JP2006096579A - Method for forming optical element - Google Patents
Method for forming optical element Download PDFInfo
- Publication number
- JP2006096579A JP2006096579A JP2004281681A JP2004281681A JP2006096579A JP 2006096579 A JP2006096579 A JP 2006096579A JP 2004281681 A JP2004281681 A JP 2004281681A JP 2004281681 A JP2004281681 A JP 2004281681A JP 2006096579 A JP2006096579 A JP 2006096579A
- Authority
- JP
- Japan
- Prior art keywords
- molding
- optical element
- pressure
- forming
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Abstract
Description
本発明は、加熱軟化された成形用ガラス素材を一対の成形型によってプレスすることにより、非球面レンズなどの高精度な光学素子を加工するための光学素子の成形方法に関するものである。 The present invention relates to a method for molding an optical element for processing a highly accurate optical element such as an aspheric lens by pressing a heat-softened glass material for molding with a pair of molds.
従来から加熱軟化したガラスをプレス成形して光学素子を得る方法が知られているが、その際にレンズの両面だけでなく外径側面も同時に成形して、成形後の芯取り工程を省略したガラス光学素子を得る方法も行われている。 Conventionally, there is known a method for obtaining an optical element by press-molding heat-softened glass, but at that time, not only both surfaces of the lens but also the outer diameter side surface are simultaneously molded, and the post-molding centering step is omitted. A method of obtaining a glass optical element has also been performed.
この時、成形された光学素子の上型および下型の各成形面と外径側面とで成す稜線(以下、外周稜線と称す)が、バリや過度のダレの原因となったり、肉厚精度が確保できないといった不具合となったりする場合がある。 At this time, the ridgeline formed by the molding surface of the upper and lower molds of the molded optical element and the outer diameter side surface (hereinafter referred to as the outer peripheral ridgeline) may cause burrs and excessive sagging, and thickness accuracy. May not be able to be secured.
このような問題を解決するために特許文献1ではガラス素材の成形時に、まず上型で成形途中まで変形させスペーサで移動を規制すると共に上型および下型の各成形面と外径側面とでキャビティを形成し、次いで下型で更にガラス素材の変形を行う成形方法が記載されている。 In order to solve such a problem, in Patent Document 1, when a glass material is formed, first, the upper mold is deformed halfway through molding and the movement is restricted by a spacer. A molding method is described in which a cavity is formed and then a glass material is further deformed by a lower mold.
また、鏡筒への組み込みに際して光学素子の軸ズレや軸倒れを生じさせないために外周稜線の形状が安定していることが望ましい。
しかしながら特許文献1に記載の方法では駆動軸を上型および下型それぞれに備えなければならず装置の大型化やコストアップにつながっていた。 However, in the method described in Patent Document 1, the drive shaft must be provided in each of the upper mold and the lower mold, leading to an increase in the size and cost of the apparatus.
また、レンズの両面だけでなく外径側面も同時に成形して、成形後の芯取り工程を省略したガラス光学素子を得る方法ではないが、特開2000−302460号公報では以下の方法が記載されている。すなわち、成形温度で変形可能な低い圧力で上型、下型およびガラス素材を当接させながら加熱し、成形温度に到達後高い成形圧力で成形し、その変形速度を検出しながらガラス素材の粘性と成形圧力が均衡する状態で所定の時間以上経過したことを確認後、保持圧力に切り替えて転移点温度以下に冷却して光学素子を取り出すものである。しかしながら、加熱中から上型および下型とガラス素材が接触しているため高温下でのガラスと成形型との反応など表面の劣化が起こり、耐久性に問題が生ずる。またレンズの両面だけでなく外径側面も同時に成形する方法に適用すると、一定の成形圧力による成形では成形時間を短くするために、高く設定した圧力では、ガラス重量が重い場合は外周稜線にバリが生じやすく、バリの発生を避けるために成形圧力を低く設定すると成形時間が長くなってしまう。また同公報では成形工程でガラス素材の特性によっては変形速度に応じて成形圧力を漸増や漸減して加工精度や加工時間を短縮させる方法も記載されている。しかし、この方法をレンズの両面だけでなく外径側面も同時に成形する方法に適用すると圧力の増減が成形中にあるため、ガラス素材がキャビティ内において変形に伴って充填されて増加する反力が変化し、その釣り合いを保つ条件が困難になっていくか、またはそのための条件設定が困難になる。 Further, this is not a method for obtaining a glass optical element in which not only the both surfaces of the lens but also the outer diameter side surface are molded at the same time and the centering step after molding is omitted, but Japanese Patent Laid-Open No. 2000-302460 describes the following method. ing. In other words, the upper mold, the lower mold and the glass material are heated while contacting with a low pressure that can be deformed at the molding temperature. Then, after confirming that a predetermined time or more has passed in a state where the molding pressure is balanced, the optical pressure is taken out by switching to the holding pressure and cooling to the transition temperature or lower. However, since the upper mold and the lower mold are in contact with the glass material during heating, surface degradation such as reaction between the glass and the mold at a high temperature occurs, resulting in a problem in durability. In addition, when applied to the method of molding not only both sides of the lens but also the outer diameter side at the same time, molding with a constant molding pressure shortens the molding time. If the molding pressure is set low in order to avoid the generation of burrs, the molding time will be long. In the same publication, there is also described a method of shortening the processing accuracy and processing time by gradually increasing or decreasing the molding pressure according to the deformation speed depending on the characteristics of the glass material in the molding process. However, if this method is applied to the method of molding not only both sides of the lens but also the outer diameter side surface simultaneously, the pressure increases and decreases during molding, so the reaction force that increases as the glass material is filled with deformation in the cavity is increased. It will change, and the condition for maintaining the balance will become difficult, or the condition setting for that will become difficult.
本発明は上記課題に鑑みてなされたものであり、レンズの両面だけでなく外径側面も同時に成形して、成形後の芯取り工程を省略したガラス光学素子を、装置が大型や高価となることなく容易にその外周稜線が、バリや過度のダレとならず安定した形状であり、さらに肉厚精度が確保できる方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and the glass optical element in which not only the both surfaces of the lens but also the outer diameter side surface are molded at the same time and the centering step after the molding is omitted is large and expensive. It is an object of the present invention to provide a method in which the outer peripheral ridge line has a stable shape without causing burrs or excessive sagging, and can ensure wall thickness accuracy.
前述の課題を解決し、目的を達成するために、本発明に従って一対の成形型を構成する上型と下型の各成形面および胴型の表面で形成される密閉空間で、加熱軟化したガラス素材を成形する光学素子の成形方法において、一次成形圧力で押圧成形開始後プレス軸速度を検知し、該プレス軸速度が設定したプレス軸速度以下になってから設定した一次成形保持時間を経過した時点でその一次成形圧力を二次成形圧力に切り替え、該二次成形圧力で予め設定された二次成形保持時間の経過まで押圧を行ったのち冷却を行い、成形を終了させた後、光学素子を取り出すことを特徴とする光学素子の成形方法が提供される。 In order to solve the above-mentioned problems and achieve the object, the glass softened by heating in the sealed space formed by the molding surfaces of the upper mold and the lower mold and the surface of the body mold constituting the pair of molds according to the present invention. In the molding method of the optical element that molds the material, the press shaft speed is detected after the press molding is started with the primary molding pressure, and the set primary molding holding time has elapsed after the press shaft speed becomes lower than the set press shaft speed. At that time, the primary molding pressure is switched to the secondary molding pressure, the secondary molding pressure is pressed until the preset secondary molding holding time elapses, the cooling is performed, and the molding is finished. A method for molding an optical element is provided.
これにより、ガラス素材がキャビティ内に充填され少しの変形を残した状態となったことを、充填にともなって増加する反力と一次成形圧力とのバランスの変化による軸速度変化により検知し、さらに冷却前の目標形状まで二次成形圧力で成形するため、ガラス重量によらず外周稜線の形状を安定と肉厚精度の安定を両立させることができる。 As a result, it is detected that the glass material is filled in the cavity and has left a little deformation by changing the axial speed due to the change in the balance between the reaction force that increases with filling and the primary molding pressure, Since it shape | molds with the secondary shaping pressure to the target shape before cooling, it can be made to make the shape of an outer periphery ridgeline stable and stability of thickness accuracy irrespective of a glass weight.
また前記発明の成形方法において、前記設定したプレス軸速度は、成形温度条件下で前記一次成形圧力によってガラス素材が光学素子設計肉厚の110%以下に変形した時点の速度であることを特徴とする光学素子の成形方法が提供される。 Further, in the molding method of the invention, the set press shaft speed is a speed at the time when the glass material is deformed to 110% or less of the optical element design wall thickness by the primary molding pressure under the molding temperature condition. An optical element molding method is provided.
あらかじめ少しの変形を残した状態での速度を適正に求めておくことで、成形時間をいたずらに長くすることなく一次成形圧力条件を設定することができる。 By appropriately obtaining the speed in a state where a slight deformation is left in advance, the primary molding pressure condition can be set without unnecessarily increasing the molding time.
また前記発明の成形方法において、前記前記二次成形保持時間の経過におけるガラス素材の目標形状は、前記上型および下型の各成形面と前記胴型の表面とで成す外周稜線と直交断面との交線の曲率半径が1mm以下の形状で、肉厚が光学素子設計肉厚以上から100μm厚い形状以下の範囲であることを特徴とする光学素子の成形方法が提供される。 Further, in the molding method of the invention, the target shape of the glass material in the passage of the secondary molding holding time is an outer peripheral ridge line formed by each molding surface of the upper mold and the lower mold and the surface of the barrel mold, and an orthogonal cross section. There is provided a method for forming an optical element, characterized in that the radius of curvature of the intersecting line is 1 mm or less and the thickness is in the range of the optical element design thickness to 100 μm thick.
これにより、冷却によるガラスの収縮によるヒケを防止するための冷却中の圧力による変形を考慮し、設計形状の公差範囲となる成形が可能となる。 Thereby, in consideration of deformation due to pressure during cooling to prevent sink due to shrinkage of glass due to cooling, it becomes possible to perform molding within a tolerance range of the design shape.
また前記発明の成形方法において、前記二次成形圧力は、二次成形保持時間の経過時における前記プレス軸速度が5μm/秒以下となる圧力をあらかじめ設定したものであることを特徴とする光学素子の成形方法が提供される。 Further, in the molding method of the invention, the secondary molding pressure is a preset pressure at which the press shaft speed is 5 μm / second or less when the secondary molding holding time elapses. A forming method is provided.
これにより、適正な成形時間の中で外周稜線がバリになったり過度のダレとなったりしない成形が可能となる。 Thereby, it is possible to perform molding in which the outer peripheral ridge line does not become burrs or excessively sag within an appropriate molding time.
前述のような本発明のガラス光学素子の成形方法によれば、成形圧力と成形時のキャビティへのガラス素材充填に伴う反力とのバランスを利用して、最終的に目標とする充填形状で釣り合う圧力に切り替えて成形することで外周稜線形状と肉厚を安定させることができるために、ガラス素材重量の厳密な選別なども必要なく低コストで安定して生産できる。 According to the glass optical element molding method of the present invention as described above, the final filling shape is obtained by utilizing the balance between the molding pressure and the reaction force accompanying the filling of the glass material into the cavity during molding. Since the outer peripheral ridgeline shape and thickness can be stabilized by switching to a balanced pressure, it is possible to stably produce at a low cost without the need for strict sorting of the glass material weight.
以下、実施例に基づいて本発明のガラス光学素子の成形装置及び成形方法について説明する。 The glass optical element molding apparatus and molding method of the present invention will be described below based on examples.
図1は実施例1の成形方法における成形型の側断面図であり、成形終了時点を表している。上型1の成形面は球面凸形状、下型2の成形面は球面凹形状をなしており、その球面Rの値は下型の方が小さくメニス形状の光学素子を成形するようになっている。胴型3には上下に連通するように貫通穴が形成されており上型および下型が収納されている。また、光学素子の側面形成部3aが下型を収納する穴と連続して形成されており、さらに上型先端径は側面形成部の径より直径で30μm細く側面形成部まで挿入されることでキャビティを形成している。 FIG. 1 is a side cross-sectional view of a mold in the molding method of Example 1, and represents the end of molding. The molding surface of the upper mold 1 has a spherical convex shape, and the molding surface of the lower mold 2 has a spherical concave shape, and the value of the spherical surface R is smaller in the lower mold and a meniscus optical element is molded. Yes. A through hole is formed in the body mold 3 so as to communicate with the upper and lower sides, and an upper mold and a lower mold are accommodated. Further, the side surface forming part 3a of the optical element is formed continuously with the hole for housing the lower mold, and the upper mold tip diameter is 30 μm smaller than the diameter of the side surface forming part and inserted into the side surface forming part. A cavity is formed.
まず一次成形圧力から二次成形圧力への切り替えのための変形速度および二次成形圧力の設定方法について説明する。はじめに上型と連結されたプレス軸(図示せず)によって上型を上昇し、下型の中心にガラス素材4を供給する(図2)。次に胴型に収納されたヒーター(図示せず)によって上型、下型、胴型およびガラス素材を成形可能な温度まで加熱し、プレス軸によって上型を下降し押圧成形を行う。この過程で、図3のようにガラス素材は胴型、上型及び下型で形成されるキャビティ内にて変形、充填され、上型及び下型の光学面と胴型の内径側面が一部転写され、肉厚が光学素子設計肉厚の110%の状態となる。 First, a method for setting the deformation speed and the secondary molding pressure for switching from the primary molding pressure to the secondary molding pressure will be described. First, the upper die is raised by a press shaft (not shown) connected to the upper die, and the glass material 4 is supplied to the center of the lower die (FIG. 2). Next, the upper die, the lower die, the barrel die and the glass material are heated to a temperature capable of being molded by a heater (not shown) housed in the barrel die, and the upper die is lowered by the press shaft to perform press molding. In this process, as shown in FIG. 3, the glass material is deformed and filled in the cavity formed by the body mold, the upper mold, and the lower mold, and the optical surfaces of the upper mold and the lower mold and the inner diameter side surface of the cylinder mold are partially. It is transferred and the thickness becomes 110% of the optical element design thickness.
この時の圧力(一次成形圧力)は10秒程度でガラス素材を光学素子設計肉厚まで成形できる圧力とし、あらかじめその圧力で成形を行いプレス軸の位置情報などからプレス軸速度を求めておく。図5はその軸位置グラフを模式的に表したものであり、光学素子設計肉厚となる位置をt0、光学素子設計肉厚の110%となる位置をt1としている。本実施例では肉厚が光学素子設計肉厚の110%の状態となる時(プレス軸位置がt1)の速度はグラフの傾きから30μm/秒であった。次に肉厚が光学素子設計肉厚の110%の状態から成形圧力を切り替えて、外周稜線と直交断面との交線の曲率半径が1mm相当以下の形状で、光学素子設計肉厚より100μm厚い状態(冷却前の目標形状)まで成形する。図4は冷却前の目標形状の外周稜線付近の拡大側断面図である。ガラス素材は変形し肉厚は光学素子設計肉厚より100μm厚く、外周稜線と直交断面との交線のRa、Rbはそれぞれ曲率半径が1mmにほぼ等しくなっている。ここで二次成形圧力を変化させ、冷却前の目標形状となった時のプレス軸速度を図5のようなグラフを作成して求め、表1のようにまとめる。この表から5μm/秒となる圧力を一次成形圧力の70%と求める。なお成形圧力を切り替える形状や冷却前の目標形状は成形サイクルや成形型の耐久などが適正な範囲で達成されるように調整することも可能である。 The pressure (primary molding pressure) at this time is set to a pressure at which the glass material can be molded up to the optical element design thickness in about 10 seconds, and molding is performed at that pressure in advance, and the press shaft speed is obtained from the position information of the press shaft. FIG. 5 schematically shows the axial position graph, where a position where the optical element design thickness is obtained is t0, and a position where the optical element design thickness is 110% is t1. In this example, the speed when the thickness was 110% of the optical element design thickness (press axis position t1) was 30 μm / second from the slope of the graph. Next, the molding pressure is switched from a state where the wall thickness is 110% of the optical element design wall thickness, and the curvature radius of the intersection line between the outer peripheral ridge line and the orthogonal cross section is equal to or less than 1 mm, which is 100 μm thicker than the optical element design wall thickness. Molding to the state (target shape before cooling). FIG. 4 is an enlarged side sectional view of the vicinity of the outer peripheral ridge line of the target shape before cooling. The glass material is deformed and has a thickness of 100 μm thicker than the optical element design thickness, and Ra and Rb of the intersecting line between the outer peripheral ridge line and the orthogonal section are approximately equal in radius of curvature to 1 mm. Here, the secondary molding pressure is changed, and the press shaft speed when the target shape before cooling is obtained is obtained by creating a graph as shown in FIG. From this table, the pressure of 5 μm / sec is determined as 70% of the primary molding pressure. The shape for switching the molding pressure and the target shape before cooling can be adjusted so that the molding cycle, the durability of the molding die, and the like are achieved within an appropriate range.
次に前述のように求めた設定値を用いての成形方法について説明する。設定値を求めるための方法と同様に、まず上型と連結されたプレス軸によって上型を上昇し、下型の中心にガラス素材を供給する(図2)。次に胴型に収納されたヒーターによって上型、下型、胴型およびガラス素材を成形可能な温度まで加熱し、プレス軸によって上型を下降し一次成形圧力で押圧成形を行う。この時、プレス軸速度を監視しておき、プレス軸速度が30μm/秒となってから2秒後に一次成形圧力の70%である二次成形圧力に切り替える。プレス軸速度が設定した値に達してから2秒間待つことでガラス素材重量ばらつきなどがあっても確実に肉厚が光学素子設計肉厚の110%の状態までの成形がなされる。その後15秒間保持し冷却前の目標形状まで成形され、さらに圧力を保ったまま転移点まで成形型及び成形された光学素子5を冷却する(図1参照)。そしてプレス軸によって上型を上昇させ、下型の上の光学素子を取り出し、次のガラス素材を供給し連続的に成形を行う(図6プロセス線図参照)。 Next, a molding method using the set values obtained as described above will be described. Similar to the method for obtaining the set value, the upper die is first raised by the press shaft connected to the upper die, and the glass material is supplied to the center of the lower die (FIG. 2). Next, the upper die, the lower die, the barrel die and the glass material are heated to a temperature at which molding can be performed by a heater housed in the barrel die, and the upper die is lowered by a press shaft to perform press molding at a primary molding pressure. At this time, the press shaft speed is monitored, and after 2 seconds after the press shaft speed reaches 30 μm / sec, the press shaft speed is switched to a secondary molding pressure that is 70% of the primary molding pressure. By waiting for 2 seconds after the press axis speed reaches the set value, even if there is a variation in the weight of the glass material, the molding is surely performed up to a state where the thickness is 110% of the optical element design thickness. Thereafter, the mold is held for 15 seconds and molded to the target shape before cooling, and the mold and the molded optical element 5 are cooled to the transition point while maintaining the pressure (see FIG. 1). Then, the upper die is raised by the press shaft, the optical element on the lower die is taken out, the next glass material is supplied, and the molding is continuously performed (see the process diagram in FIG. 6).
図7は実施例2の成形方法における成形型の側断面図であり、成形終了時点を表している。上型6の成形面は球面凹形状、下型7の成形面は球面凹形状をなしており、両面凸形状の光学素子を成形するようになっている。胴型8には上下に連通するように貫通穴が形成されており上型および下型が収納されている。また、光学素子の側面形成部8aが下型を収納する穴と連続して形成されており、さらに上型先端径は側面形成部の径より直径で50μm細く側面形成部まで挿入されることでキャビティを形成している。 FIG. 7 is a side sectional view of a molding die in the molding method of Example 2 and represents a molding end point. The molding surface of the upper mold 6 has a spherical concave shape, and the molding surface of the lower mold 7 has a spherical concave shape, so that a double-sided convex optical element is molded. A through hole is formed in the body mold 8 so as to communicate with the upper and lower sides, and an upper mold and a lower mold are accommodated. Further, the side surface forming portion 8a of the optical element is formed continuously with the hole for accommodating the lower mold, and the upper die tip diameter is 50 μm smaller than the diameter of the side surface forming portion and inserted to the side surface forming portion. A cavity is formed.
まず一次成形圧力から二次成形圧力への切り替えのための変形速度および二次成形圧力の設定方法について説明する。はじめに上型と連結されたプレス軸(図示せず)によって上型を上昇し、下型の中心にガラス素材9を供給する(図8)。次に胴型に収納されたヒーター(図示せず)によって上型、下型、胴型およびガラス素材を成形可能な温度まで加熱し、プレス軸によって上型を下降し押圧成形を行う。この過程で、図8のようにガラス素材は胴型、上型及び下型で形成されるキャビティ内にて変形、充填され、上型及び下型の光学面と胴型の内径側面が一部転写され、肉厚が光学素子設計肉厚の103%の状態となる。 First, a method for setting the deformation speed and the secondary molding pressure for switching from the primary molding pressure to the secondary molding pressure will be described. First, the upper die is raised by a press shaft (not shown) connected to the upper die, and the glass material 9 is supplied to the center of the lower die (FIG. 8). Next, the upper die, the lower die, the barrel die and the glass material are heated to a temperature capable of being molded by a heater (not shown) housed in the barrel die, and the upper die is lowered by the press shaft to perform press molding. In this process, as shown in FIG. 8, the glass material is deformed and filled in the cavity formed by the body mold, the upper mold, and the lower mold, and the optical surfaces of the upper mold and the lower mold and the inner diameter side surface of the cylinder mold are partially. It is transferred and the wall thickness is 103% of the optical element design wall thickness.
この時の圧力(一次成形圧力)は10秒間程度でガラス素材を光学素子設計肉厚まで成形できる圧力とし、あらかじめその圧力で成形を行いプレス軸の位置情報などからプレス軸速度を求めておく。実施例1と同様にプレス軸速度を求め、本実施例では肉厚が光学素子設計肉厚の103%の状態となる時の速度は20μm/秒であった。次に肉厚が光学素子設計肉厚の103%の状態から成形圧力を切り替えて、外周稜線と直交断面との交線の曲率半径が0.4mm相当以下の形状で、光学素子設計肉厚より60μm厚い状態まで成形するのであるが、この二次成形圧力を表2のように変化させ、プレス軸速度が3μm/秒となる圧力を一次成形圧力の50%と求める。なお成形圧力を切り替える形状や冷却前の目標形状は実施例1と同様に成形サイクルや成形型の耐久などが適正な範囲で達成されるように調整することも可能である。 The pressure (primary molding pressure) at this time is set to a pressure at which the glass material can be molded up to the optical element design thickness in about 10 seconds, and molding is performed at that pressure in advance, and the press shaft speed is obtained from the position information of the press shaft. The press shaft speed was obtained in the same manner as in Example 1. In this example, the speed when the thickness was 103% of the optical element design thickness was 20 μm / second. Next, the molding pressure is switched from a state where the wall thickness is 103% of the optical element design wall thickness, and the curvature radius of the intersection line between the outer peripheral ridge line and the orthogonal cross section is equal to or less than 0.4 mm. The secondary molding pressure is changed as shown in Table 2 and the pressure at which the press shaft speed is 3 μm / sec is determined as 50% of the primary molding pressure. The shape for switching the molding pressure and the target shape before cooling can be adjusted so that the molding cycle, the durability of the molding die, and the like are achieved in an appropriate range, as in the first embodiment.
次に前述のように求めた設定値を用いての成形方法について説明する。設定値を求めるための方法と同様に、まず上型と連結されたプレス軸によって上型を上昇し、下型の中心にガラス素材を供給する(図8)。次に胴型に収納されたヒーターによって上型、下型、胴型およびガラス素材を成形可能な温度まで加熱し、プレス軸によって上型を下降し一次成形圧力で押圧成形を行う。この時、プレス軸速度を監視しておき、プレス軸速度が20μm/秒となってから5秒後に一次成形圧力の50%である二次成形圧力に切り替え、20秒保持後圧力を実質ガラス素材の変形が起きない低い圧力へ下げると同時に成形型及びガラス素材の冷却を開始する。成形型の温度がプレス成形温度より15℃下がった時点からガラスの冷却によるヒケを防止するため再び二次成形圧力で押圧し、転移点まで冷却する(図9参照)。そしてプレス軸によって上型を上昇させ、下型の上の光学素子を取り出し、次のガラス素材を供給し連続的に成形を行う(図10プロセス線図参照)。 Next, a molding method using the set values obtained as described above will be described. Similar to the method for obtaining the set value, the upper die is first raised by the press shaft connected to the upper die, and the glass material is supplied to the center of the lower die (FIG. 8). Next, the upper die, the lower die, the barrel die and the glass material are heated to a temperature at which molding can be performed by a heater housed in the barrel die, and the upper die is lowered by a press shaft to perform press molding at a primary molding pressure. At this time, the press shaft speed is monitored, and after 5 seconds after the press shaft speed reaches 20 μm / second, the pressure is switched to the secondary forming pressure which is 50% of the primary forming pressure, and the pressure after holding for 20 seconds is changed to the real glass material. The cooling of the mold and the glass material is started at the same time as the pressure is lowered to a low pressure at which deformation of the glass does not occur. In order to prevent sink marks due to the cooling of the glass from the time when the temperature of the mold is lowered by 15 ° C. from the press molding temperature, the mold is pressed again with the secondary molding pressure and cooled to the transition point (see FIG. 9). Then, the upper die is raised by the press shaft, the optical element on the lower die is taken out, the next glass material is supplied, and the molding is continuously performed (see the process diagram in FIG. 10).
本発明は上記の効果を伴うものであり、非球面レンズなどの高精度な光学素子を加工するための光学素子の成形方法において利用が期待できる。 The present invention has the effects described above, and can be expected to be used in an optical element molding method for processing a highly accurate optical element such as an aspheric lens.
1、6 上型
2、7 下型
3、8 胴型
4、9 ガラス素材
5、10 光学素子
3a 側面形成部
8a 側面形成部
Ra 外周稜線と直交断面との交線
Rb 外周稜線と直交断面との交線
DESCRIPTION OF SYMBOLS 1, 6 Upper mold | type 2,7 Lower mold | type 3,8 Body type | mold 4,9 Glass material 5,10 Optical element 3a Side surface formation part 8a Side surface formation part Ra Intersection line of an outer periphery ridgeline and an orthogonal cross section Rb Outer periphery ridgeline and an orthogonal cross section Line of intersection
Claims (4)
The secondary molding pressure is set in advance to a pressure at which a press shaft speed is 5 μm / second or less when the secondary molding holding time has elapsed. 5. 2. A method for molding an optical element according to 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004281681A JP4508804B2 (en) | 2004-09-28 | 2004-09-28 | Optical element molding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004281681A JP4508804B2 (en) | 2004-09-28 | 2004-09-28 | Optical element molding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006096579A true JP2006096579A (en) | 2006-04-13 |
JP4508804B2 JP4508804B2 (en) | 2010-07-21 |
Family
ID=36236741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004281681A Expired - Fee Related JP4508804B2 (en) | 2004-09-28 | 2004-09-28 | Optical element molding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4508804B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008083190A (en) * | 2006-09-26 | 2008-04-10 | Olympus Corp | Method for molding optical element |
JP2008115022A (en) * | 2006-11-01 | 2008-05-22 | Olympus Corp | Method and apparatus for molding optical device |
JP2009249273A (en) * | 2008-04-11 | 2009-10-29 | Olympus Corp | Method for manufacturing optical device |
US7713630B2 (en) * | 2006-08-07 | 2010-05-11 | Konica Minolta Opto, Inc. | Glass optical element and method for manufacturing the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61136927A (en) * | 1984-12-05 | 1986-06-24 | Olympus Optical Co Ltd | Method for molding optical element |
JPH05345625A (en) * | 1992-06-12 | 1993-12-27 | Sumitomo Heavy Ind Ltd | Controller of press forming machine for glass lens |
JP2002234740A (en) * | 2001-02-02 | 2002-08-23 | Minolta Co Ltd | Producing method and producing device of optical element |
JP2004149350A (en) * | 2002-10-30 | 2004-05-27 | Toyo Glass Co Ltd | Rough shape forming apparatus |
-
2004
- 2004-09-28 JP JP2004281681A patent/JP4508804B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61136927A (en) * | 1984-12-05 | 1986-06-24 | Olympus Optical Co Ltd | Method for molding optical element |
JPH05345625A (en) * | 1992-06-12 | 1993-12-27 | Sumitomo Heavy Ind Ltd | Controller of press forming machine for glass lens |
JP2002234740A (en) * | 2001-02-02 | 2002-08-23 | Minolta Co Ltd | Producing method and producing device of optical element |
JP2004149350A (en) * | 2002-10-30 | 2004-05-27 | Toyo Glass Co Ltd | Rough shape forming apparatus |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7713630B2 (en) * | 2006-08-07 | 2010-05-11 | Konica Minolta Opto, Inc. | Glass optical element and method for manufacturing the same |
JP2008083190A (en) * | 2006-09-26 | 2008-04-10 | Olympus Corp | Method for molding optical element |
JP2008115022A (en) * | 2006-11-01 | 2008-05-22 | Olympus Corp | Method and apparatus for molding optical device |
JP4629017B2 (en) * | 2006-11-01 | 2011-02-09 | オリンパス株式会社 | Optical element molding method and molding apparatus therefor |
JP2009249273A (en) * | 2008-04-11 | 2009-10-29 | Olympus Corp | Method for manufacturing optical device |
Also Published As
Publication number | Publication date |
---|---|
JP4508804B2 (en) | 2010-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100242544A1 (en) | Optical lens forming mold | |
JP4508804B2 (en) | Optical element molding method | |
US7561355B2 (en) | Optical lens unit including lens barrel containing lens and method for producing optical lens unit | |
JP2004287319A (en) | Method for manufacturing optical element with holder | |
JP2009069221A (en) | Optical component | |
JP2011026152A (en) | Mold for optical element and molding method | |
JP2008083190A (en) | Method for molding optical element | |
CN202449983U (en) | Die-forming die | |
JP3825978B2 (en) | Optical element molding method | |
JP5269477B2 (en) | Optical element manufacturing method, optical element manufacturing apparatus, and optical element | |
JP4951394B2 (en) | Optical element molding method | |
JP2005162547A (en) | Optical element shaping die, optical element manufacturing apparatus and method for manufacturing optical element | |
JP4952614B2 (en) | Glass lens molding equipment | |
JP7407528B2 (en) | glass lens mold | |
JP4508501B2 (en) | Mold for optical glass element | |
JP3652010B2 (en) | Optical element molding equipment | |
JP2009107893A (en) | Optical element manufacturing method and mold | |
JP2007099575A (en) | Press forming method and apparatus for optical element | |
JPS60118640A (en) | Mold for forming glass lens | |
JP2005231933A (en) | Mold for optical element and method for molding optical element | |
JP2005104807A (en) | Apparatus and method for forming optical element | |
JP2009173464A (en) | Method for producing glass molded body | |
JP2008214145A (en) | Molding die for optical element | |
JP2007297229A (en) | Method for manufacturing optical device | |
JPH0570155A (en) | Mold for glass lens molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070926 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080207 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20090324 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100201 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100317 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100420 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100427 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4508804 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140514 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |