主鎖末端に−Si(OR)3基を有するフルオロアルキルシランTSL8257(商標、GE東芝シリコーン社製)、主鎖に脂肪族環構造を有するアモルファスパーフルオロ重合体であるサイトップ(商標、旭硝子社製)が挙げられる。 As the fluorine-containing organic material suitably used, fluoroalkylsilane TSL8257 (trademark, manufactured by GE Toshiba Silicone) having —Si (OR) 3 group at the end of the main chain, and amorphous perfluoro heavy having an aliphatic ring structure in the main chain Cytop (trademark, manufactured by Asahi Glass Co., Ltd.), which is a coalescence, can be mentioned.
イオンビームスパッタ法によって堆積できる物質は、イオン銃から放出されたイオンが照射されスパッタできる物質であれば利用できる。そのような物質としては、SiO2、CeF2などの無機物類、金属アルミニウム、金属シリコンなどの金属類、アクリル樹脂、ポリエチレン、ポリイミド、ポリテトラフルオロエチレンなどの高分子化合物類などが挙げられる。
これらの中で、SiO2などの無機物が好ましい。
As the material that can be deposited by the ion beam sputtering method, any material that can be sputtered by irradiation with ions emitted from the ion gun can be used. Examples of such substances include inorganic substances such as SiO 2 and CeF 2 , metals such as metal aluminum and metal silicon, and polymer compounds such as acrylic resin, polyethylene, polyimide, and polytetrafluoroethylene.
Of these, inorganic substances such as SiO 2 are preferred.
上記材料を用いて、該含フッ素有機物質を蒸着法によって、SiO2などの無機物をイオンビームスパッタ法によって、同一成膜装置内において、同時に基材上に堆積することによって、含フッ素薄膜が得られる。
無機物のスパッタ粒子が基材に堆積した含フッ素有機化合物と衝突することによって含フッ素有機物質を構成する分子の重合が促進され強固な膜になる。また、含フッ素有機物質についている官能基によって基材との密着を確保し、含フッ素有機化合物と共蒸着する無機物のイオンビームスパッタ粒子、例えばArイオンビームスパッタ粒子、によって含フッ素有機化合物間の重合を促進できる。このスパッタ粒子の持つエネルギーはイオンビーム直接照射の数10〜数100分の1であるため、堆積した膜の分解が抑えられて高効率での成膜が可能になる。
Using the above material, obtained by evaporation of the fluorine-containing organic material, by ion beam sputtering an inorganic material such as SiO 2, in the same deposition apparatus, by depositing on the same time base, a fluorine-containing thin film It is done.
When the inorganic sputtered particles collide with the fluorine-containing organic compound deposited on the base material, polymerization of molecules constituting the fluorine-containing organic substance is promoted to form a strong film. In addition, the functional group attached to the fluorine-containing organic substance ensures adhesion to the substrate, and polymerization between the fluorine-containing organic compounds is performed by inorganic ion beam sputtered particles, for example, Ar ion beam sputtered particles, which are co-deposited with the fluorine-containing organic compound. Can be promoted. Since the energy of the sputtered particles is several tenths to several hundredths of that of direct ion beam irradiation, decomposition of the deposited film can be suppressed and film formation with high efficiency becomes possible.
本発明の含フッ素薄膜を形成するための成膜装置の一例を図1に示す。
成膜装置1は、排気装置3を備えた真空容器2内に、真空蒸着用ターゲット4を収容するルツボ7と、イオンビームスパッタ用ターゲット5とこのターゲットにArイオンビームを照射するイオン銃6とが収容されている。これらターゲット4およびターゲット5に基材8が対向配置されている。9は成膜される薄膜の厚さを測定する膜厚計(QCD)であり、10はアルゴンガス導入装置である。ルツボ7はアルミナ(Al2O3)、ベリリア(BeO)などの高融点酸化物で形成され、タンタル(Ta)、モリブデン(Mo)、タングステン(W)などの高融点金属のフィラメントなどを用いた加熱装置(図示省略)により加熱される。
本発明のイオンビームスパッタに用いられるターゲットは上記SiO2などが用いられ、イオン銃としては、プラズマ室内のプラズマからイオンを引き出してスパッタ室内のターゲットに向けてイオンビームを照射する公知のものが用いられる。イオン源としては、Arガス以外にHe、Ne、Xeなどの不活性ガスを使用できる。
An example of a film forming apparatus for forming the fluorine-containing thin film of the present invention is shown in FIG.
