[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006000715A - Equipment and method for flocculation precipitation treatment - Google Patents

Equipment and method for flocculation precipitation treatment Download PDF

Info

Publication number
JP2006000715A
JP2006000715A JP2004177590A JP2004177590A JP2006000715A JP 2006000715 A JP2006000715 A JP 2006000715A JP 2004177590 A JP2004177590 A JP 2004177590A JP 2004177590 A JP2004177590 A JP 2004177590A JP 2006000715 A JP2006000715 A JP 2006000715A
Authority
JP
Japan
Prior art keywords
coagulation
water
treatment
flocculant
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004177590A
Other languages
Japanese (ja)
Other versions
JP4668554B2 (en
Inventor
Toshiaki Ochiai
寿昭 落合
Kunio Ebie
邦雄 海老江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2004177590A priority Critical patent/JP4668554B2/en
Publication of JP2006000715A publication Critical patent/JP2006000715A/en
Application granted granted Critical
Publication of JP4668554B2 publication Critical patent/JP4668554B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide compact equipment and a method for flocculation precipitation treatment which require a lower rate of injection of a coagulant than that of conventional equipment, permit high-speed treatment and have excellent concentrating and dehydrating properties of produced sludge. <P>SOLUTION: The equipment carries out flocculation precipitation treatment comprising adding a coagulant to raw water containing suspended matter to separate into coagulated floc and clear water through flocculation precipitation. It has a flocculation vessel 10 stirring the raw water added with the coagulant to form coagulated floc and a precipitation vessel 12 which allows the flocculated water from the vessel 10 to flow in from its lower part, causes clear water to flow out from its upper part and separates coagulated flock through adsorption with the floc blanket layer formed within the vessel 12. In the vessel 12, stirring is carried out with a GT value, a product of the stirring intensity G, sec-1, and the residence time T, sec, of ≥200,000. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、懸濁物質を含む原水に凝集剤を添加して凝集沈澱により凝集フロックと清澄水とに分離する凝集沈澱処理装置及び凝集沈殿処理方法に関する。   The present invention relates to a coagulation-precipitation treatment apparatus and a coagulation-precipitation treatment method in which a flocculant is added to raw water containing a suspended substance and separated into coagulated floc and clear water by coagulation precipitation.

従来、河川水、地下水、湖沼水等の原水を浄化する浄水処理において、原水中の有機、無機の懸濁物質を除去する除濁処理方法として、急速撹拌/緩速撹拌(フロック形成)/沈殿分離という3つのユニットプロセスで構成されるコンベンショナルタイプの凝集沈殿処理装置を用いる方法が知られている。この方法は、(1)凝集剤注入後に急速撹拌して凝集剤と原水中の懸濁物質とを接触させて微細フロック化する、(2)微細フロックを緩速撹拌することにより衝突集合させて大きなフロックに成長させる、(3)フロックを沈殿させ分離し、上澄液である沈澱処理水を得る、という3つのプロセスで構成されるものである。そして、沈澱処理水について、砂ろ過処理などを施した後、消毒処理をして排水する。   Conventionally, in water purification treatments that purify raw water such as river water, ground water, lake water, etc., rapid agitation / slow agitation (floc formation) / precipitation is a turbidity treatment method that removes organic and inorganic suspended substances in the raw water. There is known a method using a conventional type coagulation sedimentation processing apparatus constituted by three unit processes of separation. In this method, (1) the flocculant is injected rapidly and the flocculant is brought into contact with the suspended substances in the raw water to form fine flocs. (2) The fine flocs are collided and assembled by slow stirring. Growing into large flocs, and (3) precipitating water that is a supernatant is obtained by precipitating flocs and separating them to obtain a supernatant. Then, the sedimentation water is subjected to sand filtration and the like, and then sterilized and drained.

しかし、コンベンショナルタイプの凝集沈殿処理方法においては、凝集剤フロックが十分に大きくなっていないと、沈殿槽から微細凝集フロックが流出し、後段のろ過処理においてろ材の目詰まりを引き起こす。このため、凝集沈殿処理における懸濁物質の除去率を向上させるために凝集剤を多量に注入しなければならないという問題があった。また、多量の凝集剤は汚泥発生量の増加を引き起こすという問題があった。   However, in the conventional type coagulation sedimentation processing method, if the flocculant floc is not sufficiently large, the fine aggregation floc flows out from the sedimentation tank, and the filter medium is clogged in the subsequent filtration process. For this reason, there has been a problem that a large amount of a flocculant has to be injected in order to improve the removal rate of suspended substances in the coagulation sedimentation treatment. In addition, there is a problem that a large amount of the flocculant causes an increase in the amount of sludge generated.

この問題を解決するために、特開2002−192163号公報(特許文献1)には、急速撹拌工程において、撹拌強度G値を、300sec−1以上とすることが提案されている。これにより、凝集剤由来の懸濁物質を低減してろ材の目詰まりを抑制する、過剰な凝集剤を減らし汚泥発生量を低減することができるとしている。 In order to solve this problem, Japanese Patent Laid-Open No. 2002-192163 (Patent Document 1) proposes that the stirring intensity G value be 300 sec −1 or more in the rapid stirring step. Thereby, it is said that the amount of sludge generation can be reduced by reducing excess flocculant, which reduces suspended matter derived from the flocculant and suppresses clogging of the filter medium.

一方、急速撹拌/緩速撹拌(フロック形成)/沈殿分離の3つのプロセスもしくは後二者のプロセスを1つの装置内にまとめた高速凝集沈殿装置が、コンベンショナルタイプの凝集沈殿処理方法に比べて高速処理が可能な凝集沈殿処理方法として多数採用されてきている。この高速凝集沈殿装置において、高速凝集沈殿としては、水流撹拌により凝集処理を行うフロックブランケット型高速凝集沈殿池や、機械撹拌による緩速撹拌を行うスラリ循環型高速凝集沈殿池もしくはこれらの複合型の高速凝集沈殿池などが使用されている。   On the other hand, the high-speed coagulation precipitation device that combines the three processes of rapid stirring / slow stirring (floc formation) / precipitation separation or the latter two processes in one apparatus is faster than conventional type coagulation precipitation treatment methods. A number of coagulation-precipitation methods that can be processed have been adopted. In this high-speed coagulation sedimentation apparatus, as the high-speed coagulation sedimentation, a floc blanket type high-speed coagulation sedimentation basin that performs flocculation treatment by water flow stirring, a slurry circulation type high-speed coagulation sedimentation basin that performs slow stirring by mechanical stirring, or a composite type of these A high-speed coagulation sedimentation basin is used.

特開2002−192163号公報JP 2002-192163 A

しかし、特許文献1のようなコンベンショナルタイプの凝集沈殿処理装置は、多くの設置面積を必要とするという問題があった。   However, the conventional type coagulation sedimentation treatment apparatus as in Patent Document 1 has a problem that a large installation area is required.

また、高速凝集沈殿装置によれば、低濁度の原水から高濁度の原水まで広い範囲にわたって安定した処理がなされているものの、処理速度が遅いため多くの敷地面積を必要とすること、また、濃縮・脱水性が悪いために汚泥処理設備が大きくなることなどが問題点として指摘されている。また、処理水に微細フロックを残留させないために凝集剤を多く入れることにより、発生汚泥量が多いことも問題であった。   Moreover, according to the high-speed coagulation sedimentation apparatus, although stable treatment is performed over a wide range from raw water with low turbidity to raw water with high turbidity, it requires a lot of site area because the processing speed is slow. It has been pointed out as a problem that the sludge treatment facility becomes large due to poor concentration and dehydration. Another problem is that the amount of generated sludge is increased by adding a large amount of flocculant so as not to leave fine floc in the treated water.

本発明は、従来装置に比べて、凝集剤注入率が低く、高速処理が可能で、発生汚泥の濃縮・脱水性に優れたコンパクトな凝集沈殿処理装置及び凝集沈澱処理方法である。   The present invention is a compact coagulation sedimentation treatment apparatus and coagulation sedimentation treatment method that has a lower coagulant injection rate than conventional devices, enables high-speed treatment, and is excellent in the concentration and dewatering properties of generated sludge.

本発明は、懸濁物質を含む原水に凝集剤を添加して凝集沈澱により凝集フロックと清澄水とに分離する凝集沈澱処理装置であって、前記凝集剤を添加した原水を撹拌して凝集フロックを形成する凝集槽と、前記凝集槽からの凝集処理水を下部から流入させ、清澄水を上部から流出させるとともに、槽内に形成されるフロックブランケット層により凝集フロックを吸合分離する沈澱槽と、を有し、前記凝集槽において、撹拌強度G値(sec−1)と滞留時間T(sec)との積であるGT値が、200000以上で撹拌が行われる。 The present invention relates to a flocculation / precipitation treatment apparatus in which a flocculant is added to raw water containing a suspended substance and separated into agglomerated floc and clarified water by agglomeration precipitation, and the raw water to which the flocculant is added is stirred to agglomerate floc A flocculation tank that forms a coagulation treatment water from the lower flocculation tank, and a clarification water that flows out from the upper part and a flocculation blanket layer that is formed in the tank, In the agglomeration tank, stirring is performed when the GT value, which is the product of the stirring strength G value (sec −1 ) and the residence time T (sec), is 200,000 or more.

また、前記凝集沈殿処理装置において、前記凝集剤は、アルミニウム系無機凝集剤であり、前記凝集処理は、前記原水の濁度成分に対するアルミニウムの添加量であるAlT比0.1以下の凝集剤注入率で行われることが好ましい。   In the coagulation sedimentation treatment apparatus, the coagulant is an aluminum-based inorganic coagulant, and the coagulation treatment is performed by injecting coagulant having an AlT ratio of 0.1 or less, which is the amount of aluminum added to the turbidity component of the raw water. It is preferable to be performed at a rate.

また、前記凝集沈殿処理装置において、前記凝集剤は、鉄系無機凝集剤であり、前記凝集処理は、前記原水の濁度成分に対する鉄の添加量であるFeT比0.2以下の凝集剤注入率で行われることが好ましい。   In the coagulation sedimentation processing apparatus, the coagulant is an iron-based inorganic coagulant, and the coagulant is injected with an coagulant having an FeT ratio of 0.2 or less, which is an amount of iron added to the turbidity component of the raw water. It is preferable to be performed at a rate.

また、前記凝集沈殿処理装置において、前記凝集処理における通水速度は、5m/hr以上であることが好ましい。   Moreover, in the said coagulation sedimentation processing apparatus, it is preferable that the water flow rate in the said coagulation process is 5 m / hr or more.

また、前記凝集沈殿処理装置において、さらに、前記フロックブランケット層と前記清澄水との界面の上方に、前記フロックブランケット層からの母フロックを上澄水層に流出させることを防止するために、傾斜した板材を間隔をおいて配置した傾斜装置を配することが好ましい。   Further, in the coagulation sedimentation treatment apparatus, further, above the interface between the flock blanket layer and the clarified water, it is inclined to prevent the mother flock from the flock blanket layer from flowing out to the supernatant water layer. It is preferable to arrange a tilting device in which plate members are arranged at intervals.

また、前記凝集沈殿処理装置において、前記傾斜装置を深さ方向において多段に配することが好ましい。   Moreover, in the said coagulation sedimentation processing apparatus, it is preferable to arrange | position the said inclination apparatus in multistage in the depth direction.

また、本発明は、懸濁物質を含む原水に凝集剤を添加して凝集沈澱により凝集フロックと清澄水とに分離する凝集沈澱処理方法であって、前記原水に前記凝集剤を添加する工程と、前記凝集剤を添加した添加水を撹拌して凝集フロックを形成する凝集処理工程と、前記凝集処理された凝集処理水を下部から流入させ、清澄水を上部から流出させるとともに、槽内に形成されるフロックブランケット層により凝集フロックを吸合分離する工程と、を含み、前記凝集処理において、撹拌強度G値(sec−1)と滞留時間T(sec)との積であるGT値が、200000以上で撹拌が行われる。 The present invention also relates to a flocculation / precipitation treatment method in which a flocculant is added to raw water containing suspended substances and separated into flocculated floc and clarified water by flocculation / precipitation, wherein the flocculant is added to the raw water; Agglomeration treatment step of stirring the added water to which the flocculant is added to form an agglomeration floc; and the agglomeration treatment water that has undergone the agglomeration treatment is allowed to flow from the lower part, and the clarified water is allowed to flow from the upper part and is formed in the tank. A step of absorbing and separating agglomerated flocs by a floc blanket layer, and in the agglomeration treatment, a GT value that is a product of a stirring intensity G value (sec −1 ) and a residence time T (sec) is 200000 Stirring is performed as described above.

また、前記凝集沈殿処理方法において、前記凝集剤は、アルミニウム系無機凝集剤であり、前記凝集処理は、前記原水の濁度成分に対するアルミニウムの添加量であるAlT比0.1以下の凝集剤注入率で行われることが好ましい。   In the coagulation sedimentation treatment method, the coagulant is an aluminum-based inorganic coagulant, and the coagulation treatment is performed by injecting the coagulant with an AlT ratio of 0.1 or less, which is the amount of aluminum added to the turbidity component of the raw water. It is preferable to be performed at a rate.

また、前記凝集沈殿処理方法において、前記凝集剤は、鉄系無機凝集剤であり、前記凝集処理は、前記原水の濁度成分に対する鉄の添加量であるFeT比0.2以下の凝集剤注入率で行われることが好ましい。   In the coagulation sedimentation treatment method, the coagulant is an iron-based inorganic coagulant, and the coagulation treatment is performed by injecting the coagulant with an FeT ratio of 0.2 or less, which is the amount of iron added to the turbidity component of the raw water. It is preferable to be performed at a rate.

また、前記凝集沈殿処理方法において、前記凝集処理において、通水速度は、5m/hr以上であることが好ましい。   Moreover, in the said coagulation sedimentation processing method, it is preferable in the said coagulation process that a water flow rate is 5 m / hr or more.

また、前記凝集沈殿処理方法において、さらに、前記フロックブランケット層と前記清澄水との界面の上方に、傾斜した板材を間隔をおいて配置した傾斜装置を配して、前記フロックブランケット層からの母フロックを上澄水層に流出させることを防止することが好ましい。   In the coagulation sedimentation treatment method, a tilting device in which tilted plate members are arranged at an interval above the interface between the flock blanket layer and the clarified water is disposed, and the mother from the flock blanket layer is disposed. It is preferable to prevent the floc from flowing into the supernatant water layer.

また、前記凝集沈殿処理方法において、前記傾斜装置を深さ方向において多段に配することが好ましい。   Moreover, in the said coagulation sedimentation processing method, it is preferable to arrange | position the said inclination apparatus in multiple steps in the depth direction.

本発明により、懸濁物質を含む原水中に凝集剤を添加して凝集沈澱により凝集フロックと清澄水とに分離する凝集沈澱処理装置において、高い撹拌強度を与えることの可能な急速撹拌装置を備えることにより、従来の凝集沈殿処理装置に比べて、凝集剤注入率が低く、高速処理が可能で、発生汚泥の濃縮・脱水性に優れたコンパクトな凝集沈殿処理装置及び凝集沈殿処理方法とすることができる。   According to the present invention, in a coagulation sedimentation processing apparatus in which a coagulant is added to raw water containing suspended solids and separated into coagulated floc and clarified water by coagulation sedimentation, a rapid stirring apparatus capable of giving high agitation strength is provided. Therefore, a compact coagulation sedimentation treatment device and a coagulation sedimentation treatment method that have a lower coagulant injection rate than conventional coagulation sedimentation treatment devices, are capable of high-speed treatment, and are excellent in the concentration and dewatering properties of the generated sludge. Can do.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

まず、本発明の前提的な事項について説明する。本実施形態に係る凝集沈澱処理装置は、懸濁物質を含む原水に凝集剤を添加して凝集沈澱により凝集フロックと清澄水とに分離する凝集沈澱処理装置であって、凝集剤を添加した原水を撹拌して凝集フロックを形成する凝集槽と、凝集槽からの凝集処理水を下部から流入させ、清澄水を上部から流出させるとともに、槽内に形成されるフロックブランケット層により凝集フロックを吸合分離する沈澱槽と、を有し、凝集槽において、撹拌強度G値(sec−1)と滞留時間T(sec)との積であるGT値が、200000以上で撹拌が行われる。 First, presupposed matters of the present invention will be described. The coagulation sedimentation processing apparatus according to the present embodiment is a coagulation precipitation treatment apparatus that adds a coagulant to raw water containing a suspended substance and separates it into coagulation floc and clarified water by coagulation precipitation, and the raw water to which the coagulant is added Agglomeration tank that forms agglomeration floc by agitation, and agglomerated water from the agglomeration tank is allowed to flow in from the lower part, and clear water is allowed to flow out from the upper part, and the floc blanket layer formed in the tank absorbs the agglomerated flocs In the coagulation tank, stirring is performed when the GT value, which is the product of the stirring strength G value (sec −1 ) and the residence time T (sec), is 200,000 or more.

従来の高速凝集沈殿装置での凝集処理において、高速凝集沈殿池としては、水流撹拌により凝集処理を行うフロックブランケット型高速凝集沈殿池や、機械撹拌による緩速撹拌を行うスラリ循環型高速凝集沈殿池もしくはこれらの複合型の高速凝集沈殿池などが使用されている。   In the agglomeration treatment with conventional high-speed agglomeration sedimentation equipment, the high-speed agglomeration sedimentation basin includes a floc blanket type high-speed agglomeration sedimentation basin that performs agglomeration treatment by water flow agitation and a slurry circulation type high-speed agglomeration sedimentation basin that performs slow agitation by mechanical agitation Alternatively, a composite high-speed coagulation sedimentation basin or the like is used.

フロックブランケット型高速凝集沈殿池では、上昇水流によって浮遊状態にある既成フロックのスラリ層(フロックブランケット層)の下方から凝集剤を混和した原水が通過することにより、懸濁物質は多数の既成フロックと接触し一体となる。成長して上昇水流より沈降速度が大きくなったフロックは、上昇水流から分離して既成フロックに加わる。フロックが分離された清澄水は水面付近の位置に配置された流出口から流出し、余剰スラリは排除される。撹拌は、水流撹拌により行われる。   In the floc blanket type high-speed coagulation sedimentation basin, the raw water mixed with the flocculant passes from below the slurry layer (floc blanket layer) of the ready-made floc that is in a floating state due to the rising water flow. Contact and become one. The flocs that have grown and have a sedimentation velocity greater than the ascending water flow are separated from the ascending water flow and join the existing flocs. The clarified water from which the floc has been separated flows out from the outlet located near the water surface, and excess slurry is eliminated. Stirring is performed by water flow stirring.

スラリ循環型高速凝集沈殿池では、凝集剤が混和された原水は、機械撹拌による緩速撹拌により、循環している既成フロックのスラリと接触し、フロック化される。その後、循環流と共に分離部に流入し、ここで清澄水の上昇水流と循環する下降スラリ流とに分離される。フロックが分離された清澄水は水面付近の位置に配置された流出口から流出し、余剰スラリは排除される。撹拌は、撹拌羽根等を使用した機械撹拌による緩速撹拌として行われる。   In the slurry circulation type high-speed coagulation sedimentation basin, the raw water mixed with the coagulant is brought into contact with the circulating slurry of the existing flocs by the slow stirring by mechanical stirring, and is flocked. Then, it flows into the separation section together with the circulating flow, where it is separated into an ascending water flow of clarified water and a circulating downward slurry flow. The clarified water from which the floc has been separated flows out from the outlet located near the water surface, and excess slurry is eliminated. Stirring is performed as slow stirring by mechanical stirring using a stirring blade or the like.

従来のコンベンショナルタイプの凝集沈殿処理方法では、急速攪拌の撹拌強度G値は150sec−1程度と低い。ここで、G値(sec−1)とは、撹拌強度を示す値であって、式(1)で示すように、撹拌羽根のエネルギ消費率ε(erg/cm・sec)を水の粘性係数μで割った値の平方根で表される。
G=(ε/μ)1/2 ・・・(1)
In the conventional conventional coagulation sedimentation processing method, the stirring intensity G value of rapid stirring is as low as about 150 sec −1 . Here, the G value (sec −1 ) is a value indicating the agitation intensity, and the energy consumption rate ε 0 (erg / cm 3 · sec) of the agitation blade is expressed as water as shown in the equation (1). It is represented by the square root of the value divided by the viscosity coefficient μ.
G = (ε 0 / μ) 1/2 (1)

また、従来の高速凝集沈殿装置による凝集処理においても、機械撹拌もしくは水流撹拌が採用されているが、いずれにしても低いG値が採用されている。   Also, in the agglomeration treatment by the conventional high-speed agglomeration precipitation apparatus, mechanical stirring or water flow stirring is employed, but in any case, a low G value is employed.

本願発明者らは、従来の高速凝集沈殿装置における発生汚泥の濃縮・脱水性の悪さについて検討を行った。懸濁物質を含む原水中に凝集剤を添加、撹拌してフロックとして凝集させる凝集処理において、汚泥発生を抑制するために低い凝集剤注入率で処理を行うと、生成する凝集フロックの中に、沈殿分離はおろかフロックブランケット層を形成している母フロックにも吸合されずに処理水中に流出する微細なフロックが含まれていて、これが処理水濁度を高める要因となっている。しかし、この微細フロックを低減してコンベンショナルタイプの凝集沈殿処理法と同等の処理水質を得るために、従来は、凝集剤注入量を増やすという手段のみが行われていた。   The inventors of the present application have studied the poor concentration and dewatering properties of the generated sludge in a conventional high-speed coagulation sedimentation apparatus. In the agglomeration process in which the flocculant is added to the raw water containing the suspended solids and stirred to agglomerate as flocs, when the treatment is performed at a low flocculant injection rate in order to suppress sludge generation, Precipitation separation, as well as the mother floc forming the flock blanket layer, contains fine floc that flows into the treated water without being absorbed, and this increases the turbidity of the treated water. However, in order to reduce the fine flocs and obtain a treated water quality equivalent to the conventional type coagulation sedimentation treatment method, conventionally, only means for increasing the coagulant injection amount has been performed.

また、撹拌強度が弱く、撹拌時間が短くなると未凝集濁度が高くなる傾向があり、この未凝集濁度が処理水濁度を決定するが、汚泥発生を抑制するために凝集剤注入率を減らし、かつ撹拌強度を高くするとその傾向は一層強くなる。   Also, when the stirring intensity is weak and the stirring time is shortened, the unaggregated turbidity tends to increase, and this unaggregated turbidity determines the treated water turbidity, but in order to suppress the generation of sludge, the flocculant injection rate is reduced. The tendency becomes stronger as the stirring intensity is decreased.

本願発明者らは、発生汚泥の濃縮・脱水性の向上を図ることのできる新たな凝集除濁処理方法を検討する中で、単に急速撹拌強度を高くするだけでは発生汚泥の処理性の改善は図れるものの、処理水濁度が高く、かつ残留する7μm以下、特に1μm以下の微細粒子数の低減化が実現出来なかった。ところが、急速撹拌強度Gと滞留時間Tとの積であるGT値を適性に管理して凝集処理を行い、その後フロックブランケット層など母フロックとの接触・吸合による処理を行なうことによって、通水速度が大きいにもかかわらず、従来の凝集沈殿処理装置の処理水よりも水質の向上が図れることを見出した。   The inventors of the present application examined a new coagulation turbidity treatment method capable of improving the concentration and dewatering properties of the generated sludge. Although it can be achieved, the turbidity of the treated water is high, and the number of remaining fine particles of 7 μm or less, particularly 1 μm or less, cannot be reduced. However, the GT value, which is the product of the rapid stirring strength G and the residence time T, is appropriately controlled to perform the agglomeration treatment, and then the contact / suction with the mother flock such as a flock blanket layer to perform water flow. The present inventors have found that the water quality can be improved compared with the treated water of the conventional coagulation sedimentation treatment apparatus despite the high speed.

すなわち、高GT値条件で凝集処理を行った後に、該凝集処理水を高速凝集沈殿装置に流入させたところ、
(1)発生汚泥の処理性改善に関しては、凝集ろ過法などの事例から凝集剤注入率を低下させればよいことは知られている。しかし、既存の高速凝集沈殿池では、凝集処理は水流撹拌か機会撹拌でもG値が低いため、浄水濁度の基準が厳しくなるにしたがって、凝集剤注入率を高める形で対処されてきている。これは、文献1(角田省吾、工業用水、第132号、29〜38ページ(1969))にあるように、既存の高速凝集沈殿池では、撹拌強度を高くするとむしろ処理水質が悪くなるという研究結果が反映されていると考えられる。したがって、既存の高速凝集沈殿池では発生汚泥の処理性改善を図ることはできない。
(2)AlT比を下げることに加えて、撹拌強度を強くすると、形成されるフロックは微細化し、沈澱処理では簡単に分離ができないほどの小さな径となる。母フロックを有し、高い衝突吸合効率を有するフロックブランケット層除濁処理では、そのような径の小さな微フロックの分離が可能であるが、本実施形態では、凝集槽(急速撹拌槽)における撹拌強度G(sec−1)と撹拌時間T(sec)との積GT値を200000以上とするような急速撹拌条件とすることで、凝集剤注入率を従来よりも低くしても既存の凝集沈殿装置の処理水質と同等となることが確認されたものである。このような撹拌条件で形成される微フロックは、径は小さいものの緻密であり、このような微フロックを吸合して大きくなった母フロックも小径であるが緻密で、大きな沈降性を有することから高速処理が可能となる。また、小径であるもののフロックブランケット単位容積当たりの母フロックの個数が飛躍的に多くなるために微フロックの吸合効率が高まり、処理水質の向上が図れたものである。
(3)なお、本実施形態では、凝集フロックが緻密で沈降性が高いもののフロック径が小さいため、高速処理とするほど、フロックブランケット層を構成する母フロックの流出量が多くなる傾向を有する。そこで、フロックブランケット層と上澄水との界面の上方に母フロック流出防止用の傾斜装置を配することが好ましい。傾斜装置の配置により、フロックブランケット層の維持を図りつつ処理水質の向上を図ることができる。また、単段でも相応の効果を有するが、深さ方向において多段、少なくとも二段設置することによって、処理効果の向上が図れる。
ことを見出した。
That is, after performing the flocculation treatment under the high GT value condition, the flocculation water was allowed to flow into the high-speed flocculation settling device.
(1) Regarding improvement of the treatment property of generated sludge, it is known that the coagulant injection rate may be reduced from cases such as the coagulation filtration method. However, in the existing high-speed coagulation sedimentation basin, since the G value is low even in the water flow stirring or the occasional stirring, the coagulant injection rate is increased as the standard of the purified water turbidity becomes stricter. This is a study that, as described in Reference 1 (Shogo Tsunoda, Industrial Water, No. 132, pages 29-38 (1969)), in the existing high-speed coagulation sedimentation basin, if the stirring strength is increased, the quality of the treated water is rather deteriorated. It is thought that the result is reflected. Therefore, the existing high-speed coagulation sedimentation basin cannot improve the treatment efficiency of the generated sludge.
(2) In addition to lowering the AlT ratio, when the stirring strength is increased, the floc formed becomes finer and has a small diameter that cannot be easily separated by precipitation. In the floc blanket layer turbidity treatment having a mother floc and high impact absorptive efficiency, it is possible to separate such a small floc with a small diameter, but in this embodiment, in a coagulation tank (rapid stirring tank) By setting the rapid stirring condition such that the product GT value of the stirring strength G (sec −1 ) and the stirring time T (sec) is 200,000 or more, the existing agglomeration can be achieved even if the flocculant injection rate is lower than the conventional one. It is confirmed that it is equivalent to the treated water quality of the precipitation device. The fine flocs formed under such agitation conditions are small although they are small in diameter, and the mother flocs that have become large by sucking such fine flocs are also small in diameter but dense and have a large sedimentation property. High-speed processing becomes possible. Moreover, since the number of the mother flocs per unit volume of the floc blanket, although having a small diameter, is remarkably increased, the suction efficiency of the fine flocs is increased and the quality of the treated water can be improved.
(3) In this embodiment, although the aggregated floc is dense and has a high sedimentation property, the floc diameter is small. Therefore, the higher the speed, the larger the amount of outflow of the mother floc constituting the flock blanket layer. Therefore, it is preferable to dispose a tilting device for preventing the mother flock outflow above the interface between the flock blanket layer and the supernatant water. By disposing the tilting device, the quality of the treated water can be improved while maintaining the flock blanket layer. In addition, although a single stage has a corresponding effect, the treatment effect can be improved by installing multiple stages, at least two stages, in the depth direction.
I found out.

図1は、本実施形態に係る凝集沈殿処理装置の一例の構成を示すブロック図である。本実施形態に係る凝集沈殿処理装置1は、凝集槽(急速撹拌槽)10、沈澱槽12、汚泥濃縮貯留槽14、撹拌羽根16、モータ18、濁度測定装置20、制御部22、ポンプ24、傾斜装置26等を含んで構成される。   FIG. 1 is a block diagram showing a configuration of an example of a coagulation sedimentation processing apparatus according to the present embodiment. The coagulation sedimentation processing apparatus 1 according to this embodiment includes a coagulation tank (rapid agitation tank) 10, a sedimentation tank 12, a sludge concentration storage tank 14, a stirring blade 16, a motor 18, a turbidity measuring device 20, a control unit 22, and a pump 24. The tilting device 26 is included.

河川水、地下水、湖沼水等の原水は、まず、凝集槽10に流入してくる。流入した原水に、凝集槽内10内で凝集剤が添加され、急速撹拌が行われる。急速撹拌は、300sec−1以上の撹拌強度Gにて行われ、原水中の懸濁物質は微細フロック化される。 Raw water such as river water, ground water, lake water, etc. flows into the agglomeration tank 10 first. The flocculant is added to the inflowing raw water in the coagulation tank 10 and rapid stirring is performed. The rapid stirring is performed at a stirring strength G of 300 sec −1 or more, and the suspended matter in the raw water is finely flocked.

凝集剤としては、アルミニウム塩、鉄塩等の無機系凝集剤等を使用することができる。具体的には、ポリ塩化アルミニウム凝集剤(PAC)、鉄と無機アニオンポリマである重合ケイ酸(シリカ)とを組み合わせた鉄−シリカ無機高分子凝集剤(PSI)等が挙げられる。   As the flocculant, inorganic flocculants such as aluminum salts and iron salts can be used. Specific examples include a polyaluminum chloride flocculant (PAC) and an iron-silica inorganic polymer flocculant (PSI) in which iron and polymerized silicic acid (silica) which is an inorganic anionic polymer are combined.

凝集剤の添加は、ポンプ24を使用して行われる。この時の凝集剤注入率は、原水の濁度に応じて、制御されることが好ましい。このとき、凝集剤注入率は、濁度測定装置20により測定された原水の濁度に基づいて、制御部22により制御されることが好ましい。制御部22は、CPU等の制御素子、半導体メモリ等の記憶部等を含んで構成される。   The flocculant is added using the pump 24. The flocculant injection rate at this time is preferably controlled according to the turbidity of the raw water. At this time, the flocculant injection rate is preferably controlled by the control unit 22 based on the turbidity of the raw water measured by the turbidity measuring device 20. The control unit 22 includes a control element such as a CPU and a storage unit such as a semiconductor memory.

凝集処理は、凝集剤がアルミニウム系無機凝集剤である場合には、AlT比0.1以下の凝集剤注入率で行われることが好ましい。AlT比が0.1を超えると、凝集剤量が多くなった分、汚泥発生固形物量が増加する場合があるが、それにとどまらず、発生汚泥の濃縮性の悪化によって、発生汚泥のボリュームが多くなる場合がある。   When the flocculant is an aluminum-based inorganic flocculant, the flocculant treatment is preferably performed at a flocculant injection rate with an AlT ratio of 0.1 or less. If the AlT ratio exceeds 0.1, the amount of sludge generated solids may increase as much as the amount of flocculant increases. However, the volume of generated sludge increases due to deterioration of the concentration of the generated sludge. There is a case.

また、凝集処理は、凝集剤が鉄系無機凝集剤である場合には、FeT比0.2以下の凝集剤注入率で行われることが好ましい。FeT比が0.2を超えると、凝集剤量が多くなり、汚泥発生量が増加する場合がある。ここで、FeT比とは、原水の濁度成分に対する鉄の添加量である。   Further, when the aggregating agent is an iron-based inorganic aggregating agent, the aggregating treatment is preferably performed at an aggregating agent injection rate of FeT ratio of 0.2 or less. When the FeT ratio exceeds 0.2, the amount of the flocculant increases and the amount of sludge generated may increase. Here, the FeT ratio is the amount of iron added to the turbidity component of raw water.

凝集槽内10における撹拌は、モータ18により駆動される撹拌羽根16等により行われる。凝集槽内10における撹拌強度Gは300sec−1以上である。なお、本実施形態において、撹拌強度Gは、凝集槽(急速撹拌槽)10における急速撹拌工程時の撹拌強度のことをいう。撹拌強度Gは、さらに450sec−1〜800sec−1の範囲であることが好ましく、600sec−1〜800sec−1の範囲であることがより好ましい。撹拌強度Gが、300sec−1未満であると、未凝集濁度成分の1μm以下の粒子数が多くなる場合があり、800sec−1を超えると、一度形成されたフロックが破壊されるためか800sec−1以下に比べて若干処理水濁度が高くなる場合がある。 Agitation in the agglomeration tank 10 is performed by a stirring blade 16 driven by a motor 18 or the like. The stirring strength G in the coagulation tank 10 is 300 sec −1 or more. In the present embodiment, the stirring strength G refers to the stirring strength in the rapid stirring step in the aggregation tank (rapid stirring tank) 10. Agitation intensity G is preferably further in the range of 450sec -1 ~800sec -1, and more preferably in the range of 600sec -1 ~800sec -1. Stirring strength G is less than 300 sec -1, may 1μm following number of particles unaggregated turbidity component increases, when it exceeds 800 sec -1, or because once formed flocs are broken 800 sec The treated water turbidity may be slightly higher than -1 or less.

凝集槽内10における、撹拌強度G値(sec−1)と滞留時間T(sec)との積であるGT値(=G×T)は、200000以上であるが、300000〜500000の範囲であることが好ましい。なお、本実施形態において、滞留時間Tは、凝集槽(急速撹拌槽)10における急速撹拌工程での滞留時間のことをいう。GT値が、200000未満であると、濁度及び1μm以下の粒子個数が高くなる場合があり、500000を超えると、加える動力に対して濁度等の改善効果が低くなる場合がある。 The GT value (= G × T), which is the product of the stirring intensity G value (sec −1 ) and the residence time T (sec), in the coagulation tank 10 is 200,000 or more, but is in the range of 300,000 to 500,000. It is preferable. In the present embodiment, the residence time T refers to the residence time in the rapid stirring process in the aggregation tank (rapid stirring tank) 10. When the GT value is less than 200000, the turbidity and the number of particles of 1 μm or less may be high, and when it exceeds 500,000, the improvement effect such as turbidity may be reduced with respect to the applied power.

また、凝集槽10での凝集処理において、通水速度は、5m/hr以上であることが好ましく、7.5m/hr〜15m/hrの範囲であることがより好ましい。通水速度が、5m/hr未満であると、装置が大きくなる可能性があり、15m/hrを超えると、処理水質が悪化する場合がある。これは、高速流になるとフロックブランケットの空隙率が大きくなる、すなわち、母フロックの粒子間距離が離れるので、微フロックの衝突吸合効率が低下し、結果として処理水質が悪化するためと考えられる。   In the flocculation treatment in the flocculation tank 10, the water flow rate is preferably 5 m / hr or more, and more preferably in the range of 7.5 m / hr to 15 m / hr. If the water flow rate is less than 5 m / hr, the apparatus may become large, and if it exceeds 15 m / hr, the quality of the treated water may deteriorate. This is thought to be because the porosity of the floc blanket increases at high speed flow, that is, the distance between the particles of the mother floc increases, so that the impact absorption efficiency of the fine flocs decreases, resulting in deterioration of the quality of the treated water. .

なお、凝集槽10として、複数の槽を設置してもよい。また、凝集槽10は複数の槽に分割されていてもよい。これらの場合、滞留時間は各槽の滞留時間の合計とする。   A plurality of tanks may be installed as the aggregation tank 10. Moreover, the aggregation tank 10 may be divided | segmented into the some tank. In these cases, the residence time is the total residence time of each tank.

凝集槽内10において、凝集処理された微細フロックを含む凝集処理水は、凝集槽内10の下部から流出する。流出した凝集処理水は、沈殿槽12の下部から流入する。沈殿槽12においては、上昇水流によって浮遊状態にある既成フロックのスラリ層28(フロックブランケット層)の下方から凝集処理水が通過することにより、懸濁物質は多数の既成フロックと接触し一体となる。成長して上昇水流より沈降速度が大きくなったフロックは、上昇水流から分離して既成フロックに加わる。フロックが分離された清澄水は水面付近の位置に配置された清澄水流出口30から流出する。   In the agglomeration tank 10, the agglomerated water containing the fine flocs subjected to the agglomeration process flows out from the lower part of the agglomeration tank 10. The flocculated water that has flowed out flows from the lower part of the settling tank 12. In the settling tank 12, the agglomerated water passes from below the slurry layer 28 (floc blanket layer) of the ready-made flocs that are in a floating state due to the rising water flow, so that the suspended solids come into contact with a large number of the ready-made flocs and become integral. . The flocs that have grown and have a sedimentation velocity greater than the ascending water flow are separated from the ascending water flow and join the existing flocs. The clarified water from which the floc has been separated flows out from the clarified water outlet 30 disposed at a position near the water surface.

余剰スラリは、フロックブランケット層28の上面近傍に配置された汚泥流出口32から排出される。排出された余剰スラリは汚泥34として処分される。汚泥34は、フィルタプレス等のろ過処理等により脱水処理される。   Excess slurry is discharged from a sludge outlet 32 disposed near the upper surface of the flock blanket layer 28. The discharged surplus slurry is disposed as sludge 34. The sludge 34 is dehydrated by a filtration process such as a filter press.

また、前述したように、フロックブランケット層28と清澄水との界面の上方に傾斜装置26を配することが好ましい。なお、傾斜装置26は、傾斜した板材を間隔をおいて配置したものである。凝集フロックが緻密で沈降性が高いもののフロック径が小さいため、高速処理とするほど、フロックブランケット層28を構成する母フロックの流出量が多くなる傾向を有するが、その場合に母フロックの流出を防止することができる。傾斜装置26の配置により、フロックブランケット層28の維持を図りつつ処理水質の向上を図ることができる。また、傾斜装置26は単段でも相応の効果を有するが、深さ方向において多段、少なくとも二段設置することによって、処理効果の向上が図れるためより好ましい。図1は、傾斜装置26を二段設置した例である。二段設置する場合は、1つ(26a)を水面の近傍に、もう1つ(26b)をフロックブランケット層28と清澄水との界面の上方近傍に設置することが好ましい。傾斜装置26としては、例えば、図2に示すような傾斜板36を用いることができる。   Further, as described above, it is preferable to dispose the tilting device 26 above the interface between the flock blanket layer 28 and the clear water. In addition, the inclination apparatus 26 arrange | positions the inclined board | plate material at intervals. Although the aggregate flocs are dense and have a high sedimentation property, the floc diameter is small. Therefore, the higher the speed, the larger the amount of outflow of the mother flocs constituting the flock blanket layer 28 tends to increase. Can be prevented. By disposing the tilting device 26, it is possible to improve the quality of the treated water while maintaining the flock blanket layer 28. In addition, the tilting device 26 has a corresponding effect even in a single stage, but it is more preferable to install multiple stages and at least two stages in the depth direction because the treatment effect can be improved. FIG. 1 shows an example in which the tilting device 26 is installed in two stages. When installing in two stages, it is preferable to install one (26a) near the water surface and the other (26b) near the upper part of the interface between the flock blanket layer 28 and the clarified water. As the tilting device 26, for example, a tilting plate 36 as shown in FIG. 2 can be used.

既存の高速凝集沈殿池では、本実施形態のような所定時間・高G値を与えることができる撹拌装置を保有していないため、汚泥処理性改善のために凝集剤注入率を少なくする方法は取りえなく、凝集剤注入率を一層高めることによって該未凝集フロック量の低減化を図る方法が取られてきた。なお、凝集剤注入率を高めると、フロック径は粗大化し、フロックブランケット層内におけるフロック間距離が大きくなり、微フロックとの衝突確率が低くなる。   Since the existing high-speed coagulation sedimentation basin does not have a stirrer that can give a high G value for a predetermined time as in this embodiment, the method of reducing the coagulant injection rate for improving sludge treatment is Inevitable, a method for reducing the amount of the non-aggregated floc by increasing the flocculant injection rate has been taken. When the flocculant injection rate is increased, the floc diameter is increased, the distance between flocs in the floc blanket layer is increased, and the probability of collision with fine flocs is decreased.

本実施形態において、急速撹拌強度を高くするのに加えて急速撹拌時間を長くして凝集処理を行い、その後フロックブランケット層など母フロックとの接触・吸合による処理を行なうことによって、通水速度が大きいにも係わらず、従来の凝集沈殿処理装置の処理水よりも水質の向上が図ることできる。   In this embodiment, in addition to increasing the rapid stirring strength, the rapid stirring time is lengthened to perform the agglomeration treatment, and then the processing by contact / sucking with the mother flock such as a flock blanket layer is performed, whereby the water flow rate is increased. However, the water quality can be improved as compared with the treated water of the conventional coagulation sedimentation treatment apparatus.

これは、急速撹拌によって形成される微フロックが、凝集剤注入率を低くしてゆくと径が小さく緻密となり、これが成長した母フロックの径も凝集剤注入率が低くなるにつれて小さくなるため、フロックブランケット内の固形物濃度は高くなって行く。すなわち、上記の事例とは反対に、母フロック径は小さいもののフロックの存在個数が多くなり、従ってフロック間距離は上記事例に比べてはるかに狭くなるため、流入してくる微フロックとの衝突確率が高くなるので、結果として、高流速処理を行っているにも関わらず、処理水濁度が向上するという結果になったものと推察される。   This is because the fine flocs formed by rapid stirring become smaller and denser when the flocculant injection rate is lowered, and the diameter of the mother floc that grows becomes smaller as the flocculant injection rate is lower. The solids concentration in the blanket increases. That is, contrary to the above example, although the mother floc diameter is small, the number of flocs increases, and therefore the distance between the flocs is much narrower than in the above example, so the collision probability with the inflowing fine flocs As a result, it is presumed that, as a result, the turbidity of the treated water is improved despite the high flow rate treatment.

この現象に関して、文献2(丹保憲仁ら、水道協会雑誌、第417号、7〜17ページ(昭和44年6月))、文献3(丹保憲仁、水道協会雑誌、第386号、38〜46ページ(昭和41年1月))に記載されている研究結果では、急速撹拌(強度は弱い)後に直接、マイクロフロックとしてブランケット層に通水すると、3m/hr以上の流速条件では急速に処理水濁度が悪化することを報告している。しかし、本実施形態では、急速撹拌のみを与えてマイクロフロックを直接ブランケット層に流入させるという点を同一にしながら、10m/hrと文献2,3の実験例の約3.3倍の条件での処理にもかかわらず、処理水濁度は遙かに低い値で推移することが確認できた。   Regarding this phenomenon, Document 2 (Tanho Norihito et al., Water Supply Association Magazine, No. 417, pages 7 to 17 (June 1969)), Reference 3 (Tanbo Norihito, Water Supply Association Magazine, No. 386, pages 38 to 46) (January 1966)) According to the research results described in (1966), if the water is passed directly through the blanket layer as micro flocs after rapid stirring (low strength), the treated water turbidity rapidly at a flow rate of 3 m / hr or higher. Reported that the degree deteriorated. However, in the present embodiment, 10 m / hr is about 3.3 times that of the experimental examples of References 2 and 3 while maintaining the same point that microfloc is allowed to flow directly into the blanket layer by giving only rapid stirring. Despite treatment, it was confirmed that the treated water turbidity remained at a much lower value.

なお、高速凝集沈殿池に関しては、文献2,3ならびに水道施設設計指針に高濁度時の問題点についての記述があるが、これらは発生した汚泥の沈降濃縮性との関係に帰結すると考えられ、濃縮性が大幅に改善可能な本願にあっては、これらの問題点も大幅に軽減できる。   Regarding the high-speed coagulation sedimentation basin, references 2 and 3 and the water supply facility design guidelines describe the problems at the time of high turbidity, which are thought to result from the relationship with the sedimentation and concentration of the generated sludge. In the present application in which the concentration can be greatly improved, these problems can be greatly reduced.

また、前記文献1、文献4(角田省吾、工業用水、第133号、39〜47ページ(1969))にあるように、高速凝集沈殿池が開発されて以後、「沈殿池流入前に施す急速撹拌は、強くすると処理水濁度は悪化する」ことが常識であって、高速凝集沈殿池での浄水処理における高速化は、撹拌強度を抑制して「大きなフロックを作る」ことによって成し遂げられると考えられていた。   In addition, as described in References 1 and 4 (Sho Tsunoda, Industrial Water, No. 133, pages 39 to 47 (1969)), after the rapid flocculation sedimentation basin was developed, It is common knowledge that the turbidity of the treated water deteriorates when the agitation is strengthened, and the speeding up of the water treatment in the high-speed coagulation sedimentation basin is achieved by suppressing the agitation strength and creating a large floc. It was thought.

本実施形態によれば、そこをブレークスルーし、撹拌強度G値(sec−1)と滞留時間T(sec)との積であるGT値を適正に管理することで、年間の大半を占める低濁度原水の処理に当たって、低AlT処理にも関わらず、高速度での処理で、既存の高速凝集沈殿池の処理水質よりも低い処理水濁度が確保することができる。 According to this embodiment, it breaks through and appropriately manages the GT value which is the product of the stirring intensity G value (sec −1 ) and the residence time T (sec), thereby reducing the majority of the year. In the treatment of the raw turbidity water, the treatment water turbidity lower than the treatment water quality of the existing high-speed coagulation sedimentation basin can be secured by the treatment at a high speed despite the low AlT treatment.

更には、突然の降雨に伴う高濁度原水の処理に対しても、図7に見られるように、むしろ処理水質が向上するとの結果が得られている。   Furthermore, as shown in FIG. 7, the result that the quality of the treated water is improved is also obtained for the treatment of high turbidity raw water accompanying sudden rainfall.

現在、凝集沈殿処理における凝集剤注入率は、ジャーテストを行って上澄水濁度が最も良好、かつフロックが大きく沈降性の良い注入率を選択することにより決定されている。その結果、上述したように凝集剤が過剰注入となり、発生汚泥の処理性を著しく悪化させることにつながっている。   At present, the coagulant injection rate in the coagulation sedimentation process is determined by performing a jar test and selecting an injection rate with the best supernatant water turbidity, large flocs and good sedimentation. As a result, as described above, the flocculant is excessively injected, which leads to a marked deterioration in the treatment property of the generated sludge.

本実施形態におけるように低い凝集剤注入率での処理を実施する場合、従来のジャーテスト法では、フロック径は小さく、上澄水が清澄化することはない。しかしながら、上の条件で処理を行うことにより、従来法と同等以上の処理水質が確保出来るが、そのための制御方法としては、原水濁度100度程度までは、例えば、AlT比0.03での濁度比例制御、100度以上にあっては0.02から0.01へとAlT比を一層低下させての比例制御を行うことによって全濁度範囲に対する凝集剤注入制御を行うことができる。   When processing at a low coagulant injection rate as in the present embodiment, the conventional jar test method has a small floc diameter and does not clarify the supernatant water. However, by performing the treatment under the above conditions, a treated water quality equivalent to or better than that of the conventional method can be secured. However, as a control method therefor, the raw water turbidity is about 100 degrees, for example, with an AlT ratio of 0.03. By controlling the turbidity proportionally, that is, by controlling the turbidity by further reducing the AlT ratio from 0.02 to 0.01 when the degree of turbidity is 100 degrees or more, the flocculant injection control over the entire turbidity range can be performed.

このように、本実施形態に係る凝集沈殿処理装置及び凝集沈殿処理方法において、
(1)高い撹拌強度を与えることの可能な凝集槽(急速撹拌槽)を前置し、凝集槽における撹拌強度G値(sec−1)と滞留時間T(sec)との積であるGT値を適性に管理することにより、
さらに好ましくは、
(2)低凝集剤注入率での処理
(3)高流速処理
(4)母フロック流出防止用傾斜装置及び処理水質向上用傾斜装置の設置
をすることにより、従来の凝集沈殿処理装置に比べて、凝集剤注入率が低く、高速処理が可能で、発生汚泥の濃縮・脱水性に優れたコンパクトな凝集沈殿処理装置及び凝集沈殿処理方法とすることができる。
Thus, in the coagulation sedimentation processing apparatus and the coagulation sedimentation processing method according to the present embodiment,
(1) Preliminary agglomeration tank (rapid agitation tank) capable of giving high agitation strength, GT value which is the product of agitation intensity G value (sec −1 ) and residence time T (sec) in the agglomeration tank By properly managing
More preferably,
(2) Treatment with low coagulant injection rate (3) High flow rate treatment (4) By installing a tilting device for preventing mother floc outflow and a tilting device for improving the quality of treated water, compared to conventional coagulation sedimentation treatment equipment In addition, the coagulant injection rate is low, high-speed treatment is possible, and a compact coagulation sedimentation treatment apparatus and coagulation sedimentation treatment method excellent in the concentration and dewatering properties of the generated sludge can be obtained.

以下、実施例を挙げ、本発明をより具体的に詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail more specifically, this invention is not limited to a following example, unless the summary is exceeded.

(実施例1)
図1に示す凝集沈殿処理装置を使用して、凝集槽(急速撹拌槽)内の滞留時間Tと、撹拌強度G値とを変えて下記の条件で原水の処理を行った。撹拌強度G(sec−1)と滞留時間T(sec)との積GT値と、処理水の濁度(mg/L)との関係を図3に示す。撹拌強度G(sec−1)と滞留時間T(sec)との積GT値と、処理水の残留微粒子数(個/mL)との関係を図4に示す。
Example 1
Using the coagulation sedimentation processing apparatus shown in FIG. 1, raw water was treated under the following conditions while changing the residence time T in the coagulation tank (rapid stirring tank) and the stirring strength G value. FIG. 3 shows the relationship between the product GT value of the stirring intensity G (sec −1 ) and the residence time T (sec) and the turbidity (mg / L) of the treated water. FIG. 4 shows the relationship between the product GT value of the stirring intensity G (sec −1 ) and the residence time T (sec) and the number of residual fine particles (pieces / mL).

[処理条件]
原水濁度:20mg/L
通水速度:10m/hr
フロックブランケット層高さ:1600mm
凝集剤:PAC
凝集剤注入率:AlT比=0.05
[Processing conditions]
Raw water turbidity: 20mg / L
Water flow speed: 10m / hr
Flock blanket layer height: 1600mm
Flocculant: PAC
Coagulant injection rate: AlT ratio = 0.05

図3からわかるように、撹拌強度G(sec−1)と滞留時間T(sec)との積GT値を200000以上とすることにより、処理水(清澄水)の濁度が向上する。また、そのとき、図4からわかるように、撹拌強度G(sec−1)と滞留時間T(sec)との積GT値を200000以上とすることにより、処理水の残留微粒子数(個/mL)が減少する。 As can be seen from FIG. 3, the turbidity of the treated water (clear water) is improved by setting the product GT value of the stirring intensity G (sec −1 ) and the residence time T (sec) to 200,000 or more. At that time, as can be seen from FIG. 4, by setting the product GT value of the stirring intensity G (sec −1 ) and the residence time T (sec) to 200,000 or more, the number of residual fine particles (number / mL / mL) of the treated water ) Decreases.

(実施例2)
図1に示す凝集沈殿処理装置を使用して、凝集剤注入率AlT比と、撹拌強度G値及び滞留時間Tとを変えて下記の条件で原水の処理を行った。AlT比と処理水の濁度(mg/L)との関係を図5に示す。
(Example 2)
Using the coagulation sedimentation treatment apparatus shown in FIG. 1, raw water was treated under the following conditions while changing the coagulant injection rate AlT ratio, the stirring strength G value, and the residence time T. The relationship between the AlT ratio and the turbidity (mg / L) of treated water is shown in FIG.

[処理条件]
原水濁度:20mg/L
通水速度:10m/hr
フロックブランケット層高さ:730mm
凝集剤:PAC
凝集剤注入率:AlT比=0.02,0.03,0.04,0.05,0.10
GT値:150sec−1×(4.83×60)sec,650sec−1×(12.64×60)sec
[Processing conditions]
Raw water turbidity: 20mg / L
Water flow speed: 10m / hr
Flock blanket layer height: 730mm
Flocculant: PAC
Coagulant injection rate: AlT ratio = 0.02, 0.03, 0.04, 0.05, 0.10
GT value: 150 sec −1 × (4.83 × 60) sec, 650 sec −1 × (12.64 × 60) sec

図5からわかるように、撹拌強度G(sec−1)と滞留時間T(sec)との積GT値を200000以上にすることにより処理水濁度の改善が図られている。 As can be seen from FIG. 5, the treated water turbidity is improved by setting the product GT value of the stirring intensity G (sec −1 ) and the residence time T (sec) to 200,000 or more.

(実施例3)
図1に示す凝集沈殿処理装置を使用して、凝集剤注入率AlT比を変えて下記の条件で原水の処理を行った。AlT比と処理水の濁度(mg/L)との関係を図6に示す。
Example 3
Using the coagulation sedimentation treatment apparatus shown in FIG. 1, raw water was treated under the following conditions while changing the coagulant injection rate AlT ratio. The relationship between the AlT ratio and the turbidity (mg / L) of treated water is shown in FIG.

[処理条件]
原水濁度:20mg/L
通水速度:10m/hr
フロックブランケット層高さ:1600mm
凝集剤:PAC
凝集剤注入率:AlT比=0.02,0.03,0.04,0.05,0.10
GT値:650sec−1×(12.64×60)sec
[Processing conditions]
Raw water turbidity: 20mg / L
Water flow speed: 10m / hr
Flock blanket layer height: 1600mm
Flocculant: PAC
Coagulant injection rate: AlT ratio = 0.02, 0.03, 0.04, 0.05, 0.10
GT value: 650 sec −1 × (12.64 × 60) sec

図6からわかるように、AlT比0.1以下でも処理水(清澄水)の濁度は良好である。   As can be seen from FIG. 6, the turbidity of the treated water (clear water) is good even when the AlT ratio is 0.1 or less.

(実施例4)
図1に示す凝集沈殿処理装置を使用して、原水の濁度を変えて下記の条件で原水の処理を行った。処理時間と原水、処理水の濁度(mg/L)との関係を図7に示す。
Example 4
Using the coagulation sedimentation processing apparatus shown in FIG. 1, the raw water was treated under the following conditions while changing the turbidity of the raw water. FIG. 7 shows the relationship between the treatment time, raw water, and turbidity (mg / L) of the treated water.

[処理条件]
原水濁度:100,400,800mg/L
通水速度:10m/hr
フロックブランケット層高さ:1330mm
凝集剤:PAC
凝集剤注入率:AlT比=0.01(原水濁度100mg/Lの時)、0.05(原水濁度400,800mg/Lの時)
GT値:650sec−1×(12.64×60)sec
[Processing conditions]
Raw water turbidity: 100, 400, 800 mg / L
Water flow speed: 10m / hr
Flock blanket layer height: 1330mm
Flocculant: PAC
Coagulant injection rate: AlT ratio = 0.01 (when raw water turbidity is 100 mg / L), 0.05 (when raw water turbidity is 400,800 mg / L)
GT value: 650 sec −1 × (12.64 × 60) sec

図7からわかるように、高濁度原水の処理に対しても、処理水(清澄水)の濁度は良好である。   As can be seen from FIG. 7, the turbidity of the treated water (clear water) is good even for the treatment of high turbidity raw water.

(実施例5)
図1に示す凝集沈殿処理装置を使用して得られた汚泥をフィルタプレスにより脱水処理を行った。凝集剤注入率AlT比を変えて下記の条件で原水の処理、脱水処理を行った。AlT比と単位面積あたりの加圧脱水ろ過速度(kg−days/m・hr)との関係を図8に示す。また、AlT比と脱水したケーキの含水率(%)との関係を図9に示す。
(Example 5)
The sludge obtained using the coagulation sedimentation processing apparatus shown in FIG. 1 was dehydrated by a filter press. The raw water was treated and dehydrated under the following conditions by changing the flocculant injection rate AlT ratio. FIG. 8 shows the relationship between the AlT ratio and the pressure dehydration filtration rate (kg-days / m 2 · hr) per unit area. FIG. 9 shows the relationship between the AlT ratio and the moisture content (%) of the dehydrated cake.

[処理条件]
原水濁度:20mg/L
通水速度:10m/hr
フロックブランケット層高さ:1600mm
凝集剤:PAC
凝集剤注入率:AlT比=0.01,0.02,0.03,0.04,0.1,0.2
GT値:650sec−1×(12.64×60)sec
[Processing conditions]
Raw water turbidity: 20mg / L
Water flow speed: 10m / hr
Flock blanket layer height: 1600mm
Flocculant: PAC
Coagulant injection rate: AlT ratio = 0.01, 0.02, 0.03, 0.04, 0.1, 0.2
GT value: 650 sec −1 × (12.64 × 60) sec

図8からわかるように、AlT比が低くなると、ろ過速度が速くなっており、単位時間当たりの処理量が増える。また、図9からわかるように、AlT比が低くなると、脱水ケーキの含水率が減少する。   As can be seen from FIG. 8, when the AlT ratio is lowered, the filtration rate is increased, and the processing amount per unit time is increased. Further, as can be seen from FIG. 9, when the AlT ratio is lowered, the moisture content of the dehydrated cake is reduced.

本発明の実施形態に係る凝集沈殿処理装置の一例の構成を示す図である。It is a figure which shows the structure of an example of the coagulation sedimentation processing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る凝集沈殿処理装置における傾斜板の一例を示す図である。It is a figure which shows an example of the inclination board in the coagulation sedimentation processing apparatus which concerns on embodiment of this invention. 本発明の実施例1における、撹拌強度Gと滞留時間Tとの積GT値と、処理水の濁度との関係を示す図である。It is a figure which shows the relationship between the product GT value of the stirring intensity | strength G and the residence time T, and the turbidity of treated water in Example 1 of this invention. 本発明の実施例1における、撹拌強度Gと滞留時間Tとの積GT値と、残留微粒子数との関係を示す図である。It is a figure which shows the relationship between the product GT value of the stirring intensity | strength G and the residence time T, and the number of residual fine particles in Example 1 of this invention. 本発明の実施例2におけるAlT比と処理水の濁度との関係を示す図である。It is a figure which shows the relationship between AlT ratio and the turbidity of a treated water in Example 2 of this invention. 本発明の実施例3におけるAlT比と処理水の濁度との関係を示す図である。It is a figure which shows the relationship between AlT ratio and the turbidity of a treated water in Example 3 of this invention. 本発明の実施例4におけるAlT比と処理水の濁度との関係を示す図である。It is a figure which shows the relationship between AlT ratio in Example 4 of this invention, and the turbidity of a treated water. 本発明の実施例5におけるAlT比と脱水ろ過速度との関係を示す図である。It is a figure which shows the relationship between AlT ratio and the dehydration filtration speed | velocity in Example 5 of this invention. 本発明の実施例5におけるAlT比と脱水ケーキ含水率との関係を示す図である。It is a figure which shows the relationship between AlT ratio in Example 5 of this invention, and a dehydrated cake moisture content.

符号の説明Explanation of symbols

1 凝集沈殿処理装置、10 凝集槽、12 沈澱槽、14 汚泥濃縮貯留槽、16 撹拌羽根、18 モータ、20 濁度測定装置、22 制御部、24 ポンプ、26 傾斜装置、28 フロックブランケット層、30 清澄水流出口、32 汚泥流出口、34 汚泥、36 傾斜板。   DESCRIPTION OF SYMBOLS 1 Coagulation sedimentation processing apparatus, 10 Coagulation tank, 12 Precipitation tank, 14 Sludge concentration storage tank, 16 Agitation blade, 18 Motor, 20 Turbidity measurement apparatus, 22 Control part, 24 Pump, 26 Inclination apparatus, 28 Flock blanket layer, 30 Kiyosumi water outlet, 32 sludge outlet, 34 sludge, 36 inclined plate.

Claims (12)

懸濁物質を含む原水に凝集剤を添加して凝集沈澱により凝集フロックと清澄水とに分離する凝集沈澱処理装置であって、
前記凝集剤を添加した原水を撹拌して凝集フロックを形成する凝集槽と、
前記凝集槽からの凝集処理水を下部から流入させ、清澄水を上部から流出させるとともに、槽内に形成されるフロックブランケット層により凝集フロックを吸合分離する沈澱槽と、
を有し、
前記凝集槽において、撹拌強度G値(sec−1)と滞留時間T(sec)との積であるGT値が、200000以上で撹拌が行われることを特徴とする凝集沈殿処理装置。
A flocculation / precipitation treatment apparatus for adding a flocculant to raw water containing suspended substances and separating the flocculated floc and clear water by flocculation / precipitation,
A flocculation tank for stirring the raw water to which the flocculant is added to form a flocculation floc;
A settling tank in which the agglomerated treated water from the agglomeration tank is allowed to flow from the lower part and the clarified water is allowed to flow out from the upper part, and the aggregated flocs are absorbed and separated by the flock blanket layer formed in the tank,
Have
In the coagulation tank, the coagulation sedimentation processing apparatus is characterized in that stirring is performed when the GT value, which is the product of the stirring intensity G value (sec −1 ) and the residence time T (sec), is 200,000 or more.
請求項1に記載の凝集沈殿処理装置であって、
前記凝集剤は、アルミニウム系無機凝集剤であり、
前記凝集処理は、前記原水の濁度成分に対するアルミニウムの添加量であるAlT比0.1以下の凝集剤注入率で行われることを特徴とする凝集沈殿処理装置。
The coagulation sedimentation processing apparatus according to claim 1,
The flocculant is an aluminum-based inorganic flocculant,
The coagulation treatment apparatus is characterized in that the coagulation treatment is performed at a coagulant injection rate with an AlT ratio of 0.1 or less, which is the amount of aluminum added to the turbidity component of the raw water.
請求項1に記載の凝集沈殿処理装置であって、
前記凝集剤は、鉄系無機凝集剤であり、
前記凝集処理は、前記原水の濁度成分に対する鉄の添加量であるFeT比0.2以下の凝集剤注入率で行われることを特徴とする凝集沈殿処理装置。
The coagulation sedimentation processing apparatus according to claim 1,
The flocculant is an iron-based inorganic flocculant,
The coagulation treatment apparatus is characterized in that the coagulation treatment is performed at a coagulant injection rate with an FeT ratio of 0.2 or less, which is the amount of iron added to the turbidity component of the raw water.
請求項1〜3のいずれか1つに記載の凝集沈殿処理装置であって、
前記凝集処理において、通水速度は、5m/hr以上であることを特徴とする凝集沈殿処理装置。
The coagulation sedimentation processing apparatus according to any one of claims 1 to 3,
In the flocculation process, the water flow rate is 5 m / hr or more, and the flocculation process apparatus.
請求項1〜4のいずれか1つに記載の凝集沈殿処理装置であって、
さらに、前記フロックブランケット層と前記清澄水との界面の上方に、前記フロックブランケット層からの母フロックを上澄水層に流出させることを防止するために、傾斜した板材を間隔をおいて配置した傾斜装置を配することを特徴とする凝集沈殿処理装置。
It is a coagulation sedimentation processing apparatus as described in any one of Claims 1-4,
Furthermore, in order to prevent the mother floc from the flock blanket layer from flowing out into the supernatant water layer above the interface between the flock blanket layer and the clarified water, the inclined plate members are arranged at intervals. An apparatus for coagulating sedimentation, comprising an apparatus.
請求項5に記載の凝集沈殿処理装置であって、
前記傾斜装置を深さ方向において多段に配することを特徴とする凝集沈殿処理装置。
The coagulation sedimentation processing apparatus according to claim 5,
A coagulating sedimentation processing apparatus, wherein the tilting apparatus is arranged in multiple stages in the depth direction.
懸濁物質を含む原水に凝集剤を添加して凝集沈澱により凝集フロックと清澄水とに分離する凝集沈澱処理方法であって、
前記原水に前記凝集剤を添加する工程と、
前記凝集剤を添加した原水を撹拌して凝集フロックを形成する凝集処理工程と、
前記凝集処理された凝集処理水を下部から流入させ、清澄水を上部から流出させるとともに、槽内に形成されるフロックブランケット層により凝集フロックを吸合分離する工程と、
を含み、
前記凝集処理において、撹拌強度G値(sec−1)と滞留時間T(sec)との積であるGT値が、200000以上で撹拌が行われることを特徴とする凝集沈殿処理方法。
A coagulation-precipitation treatment method in which a flocculant is added to raw water containing suspended solids and separated into coagulation floc and clear water by coagulation precipitation,
Adding the flocculant to the raw water;
Agglomeration treatment step of stirring the raw water to which the flocculant is added to form an agglomeration floc;
A step of causing the agglomerated water to flow from the lower part and causing the clarified water to flow out from the upper part, and sucking and separating the agglomerated flocs by a flock blanket layer formed in the tank;
Including
In the agglomeration treatment, the agglomeration precipitation treatment method is characterized in that agitation is performed when the GT value, which is the product of the agitation strength G value (sec −1 ) and the residence time T (sec), is 200,000 or more.
請求項7に記載の凝集沈殿処理方法であって、
前記凝集剤は、アルミニウム系無機凝集剤であり、
前記凝集処理は、前記原水の濁度成分に対するアルミニウムの添加量であるAlT比0.1以下の凝集剤注入率で行われることを特徴とする凝集沈殿処理方法。
The coagulation sedimentation processing method according to claim 7,
The flocculant is an aluminum-based inorganic flocculant,
The coagulation treatment method is characterized in that the coagulation treatment is performed at a coagulant injection rate with an AlT ratio of 0.1 or less, which is the amount of aluminum added to the turbidity component of the raw water.
請求項7に記載の凝集沈殿処理方法であって、
前記凝集剤は、鉄系無機凝集剤であり、
前記凝集処理は、前記原水の濁度成分に対する鉄の添加量であるFeT比0.2以下の凝集剤注入率で行われることを特徴とする凝集沈殿処理方法。
The coagulation sedimentation processing method according to claim 7,
The flocculant is an iron-based inorganic flocculant,
The coagulation treatment method is characterized in that the coagulation treatment is performed at a coagulant injection rate with an FeT ratio of 0.2 or less, which is the amount of iron added to the turbidity component of the raw water.
請求項7〜9のいずれか1つに記載の凝集沈殿処理方法であって、
前記凝集処理において、通水速度は、5m/hr以上であることを特徴とする凝集沈殿処理方法。
It is the coagulation sedimentation processing method according to any one of claims 7 to 9,
In the coagulation treatment, the water flow rate is 5 m / hr or more, and the coagulation sedimentation treatment method.
請求項7〜10のいずれか1つに記載の凝集沈殿処理方法であって、
さらに、前記フロックブランケット層と前記清澄水との界面の上方に、傾斜した板材を間隔をおいて配置した傾斜装置を配して、前記フロックブランケット層からの母フロックを上澄水層に流出させることを防止することを特徴とする凝集沈殿処理方法。
It is a coagulation sedimentation processing method according to any one of claims 7 to 10,
Further, an inclination device in which inclined plate members are arranged at an interval is disposed above the interface between the flock blanket layer and the clarified water so that the mother flock from the flock blanket layer flows out to the supernatant water layer. A method for coagulating and precipitating, characterized in that
請求項11に記載の凝集沈殿処理方法であって、
前記傾斜装置を深さ方向において多段に配することを特徴とする凝集沈殿処理方法。
It is the coagulation sedimentation processing method according to claim 11,
A method for coagulating sedimentation, wherein the tilting device is arranged in multiple stages in the depth direction.
JP2004177590A 2004-06-15 2004-06-15 Coagulation sedimentation processing apparatus and coagulation sedimentation processing method Expired - Lifetime JP4668554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004177590A JP4668554B2 (en) 2004-06-15 2004-06-15 Coagulation sedimentation processing apparatus and coagulation sedimentation processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004177590A JP4668554B2 (en) 2004-06-15 2004-06-15 Coagulation sedimentation processing apparatus and coagulation sedimentation processing method

Publications (2)

Publication Number Publication Date
JP2006000715A true JP2006000715A (en) 2006-01-05
JP4668554B2 JP4668554B2 (en) 2011-04-13

Family

ID=35769551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004177590A Expired - Lifetime JP4668554B2 (en) 2004-06-15 2004-06-15 Coagulation sedimentation processing apparatus and coagulation sedimentation processing method

Country Status (1)

Country Link
JP (1) JP4668554B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025141A1 (en) * 2007-08-17 2009-02-26 Hisaaki Ochiai Method of flocculating sedimentation treatment
JP4516152B1 (en) * 2009-09-08 2010-08-04 国立大学法人大阪大学 Coagulation precipitation treatment method
WO2010100688A1 (en) * 2009-03-05 2010-09-10 Ochiai Hisaaki Method of flocculation
JP2013123659A (en) * 2011-12-13 2013-06-24 Metawater Co Ltd Method and apparatus for controlling rapid agitation intensity
JP6145240B1 (en) * 2017-04-17 2017-06-07 壽昭 落合 Coagulation precipitation treatment method
JP2017159199A (en) * 2016-03-07 2017-09-14 株式会社東芝 Solid-liquid separator and control device
CN110563206A (en) * 2019-09-30 2019-12-13 重庆斯博环保科技有限公司 Integrated water purifying device and method for purifying water by using same
JP2020131055A (en) * 2019-02-13 2020-08-31 株式会社クラレ Water treatment device, and water treatment method
CN114163018A (en) * 2021-11-29 2022-03-11 西安西热水务环保有限公司 Coagulation and clarification integrated system and method suitable for dense medium flocculation

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50147161A (en) * 1974-05-18 1975-11-26
JPS6161605A (en) * 1984-08-31 1986-03-29 Ebara Infilco Co Ltd Operation of flocculator
JPH02218408A (en) * 1989-02-21 1990-08-31 Meidensha Corp Method for regulating injection rate of flocculant by means of floc measuring device
JPH0357938A (en) * 1989-07-26 1991-03-13 Meidensha Corp Floc formation controller
JPH05240767A (en) * 1992-02-28 1993-09-17 Meidensha Corp Floc measuring/controlling device
JPH06304411A (en) * 1993-04-26 1994-11-01 Japan Organo Co Ltd Cohesive sedimentation and treatment apparatus therefor
JPH07136661A (en) * 1993-11-12 1995-05-30 Kurita Water Ind Ltd Flocculating sedimentation method
JPH07204412A (en) * 1994-01-17 1995-08-08 Fuji Electric Co Ltd Apparatus for automatic determination of chemical injection ratio and method for automatic determination
JPH10202013A (en) * 1997-01-22 1998-08-04 Fuji Electric Co Ltd Method for controlling water purifying and flocculating treatment
JPH11188206A (en) * 1997-12-26 1999-07-13 Japan Organo Co Ltd Flocculation and settling device
JPH11319414A (en) * 1998-05-08 1999-11-24 Japan Organo Co Ltd Coagulator
JP2002001011A (en) * 2000-06-22 2002-01-08 Japan Organo Co Ltd Flocculation and precipitation apparatus
JP2002192163A (en) * 2000-12-28 2002-07-10 Suido Kiko Kaisha Ltd Water cleaning method by rapid filtration
JP2005211817A (en) * 2004-01-30 2005-08-11 Japan Organo Co Ltd Method and apparatus for treating high concentration suspension water

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50147161A (en) * 1974-05-18 1975-11-26
JPS6161605A (en) * 1984-08-31 1986-03-29 Ebara Infilco Co Ltd Operation of flocculator
JPH02218408A (en) * 1989-02-21 1990-08-31 Meidensha Corp Method for regulating injection rate of flocculant by means of floc measuring device
JPH0357938A (en) * 1989-07-26 1991-03-13 Meidensha Corp Floc formation controller
JPH05240767A (en) * 1992-02-28 1993-09-17 Meidensha Corp Floc measuring/controlling device
JPH06304411A (en) * 1993-04-26 1994-11-01 Japan Organo Co Ltd Cohesive sedimentation and treatment apparatus therefor
JPH07136661A (en) * 1993-11-12 1995-05-30 Kurita Water Ind Ltd Flocculating sedimentation method
JPH07204412A (en) * 1994-01-17 1995-08-08 Fuji Electric Co Ltd Apparatus for automatic determination of chemical injection ratio and method for automatic determination
JPH10202013A (en) * 1997-01-22 1998-08-04 Fuji Electric Co Ltd Method for controlling water purifying and flocculating treatment
JPH11188206A (en) * 1997-12-26 1999-07-13 Japan Organo Co Ltd Flocculation and settling device
JPH11319414A (en) * 1998-05-08 1999-11-24 Japan Organo Co Ltd Coagulator
JP2002001011A (en) * 2000-06-22 2002-01-08 Japan Organo Co Ltd Flocculation and precipitation apparatus
JP2002192163A (en) * 2000-12-28 2002-07-10 Suido Kiko Kaisha Ltd Water cleaning method by rapid filtration
JP2005211817A (en) * 2004-01-30 2005-08-11 Japan Organo Co Ltd Method and apparatus for treating high concentration suspension water

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7820056B2 (en) 2007-08-17 2010-10-26 Hisaaki Ochiai Method of flocculating sedimentation treatment
CN101558012B (en) * 2007-08-17 2012-08-22 落合寿昭 Method of flocculating sedimentation treatment
WO2009025141A1 (en) * 2007-08-17 2009-02-26 Hisaaki Ochiai Method of flocculating sedimentation treatment
WO2010100688A1 (en) * 2009-03-05 2010-09-10 Ochiai Hisaaki Method of flocculation
JP4516152B1 (en) * 2009-09-08 2010-08-04 国立大学法人大阪大学 Coagulation precipitation treatment method
WO2011030485A1 (en) * 2009-09-08 2011-03-17 株式会社水処理技術研究所 Flocculation precipitation treatment method
JP2011056355A (en) * 2009-09-08 2011-03-24 Osaka Univ Flocculation/sedimentation treatment method
JP2013123659A (en) * 2011-12-13 2013-06-24 Metawater Co Ltd Method and apparatus for controlling rapid agitation intensity
JP2017159199A (en) * 2016-03-07 2017-09-14 株式会社東芝 Solid-liquid separator and control device
JP6145240B1 (en) * 2017-04-17 2017-06-07 壽昭 落合 Coagulation precipitation treatment method
WO2018193794A1 (en) * 2017-04-17 2018-10-25 落合壽昭 Treatment method for condensed sludge
JP2018176086A (en) * 2017-04-17 2018-11-15 壽昭 落合 Flocculation precipitation treatment method
JP2020131055A (en) * 2019-02-13 2020-08-31 株式会社クラレ Water treatment device, and water treatment method
JP7213711B2 (en) 2019-02-13 2023-01-27 株式会社クラレ Water treatment device and water treatment method
CN110563206A (en) * 2019-09-30 2019-12-13 重庆斯博环保科技有限公司 Integrated water purifying device and method for purifying water by using same
CN114163018A (en) * 2021-11-29 2022-03-11 西安西热水务环保有限公司 Coagulation and clarification integrated system and method suitable for dense medium flocculation
CN114163018B (en) * 2021-11-29 2023-05-12 西安西热水务环保有限公司 Coagulation and clarification integrated system and method suitable for dense medium flocculation

Also Published As

Publication number Publication date
JP4668554B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
KR100919650B1 (en) Method and plant for thickening sludge derived from water treatment by flocculation-decantation with ballasted floc
JP5143762B2 (en) Coagulation sedimentation equipment
JP2006075750A (en) Flocculation separation treatment device and flocculation separation treatment method
JP4223870B2 (en) Water purification method
JP2004526563A (en) Water treatment method and apparatus by ballast agglomeration and gravity separation using various functional modes
CA2963306C (en) Water treatment process employing dissolved air flotation to remove suspended solids
CN1642862A (en) Method and device for clarification of liquids, particularly water, loaded with material in suspension
JP4668554B2 (en) Coagulation sedimentation processing apparatus and coagulation sedimentation processing method
JP4707752B2 (en) Water treatment method and water treatment system
JP2010017620A (en) High-speed coagulation sedimentation apparatus and polluted water purifying method
JP5173538B2 (en) Water treatment method
JP4004854B2 (en) Water purification method and apparatus
JP2013078730A (en) Method and apparatus for treatment of coagulation precipitation
JP4073116B2 (en) Coagulation sedimentation equipment
JP4416144B2 (en) Coagulation precipitation method and apparatus
JP4516152B1 (en) Coagulation precipitation treatment method
KR19980043088A (en) Water treatment system and method linking sedimentation and flotation
JP2002239306A (en) Floc forming device, solid-liquid separation apparatus and wastewater treatment method
CN205710206U (en) A kind of integral type sewage processing means
JP3922921B2 (en) Coagulation sedimentation equipment
JP4353584B2 (en) Sand-added coagulating sedimentation equipment
JP2019198806A (en) Water treatment method, and water treatment device
JP4446418B2 (en) Coagulation precipitation system
JP2002355506A (en) Flocculating and settling equipment
JP2005324095A (en) Anaerobic treatment method and anaerobic treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4668554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term