[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006087819A - Fireproof joint materials and gaskets - Google Patents

Fireproof joint materials and gaskets Download PDF

Info

Publication number
JP2006087819A
JP2006087819A JP2004280052A JP2004280052A JP2006087819A JP 2006087819 A JP2006087819 A JP 2006087819A JP 2004280052 A JP2004280052 A JP 2004280052A JP 2004280052 A JP2004280052 A JP 2004280052A JP 2006087819 A JP2006087819 A JP 2006087819A
Authority
JP
Japan
Prior art keywords
mass
joint material
fireproof
fireproof joint
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004280052A
Other languages
Japanese (ja)
Inventor
Kiyotaka Saito
清高 斉藤
Katsuhiko Sato
克彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
CRK KK
Original Assignee
Denki Kagaku Kogyo KK
CRK KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK, CRK KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2004280052A priority Critical patent/JP2006087819A/en
Publication of JP2006087819A publication Critical patent/JP2006087819A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Building Environments (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joint filling material for fire prevention used for filling a gap between structures in fireproof panel covering a seismic isolator with a laminated base-isolating rubber, which has satisfactory mounting workability and durability and excellent flexibility and fire resistant properties. <P>SOLUTION: The joint filling material for fire prevention has flame retardant properties, thermally expands when a fire occurs, and the residue after burning has sufficient shape retainability and flexibility, by adding and mixing an expansive graphite, boric acid, and an inorganic filler into a rubber component containing a specific amount of a thermoplastic elastomer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、防火用目地材および該防火用目地材を用いたガスケットに関する。   The present invention relates to a fireproof joint material and a gasket using the fireproof joint material.

高層建築物には、鋼板とゴムシートを交互に積み重ねて構成された免震積層ゴムと、免震積層ゴム支承体からなる免震装置が建築物の上部構造体と下部構造体の間に設置される場合がある。この免震装置が火災で焼損しないように、耐火パネル等で装置を被覆している場合でも、地震発生時の免震効果を発揮させるために、部分的に隙間を有する場合があり、火災時にはその隙間から火炎が侵入し、免震装置が焼損する恐れがあった。   In high-rise buildings, seismic isolation laminated rubber composed of steel plates and rubber sheets stacked alternately, and seismic isolation devices consisting of seismic isolation laminated rubber bearings are installed between the upper structure and lower structure of the building. May be. Even if the seismic isolation device is covered with fire-resistant panels so that it will not burn out in a fire, there may be some gaps in order to exert the seismic isolation effect when an earthquake occurs. There was a risk that a flame could intrude through the gap, causing the seismic isolation device to burn out.

この問題を解決するために、火災時の熱でそれ自身が膨張して隙間を塞いだ後に硬化して火炎を免震装置内に侵入させない熱膨張性目地材を使用する方法が考えられる。   In order to solve this problem, it is conceivable to use a thermally expandable joint material that does not allow the flame to enter the seismic isolation device after it expands itself by heat from the fire and closes the gap.

例えば、こうした熱膨張性目地材として、ゴムと膨張性黒鉛、エポキシ樹脂及び無機充填剤からなる可撓性防火用ゴム目地材が開示されている(例えば特許文献1参照)。しかしながら、高温下で膨張性黒鉛をつなぎ止めるために配合しているエポキシ樹脂が、目地材を配合混練するときに混練機器内壁に固着し、この除去が極めて困難で作業性が悪く、また高温時の形状保持性も必ずしも十分ではなかった。   For example, as such a thermally expandable joint material, a flexible fire joint material for fire prevention made of rubber, expandable graphite, epoxy resin, and inorganic filler is disclosed (for example, see Patent Document 1). However, the epoxy resin blended to hold the expandable graphite under high temperature adheres to the inner wall of the kneading machine when blending and kneading the joint material, and this removal is extremely difficult and workability is poor. The shape retention was not always sufficient.

本発明の組成に近似の組成物も開示されているが(特許文献2参照)、本発明の用途に向いているとは言えなかった。これに対して、免震装置用途として、装置全体を熱膨張性黒鉛並びに無機充填剤を含有する樹脂組成物からなる熱膨張性耐火シートで被覆する方法(例えば特許文献3参照)が提案されているが火災時に耐火シートが装着部より落下、剥離する可能性があった。
特開2002−181262号公報(第2頁:請求項1) 特開2001−348487号公報(第2頁:請求項1〜4) 特開2003−176638号公報(第2頁:請求項1〜9)
Although a composition similar to the composition of the present invention has been disclosed (see Patent Document 2), it could not be said to be suitable for the use of the present invention. On the other hand, as a seismic isolation device application, a method of covering the entire device with a thermally expandable fireproof sheet made of a resin composition containing thermally expandable graphite and an inorganic filler (see, for example, Patent Document 3) has been proposed. However, in the event of a fire, the fireproof sheet could fall and peel off from the mounting part.
JP 2002-181262 A (page 2: claim 1) JP 2001-348487 A (2nd page: claims 1 to 4) JP 2003-176638 A (2nd page: claims 1 to 9)

強度や、打ち抜き性、可撓性、形状保持性に優れた防火用目地材を提供することを課題とする。   It is an object of the present invention to provide a fireproof joint material excellent in strength, punchability, flexibility, and shape retention.

本発明は、熱可塑性エラストマーを20質量%以上含有するゴム成分100質量部、膨張性黒鉛5〜100質量部、ホウ酸10〜100質量部および無機充填剤10〜300質量部からなる防火用目地材である。
好ましい熱可塑性エラストマーは、ビニル芳香族炭化水素単量体を主体とするブロック重合体と共役ジエン単量体を主体とするブロック重合体とからなるブロック共重合体であり、更にホウ酸と無機充填材との好ましい質量比率は1:5〜10:1で、好ましい無機充填材は水酸化アルミニウムである。
更に、本発明は、この防火用目地材を用いたガスケット、ならびにこの防火用目地材を用いた免震装置の防火用目地材である。
The present invention is a fireproof joint comprising 100 parts by mass of a rubber component containing 20% by mass or more of a thermoplastic elastomer, 5 to 100 parts by mass of expansive graphite, 10 to 100 parts by mass of boric acid, and 10 to 300 parts by mass of an inorganic filler. It is a material.
A preferred thermoplastic elastomer is a block copolymer composed of a block polymer mainly composed of vinyl aromatic hydrocarbon monomer and a block polymer mainly composed of conjugated diene monomer, and further contains boric acid and inorganic filler. The preferred mass ratio with the material is 1: 5 to 10: 1 and the preferred inorganic filler is aluminum hydroxide.
Further, the present invention is a gasket using the fireproof joint material, and a fireproof joint material for a seismic isolation device using the fireproof joint material.

本発明の防火用目地材およびガスケットは、充分な可撓性を有し、かつ火災発生時には熱膨張し、その残渣が充分な形状保持性を有する。   The fireproof joint material and gasket of the present invention have sufficient flexibility, and thermally expand in the event of a fire, and the residue has sufficient shape retention.

本発明で使用するゴム成分には、例えばエチレンプロピレンゴム、ブチルゴム、スチレンブタジエンゴム、イソプレンゴム、アクリロニトリルブタジエンゴム、ポリブタジエンゴム、クロロプレンゴム、ポリブテンゴム、塩素化ポリエチレンゴム、アクリルゴム、クロルスルホン化ポリエチレン、シリコーンゴム、フッ素ゴム、天然ゴムが使用できる。   Examples of the rubber component used in the present invention include ethylene propylene rubber, butyl rubber, styrene butadiene rubber, isoprene rubber, acrylonitrile butadiene rubber, polybutadiene rubber, chloroprene rubber, polybutene rubber, chlorinated polyethylene rubber, acrylic rubber, chlorosulfonated polyethylene, Silicone rubber, fluorine rubber, and natural rubber can be used.

これらのゴム成分は混練性、シート成形性、押出し成形性、プレス成形性等を改善するために2種以上をブレンドして使用しても良い。   These rubber components may be used in a blend of two or more in order to improve kneading properties, sheet formability, extrusion moldability, press formability, and the like.

本発明で用いられる熱可塑性エラストマーは、例えば、塩化ビニル系エラストマー、スチレン系エラストマー、ポリオレフィン系エラストマー、ポリエステル系エラストマー等があるが、特にスチレン系エラストマーが好ましい。スチレン系エラストマーでも、ビニル芳香族炭化水素単量体を主体とするブロック重合体と共役ジエン単量体を主体とするブロック重合体とからなるブロック共重合体であると更に好ましい。ゴム成分中にこのような熱可塑性エラストマーが少なくとも20質量%以上含有されることが好ましく、20質量%〜70質量%であれば更に好ましい。 Examples of the thermoplastic elastomer used in the present invention include a vinyl chloride elastomer, a styrene elastomer, a polyolefin elastomer, and a polyester elastomer, and a styrene elastomer is particularly preferable. Even a styrene-based elastomer is more preferably a block copolymer composed of a block polymer mainly composed of a vinyl aromatic hydrocarbon monomer and a block polymer mainly composed of a conjugated diene monomer. It is preferable that at least 20% by mass of such a thermoplastic elastomer is contained in the rubber component, and more preferably 20% by mass to 70% by mass.

ビニル芳香族炭化水素単量体を主体とするブロック重合体と共役ジエン単量体を主体とするブロック重合体とからなるブロック共重合体は、1)芳香族炭化水素単量体を主体とするブロック重合体部が火災発生時には熱により溶融し、熱膨張した膨張性黒鉛を一時的につなぎとめる役割を果たし、2)その中の芳香族炭化水素単量体を主体とするブロック重合体部が溶融し流動性を発現して成形性を向上させ、3)芳香族炭化水素単量体を主体とするブロック重合体部が成形品の寸法安定性を改善し、4)共役ジエン単量体を主体とするブロック重合体部が常温でゴム弾性を発現し強度及び可撓性を発揮することにより、防火用目地材やガスケットを装着施工する際の強度及び可撓性のバランスが良好となる。 A block copolymer comprising a block polymer mainly composed of a vinyl aromatic hydrocarbon monomer and a block polymer mainly composed of a conjugated diene monomer is 1) mainly composed of an aromatic hydrocarbon monomer. The block polymer part melts by heat in the event of a fire and plays a role of temporarily holding the thermally expanded expansive graphite. 2) The block polymer part mainly composed of aromatic hydrocarbon monomers is melted. 3) Block polymer part mainly composed of aromatic hydrocarbon monomer improves the dimensional stability of the molded product, and 4) mainly composed of conjugated diene monomer. When the block polymer portion exhibits rubber elasticity at room temperature and exhibits strength and flexibility, the balance between strength and flexibility when mounting a fireproof joint material or gasket is improved.

ビニル芳香族炭化水素単量体を主体とするブロック重合体と共役ジエン単量体を主体とするブロック重合体とからなるブロック共重合体で使用されるビニル芳香族炭化水素単量体としては、例えばスチレン、p−メチルスチレン、α−メチルスチレン、ビニルキシレン、モノクロロスチレン、ジクロロスチレン、モノブロモスチレン等が挙げられ、これらは単独又は2種以上組み合わせて使用される。これらのうち特に好ましいものはスチレンである。
共役ジエン単量体としては、例えば1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエン等が挙げられ、これらは単独又は2種以上組み合わせて使用される。これらのうち、好ましいものは1,3−ブタジエンあるいはイソプレンであり、特に好ましいものは1,3−ブタジエンである。
As a vinyl aromatic hydrocarbon monomer used in a block copolymer consisting of a block polymer mainly composed of vinyl aromatic hydrocarbon monomers and a block polymer mainly composed of conjugated diene monomers, Examples thereof include styrene, p-methylstyrene, α-methylstyrene, vinyl xylene, monochlorostyrene, dichlorostyrene, monobromostyrene, and the like, and these are used alone or in combination of two or more. Of these, styrene is particularly preferred.
Examples of the conjugated diene monomer include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and the like. These may be used alone or in combination of two or more. The Of these, preferred is 1,3-butadiene or isoprene, and particularly preferred is 1,3-butadiene.

スチレン系エラストマーのビニル芳香族炭化水素単量体と共役ジエン単量体の比率の20/80〜60/40質量%が好ましく、25/75〜40/60質量%が更に好ましい。ビニル芳香族炭化水素単量体が20質量%より少ないと防火用目地材の成形性が低下し、60質量%を越えると可撓性が低下する傾向がある。   20 / 80-60 / 40 mass% of the ratio of the vinyl aromatic hydrocarbon monomer and the conjugated diene monomer of the styrene elastomer is preferable, and 25 / 75-40 / 60 mass% is more preferable. If the vinyl aromatic hydrocarbon monomer is less than 20% by mass, the formability of the fireproof joint material is lowered, and if it exceeds 60% by mass, the flexibility tends to be lowered.

本発明で用いられるスチレン系エラストマーは、公知のアニオン重合により製造される。   The styrenic elastomer used in the present invention is produced by known anionic polymerization.

膨張性黒鉛は、特に限定されない。膨張性黒鉛は天然グラファイト、熱分解グラファイト等の粉末を硫酸、硝酸等の無機酸と濃硝酸、過マンガン酸塩等の強酸化剤とで処理され、グラファイト層状構造を維持した結晶化合物で、200℃程度以上の温度に曝されると100倍以上に熱膨張するものである。また、膨張性黒鉛には粉末を脱酸処理した後、更に中和処理したタイプ等、各種品種があるがいずれも使用可能である。粒度は20〜400メッシュが好ましい。同質量を配合しても、400メッシュより粒度が小さくなると防火用目地材の熱膨張が少なくなり、また20メッシュより粒度が大きくなると分散性が悪くなって防火用目地材の引張り応力が低下することがある。   The expandable graphite is not particularly limited. Expandable graphite is a crystalline compound in which powder of natural graphite, pyrolytic graphite or the like is treated with an inorganic acid such as sulfuric acid or nitric acid and a strong oxidizing agent such as concentrated nitric acid or permanganate, and maintains a graphite layered structure. When exposed to a temperature of about ℃ or higher, it expands by a factor of 100 or more. In addition, there are various types of expansive graphite, such as a type in which the powder is deoxidized and then neutralized, and any of them can be used. The particle size is preferably 20 to 400 mesh. Even when the same mass is blended, the thermal expansion of the fireproof joint material decreases when the particle size becomes smaller than 400 mesh, and when the particle size becomes larger than 20 mesh, the dispersibility deteriorates and the tensile stress of the fireproof joint material decreases. Sometimes.

膨張性黒鉛の含有量は、所望の膨張倍率等によって適宜設定することが出来るが、ゴム成分100質量部に対し5〜100質量部が好ましく、20〜80質量部であると更に好ましい。5質量部より少ないと火災発生時の防火用目地材の熱膨張倍率が小さく、100質量部を超えると熱膨張倍率は大きくなるものの、得られる防火用目地材の硬度が上昇し、引張り応力が低下する傾向がある。またシートの成形性が劣りガスケットに成形した場合に表面肌が悪くなり易い。   The content of the expandable graphite can be appropriately set depending on the desired expansion ratio and the like, but is preferably 5 to 100 parts by mass, more preferably 20 to 80 parts by mass with respect to 100 parts by mass of the rubber component. If the amount is less than 5 parts by mass, the thermal expansion ratio of the fireproof joint material in the event of a fire is small, and if it exceeds 100 parts by mass, the thermal expansion ratio increases, but the hardness of the resulting fireproof joint material increases and the tensile stress is increased. There is a tendency to decrease. In addition, the formability of the sheet is inferior, and the surface skin is likely to deteriorate when formed into a gasket.

ホウ酸は、公知の製法により得られるものや市販品を用いることができる。ホウ酸は、オルトホウ酸(HBO)、メタホウ酸(HBO)等のいずれでも良いが、通常はオルトホウ酸を使用すれば良い。 As boric acid, a product obtained by a known production method or a commercially available product can be used. The boric acid may be any of orthoboric acid (H 3 BO 3 ), metaboric acid (HBO 2 ), etc., but orthoboric acid is usually used.

ホウ酸は、通常は粉末の形態で使用される。この場合、粉末の粒径は特に制限されないが、防火性目地材に求められる可撓性から、その平均粒径は100μm以下が好ましく、20μm以下であれば更に好ましい。なお、この平均粒径はレーザー回析法で求めたものである。   Boric acid is usually used in powder form. In this case, the particle size of the powder is not particularly limited, but the average particle size is preferably 100 μm or less, and more preferably 20 μm or less, from the flexibility required for the fireproof joint material. The average particle diameter is obtained by a laser diffraction method.

ホウ酸の含有量は、使用する膨張性黒鉛の使用量によって適宜設定することができるが、ゴム成分100質量部に対し10〜100質量部が好ましく、30〜90質量部であれば更に好ましい。10質量部より少ないと、膨張性黒鉛をつなぎとめる効果が小さく、火災時に膨張後の形状を保持する性能を示す形状保持性が劣る恐れがある。また、100質量部を超えて使用すると防火用目地材の硬度が高くなって可撓性が劣り、防火用目地材やそれからなるガスケットの装着作業時に作業性が低下する恐れがある。   The content of boric acid can be appropriately set depending on the amount of expansive graphite used, but is preferably 10 to 100 parts by mass, more preferably 30 to 90 parts by mass with respect to 100 parts by mass of the rubber component. When the amount is less than 10 parts by mass, the effect of holding the expandable graphite is small, and there is a fear that the shape retention property showing the performance of maintaining the shape after expansion in a fire may be inferior. Moreover, when it exceeds 100 mass parts, the hardness of the fireproof joint material will become high and flexibility will be inferior, and there exists a possibility that workability | operativity may fall at the time of mounting | wearing operation | work of the fireproof joint material and its gasket.

ホウ酸と膨張性黒鉛の割合は、好ましくは質量比で1:5〜10:1、より好ましくは1:2〜5:1である。この範囲にあると、防火用目地材製造時の加工性や、シート状の成形品からガスケット製品を打ち抜く際の打ち抜き性、可撓性、引張り応力等のバランスが良好となる。   The ratio of boric acid to expandable graphite is preferably 1: 5 to 10: 1, more preferably 1: 2 to 5: 1 by mass ratio. If it is within this range, the balance of workability at the time of manufacturing a fireproof joint material, punchability when punching a gasket product from a sheet-like molded product, flexibility, tensile stress, etc. will be good.

無機充填剤は、例えばシリカ、珪藻土、アルミナ、酸化亜鉛、酸化チタン、酸化マグネシウム、酸化鉄、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ハイドロタルサイト、硫酸カルシウム、硫酸バリウム、ケイ酸カルシウム、タルク、クレー、マイカ、ベントナイト、活性白土、セピオライト、ガラス繊維、ガラスビーズ、窒化アルミニウム、窒化ホウ素、カーボンブラック、グラファイト、炭素繊維等であり、これらはシートの加工性やガスケット製造時の打ち抜き性等を改善する。これらは2種以上を併用しても良い。また粒径はゴム中への分散性の観点から平均粒径は1〜50μmが好ましい。   Examples of inorganic fillers include silica, diatomaceous earth, alumina, zinc oxide, titanium oxide, magnesium oxide, iron oxide, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, hydrotalcite, calcium sulfate. , Barium sulfate, calcium silicate, talc, clay, mica, bentonite, activated clay, sepiolite, glass fiber, glass beads, aluminum nitride, boron nitride, carbon black, graphite, carbon fiber, etc., these are sheet processability And improve punchability when manufacturing gaskets. Two or more of these may be used in combination. The average particle size is preferably 1 to 50 μm from the viewpoint of dispersibility in rubber.

上記無機充填剤の中では、水酸化アルミニウムが加熱時の脱水反応により生成する水のために吸熱が起こり、温度上昇が抑えられるという点で防火用目地材として好ましい。   Among the inorganic fillers, aluminum hydroxide is preferable as a fireproof joint material in that heat is generated due to water generated by a dehydration reaction during heating, and temperature rise is suppressed.

無機充填剤は、ゴム成分100質量部に対して10〜300質量部を添加使用するのが好ましい。10質量部より少ないと、シート成形性、打ち抜き性を改善する効果が小さく、300質量部を超えて使用すると、防火用目地材の硬度が高くなり、シート加工時やそれを成形したガスケットの可撓性が劣り、防火用目地材やそれからなるガスケットの装着作業時に作業性が低下する恐れがある。   The inorganic filler is preferably used in an amount of 10 to 300 parts by mass based on 100 parts by mass of the rubber component. If the amount is less than 10 parts by mass, the effect of improving the sheet formability and punchability is small. If the amount exceeds 300 parts by mass, the hardness of the fireproof joint material increases, and the use of a gasket formed by processing the sheet and the possibility of molding the same is possible. Flexibility is inferior, and there is a risk that workability may be deteriorated during mounting work of a fireproof joint material or a gasket made thereof.

ゴム成分に、熱可塑性エラストマーと膨張性黒鉛、ホウ酸、無機充填剤を配合混練するには、バンバリーミキサー、ニーダーミキサー、二本ロール等公知の混練装置を用いることができる。更に、混練したものを例えば、プレス成型、ロール成型、押し出し成型、カレンダー成型等の従来公知の成型方法でゴムシートに加工することが出来る。このシートから、公知の抜き打ち刃を有した装置を用いて紐状あるいはリング状に打ち抜き、防火用目地材やガスケットを得ることができる。   In order to mix and knead the thermoplastic elastomer, expandable graphite, boric acid, and inorganic filler with the rubber component, a known kneading apparatus such as a Banbury mixer, a kneader mixer, or a two-roller can be used. Further, the kneaded product can be processed into a rubber sheet by a conventionally known molding method such as press molding, roll molding, extrusion molding, calendar molding, or the like. From this sheet, a fireproof joint material or gasket can be obtained by punching into a string shape or a ring shape using a known device having a punching blade.

更に、ゴム成分に一般に使用される可塑剤、軟化剤、老化防止剤、加工助剤、滑剤、粘着付与剤、加硫剤等を適宜併用することができる。   Furthermore, plasticizers, softeners, anti-aging agents, processing aids, lubricants, tackifiers, vulcanizing agents and the like generally used for rubber components can be used in combination as appropriate.

防火用目地材およびガスケットは、その弾性や柔軟性、熱膨張性、断熱性、耐火性、制振性、防音性等の特性から様々な分野に利用できるが、膨張性防火材料を用いる公知の工法にも適用でき、各工法における使用方法に従って用いればよい。   Fireproof joint materials and gaskets can be used in various fields because of their properties such as elasticity, flexibility, thermal expansion, thermal insulation, fire resistance, vibration control, and soundproofing, but are known to use inflatable fireproof materials. It can also be applied to construction methods and may be used according to the method of use in each construction method.

防火用目地材およびガスケットは、特に建造物の免震装置の防火部位に好適に用いられる。具体的には、免震装置を覆う耐火パネルの端部に本発明の防火用目地材およびガスケットを粘着剤や接着剤で貼り付けるか、ボルトや釘などで固定して使用することが出来る。   The joint material for fire prevention and the gasket are particularly preferably used for a fire prevention part of a seismic isolation device for a building. Specifically, the fireproof joint material and gasket of the present invention can be attached to the end portion of the fireproof panel covering the seismic isolation device with an adhesive or adhesive, or can be fixed with bolts or nails.

以下本発明を実施例により具体的に説明するが、これらの実施例は本発明を限定するものでない。なお、以下の説明における部および%は質量基準に基づく。
「実施例1〜3」「比較例1〜5」
EXAMPLES The present invention will be specifically described below with reference to examples, but these examples do not limit the present invention. In addition, the part and% in the following description are based on a mass reference | standard.
"Examples 1-3""Comparative Examples 1-5"

実施例及び比較例において、使用した材料は下記の通りである。
(1) ゴム成分:ブチルゴム(JSR(株)製、「ブチル268」)、エチレン−プロピレン−ジエンゴム(DSMジャパン(株)製、「ケルタン2630A」)、SBS(JSRシェル(株)、クレイトンD1101、ビニル芳香族炭化水素単量体/共役ジエン単量体=30/70)。
(2) 熱膨張性黒鉛:(エアー・ウォーター・ケミカル(株)製「SS−3」、膨張開始温度260℃)
(3) ホウ酸:(BORAX(株)製)
(4) 無機充填剤:水酸化アルミニウム(昭和電工(株)製、「ハイジライトH−42」)
(5) 軟化剤:ナフテン系オイル(出光興産(株)製、「NP−24」)
(6) 加工助剤:グリセリン脂肪酸エステル(理研ビタミン(株)製「エマスター510P」)。
In the examples and comparative examples, the materials used are as follows.
(1) Rubber component: butyl rubber (manufactured by JSR Corporation, “butyl 268”), ethylene-propylene-diene rubber (manufactured by DSM Japan Co., Ltd., “Keltan 2630A”), SBS (JSR Shell Co., Ltd., Kraton D1101) Vinyl aromatic hydrocarbon monomer / conjugated diene monomer = 30/70).
(2) Thermally expandable graphite: (“SS-3” manufactured by Air Water Chemical Co., Ltd., expansion start temperature 260 ° C.)
(3) Boric acid: (BORAX Co., Ltd.)
(4) Inorganic filler: Aluminum hydroxide (Showa Denko Co., Ltd., “Hijilite H-42”)
(5) Softener: Naphthenic oil (“NP-24” manufactured by Idemitsu Kosan Co., Ltd.)
(6) Processing aid: glycerin fatty acid ester (“Emaster 510P” manufactured by Riken Vitamin Co., Ltd.).

各成分を3リットルニーダーにて混練し、二本ロールにて5mm厚さにシート化した。80〜100℃の熱い状態のシートから、引張り応力測定用にJIS3号ダンベルを、可撓性評価用にJIS1号ダンベルを、更に熱膨張性試験片として5mm厚×50mm幅×70mm長さの試験片をそれぞれ打ち抜き刃で打ち抜き、直ちに水に10秒間浸漬し冷却した。その後取り出して風乾、更に50℃ギアオーブン中にて約3時間乾燥させた。   Each component was kneaded with a 3 liter kneader and formed into a sheet with a thickness of 5 mm with two rolls. From a hot sheet at 80 to 100 ° C., a JIS No. 3 dumbbell for measuring tensile stress, a JIS No. 1 dumbbell for evaluating flexibility, and a 5 mm thick × 50 mm wide × 70 mm long test as a thermal expansion test piece Each piece was punched with a punching blade and immediately immersed in water for 10 seconds and cooled. Thereafter, it was taken out, air-dried, and further dried in a gear oven at 50 ° C. for about 3 hours.

上記試験片を用いて引張り応力、硬度、打ち抜き性、可撓性、熱膨張性、形状保持性、酸素指数を次のように評価した。   Tensile stress, hardness, punchability, flexibility, thermal expansibility, shape retention, and oxygen index were evaluated using the above test pieces as follows.

引張り応力:JIS3号ダンベルにて速度500mm/分で引張り、最大応力を求めた。   Tensile stress: Tensile stress was determined with a JIS No. 3 dumbbell at a speed of 500 mm / min to obtain the maximum stress.

硬度:熱膨張用評価用試験片にて、デュロメーターA硬度計を使用し、押し当て直後の値を読み取った。   Hardness: A test piece for evaluation for thermal expansion was used to read the value immediately after pressing using a durometer A hardness meter.

打ち抜き性:JIS3号ダンベルを打ち抜く際に、打ち抜き部の表面状態が良好の場合を○(良)、荒れている場合を×(悪)と評価した。   Punchability: When punching a JIS No. 3 dumbbell, the surface condition of the punched portion was evaluated as good (good), and the rough surface was evaluated as x (bad).

可撓性:JIS1号ダンベルの一端を固定し、他端を45度の角度まで曲げたときの屈曲部の亀裂発生の程度を、亀裂なしの場合を○(良)、亀裂ありの場合を×(悪)として評価した。   Flexibility: When one end of JIS No. 1 dumbbell is fixed and the other end is bent to an angle of 45 degrees, the degree of cracking at the bent portion is indicated as ○ (good) when there is no crack, and × when there is a crack. It was evaluated as (evil).

熱膨張性:耐火レンガと耐火レンガの隙間10mmの間に熱膨張性試験片の下部50mmが埋まり上部20mmが突き出るように挿入し設置し、この状態のままギアオーブン中にて、300℃で1時間熱処理した。10mmの隙間が完全に閉塞した場合は○(良)、そうでない場合は×(悪)と評価した。   Thermal expansion: Inserted and installed so that the lower 50 mm of the thermal expansion test piece is buried and the upper 20 mm protrudes between the 10 mm gaps between the refractory bricks and the refractory bricks. Heat treated for hours. When the gap of 10 mm was completely closed, it was evaluated as ◯ (good), and otherwise it was evaluated as x (bad).

形状保持性:熱膨張性試験の終了後に、試験片の上部20mmの部分を指触と目視にて形状安定性と変形度合いを評価した。指触したとき形が崩れにくくそのときの変形が小さい場合は○、指触ですぐに形が崩れて変形する場合は×、と評価した。結果を表1、表2にまとめた。   Shape retention: After completion of the thermal expansion test, the shape stability and deformation degree of the upper 20 mm portion of the test piece were evaluated by finger touch and visual observation. It was evaluated as ○ when the shape was hard to collapse when touched with a finger and the deformation at that time was small, and × when the shape immediately collapsed and touched with a finger. The results are summarized in Tables 1 and 2.

酸素指数:JIS K 7201に準拠し、熱膨張性試験片を用いてスガ試験機(株)製ON−1D型装置にて測定した。   Oxygen index: Measured with an ON-1D type apparatus manufactured by Suga Test Instruments Co., Ltd. using a thermally expandable test piece in accordance with JIS K 7201.

Figure 2006087819
Figure 2006087819

Figure 2006087819
Figure 2006087819

本発明に関わる免震装置の断面図Sectional view of the seismic isolation device according to the present invention

符号の説明Explanation of symbols

1a 上部構造体
1b 下部構造体
2a 上部ベースプレート
2b 下部ベースプレート
3 耐火パネル
4 防火用目地材
5 免震装置
DESCRIPTION OF SYMBOLS 1a Upper structure 1b Lower structure 2a Upper base plate 2b Lower base plate 3 Fireproof panel 4 Fireproof joint material 5 Seismic isolation device

Claims (6)

熱可塑性エラストマーを20質量%以上含有するゴム成分100質量部、膨張性黒鉛5〜100質量部、ホウ酸10〜100質量部および無機充填剤10〜300質量部からなる防火用目地材。   A fireproof joint material comprising 100 parts by mass of a rubber component containing 20% by mass or more of a thermoplastic elastomer, 5 to 100 parts by mass of expansive graphite, 10 to 100 parts by mass of boric acid, and 10 to 300 parts by mass of an inorganic filler. 熱可塑性エラストマーが、ビニル芳香族炭化水素単量体を主体とするブロック重合体と共役ジエン単量体を主体とするブロック重合体とからなるブロック共重合体である請求項1記載の防火用目地材。   The fireproof joint according to claim 1, wherein the thermoplastic elastomer is a block copolymer comprising a block polymer mainly composed of a vinyl aromatic hydrocarbon monomer and a block polymer mainly composed of a conjugated diene monomer. Wood. ホウ酸と無機充填材との質量比率が1:5〜10:1であることを特徴とする請求項1または請求項2に記載の防火用目地材。   The fireproof joint material according to claim 1 or 2, wherein a mass ratio of boric acid to the inorganic filler is 1: 5 to 10: 1. 無機充填材が水酸化アルミニウムであることを特徴とする請求項1〜請求項3のいずれか1項に記載の防火用目地材。   The fireproof joint material according to any one of claims 1 to 3, wherein the inorganic filler is aluminum hydroxide. 請求項1〜請求項4のいずれか1項に記載の防火用目地材を用いたガスケット。   The gasket using the joint material for fire prevention of any one of Claims 1-4. 請求項1〜請求項4のいずれか1項に記載の防火用目地材からなる免震装置耐火パネル用の防火用目地材。
A fireproof joint material for a base-isolated device fireproof panel comprising the fireproof joint material according to any one of claims 1 to 4.
JP2004280052A 2004-09-27 2004-09-27 Fireproof joint materials and gaskets Pending JP2006087819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004280052A JP2006087819A (en) 2004-09-27 2004-09-27 Fireproof joint materials and gaskets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004280052A JP2006087819A (en) 2004-09-27 2004-09-27 Fireproof joint materials and gaskets

Publications (1)

Publication Number Publication Date
JP2006087819A true JP2006087819A (en) 2006-04-06

Family

ID=36229320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004280052A Pending JP2006087819A (en) 2004-09-27 2004-09-27 Fireproof joint materials and gaskets

Country Status (1)

Country Link
JP (1) JP2006087819A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017380A (en) * 2010-07-07 2012-01-26 Denki Kagaku Kogyo Kk Thermally expandable joint material for fire prevention
EP2420532A1 (en) * 2010-08-18 2012-02-22 Armacell Enterprise GmbH Self hardening flexible insulation material showing excellent temperature and flame resistance
KR101141752B1 (en) 2009-11-10 2012-05-03 주식회사 유니버샬켐텍 Expandible fire resisting material
JP2014159541A (en) * 2013-01-22 2014-09-04 Sekisui Chem Co Ltd Thermally expandable fire-resistant resin composition
WO2017154931A1 (en) * 2016-03-07 2017-09-14 セメダイン株式会社 Fire prevention structure for structures, curable composition, refractory material, and method for forming fire prevention structures
JP2018100410A (en) * 2016-12-21 2018-06-28 積水化学工業株式会社 Fireproof resin composition
JP2018150391A (en) * 2017-03-09 2018-09-27 旭化成建材株式会社 Thermally expandable refractory composition
WO2019049797A1 (en) * 2017-09-05 2019-03-14 セメダイン株式会社 Curable composition for fireproofing
JP2021187974A (en) * 2020-06-01 2021-12-13 積水化学工業株式会社 Refractory resin composition, refractory sheet and fittings
CN114783666A (en) * 2022-03-09 2022-07-22 特变电工(德阳)电缆股份有限公司 Anti-impact fire-resistant cable and preparation method thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101141752B1 (en) 2009-11-10 2012-05-03 주식회사 유니버샬켐텍 Expandible fire resisting material
JP2012017380A (en) * 2010-07-07 2012-01-26 Denki Kagaku Kogyo Kk Thermally expandable joint material for fire prevention
EP2420532A1 (en) * 2010-08-18 2012-02-22 Armacell Enterprise GmbH Self hardening flexible insulation material showing excellent temperature and flame resistance
JP2014159541A (en) * 2013-01-22 2014-09-04 Sekisui Chem Co Ltd Thermally expandable fire-resistant resin composition
CN108778424B (en) * 2016-03-07 2019-12-17 思美定株式会社 Fireproof structures of structures, fire-resistant curable compositions
WO2017154931A1 (en) * 2016-03-07 2017-09-14 セメダイン株式会社 Fire prevention structure for structures, curable composition, refractory material, and method for forming fire prevention structures
KR102407426B1 (en) 2016-03-07 2022-06-10 세메다인 가부시키 가이샤 Fire protection structure of structure, curable composition, fire resistant material, and method of forming fire protection structure
CN108778424A (en) * 2016-03-07 2018-11-09 思美定株式会社 Fireproof construction body, solidification compound, refractory material and the fireproof construction body forming method of structure
KR20180132624A (en) * 2016-03-07 2018-12-12 세메다인 가부시키 가이샤 Fireproofing structure, curing composition, refractory material, fireproofing structure forming method
JPWO2017154931A1 (en) * 2016-03-07 2019-01-31 セメダイン株式会社 Fire prevention structure of structure, curable composition, refractory material, and fire prevention structure formation method
JP2018100410A (en) * 2016-12-21 2018-06-28 積水化学工業株式会社 Fireproof resin composition
JP7095985B2 (en) 2016-12-21 2022-07-05 積水化学工業株式会社 Refractory resin composition
JP2018150391A (en) * 2017-03-09 2018-09-27 旭化成建材株式会社 Thermally expandable refractory composition
WO2019049797A1 (en) * 2017-09-05 2019-03-14 セメダイン株式会社 Curable composition for fireproofing
JPWO2019049797A1 (en) * 2017-09-05 2020-10-15 セメダイン株式会社 Refractory curable composition
JP7368676B2 (en) 2017-09-05 2023-10-25 セメダイン株式会社 Curable composition for fire resistance
US11827773B2 (en) 2017-09-05 2023-11-28 Cemedine Co., Ltd. Curable composition for fireproofing
JP2021187974A (en) * 2020-06-01 2021-12-13 積水化学工業株式会社 Refractory resin composition, refractory sheet and fittings
JP7007424B2 (en) 2020-06-01 2022-01-24 積水化学工業株式会社 Refractory resin composition, refractory sheet and fittings
CN114783666A (en) * 2022-03-09 2022-07-22 特变电工(德阳)电缆股份有限公司 Anti-impact fire-resistant cable and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3779291B2 (en) Thermally expandable fire protection composition
JP2006087819A (en) Fireproof joint materials and gaskets
JP7530344B2 (en) Fire-resistant resin composition, fire-resistant sheet and fittings
JP4450760B2 (en) Joint materials and gaskets
JP2000001927A (en) Fire resistant sheet-like molding
JP4490860B2 (en) Joint materials and gaskets
JP3927162B2 (en) Foam molding
JP4054902B2 (en) Joint material for fireproof double-layer pipe and gasket comprising the joint material for fireproof double-layer pipe
JP2007160690A (en) Fireproofing sheet for steel frame
JP3964918B2 (en) Refractory double-layer pipe fittings
JP3813955B2 (en) Fire protection panel
JP2000034365A (en) Fire-resistant resin composition and sheet-forming material using the same
JP6941214B2 (en) Refractory material
JP2002294078A (en) Foaming type fireproof composition having water resistance
JP2007162319A (en) Fireproof covering sheet for steel frame
JP2002181262A (en) Joint material for fire-resistant double-layer pipe
JP7506203B1 (en) Putty-like fireproof composition
JP7554170B2 (en) Fire-resistant resin composition, fire-resistant material, and fittings
JP7506122B2 (en) Putty-like fireproof composition
JP2002129025A (en) Foamable fire-resistant composition having water resistance
JP7511041B1 (en) Putty-like fireproof composition
JP7127170B1 (en) Inflatable refractory material
JP7608302B2 (en) Thermally expandable fire-resistant composition, thermally expandable fire-resistant sheet and laminate
CN120091912A (en) Laminated body for sheet, sheet and battery
JP2021143322A (en) Refractory material

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20060330

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A621 Written request for application examination

Effective date: 20060629

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20090512

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090624

A521 Written amendment

Effective date: 20090624

Free format text: JAPANESE INTERMEDIATE CODE: A821

A02 Decision of refusal

Effective date: 20090721

Free format text: JAPANESE INTERMEDIATE CODE: A02