The
The target used for the ion beam sputtering of the present invention is the above-mentioned SiO 2 or the like, and the ion gun is a known one that draws ions from the plasma in the plasma chamber and irradiates the target with the ion beam. It is done. As the ion source, an inert gas such as He, Ne, or Xe can be used in addition to the Ar gas.
上記成膜装置を用いた含フッ素薄膜を有する基材の製造方法について説明する。
(1)被膜基材の脱脂洗浄:被膜基材を予め洗浄する。洗浄はアセトンなどによる有機溶剤による洗浄、イソプロピルアルコール(IPA)などによるブラシ洗浄、その他超音波洗浄などを基材の種類に応じて行なう。
(2)ターゲットおよび被膜基材のセッティング:含フッ素有機物質をルツボ7に充填し、またSiO2などの無機物をイオンビームスパッタ用ターゲット5に配置し、基材8を治具に装着する。
(3)成膜装置の排気:装置内圧が10-2〜10-4Paとなるまで排気する。装置内圧は 5×10-3 Pa以下とすることが好ましい。
The manufacturing method of the base material which has a fluorine-containing thin film using the said film-forming apparatus is demonstrated.
(1) Degreasing cleaning of coated substrate: The coated substrate is washed in advance. The cleaning is performed with an organic solvent such as acetone, brush cleaning with isopropyl alcohol (IPA), or other ultrasonic cleaning according to the type of substrate.
(2) Setting of target and coated substrate: The
(3) Exhaust of film forming apparatus: Exhaust until the internal pressure of the apparatus reaches 10 −2 to 10 −4 Pa. The internal pressure of the apparatus is preferably 5 × 10 −3 Pa or less.
(4)含フッ素薄膜の形成:Arガスを 5.0 SCCM の割合で装置内に流しながら、ルツボ7の温度を 250 ℃から 700 ℃に、昇温速度50 ℃/分で加熱する。同時にイオン銃6に流されるイオンビーム電流値を 20〜50m A 程度に調節する。このイオンビーム電流値は、SiO2単体での成膜速度としては、膜厚計(QCD)9にて検出不可能なレベルである。このイオンビーム電流を上昇させると膜強度が増加するが、一方撥水性が悪くなる傾向がある。
(4) Formation of fluorine-containing thin film: While flowing Ar gas into the apparatus at a rate of 5.0 SCCM, the temperature of the
本発明の成膜方法においては、イオンビーム電流値を調節してSiO2の成膜速度を、ルツボ7の温度を調節して含フッ素有機物質の成膜速度をそれぞれ調節する。この調節方法により、真空蒸着法による堆積速度をイオンビームスパッタ法による堆積速度の10倍以上とすることが好ましい。堆積速度を調節することにより、含フッ素薄膜中のSiO2濃度を調整できる。本発明においては、SiO2濃度を 1 重量%以下にすることが好ましい。
薄膜として実用的な範囲は 50 〜 2000 nm であり、好ましくは、 100 〜 200 nm である。また、真空蒸着法による堆積速度をイオンビームスパッタ法による堆積速度の10倍以上とすることにより、成膜された含フッ素薄膜の対水接触角は 90° をこえることができ、精密金型としての十分な撥水性を有している。
In the film forming method of the present invention, the film forming speed of SiO 2 is adjusted by adjusting the ion beam current value, and the film forming speed of the fluorine-containing organic material is adjusted by adjusting the temperature of the
The practical range for the thin film is 50 to 2000 nm, and preferably 100 to 200 nm. In addition, by setting the deposition rate by vacuum evaporation to more than 10 times the deposition rate by ion beam sputtering, the fluorine contact angle of the formed fluorine-containing thin film can exceed 90 °. It has sufficient water repellency.
本発明の他の成膜方法として、アルゴンスパッタエッチを行いながら真空蒸着法で成膜することができる。真空蒸着の条件は上記条件を用いることができる。この場合イオンビームスパッタ法を用いなくても密着強度に優れ、対水接触角は 90° をこえる薄膜が得られる。そのアルゴンスパッタ条件としてはRF出力10〜15Wが好ましい。 As another film forming method of the present invention, the film can be formed by vacuum deposition while performing argon sputter etching. The above-mentioned conditions can be used for the vacuum deposition conditions. In this case, a thin film with excellent adhesion strength and a contact angle with water exceeding 90 ° can be obtained without using ion beam sputtering. As the argon sputtering condition, an RF output of 10 to 15 W is preferable.
実施例1
基材として精密成形用の金型(SUS304製)を、含フッ素有機物質ターゲットとしてサイトップ(商標、旭硝子社製)を、イオンビームスパッタリングによって堆積させる物質としてSiO2をそれぞれ準備して、上述した成膜装置を用いて含フッ素薄膜を有する基材を製造した。
サイトップを成膜装置内のアルミナ製ルツボに 3.5 g 充填し、SiO2板をターゲット台に配置して、成膜装置内を 5×10-3 Pa以下に排気し、イオン銃付近にアルゴンガス 5.0 SCCM を流しながらArイオンビームをスパッタリングターゲットに向けてイオンビーム電流 45 mA で照射する。この場合におけるSiO2単体での成膜レートは膜厚モニターで検出不可能なレベルである。
Example 1
A precision molding die (manufactured by SUS304) was prepared as a substrate, CYTOP (trademark, manufactured by Asahi Glass Co., Ltd.) as a fluorine-containing organic material target, and SiO 2 as a material to be deposited by ion beam sputtering, respectively. The base material which has a fluorine-containing thin film was manufactured using the film-forming apparatus.
Fill the alumina crucible in the film deposition system with 3.5 g, place the SiO 2 plate on the target table, evacuate the film deposition system to 5 × 10 -3 Pa or less, and argon gas near the ion gun. 5.0 While flowing SCCM, irradiate the Ar ion beam toward the sputtering target with an ion beam current of 45 mA. In this case, the film formation rate of SiO 2 alone is a level that cannot be detected by the film thickness monitor.
イオンビームと同時に、サイトップを配置したルツボのヒーターを昇温速度 50℃/5分で加熱する。ヒーター温度が 250℃をこえた時点でシャッターを開けてシリコン基板への堆積を開始させる。ヒーター温度が 700℃をこえた時点でシャッターを閉じて基板への堆積を終了させる。
このようにして成膜された含フッ素物薄膜の膜厚は約 150nm であり、105〜115°程度の対水接触角が得られた。
Simultaneously with the ion beam, the crucible heater with Cytop is heated at a heating rate of 50 ° C for 5 minutes. When the heater temperature exceeds 250 ° C, the shutter is opened to start deposition on the silicon substrate. When the heater temperature exceeds 700 ° C, the shutter is closed to finish the deposition on the substrate.
The film thickness of the fluorine-containing thin film thus formed was about 150 nm, and a contact angle with water of about 105 to 115 ° was obtained.
得られた含フッ素薄膜を温度170℃、25 kgf/cm2、保持時間 60 分でプリプレグシートへ熱圧着を繰り返す耐久試験を行なった。その結果、プリプレグシートに張り付くことなく繰り返すことが可能な回数は、後述する比較例の値より約3倍の値が得られた。
また、摩耗試験を表面性測定器HEIDON−14DR(新東科学社製)を用い、摺動条件としてスピード:50 mm/分、FEED SCALE:5 mm、荷重:1 kgf、摺動子:アルミナボールにて行なった。アルミナボールの摺動により下地が見え始めた回数をn=5で測定した。同一条件で成膜した2枚の基材を試料とした。結果を表1に示す。
The obtained fluorine-containing thin film was subjected to a durability test in which thermocompression was repeatedly applied to the prepreg sheet at a temperature of 170 ° C., 25 kgf / cm 2 and a holding time of 60 minutes. As a result, the number of repetitions that could be repeated without sticking to the prepreg sheet was about 3 times the value of the comparative example described later.
In addition, the wear test was performed using a surface property measuring instrument HEIDON-14DR (manufactured by Shinto Kagaku Co., Ltd.), and sliding conditions were speed: 50 mm / min, FEED SCALE: 5 mm, load: 1 kgf, slider: alumina ball It was done in. The number of times that the substrate began to be visible due to the sliding of the alumina ball was measured at n = 5. Two base materials formed under the same conditions were used as samples. The results are shown in Table 1.
実施例2
基材をガラス板に代える以外は、実施例1と同一の条件、方法で含フッ素薄膜を有する基材を製造した。実施例1と同条件で評価した結果、耐久試験は比較例の値より約3倍の値が得られた。また、摩耗試験結果を表1に示す。
Example 2
A substrate having a fluorine-containing thin film was produced under the same conditions and method as in Example 1 except that the substrate was replaced with a glass plate. As a result of evaluation under the same conditions as in Example 1, a value about three times as long as that of the comparative example was obtained in the durability test. The results of the wear test are shown in Table 1.
比較例1
基材として精密成形用の金型(SUS304製)を、含フッ素有機物質ターゲットとしてサイトップ(商標、旭硝子社製)を準備して、上述した成膜装置を用いて含フッ素有機物単体の薄膜を有する基材を製造した。このとき、イオンビームスパッタリングによる堆積は行なわなかった。
アルミナ製ルツボに充填したサイトップ 4.75 g を昇温速度 50℃/5 分で加熱、250℃をこえた時点でシャッターを開けて堆積を開始し700℃を越えた時点でシャッターを閉じ、堆積を終了させる。この場合の膜厚は約 30 nm、対水接触角は110〜120°になる。この薄膜は軽く触れただけで取れてしまい、耐久試験に劣った。
また、実施例1と同条件で摩耗試験を行なった。結果を表1に示す。
Comparative Example 1
Prepare a precision mold (SUS304) as the base material and Cytop (trademark, manufactured by Asahi Glass Co., Ltd.) as the fluorine-containing organic material target, and use the film forming apparatus described above to form a thin film of fluorine-containing organic substance alone. The base material which has was manufactured. At this time, deposition by ion beam sputtering was not performed.
4.75 g of CYTOP top packed in an alumina crucible was heated at a heating rate of 50 ° C / 5 min. When 250 ° C was exceeded, the shutter was opened and deposition started. When the temperature exceeded 700 ° C, the shutter was closed and deposition was performed. Terminate. In this case, the film thickness is about 30 nm and the contact angle with water is 110 to 120 °. This thin film was removed only by light touch, and was inferior to the durability test.
In addition, a wear test was performed under the same conditions as in Example 1. The results are shown in Table 1.
比較例2
基材をガラス板に代える以外は、比較例1と同一の条件、方法で含フッ素薄膜単体を有する基材を製造した。摩耗試験結果を表1に示す。
Comparative Example 2
A substrate having a fluorine-containing thin film alone was produced under the same conditions and method as in Comparative Example 1, except that the substrate was replaced with a glass plate. Table 1 shows the results of the abrasion test.
実施例3
実施例3で用いた成膜装置の一例を図2に示す。
成膜装置1’は、排気装置3を備えた真空容器2内に、真空蒸着用ターゲット4を収容するルツボ7と、他のターゲット4’を収容するルツボ7とが収容されている。これらターゲット4およびターゲット4’に基材8が対向配置されている。11は基材のホルダーである。9は成膜される薄膜の厚さを測定する膜厚計(QCD)であり、10はアルゴンガス導入装置である。
肉厚 1.5mm の銅製のルツボに含フッ素有機化合物を充填し、ヒーター上に設置する。このときの含フッ素有機化合物としては、PFA樹脂が好適であり具体的にはデュポン社製のPFA350−Jがより好適である。
成膜装置内を 5.0×10-3Pa 以下に排気し、蒸発源と基材の間に設けられたシャッターを閉じた状態でアルゴンガスを流しながらチャンバー内の真空度を 2.1×10-2Pa 程度にした状態でRF出力 10〜15W でスパッタエッチングを開始する。RF出力はスパッタエッチングのエッチングレートがPFAの堆積速度より遅くなる範囲で任意にかえることができる。放電したままの状態でヒーターを約 600℃まで加熱しPFAを蒸発させ、基板上に堆積させる。このときの堆積速度は、0.15nm/sec 程度になる。
Example 3
An example of the film forming apparatus used in Example 3 is shown in FIG.
In the
Fill a copper crucible with a thickness of 1.5 mm with a fluorine-containing organic compound and place it on the heater. As the fluorine-containing organic compound at this time, PFA resin is preferable, and specifically, PFA350-J manufactured by DuPont is more preferable.
The film deposition system is evacuated to 5.0 × 10 −3 Pa or less, and the degree of vacuum in the chamber is set to 2.1 × 10 −2 Pa while flowing argon gas with the shutter provided between the evaporation source and the substrate closed. Sputter etching is started at an RF output of 10 to 15 W in a state of about. The RF output can be arbitrarily changed in the range where the etching rate of sputter etching is slower than the deposition rate of PFA. While being discharged, the heater is heated to about 600 ° C. to evaporate the PFA and deposit it on the substrate. The deposition rate at this time is about 0.15 nm / sec.
このようにして成膜された含フッ素薄膜の対水接触角は 120〜130°程度になり、撥水性を有している。膜の強度および密着性については、スパッタエッチングと同時に行なわなかったPFA膜が綿棒等でごく軽く擦っただけで膜が崩れるように削れて基材表面が露出してしまう、もしくは膜にならないのに対して、実施例3で得られた薄膜は表面に多少傷がつく程度で基材表面が露出してしまうことがない程度の強度を有している。
含フッ素有機化合物の蒸発源は1種類には限定されず、異なる数種類の含フッ素有機化合物蒸発源を同時に使用することができる。その際には各蒸発源からの堆積速度の合計がアルゴンガススパッタエッチングのエッチング速度よりも早くなるように蒸発源からの蒸発量もしくはアルゴンガススパッタエッチングのRF出力を調整しなくてはならない。
The fluorine-containing thin film thus formed has a water contact angle of about 120 to 130 ° and has water repellency. Regarding the strength and adhesion of the film, the PFA film that was not performed at the same time as the sputter etching was scraped so that the film collapsed when it was rubbed very lightly with a cotton swab etc. On the other hand, the thin film obtained in Example 3 has such a strength that the surface of the substrate is not exposed to the extent that the surface is slightly scratched.
The evaporation source of the fluorine-containing organic compound is not limited to one type, and several different types of fluorine-containing organic compound evaporation sources can be used simultaneously. In that case, the evaporation amount from the evaporation source or the RF output of the argon gas sputter etching must be adjusted so that the total deposition rate from each evaporation source is faster than the etching rate of the argon gas sputter etching.
実施例4
含フッ素有機化合物と、基材との密着を改善する効果を有した材料を、アルゴンガススパッタエッチングを行ないながら同時に堆積させることで基材との密着を良好にした膜を堆積させることもできる。
実施例3で用いた成膜装置を用いた。
アルミナ製のルツボに旭硝子社製のサイトップを約 3.5g 充填し、ヒーター上に設置する。肉厚1.5mm の銅製のルツボにデュポン社製のPFA350‐Jを約 3.0g 充填し、ヒーター上に設置する。
成膜装置内を 5.0×10-3Pa 以下に排気し、蒸発源と基材の間に設けられたシャッターを閉じた状態でアルゴンガスを流しながらチャンバー内の真空度を 2.1×10-2Pa 程度にした状態でRF出力 10〜15W でスパッタエッチングを開始する。放電したままの状態でPFAを充填したルツボのヒーターを約 600℃まで加熱しPFAを蒸発させ、それと同時にサイトップを充填したルツボのヒーターを約 500℃に加熱し、シャッターを開いて基材への堆積を開始する。サイトップを充填したルツボのヒーターを 30℃/5min.の速度で 750℃まで昇温させ、750℃を 2 分間保持した後にシャッターを閉じて堆積を終了させる。それと同時にRFの放電を止めてスパッタエッチングを終了させる。
このようにして堆積した膜は、膜厚およそ 300nm 、対水接触角は 120〜130°を有する。
Example 4
A film having good adhesion to the substrate can be deposited by simultaneously depositing a material having an effect of improving adhesion between the fluorine-containing organic compound and the substrate while performing argon gas sputter etching.
The film forming apparatus used in Example 3 was used.
Alumina crucible is filled with approximately 3.5g of Asahi Glass Cytop and placed on the heater. Fill a copper crucible with a wall thickness of 1.5 mm with about 3.0 g of PFA350-J made by DuPont and place it on the heater.
The film deposition system is evacuated to 5.0 × 10 −3 Pa or less, and the degree of vacuum in the chamber is set to 2.1 × 10 −2 Pa while flowing argon gas with the shutter provided between the evaporation source and the substrate closed. Sputter etching is started at an RF output of 10 to 15 W in a state of about. The crucible heater filled with PFA is heated to about 600 ° C in the discharged state to evaporate the PFA. At the same time, the crucible heater filled with CYTOP is heated to about 500 ° C, and the shutter is opened to the substrate. Start of deposition. The temperature of the crucible heater filled with CYTOP is raised to 750 ° C at a rate of 30 ° C / 5min., Held at 750 ° C for 2 minutes, and then the shutter is closed to complete the deposition. At the same time, the RF discharge is stopped and the sputter etching is terminated.
The film thus deposited has a film thickness of about 300 nm and a water contact angle of 120 to 130 °.
本発明の含フッ素薄膜撥および該含フッ素薄膜を有する基材は、膜厚が数 10 nmであった従来の基材に対して、数 100nm〜数μm オーダーの膜厚を有する膜を形成することができるので、例えば精密樹脂成形の離型剤として使用した場合の金型寿命が数倍になる。 The fluorine-containing thin film repellent and the substrate having the fluorine-containing thin film of the present invention form a film having a film thickness on the order of several hundred nm to several μm with respect to a conventional substrate having a film thickness of several tens of nm. Therefore, for example, the mold life when used as a mold release agent for precision resin molding is several times longer.
1 成膜装置
2 真空容器
3 排気装置
4 真空蒸着用ターゲット
5 イオンビームスパッタ用ターゲット
6 イオン銃
7 ルツボ
8 基材
9 膜厚計
10 ガス導入装置
DESCRIPTION OF
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004176398A JP4585798B2 (en) | 2004-06-15 | 2004-06-15 | Fluorine-containing thin film and method for producing substrate having the fluorine-containing thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004176398A JP4585798B2 (en) | 2004-06-15 | 2004-06-15 | Fluorine-containing thin film and method for producing substrate having the fluorine-containing thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006001014A true JP2006001014A (en) | 2006-01-05 |
JP4585798B2 JP4585798B2 (en) | 2010-11-24 |
Family
ID=35769824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004176398A Expired - Fee Related JP4585798B2 (en) | 2004-06-15 | 2004-06-15 | Fluorine-containing thin film and method for producing substrate having the fluorine-containing thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4585798B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008133088A1 (en) | 2007-04-20 | 2008-11-06 | Asahi Glass Company, Limited | Fluorine-containing polymer thin film and method for producing the same |
JP2009184275A (en) * | 2008-02-08 | 2009-08-20 | Hitachi Chem Co Ltd | Micro-fine resin structure, and production method therefor |
CN101597748A (en) * | 2008-06-04 | 2009-12-09 | Dca器械有限公司 | The device that is used to evaporate, the crucible that is used to evaporate and on substrate the method for growing film |
CN101956160A (en) * | 2010-10-11 | 2011-01-26 | 南京大学 | Method for evaporating metal film on surface of flexible substance in gas scattering way |
JP2014065961A (en) * | 2012-09-27 | 2014-04-17 | Micro Engineering Inc | Functional membrane, membrane deposition apparatus, and membrane deposition method |
US10627588B2 (en) | 2017-02-27 | 2020-04-21 | Corning Optical Communications LLC | Optical interconnection assemblies, glass interconnection substrates, and methods of making an optical connection |
US10948658B2 (en) | 2017-02-27 | 2021-03-16 | Corning Optical Communications LLC | Optical interconnection assemblies, glass interconnection substrates, and methods of making an optical connection |
WO2022074928A1 (en) * | 2020-10-08 | 2022-04-14 | 日東電工株式会社 | Fluorine resin film and rubber formed body |
WO2022074927A1 (en) * | 2020-10-08 | 2022-04-14 | 日東電工株式会社 | Fluorine resin film and rubber molded article |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01304936A (en) * | 1988-06-02 | 1989-12-08 | Central Glass Co Ltd | Fluorocarbon resin coated body and preparation thereof |
JPH05263222A (en) * | 1992-03-16 | 1993-10-12 | Sony Corp | Collimator for processing thin film and thin film processing device and thin film processing method |
JP2001207260A (en) * | 2000-01-27 | 2001-07-31 | Canon Inc | Film deposition method and film deposition system |
-
2004
- 2004-06-15 JP JP2004176398A patent/JP4585798B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01304936A (en) * | 1988-06-02 | 1989-12-08 | Central Glass Co Ltd | Fluorocarbon resin coated body and preparation thereof |
JPH05263222A (en) * | 1992-03-16 | 1993-10-12 | Sony Corp | Collimator for processing thin film and thin film processing device and thin film processing method |
JP2001207260A (en) * | 2000-01-27 | 2001-07-31 | Canon Inc | Film deposition method and film deposition system |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008133088A1 (en) | 2007-04-20 | 2008-11-06 | Asahi Glass Company, Limited | Fluorine-containing polymer thin film and method for producing the same |
JP2009184275A (en) * | 2008-02-08 | 2009-08-20 | Hitachi Chem Co Ltd | Micro-fine resin structure, and production method therefor |
CN101597748A (en) * | 2008-06-04 | 2009-12-09 | Dca器械有限公司 | The device that is used to evaporate, the crucible that is used to evaporate and on substrate the method for growing film |
CN101956160A (en) * | 2010-10-11 | 2011-01-26 | 南京大学 | Method for evaporating metal film on surface of flexible substance in gas scattering way |
JP2014065961A (en) * | 2012-09-27 | 2014-04-17 | Micro Engineering Inc | Functional membrane, membrane deposition apparatus, and membrane deposition method |
US10627588B2 (en) | 2017-02-27 | 2020-04-21 | Corning Optical Communications LLC | Optical interconnection assemblies, glass interconnection substrates, and methods of making an optical connection |
US10948658B2 (en) | 2017-02-27 | 2021-03-16 | Corning Optical Communications LLC | Optical interconnection assemblies, glass interconnection substrates, and methods of making an optical connection |
WO2022074928A1 (en) * | 2020-10-08 | 2022-04-14 | 日東電工株式会社 | Fluorine resin film and rubber formed body |
WO2022074927A1 (en) * | 2020-10-08 | 2022-04-14 | 日東電工株式会社 | Fluorine resin film and rubber molded article |
Also Published As
Publication number | Publication date |
---|---|
JP4585798B2 (en) | 2010-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5154814B2 (en) | Method for producing quartz glass material | |
US6572937B2 (en) | Method for producing fluorinated diamond-like carbon films | |
JP4585798B2 (en) | Fluorine-containing thin film and method for producing substrate having the fluorine-containing thin film | |
Huang et al. | Microstructure, wear and oxidation resistance of CrWN glass molding coatings synthesized by plasma enhanced magnetron sputtering | |
JP2015007290A (en) | Adhesive hermetic oxide films for metal fluoride optics | |
JPWO2012153781A1 (en) | Method and apparatus for producing fluorine-containing organosilicon compound thin film | |
JP2007186384A (en) | Hard film for glass molding and glass molding die equipped with the same | |
JP4676387B2 (en) | Raw material unit for vacuum deposition, evaporation source for vacuum deposition, and vacuum deposition apparatus | |
JP2007213715A (en) | Method for forming fluorinated diamondlike carbon thin film, and fluorinated diamondlike carbon thin film obtained thereby | |
US20070261444A1 (en) | Method for making a mold used for press-molding glass optical articles | |
JP6948369B2 (en) | Manufacturing method of moth-eye transfer type and moth-eye transfer type | |
JPH11140626A (en) | Forming method of triazine dithiol derivative film and polymerizing method of film component | |
JP7095276B2 (en) | Fluororesin coating and its manufacturing method | |
Zhen-Yu et al. | Preparation and tribological properties of DLC/Ti film by pulsed laser arc deposition | |
JP2011098845A (en) | Forming mold and method for manufacturing the same | |
JP2019214182A (en) | Moth-eye transfer mold, method for manufacturing moth-eye transfer mold, and method for transferring moth-eye structure | |
WO2016017438A1 (en) | Carbon thin film, plasma device for producing same, and production method | |
JPH06306591A (en) | Production of water-repellent hard-coated coating film | |
Senda et al. | Preparation of a functionally graded fluoropolymer Thin film and its application to antireflective coating | |
JP2008063594A (en) | Fluorine-containing thin film, and manufacturing method of base material having the same | |
JP2018031075A (en) | Functional thin film, production method thereof, laminate structure and production method thereof | |
JP4596476B2 (en) | Manufacturing method of optical element molding die and optical element molding die | |
KR101429645B1 (en) | Hard coating layer and method for forming the same | |
JP6091834B2 (en) | Roll mold | |
JP4830882B2 (en) | Mold for optical element molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070326 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090706 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090714 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090909 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100831 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100906 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130910 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |