[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006084478A - Measuring method for radioactivity - Google Patents

Measuring method for radioactivity Download PDF

Info

Publication number
JP2006084478A
JP2006084478A JP2005310800A JP2005310800A JP2006084478A JP 2006084478 A JP2006084478 A JP 2006084478A JP 2005310800 A JP2005310800 A JP 2005310800A JP 2005310800 A JP2005310800 A JP 2005310800A JP 2006084478 A JP2006084478 A JP 2006084478A
Authority
JP
Japan
Prior art keywords
radioactivity
virtual
measurement object
measurement
radiation detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005310800A
Other languages
Japanese (ja)
Inventor
Takatoshi Hattori
隆利 服部
Takeshi Ichiji
猛 伊知地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2005310800A priority Critical patent/JP2006084478A/en
Publication of JP2006084478A publication Critical patent/JP2006084478A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method for radioactivity for measuring radioactivity by determining a conversion factor without using an actual calibration radiation source. <P>SOLUTION: This method comprises a virtual modeling step 21 for arranging virtual three-dimensional models of a measurement subject and a radiation detector in a virtual three-dimensional space with the same positional relationship as an actual geometric positional relationship; a conversion factor setting step which is a step for associating the number of times of generation of a virtual radiation ray emitted from the virtual three-dimensional model of the measurement subject with the number of times of incidence of the virtual radiation ray upon the virtual three-dimensional model of the radiation detector to obtain a conversion factor, and has a virtual count calculating step 22 and a conversion factor calculating step 23; an actual counting rate calculating step 24 for actually counting the incidence of the radiation ray emitted from the measurement subject upon the radiation detector to obtain a counting rate; and a radioactivity calculating step 25 for calculating radioactivity of the measurement subject from the counting rate and the conversion factor. The detector and the measuring object are conceived as a group of a plurality of cells and as a group of parts opposed to the cells, respectively, and after the counting rate is calculated for each of the cells to determine radioactivity for every part of the measuring object, the radioactivity for the whole measuring object is determined. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、放射能の計測方法に関する。更に詳述すると、本発明は、実際の校正用放射線源を用いることなく換算係数を求めて放射能を計測する放射能の計測方法に関するものである。   The present invention relates to a method for measuring radioactivity. More specifically, the present invention relates to a radioactivity measurement method in which radioactivity is measured by obtaining a conversion coefficient without using an actual calibration radiation source.

原子力施設の解体廃棄物等の測定対象物の放射能濃度や放射能表面密度を求めるには、先ず測定対象物の放射能を求める必要がある。従来の放射能の計測方法では、放射線検出器の計数から求めた計数率より放射能を算出するための換算係数を、放射能が既知である校正用放射線源を別に用意し実測して求めた換算係数との比較によって求めている。   In order to obtain the radioactivity concentration and surface density of a measurement object such as demolition waste of a nuclear facility, it is necessary to first obtain the radioactivity of the measurement object. In the conventional measurement method of radioactivity, a conversion factor for calculating radioactivity from the count rate obtained from the count of the radiation detector was obtained by separately preparing a calibration radiation source with known radioactivity. Calculated by comparison with conversion factor.

また、測定対象物の放射能表面密度を測定するには先ず測定対象物の表面の放射能を計測する必要があるが、表面の放射能を計測するにはγ線よりも透過性の弱いβ線を使用するのが一般的である。即ち、β線よりも透過性の強いγ線を計測の対象とした場合には、計測したγ線が測定対象物の表面から放射されたものであるのか内部から放射されたものであるのかの判別が困難であり、測定対象物の表面の放射能の測定には不適である。このため、JIS(日本工業規格)Z 4329「放射性表面汚染サーベイメータ」に規定されるサーベイメータと呼ばれる携帯式の放射線検出器又はJIS Z 4337「据置型β線用物品表面汚染モニタ」に規定される物品搬出モニタを用いてβ線を測定対象とした測定対象物の表面の放射能の計測を行っている。   In order to measure the radioactivity surface density of the measurement object, it is necessary to first measure the radioactivity on the surface of the measurement object. To measure the radioactivity on the surface, β, which is less permeable than γ rays, is used. It is common to use lines. In other words, when γ-rays that are more permeable than β-rays are to be measured, whether the measured γ-rays are emitted from the surface of the measurement object or from the inside. It is difficult to discriminate and is not suitable for measuring the radioactivity on the surface of the measurement object. Therefore, a portable radiation detector called a survey meter specified in JIS (Japanese Industrial Standards) Z 4329 “Radioactive Surface Contamination Survey Meter” or an article specified in JIS Z 4337 “Surface Contamination Monitor for Stationary β-rays” Using the carry-out monitor, the radioactivity on the surface of the measurement object with β rays as the measurement object is measured.

小川岩雄、基礎原子力講座2「放射線」、株式会社コロナ社、1976年11月15日、10版、242−252頁Ogawa Iwao, Fundamental Atomic Energy Lecture 2 "Radiation", Corona Co., Ltd., November 15, 1976, 10th edition, pages 242-252

しかしながら、上述の放射能表面密度を求めるための表面放射能の測定方法では、サーベイメータを使用してβ線を計測することで表面の放射能を計測しているので、測定対象物が例えば金属細管等の場合には、細管内にサーベイメータを挿入することが出来ず、細管内周面の放射能を測定することは困難である。   However, in the surface radioactivity measurement method for obtaining the above-mentioned radioactivity surface density, the surface radioactivity is measured by measuring β-rays using a survey meter. In such cases, the survey meter cannot be inserted into the narrow tube, and it is difficult to measure the radioactivity on the inner peripheral surface of the narrow tube.

また、β線よりも透過性の強いγ線を計測の対象とした放射能の測定方法では、放射能を算出するための換算係数を、校正用放射線源を使用して実測して求めた換算係数との比較によって求めているので、測定対象物の放射能を高精度に求めるためには、測定対象物の形状や大きさに応じて最適の校正用放射線源を作成する必要があり、形状や大きさがそれぞれ異なる測定対象物の放射能計測には不向きである。例えば原子力施設の解体廃棄物等の放射能を計測する場合には、様々な形状や大きさの廃棄物が混在することから廃棄物毎に最適な校正用放射線源をそれぞれ作成するのは現実には困難であり、多量に発生する解体廃棄物の放射能計測には適用し難い。   In addition, in the radioactivity measurement method using γ-rays, which are more permeable than β-rays, the conversion factor for calculating the radioactivity is calculated by actually using a calibration radiation source. Since it is obtained by comparison with the coefficient, in order to obtain the radioactivity of the measurement object with high accuracy, it is necessary to create an optimal calibration radiation source according to the shape and size of the measurement object. It is not suitable for measuring the radioactivity of measurement objects of different sizes. For example, when measuring the radioactivity of demolition waste, etc. at nuclear facilities, it is practical to create an optimal calibration radiation source for each waste because wastes of various shapes and sizes are mixed. It is difficult to apply to the measurement of radioactivity of dismantled waste generated in large quantities.

本発明は、現実の校正用放射線源を必要としない放射能の計測方法を提供することを目的とする。   It is an object of the present invention to provide a radioactivity measurement method that does not require an actual calibration radiation source.

かかる目的を達成するため、本発明の放射能の計測方法は、測定対象物と放射線検出器の仮想3次元モデルを仮想3次元空間内に実際の幾何学的位置関係と同じ位置関係で配置する仮想モデル化工程と、測定対象物の仮想3次元モデルから放出される仮想放射線の発生数と放射線検出器の仮想3次元モデルへの仮想放射線の入射数とを関係付けて換算係数を求める換算係数設定工程と、測定対象物から放出された放射線の放射線検出器への入射を実際に計数して計数率を求める実際計数率算出工程と、計数率と換算係数より測定対象物の放射能を求める放射能算出工程を有するようにしている。   In order to achieve this object, the radioactivity measurement method of the present invention arranges a virtual three-dimensional model of a measurement object and a radiation detector in the virtual three-dimensional space in the same positional relationship as the actual geometric positional relationship. A conversion factor for obtaining a conversion factor by associating the virtual modeling step, the number of generations of virtual radiation emitted from the virtual three-dimensional model of the measurement object, and the number of incidences of virtual radiation on the virtual three-dimensional model of the radiation detector A setting step, an actual count rate calculation step for actually counting the incidence of radiation emitted from the measurement object to the radiation detector to obtain a count rate, and determining the radioactivity of the measurement object from the count rate and the conversion factor A radioactivity calculation step is included.

ここで、放射線と物質の相互作用はある確率で発生するものであり、この現象を擬似的に再現することで実際の校正用放射線源を使用した実測を行わなくても換算係数を求めることができる。即ち、測定対象物と放射線検出器の3次元的な形状や位置関係を仮想的に再現し、これに基づいて測定対象物の仮想3次元モデルから放出される仮想放射線の発生数と放射線検出器の仮想3次元モデルへの仮想放射線の入射数とを関係付けることで換算係数を求めることが出来る。そして、求めた換算係数と実際の放射線検出器による計数より測定対象物の実際の放射能が算出される。   Here, the interaction between the radiation and the substance occurs with a certain probability, and it is possible to obtain the conversion coefficient without performing actual measurement using an actual calibration radiation source by reproducing this phenomenon in a pseudo manner. it can. That is, the three-dimensional shape and positional relationship between the measurement object and the radiation detector are virtually reproduced, and based on this, the number of generations of virtual radiation emitted from the virtual three-dimensional model of the measurement object and the radiation detector The conversion coefficient can be obtained by relating the number of incident virtual radiations to the virtual three-dimensional model. Then, the actual radioactivity of the measurement object is calculated from the calculated conversion factor and the count by the actual radiation detector.

この放射能の計測方法の場合、換算係数設定工程は、モンテカルロ計算手法を利用して測定対象物の仮想3次元モデルからランダムに仮想放射線を発生させると共に放射線検出器の仮想3次元モデルへの仮想放射線の入射を計数して仮想計数とする仮想計数算出工程と、仮想放射線の発生数と仮想計数より換算係数を求める換算係数算出工程を有することが好ましい。   In the case of this radioactivity measurement method, the conversion coefficient setting step uses a Monte Carlo calculation method to generate virtual radiation randomly from the virtual three-dimensional model of the measurement object and to perform virtual conversion to the virtual three-dimensional model of the radiation detector. It is preferable to have a virtual count calculation step that counts the incidence of radiation to obtain a virtual count, and a conversion coefficient calculation step for obtaining a conversion factor from the number of occurrences of virtual radiation and the virtual count.

モンテカルロ計算手法を利用することで、測定対象物と放射線検出器の3次元的な形状や位置関係を仮想的に再現し、測定対象物の仮想3次元モデルからランダムに発生させた仮想放射線が放射線検出器の仮想3次元モデルに入射する様子をシミュレーションすることができる。この場合、測定対象物の仮想3次元モデルからの仮想放射線の発生率が当該仮想3次元モデルの放射能に相当するので、仮想放射線の発生数と放射線検出器の仮想3次元モデルにおける計数より換算係数を求めることが出来る。そして、求めた換算係数と実際の放射線検出器による計数より測定対象物の実際の放射能が算出される。   By using the Monte Carlo calculation method, the three-dimensional shape and positional relationship between the measurement object and the radiation detector are virtually reproduced, and virtual radiation generated randomly from the virtual three-dimensional model of the measurement object is emitted as radiation. It is possible to simulate the incident on the virtual three-dimensional model of the detector. In this case, since the generation rate of the virtual radiation from the virtual three-dimensional model of the measurement object corresponds to the radioactivity of the virtual three-dimensional model, it is converted from the number of generations of the virtual radiation and the count in the virtual three-dimensional model of the radiation detector. The coefficient can be obtained. Then, the actual radioactivity of the measurement object is calculated from the calculated conversion factor and the count by the actual radiation detector.

また、本発明の放射能の計測方法は、換算係数設定工程を、測定対象物と放射線検出器との間に存在する媒質の厚さ、当該媒質の減衰係数、当該媒質のビルドアップ係数、及び測定対象物と放射線検出器との間の距離に基づいて近似的に算出した媒質を通過する前後の放射線の数の相関関係より換算係数を求めるものにすることも出来る。   Further, in the radioactivity measurement method of the present invention, the conversion coefficient setting step includes a thickness of a medium existing between the measurement object and the radiation detector, an attenuation coefficient of the medium, a build-up coefficient of the medium, and It is also possible to obtain the conversion coefficient from the correlation of the number of radiations before and after passing through the medium approximately calculated based on the distance between the measurement object and the radiation detector.

例えば放射線の遮蔽を検討する場合には点減衰核コードを用いて遮へい計算を行う。この点減衰核コードでは、ある媒質を通過した後の放射線の数Iを、当該媒質通過前の放射線の数I、当該媒質の厚さd、当該媒質の減衰係数μ、当該媒質のビルドアップ係数B、放射線源と評価点との距離rの関係式である数式1より近似的に求めている。 For example, when considering shielding of radiation, shielding calculation is performed using a point decay kernel code. In this point attenuation core code, the number I of radiation after passing through a certain medium, the number of radiations I 0 before passing through the medium, the thickness d of the medium, the attenuation coefficient μ of the medium, the build-up of the medium It is approximately obtained from Equation 1 which is a relational expression of the coefficient B and the distance r between the radiation source and the evaluation point.

〈数1〉
I=(1/(4πr))IBe−μd
即ち、媒質の減衰係数μ、媒質のビルドアップ係数Bは媒質の種類に応じて定まるものであり、また、厚さdは測定対象物の形態や放射能汚染の位置等に応じて定まるものであり、放射線源と評価点との距離rがわかっていれば上述の関係式からIとIの関係を近似的に導くとこができ、このIとIの関係から換算係数を求めることができる。即ち、Iが測定対象物の仮想3次元モデルから放出される仮想放射線の発生数に対応し、Iが放射線検出器の仮想3次元モデルへの仮想放射線の入射数に対応し、I/Iが換算係数となる。そして、求めた換算係数と実際の放射線検出器による計数より測定対象物の実際の放射能が算出される。
<Equation 1>
I = (1 / (4πr 2 )) I 0 Be −μd
That is, the attenuation coefficient μ of the medium and the buildup coefficient B of the medium are determined according to the type of the medium, and the thickness d is determined according to the form of the measurement object, the position of the radioactive contamination, and the like. If the distance r between the radiation source and the evaluation point is known, the relationship between I and I 0 can be derived approximately from the above relational expression, and the conversion coefficient can be obtained from the relationship between I and I 0. it can. That is, I 0 corresponds to the number of virtual radiations emitted from the virtual three-dimensional model of the measurement object, I corresponds to the number of virtual radiations incident on the virtual three-dimensional model of the radiation detector, and I / I 0 is the conversion factor. Then, the actual radioactivity of the measurement object is calculated from the calculated conversion factor and the count by the actual radiation detector.

また、測定対象の放射能濃度や表面密度が均一であることが明らかな場合には1つのセルから成る放射線検出器による検出で十分であるが、放射能濃度や放射能表面密度が均一ではなく各所に偏在している場合、均一分布を仮定して求めた換算係数では誤差が大きくなるため、偏在状況(偏在の分布)を考慮して換算係数を求めることが好ましい。特に測定対象物の放射能レベルが低い場合等には、放射線検出器を測定対象物に近づけて測定を行う必要があり、この様な場合には放射能の偏在状況が換算係数の値に大きく影響する。偏在の分布を知るためには放射線検出器を小さい複数の検出器(セル)の集合体とする、即ち放射線検出器の1つ1つをセルとして当該セルを集合させて1つの大きな放射線検出器とすることが有効である。そして、測定対象物を放射線検出器のセルに対応した部位に分けて考え、部位毎にセルの各々について換算係数を求めることで、この換算係数が偏在の分布を考慮したものとなる。この様にして求めた換算係数によって測定対象物の部位毎の放射能を求め、各部位の放射能の総和によって測定対象物全体の放射能を求める。また、多数のセルによって放射線をたくさん検出する部位を特定し、各セルの計数情報から特定対象物の部位別に放射能濃度等を推定することが可能になる。   In addition, when it is clear that the radioactivity concentration and surface density of the measurement object are uniform, detection by a radiation detector consisting of one cell is sufficient, but the radioactivity concentration and radioactivity surface density are not uniform. If the distribution coefficient is unevenly distributed, the error is large in the conversion coefficient obtained on the assumption of a uniform distribution. Therefore, it is preferable to obtain the conversion coefficient in consideration of the uneven distribution situation (distribution of uneven distribution). In particular, when the radioactivity level of the measurement object is low, it is necessary to perform measurement with the radiation detector close to the measurement object. In such a case, the uneven distribution of radioactivity is greatly increased to the value of the conversion factor. Affect. In order to know the distribution of uneven distribution, the radiation detector is an aggregate of a plurality of small detectors (cells), that is, each of the radiation detectors is a cell, and the cells are assembled into one large radiation detector. Is effective. Then, the measurement object is divided into parts corresponding to the cells of the radiation detector, and a conversion coefficient is obtained for each cell for each part, so that the conversion coefficient takes into account the uneven distribution. The radioactivity of each part of the measurement object is obtained by the conversion coefficient thus obtained, and the radioactivity of the whole measurement object is obtained by the sum of the radioactivity of each part. In addition, it is possible to specify a part where a lot of radiation is detected by a large number of cells, and to estimate the radioactivity concentration and the like for each part of the specific object from the count information of each cell.

そこで、本発明の放射能の計測方法は、放射線検出器を複数のセルの集合とすると共に測定対象物をセルに対向する部位の集合として概念し、仮想モデル化工程では放射線検出器を複数のセルの集合体として仮想3次元モデル化すると共に測定対象物を部位の集合体として仮想3次元モデル化し、測定対象物の仮想3次元モデルの部位毎に換算係数設定工程を行って当該部位毎にセルの各々について換算係数を求めると共に、放射線検出器のセル毎に実際計数率算出工程を行ってセルの各々について計数率を求め、放射能算出工程を行って測定対象物の部位毎に放射能を求めた後、各部位の放射能より測定対象物全体の放射能を求めるようにしている。   Therefore, in the radioactivity measurement method of the present invention, the radiation detector is set as a set of a plurality of cells, and the measurement object is conceptualized as a set of parts facing the cells. A virtual three-dimensional model is formed as a collection of cells and a measurement object is converted into a virtual three-dimensional model as a collection of parts, and a conversion coefficient setting step is performed for each part of the virtual three-dimensional model of the measurement object. A conversion factor is calculated for each cell, and an actual count rate calculation step is performed for each cell of the radiation detector to obtain a count rate for each cell, and a radioactivity calculation step is performed for each site of the measurement object. After obtaining the radioactivity, the radioactivity of the entire measurement object is obtained from the radioactivity of each part.

この場合、セル毎の仮想計数を求めることによって、放射能が偏在していても高精度な評価が可能となる。   In this case, by obtaining a virtual count for each cell, highly accurate evaluation is possible even if radioactivity is unevenly distributed.

なお、以下の放射能の計測装置としても良い。即ち、放射能の計測装置は、測定対象物から放出される放射線を計数する放射線検出器と、測定対象物の表面の三次元的空間座標を取込みこれを利用して測定対象物と放射線検出器の幾何学的な位置関係を仮想的に再現する3次元モデル化手段と、仮想的に再現された測定対象物の3次元モデルから放出される仮想放射線の発生数と仮想的に再現された放射線検出器の3次元モデルへの入射数とを関係付けて換算係数を求める換算係数設定手段と、放射線検出器による実際の計数率と換算係数とにより測定対象物の実際の放射能を算出する放射能算出手段を備えるようにしている。   The following radioactivity measuring device may be used. That is, the radioactivity measuring device includes a radiation detector that counts radiation emitted from the measurement object, and a three-dimensional spatial coordinate of the surface of the measurement object, and uses this to measure the measurement object and the radiation detector. 3D modeling means that virtually reproduces the geometric positional relationship of the object, and the number of virtual radiations emitted from the virtually reproduced 3D model of the measurement object and the radiation that is virtually reproduced Radiation for calculating the actual radioactivity of the measurement object based on the conversion factor setting means for obtaining the conversion factor by relating the number of incidents on the three-dimensional model of the detector, and the actual count rate and the conversion factor by the radiation detector. Performance calculating means is provided.

したがって、3次元モデル化手段によって擬似的に再現された測定対象物と放射線検出器の仮想3次元モデルを利用して、換算係数設定手段が仮想放射線の発生数と放射線検出器の仮想3次元モデルへの入力数を関係付けて換算係数を求める。この様にして求めた換算係数と実測された放射線検出器の計数率より放射能算出手段が測定対象物の実際の放射能を求める。   Accordingly, the conversion factor setting means uses the virtual three-dimensional model of the radiation detector and the number of generations of the virtual radiation by using the virtual three-dimensional model of the measurement object and the radiation detector that are simulated by the three-dimensional modeling means. The conversion factor is obtained by relating the number of inputs to. The radioactivity calculation means obtains the actual radioactivity of the measurement object from the conversion coefficient thus obtained and the actually measured count rate of the radiation detector.

この放射能計測装置の場合、換算係数設定手段は、3次元モンテカルロ計算コードを利用して測定対象物の3次元モデルからランダムに仮想放射線を発生させて仮想的に再現された放射線検出器の3次元モデルへの入射を擬似的に再現するシミュレーション手段と、仮想放射線の発生数と放射線検出器の3次元モデルへの仮想放射線の入射の計数とにより換算係数を算出する換算係数算出手段とを有することが好ましい。   In the case of this radioactivity measurement apparatus, the conversion coefficient setting means uses a three-dimensional Monte Carlo calculation code to randomly generate virtual radiation from a three-dimensional model of a measurement object and generate a radiation detector 3 that is virtually reproduced. A simulation means for simulating the incidence on the three-dimensional model, and a conversion coefficient calculation means for calculating a conversion coefficient based on the number of occurrences of virtual radiation and the count of the incidence of virtual radiation on the three-dimensional model of the radiation detector. It is preferable.

また、放射能の計測装置は、換算係数設定手段が、測定対象物と放射線検出器との間に存在する媒質の厚さ、当該媒質の減衰係数、当該媒質のビルドアップ係数、及び測定対象物と放射線検出器との間の距離に基づいて近似的に算出した媒質を通過する前後の放射線の数の相関関係より換算係数を算出するものであっても良い。   Further, in the radioactivity measurement apparatus, the conversion coefficient setting means includes a thickness of a medium existing between the measurement object and the radiation detector, an attenuation coefficient of the medium, a build-up coefficient of the medium, and a measurement object. The conversion coefficient may be calculated from the correlation between the number of radiations before and after passing through the medium approximately calculated based on the distance between the radiation detector and the radiation detector.

これらの放射能の計測装置によると、実際の校正用放射線源を使用しなくても換算係数を求めて測定対象物の放射能を高精度に且つ迅速に計測することができ、特に様々な形状や大きさの測定対象物を多量に処理するのに適した計測装置を実現できる。特に、モンテカルロ計算コードを利用して換算係数を求める場合には、実際の放射線の放出現象をシミュレーションしているので、実際の現象に即した換算係数を求めることができる。また、点減衰核コードを用いて求めたIとIの関係より換算係数を求める場合には、計算量が少なくてすむので短時間で換算係数を算出することができる。 According to these radioactivity measuring devices, it is possible to measure the radioactivity of an object to be measured with high precision and speed without using an actual calibration radiation source, and in particular, various shapes. Therefore, it is possible to realize a measuring device suitable for processing a large amount of objects to be measured. In particular, when the conversion coefficient is obtained using the Monte Carlo calculation code, since the actual radiation emission phenomenon is simulated, the conversion coefficient in accordance with the actual phenomenon can be obtained. Further, when the conversion coefficient is obtained from the relationship between I and I 0 obtained using the point decay kernel code, the calculation amount can be reduced, and the conversion coefficient can be calculated in a short time.

また、先の放射能の計測装置において、放射線検出器は複数のセルの集合であり、3次元モデル化手段は放射線検出器を複数のセルの集合体として仮想3次元モデル化すると共に測定対象物をセルに対向する部位の集合体として仮想3次元モデル化し、換算係数設定手段は測定対象物の部位毎に放射線検出器のセル各々について換算係数を求め、放射能算出手段は測定対象物の部位毎に放射能を求めると共に、各部位の放射能より測定対象物全体の放射能を求めるようにしても良い。   In the radioactivity measuring apparatus, the radiation detector is a set of a plurality of cells, and the three-dimensional modeling means performs a virtual three-dimensional model of the radiation detector as a set of a plurality of cells, and a measurement object. Is converted into a virtual three-dimensional model as a collection of parts facing the cell, the conversion coefficient setting means obtains the conversion coefficient for each cell of the radiation detector for each part of the measurement object, and the radioactivity calculation means is the part of the measurement object In addition to obtaining the radioactivity every time, the radioactivity of the entire measurement object may be obtained from the radioactivity of each part.

したがって、測定対象物の部位毎に放射線検出器のセル各々について換算係数が求められ、これらの換算係数と実測された放射線検出器のセル各々の計数率より測定対象物の部位毎の放射能が求められ、さらに測定対象物全体の放射能が求められる。   Therefore, a conversion coefficient is obtained for each cell of the radiation detector for each part of the measurement object, and the radioactivity for each part of the measurement object is calculated from these conversion coefficients and the count rate of each cell of the measured radiation detector. Further, the radioactivity of the entire measurement object is required.

また、上述の放射能の計測方法・計測装置を利用して放射能濃度、放射能表面密度を計測するようにしても良い。   Moreover, you may make it measure a radioactivity density | concentration and a radioactivity surface density using the above-mentioned radioactivity measuring method and measuring apparatus.

放射能濃度の計測方法は、測定対象物の重量又は体積を測定する重量又は体積測定工程と、前述のいずれかの放射能の計測方法により求めた放射能を重量又は体積で除して放射能濃度を求める放射能濃度算出工程とを有するようにしている。   The radioactivity concentration measurement method includes a weight or volume measurement step for measuring the weight or volume of a measurement object, and the radioactivity obtained by any of the above-described radioactivity measurement methods divided by the weight or volume. And a radioactivity concentration calculating step for obtaining the concentration.

放射能濃度は測定対象物の放射能を重量又は体積で除することで求めることが出来る。したがって、前述のいずれかの放射能計測方法により求めた測定対象物の放射能を重量又は体積測定工程で測定した重量又は体積で除することで放射能濃度を求めることができる。   The radioactivity concentration can be determined by dividing the radioactivity of the measurement object by weight or volume. Therefore, the radioactivity concentration can be obtained by dividing the radioactivity of the measurement object obtained by any of the aforementioned radioactivity measurement methods by the weight or volume measured in the weight or volume measurement step.

依って、この放射能濃度の計測方法によると、様々な形状や大きさの測定対象物の放射能濃度を高精度且つ迅速に計測することができるので、将来の原子炉廃止措置により大量に発生することが予想される解体廃棄物の放射能レベルに応じた区分評価を迅速かつ合理的に行うことができる。   Therefore, according to this radioactivity concentration measurement method, the radioactivity concentration of the measurement objects of various shapes and sizes can be measured with high accuracy and speed. Classification evaluation according to the radioactivity level of demolition waste expected to be performed can be performed quickly and rationally.

また、放射能濃度の計測装置は、前述のいずれかの放射能計測装置と、測定対象物の重量又は体積を測定する重量又は体積測定手段と、求めた測定対象物の放射能を重量又は体積で除して放射能濃度を算出する放射能濃度算出手段とを備えるようにしている。   The radioactivity concentration measuring device includes any one of the radioactivity measuring devices described above, a weight or volume measuring means for measuring the weight or volume of the measurement object, and the obtained radioactivity of the measurement object by weight or volume. And a radioactivity concentration calculating means for calculating the radioactivity concentration.

放射能濃度は測定対象物の放射能を重量又は体積で除することで求めることが出来る。したがって、前述のいずれかの放射能計測装置で測定対象物の放射能を、重量又は体積測定手段によって測定対象物の重量又は体積をそれぞれ求め、放射能濃度算出手段で放射能を重量又は体積で除することで放射能濃度を求めることができる。   The radioactivity concentration can be determined by dividing the radioactivity of the measurement object by weight or volume. Therefore, the radioactivity of the measurement object is obtained by any of the aforementioned radioactivity measurement devices, the weight or volume of the measurement object is obtained by the weight or volume measurement means, and the radioactivity is calculated by weight or volume by the radioactivity concentration calculation means. The concentration of radioactivity can be determined by dividing.

依って、この放射能濃度の計測装置によると、前述の放射能濃度計測方法の実施に好適な装置を提供することができる。即ち、様々な形状や大きさの測定対象物の放射能濃度を高精度且つ迅速に計測することができ、将来の原子炉廃止措置により大量に発生することが予想される解体廃棄物の放射能レベルに応じた区分評価を迅速かつ合理的に行うことができる。   Therefore, according to this radioactivity concentration measuring apparatus, an apparatus suitable for carrying out the above-described radioactivity concentration measurement method can be provided. In other words, the radioactivity concentration of objects to be measured in various shapes and sizes can be measured with high accuracy and speed, and the radioactivity of demolition waste that is expected to be generated in large quantities due to future decommissioning of nuclear reactors Classification evaluation according to the level can be performed quickly and rationally.

また、放射能表面密度の計測方法は、測定対象物の表面積を測定する表面積測定工程と、前述のいずれかの放射能計測方法により求めた放射能を表面積で除して放射能表面密度を求める放射能表面密度算出工程を有するものである。   Moreover, the measurement method of the radioactivity surface density is obtained by dividing the radioactivity obtained by any one of the radioactivity measurement methods described above by the surface area measurement step for measuring the surface area of the measurement object and the radioactivity surface density. It has a radioactive surface density calculation process.

放射能表面密度は測定対象物の放射能を表面積で除することで求めることが出来る。したがって、前述のいずれかの放射能計測方法により求めた測定対象物の放射能を表面積測定工程で測定した測定対象物の表面積で除することで放射能表面密度を求めることができる。   The radioactivity surface density can be determined by dividing the radioactivity of the measurement object by the surface area. Therefore, the radioactivity surface density can be obtained by dividing the radioactivity of the measurement object obtained by any of the above-described radioactivity measurement methods by the surface area of the measurement object measured in the surface area measurement step.

依って、この放射能表面密度の計測方法によると、様々な形状や大きさの測定対象物の放射能表面密度を高精度且つ迅速に計測することができるので、将来の原子炉廃止措置により大量に発生することが予想される解体廃棄物の放射能レベルに応じた区分評価を迅速かつ合理的に行うことができる。また、サーベイメータを挿入できないような口径の小さい配管内部等の放射能表面密度を高精度かつ迅速に計測することができる。   Therefore, according to this radioactivity surface density measurement method, it is possible to measure the radioactivity surface density of objects of various shapes and sizes with high accuracy and speed. Classification evaluation according to the radioactivity level of demolition waste that is expected to be generated in a rapid and rational manner. In addition, it is possible to measure the radioactivity surface density inside the pipe having a small diameter so that the survey meter cannot be inserted with high accuracy and speed.

さらに、放射能表面密度の計測装置は、前述のいずれかの放射能計測装置と、測定対象物の表面積を測定する表面積測定手段と、求めた測定対象物の放射能を表面積で除して放射能表面密度を算出する放射能表面密度算出手段を備えるものである。   Furthermore, the radioactivity surface density measuring device is one of the radioactivity measuring devices described above, surface area measuring means for measuring the surface area of the measurement object, and dividing the obtained radioactivity of the measurement object by the surface area to radiate. Radioactive surface density calculating means for calculating the active surface density is provided.

放射能表面密度は測定対象物の放射能を表面積で除することで求めることが出来る。したがって、前述のいずれかの放射能計測装置で測定対象物の放射能を、表面積測定手段によって測定対象物の表面積をそれぞれ求め、放射能表面密度算出手段で放射能を表面積で除することで放射能表面密度を求めることができる。   The radioactivity surface density can be determined by dividing the radioactivity of the measurement object by the surface area. Therefore, the radioactivity of the measurement object is obtained by any of the above-described radioactivity measurement devices, the surface area of the measurement object is obtained by the surface area measurement means, and the radioactivity is divided by the surface area by the radioactivity surface density calculation means. The active surface density can be determined.

依って、この放射能表面密度の計測装置によると、放射能表面密度の計測方法の実施に好適な装置を提供することができる。即ち、様々な形状や大きさの測定対象物の放射能表面密度を高精度且つ迅速に計測することができ、将来の原子炉廃止措置により大量に発生することが予想される解体廃棄物の放射能レベルに応じた区分評価を迅速かつ合理的に行うことができる。また、サーベイメータを挿入できないような口径の小さい配管内部等の放射能表面密度を高精度かつ迅速に計測することができる。   Therefore, according to this radioactivity surface density measuring device, it is possible to provide an apparatus suitable for carrying out the radioactivity surface density measuring method. In other words, it is possible to measure the radioactivity surface density of measurement objects of various shapes and sizes with high accuracy and speed, and radiation of demolition waste that is expected to be generated in large quantities due to future decommissioning of nuclear reactors. Classification evaluation according to performance level can be performed quickly and rationally. In addition, it is possible to measure the radioactivity surface density inside the pipe having a small diameter so that the survey meter cannot be inserted with high accuracy and speed.

本発明の放射能計測方法によると、実際の校正用放射線源を使用しなくても換算係数を求めて測定対象物の放射能を高精度に且つ迅速に計測することができるので、様々な形状や大きさの測定対象物の放射能計測を多量かつ迅速に処理することができる。特に、モンテカルロ計算手法を利用して換算係数を求める場合には、実際の放射線の放出現象をシミュレーションしているので、実際の現象に即した換算係数を求めることができる。また、点減衰核コードを用いて求めたIとIの関係より換算係数を求める場合には、モンテカルロ計算手法の場合に比べて測定精度が劣っても計算量が少なくなるので短時間で換算係数を算出することができる。 According to the radioactivity measurement method of the present invention, the radioactivity of a measurement object can be measured with high accuracy and speed without using an actual calibration radiation source, and various shapes can be obtained. It is possible to process a large amount and quickly of radioactivity measurement of a measuring object of a large size. In particular, when the conversion coefficient is obtained using the Monte Carlo calculation method, since the actual radiation emission phenomenon is simulated, the conversion coefficient in accordance with the actual phenomenon can be obtained. Further, when obtaining a conversion factor from the relationship between I and I 0 obtained using the point attenuation nuclear code conversion in a short time since the calculation amount even worse the measurement accuracy as compared with the Monte Carlo technique is less A coefficient can be calculated.

また、セル毎の仮想計数を求めることによって、放射能が偏在していても高精度な評価が可能になる。   Further, by obtaining a virtual count for each cell, highly accurate evaluation is possible even if radioactivity is unevenly distributed.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.

図1に本発明の放射能計測方法の一実施形態を、図2に当該放射能計測方法を実施する放射能計測装置の実施形態の一例を示す。この計測装置は、測定対象物18から放出される放射線例えばγ線を計数する放射線検出器1と、測定対象物18の表面形状を測定し三次元的空間座標として取込む3次元形状計測装置11と、この3次元形状計測装置11で得られた測定対象物の表面の三次元的空間座標データを利用して測定対象物18と放射線検出器1の幾何学的な位置関係(図3A参照)を仮想的に再現する(図3B参照)3次元モデル化手段2と、仮想的に再現された測定対象物18の3次元モデル16からランダムに仮想放射線例えば仮想γ線を発生させて仮想的に再現された放射線検出器1の3次元モデル17への入射を擬似的に再現するシミュレーション手段3と、仮想放射線の発生数と放射線検出器1の3次元モデル17への仮想放射線の入射の計数とにより換算係数を算出する換算係数算出手段4と、放射線検出器1による実際の計数率と換算係数により測定対象物18の実際の放射能を算出する放射能算出手段5を備える。即ち、本実施形態では、仮想的に再現された測定対象物18の3次元モデル16から放出される仮想放射線の発生数と仮想的に再現された放射線検出器1の3次元モデル17への入射数とを関係付けて換算係数を求める換算係数設定手段をシミュレーション手段3と換算係数算出手段4とによって構成している。   FIG. 1 shows an embodiment of a radioactivity measurement method of the present invention, and FIG. 2 shows an example of an embodiment of a radioactivity measurement apparatus that implements the radioactivity measurement method. The measurement apparatus includes a radiation detector 1 that counts radiation emitted from the measurement object 18, such as γ-rays, and a three-dimensional shape measurement apparatus 11 that measures the surface shape of the measurement object 18 and captures it as three-dimensional spatial coordinates. And the geometric positional relationship between the measurement object 18 and the radiation detector 1 using the three-dimensional spatial coordinate data of the surface of the measurement object obtained by the three-dimensional shape measurement apparatus 11 (see FIG. 3A). Is virtually reproduced (see FIG. 3B), and virtual radiation, for example, virtual γ-rays are randomly generated from the three-dimensional modeling means 2 and the three-dimensional model 16 of the measurement object 18 virtually reproduced. Simulation means 3 for simulating the reproduction of the reproduced radiation detector 1 on the three-dimensional model 17, the number of generations of virtual radiation, and the count of the incidence of virtual radiation on the three-dimensional model 17 of the radiation detector 1 By A conversion factor calculation unit 4 that calculates a conversion factor and a radioactivity calculation unit 5 that calculates the actual radioactivity of the measurement object 18 based on the actual count rate and conversion factor of the radiation detector 1 are provided. That is, in the present embodiment, the number of virtual radiations emitted from the three-dimensional model 16 of the measurement object 18 virtually reproduced and the incidence on the three-dimensional model 17 of the radiation detector 1 virtually reproduced. A conversion coefficient setting means for obtaining a conversion coefficient by associating a number is constituted by a simulation means 3 and a conversion coefficient calculation means 4.

尚、本実施形態では、少なくとも1つのCPUやMPUなどの演算処理装置6と、データの入出力を行うインターフェース7と、プログラムやデータを記憶するメモリ8を備えるコンピュータ9と所定の制御ないし演算プログラムによって、3次元モデル化手段2、シミュレーション手段3、換算係数算出手段4及び放射能算出手段5を実現している。即ち、演算処理装置6は、メモリ8に記憶されたOS等の制御プログラム、放射能計測方法などの手順を規定したプログラム及び所要データ等により、上記3次元モデル化手段2、シミュレーション手段3、換算係数算出手段4及び放射能算出手段5を実現している。また、コンピュータ9には、例えばCRTディスプレイやプリンター等の出力装置10が接続されている。   In the present embodiment, at least one arithmetic processing unit 6 such as a CPU or MPU, an interface 7 for inputting / outputting data, a computer 9 having a memory 8 for storing programs and data, and a predetermined control or arithmetic program. Thus, the three-dimensional modeling means 2, the simulation means 3, the conversion coefficient calculation means 4, and the radioactivity calculation means 5 are realized. That is, the arithmetic processing unit 6 uses the control program such as the OS stored in the memory 8, the program specifying the procedure such as the radioactivity measurement method, the necessary data, etc., and the above three-dimensional modeling means 2, simulation means 3, conversion The coefficient calculation means 4 and the radioactivity calculation means 5 are realized. The computer 9 is connected to an output device 10 such as a CRT display or a printer.

3次元形状計測装置11としては、例えば測定対象物18の表面の空間座標を点群データとして検出し3次元形状を計測するものが本実施形態では使われている。この3次元形状計測装置11は、非接触式の3次元レーザースキャナで、レーザー光を測定対象物18に当てて表面を走査させると共にその散乱光を集光レンズによりCCDへ結像させ、CCD結像位置をカウンター値として入力し、三角測量の原理にて距離データに変換するものである。レーザー投光部と受光部の光軸をガルバノミラーで高速に走査することにより、多ポイントの点群データを得ることができる。この3次元形状計測装置11によって測定された測定対象物18の3次元座標は、コンピュータ9にインターフェース7を介して入力される。具体的には、例えば、パルステック工業株式会社製「3次元スキャナーTDS3100」を用いて測定対象物18の表面の空間座標を高速に検出し3次元的空間座標データとして得ることができる。   As the three-dimensional shape measurement apparatus 11, for example, a device that detects the spatial coordinates of the surface of the measurement object 18 as point cloud data and measures the three-dimensional shape is used in this embodiment. The three-dimensional shape measuring apparatus 11 is a non-contact type three-dimensional laser scanner, which scans the surface by applying laser light to the measurement object 18 and forms an image of the scattered light on a CCD by a condenser lens. The image position is input as a counter value and converted into distance data by the principle of triangulation. Multipoint point group data can be obtained by scanning the optical axes of the laser projector and the light receiver at high speed with a galvanometer mirror. The three-dimensional coordinates of the measuring object 18 measured by the three-dimensional shape measuring apparatus 11 are input to the computer 9 via the interface 7. Specifically, for example, the spatial coordinates of the surface of the measurement object 18 can be detected at high speed using a “three-dimensional scanner TDS3100” manufactured by Pulstec Industrial Co., Ltd., and obtained as three-dimensional spatial coordinate data.

放射線検出器1としては、例えばγ線を計測するプラスチックシンチレーション検出器が使用可能で、測定対象物18の上下に平行に配置される。この放射線検出器1による計数データはインターフェース7を介してコンピュータ9に入力される。   As the radiation detector 1, for example, a plastic scintillation detector that measures γ-rays can be used, and is arranged in parallel above and below the measurement object 18. Count data from the radiation detector 1 is input to the computer 9 via the interface 7.

次に、放射能の計測方法について説明する。この放射能の測定方法は、測定対象物の表面の三次元的空間座標を取込みこれを利用して測定対象物18と放射線検出器1の仮想3次元モデル16,17を仮想3次元空間内に実際の幾何学的位置関係と同じ位置関係で配置する仮想モデル化工程21と、測定対象物18の仮想3次元モデル16からランダムに仮想放射線例えばγ線を発生させると共に放射線検出器1の仮想3次元モデル17への仮想放射線の入射を計数して仮想計数とする仮想計数算出工程22と、仮想放射線の発生数と仮想計数より換算係数を求める換算係数算出工程23と、測定対象物18から放出された放射線例えばγ線の放射線検出器1への入射を実際に計数して計数率を求める実際計数率算出工程24と、当該計数率と換算係数より測定対象物18の放射能を求める放射能算出工程25とから成る。即ち、本実施形態では、測定対象物18の仮想3次元モデル16から放出される仮想放射線の発生数と放射線検出器1の仮想3次元モデル17への仮想放射線の入射数とを関係付けて換算係数を求める換算係数設定工程を、仮想計数算出工程22と換算係数算出工程23より構成している。   Next, a method for measuring radioactivity will be described. This radioactivity measurement method takes in the three-dimensional spatial coordinates of the surface of the measurement object and uses it to place the measurement object 18 and the virtual three-dimensional models 16 and 17 of the radiation detector 1 in the virtual three-dimensional space. A virtual modeling step 21 arranged in the same positional relationship as the actual geometric positional relationship, virtual radiation, for example, γ-rays are randomly generated from the virtual three-dimensional model 16 of the measurement object 18 and the virtual 3 of the radiation detector 1 is generated. A virtual count calculation step 22 that counts the incidence of virtual radiation on the dimensional model 17 to obtain a virtual count, a conversion factor calculation step 23 that obtains a conversion factor from the number of occurrences of virtual radiation and the virtual count, and a discharge from the measurement object 18 The actual count rate calculating step 24 that actually counts the incident radiation, for example, the incidence of γ-rays on the radiation detector 1 to obtain the count rate, and the radioactivity of the measuring object 18 is obtained from the count rate and the conversion factor. Radioactivity calculation step 25. That is, in the present embodiment, the number of virtual radiation emitted from the virtual three-dimensional model 16 of the measurement object 18 and the number of virtual radiation incident on the virtual three-dimensional model 17 of the radiation detector 1 are related and converted. A conversion coefficient setting step for obtaining a coefficient includes a virtual count calculation step 22 and a conversion coefficient calculation step 23.

本実施形態では、測定対象物18から放射線が放出されて放射線検出器1に計数される現象を、図2に示す計測装置のコンピュータ9上で実施される3次元モンテカルロ計算手法を利用してシミュレーションすることで換算係数を求めている。そのため仮想モデル化工程21では、実際計数率算出工程24で実際に放射線検出器1を使用して測定対象物18から放射される放射線を計数する場合の放射線検出器1と測定対象物18の形状並びにこれらの幾何学的な位置関係を3次元モンテカルロ計算コードに適したフォーマットで表現する所謂3次元モデル化を行っている。即ち、仮想モデル化工程21では、先ず3次元形状計測装置11によって放射線検出器1と測定対象物18の3次元的な形状並びにこれらの位置関係を計測し、これらの3次元座標データを3次元モデル化手段2に入力し、例えば図3Bに概念的に示すように測定対象物18と放射線検出器1の3次元モデル16,17を仮想的3次元空間に仮想的に再現し、実際の位置関係と同じ位置関係で配置する。そして、このように配置したものを3次元モンテカルロ計算コードのフォーマットで表現し、入力ファイルを形成する(3次元モデル化)。この入力ファイルには、少なくとも測定対象物18の形態、放射線検出器1の形態、その他の空間の媒質の形態についてのデータが記録される。測定対象物18の形態としては、例えば3次元形状、放射能汚染の分布(表面のみの汚染か、それとも内部まで均一に汚染されているか等)、発生させるγ線のエネルギー等である。放射線検出器1の形態としては、例えば3次元形状、組成、密度等である。その他の空間の媒質の形態としては、例えば真空か空気が存在するか、鉛遮蔽が存在するか否か等である。   In the present embodiment, a phenomenon in which radiation is emitted from the measurement object 18 and counted by the radiation detector 1 is simulated using a three-dimensional Monte Carlo calculation method performed on the computer 9 of the measurement apparatus shown in FIG. By doing so, the conversion factor is obtained. Therefore, in the virtual modeling step 21, the shapes of the radiation detector 1 and the measurement target 18 when actually counting the radiation emitted from the measurement target 18 using the radiation detector 1 in the actual count rate calculation step 24. In addition, so-called three-dimensional modeling is performed to express these geometric positional relationships in a format suitable for a three-dimensional Monte Carlo calculation code. That is, in the virtual modeling step 21, first, the three-dimensional shape measurement apparatus 11 measures the three-dimensional shape of the radiation detector 1 and the measurement object 18 and their positional relationship, and the three-dimensional coordinate data is converted into three-dimensional data. For example, as shown conceptually in FIG. 3B, the measurement object 18 and the three-dimensional models 16 and 17 of the radiation detector 1 are virtually reproduced in a virtual three-dimensional space and input to the modeling means 2. Place in the same positional relationship as the relationship. Then, what is arranged in this way is expressed in the format of a three-dimensional Monte Carlo calculation code to form an input file (three-dimensional modeling). In this input file, data on at least the form of the measurement object 18, the form of the radiation detector 1, and the form of other space medium are recorded. Examples of the form of the measurement object 18 include a three-dimensional shape, a distribution of radioactive contamination (contamination only on the surface or whether it is uniformly contaminated to the inside, etc.), energy of γ rays to be generated, and the like. Examples of the form of the radiation detector 1 include a three-dimensional shape, composition, and density. As other forms of the medium in the space, for example, there is a vacuum or air, and whether or not there is lead shielding.

なお、測定対象物18の形状等が毎回変わっても、放射線検出器1の3次元形状に関するデータ及び放射能検出器1と測定対象物18が載置されるテーブル等の基準面との距離・位置関係は変わらないため、3次元形状計測装置11による放射線検出器1の計測を毎回行う必要はなく、先にあるいは予め入力されている3次元データを利用して毎回計測・入力する手間を省くことができる。この場合、3次元形状のデータ取得及び入力の時間を短縮できる。   Even if the shape or the like of the measurement object 18 changes each time, the data about the three-dimensional shape of the radiation detector 1 and the distance between the radiation detector 1 and a reference surface such as a table on which the measurement object 18 is placed, Since the positional relationship does not change, it is not necessary to perform measurement of the radiation detector 1 by the three-dimensional shape measuring apparatus 11 every time, and the time and effort of measuring and inputting each time using previously or previously input three-dimensional data can be saved. be able to. In this case, the time for acquiring and inputting the data of the three-dimensional shape can be shortened.

次に、仮想計数算出工程22では、3次元モンテカルロ計算手法を利用して、測定対象物18の仮想3次元モデル16から仮想的な放射線をランダムに発生させ、発生させた仮想放射線のうち放射線検出器1の仮想3次元モデル17に入射したものをカウントして計数を求める。即ち、γ線は、放射性物質から等方的(等しい確率であらゆる方向)に放出され、かつ放出されたγ線は物質を透過したり衝突したり、吸収されて新しいエネルギーのγ線に分かれたりする。このγ線と物質の相互作用はある確率で発生するものであり、この現象を近似して数学的なモデルで表すことが出来る。3次元モンテカルロ計算コードでは、シミュレーション手段3によってコンピュータ9上で測定対象物18の仮想3次元モデル16から等方的即ち等しい確率であらゆる方向に放出されるγ線を上述の数学的モデルを用いて追跡することができる。したがって、測定対象物18から放出されたγ線が離れた場所に設置された放射線検出器1の中に、どれだけ入射するかの確率(検出効率に近い値)を計算によって求めることができる。シミュレーション手段3としてのコンピュータ9の演算処理装置6は、3次元モンテカルロ計算コードにより測定対象物18から放射線が放出される様子をシミュレーションして放射線検出器1による計数を擬似的に求める。なお、3次元モンテカルロ計算コードとしては、例えば米国ロスアラモス国立研究所で開発された公開コードであるMCNPコードの使用が可能である。   Next, in the virtual count calculation step 22, virtual radiation is randomly generated from the virtual three-dimensional model 16 of the measurement object 18 using a three-dimensional Monte Carlo calculation method, and radiation detection is performed among the generated virtual radiation. A count is obtained by counting those incident on the virtual three-dimensional model 17 of the vessel 1. In other words, γ rays are emitted from radioactive materials isotropically (with equal probability in all directions), and the emitted γ rays pass through or collide with the material, or are absorbed and separated into new energy γ rays. To do. This interaction between γ-rays and matter occurs with a certain probability, and this phenomenon can be approximated and expressed by a mathematical model. In the three-dimensional Monte Carlo calculation code, γ rays emitted in all directions from the virtual three-dimensional model 16 of the measurement object 18 on the computer 9 by the simulation means 3 in an isotropic or equal probability are used by using the mathematical model described above. Can be tracked. Therefore, the probability (a value close to detection efficiency) of how much the γ-rays emitted from the measurement object 18 are incident on the radiation detector 1 installed at a remote location can be obtained by calculation. The arithmetic processing unit 6 of the computer 9 serving as the simulation means 3 simulates the state in which radiation is emitted from the measurement object 18 using a three-dimensional Monte Carlo calculation code, and obtains the count by the radiation detector 1 in a pseudo manner. As the three-dimensional Monte Carlo calculation code, for example, an MCNP code, which is a public code developed at the Los Alamos National Laboratory in the United States, can be used.

次いで、換算係数算出工程23では、コンピュータ9の演算処理装置6に実現される換算係数算出手段4において、仮想的に発生させたγ線の数と検出器モデル17で計数された計数値の比より換算係数を求める。いま、測定対象物18の仮想3次元モデル16からA個のγ線を発生させたところ放射線検出器1の仮想3次元モデル17にB個のγ線が入射したとすると、即ち仮想計数がBであるとすると換算係数はA/Bとなる。   Next, in the conversion coefficient calculation step 23, the ratio between the number of γ rays virtually generated and the count value counted by the detector model 17 in the conversion coefficient calculation means 4 realized in the arithmetic processing unit 6 of the computer 9. Calculate the conversion factor. Now, assuming that A γ-rays are generated from the virtual three-dimensional model 16 of the measurement object 18, B γ-rays are incident on the virtual three-dimensional model 17 of the radiation detector 1, that is, the virtual count is B. Assuming that, the conversion coefficient is A / B.

次の実際計数率算出工程24では、放射線検出器1により測定対象物18から実際に放出されたγ線を計測して計数率を求める。このとき、放射線検出器1と測定対象物18の位置関係は、コンピュータ9上に仮想的に再現した位置関係と同じにしておく。そして、放射能算出工程25において、求めた計数率に換算係数を乗じて測定対象物18の放射能を算出する。いま、実際に求めた計数率がCであったとすると、C×A/B/(測定対象の放射性物質のγ線の放出率)により測定対象物18の放射能が求められる。この演算は、演算処理装置6に実現される放射能算出手段5において行われる。   In the next actual count rate calculation step 24, the radiation detector 1 measures the γ rays actually emitted from the measurement object 18 to obtain the count rate. At this time, the positional relationship between the radiation detector 1 and the measurement object 18 is made the same as the positional relationship virtually reproduced on the computer 9. In the radioactivity calculation step 25, the radioactivity of the measurement object 18 is calculated by multiplying the calculated count rate by the conversion coefficient. Now, assuming that the actually obtained count rate is C, the radioactivity of the measurement target 18 is determined by C × A / B / (gamma ray release rate of the measurement target radioactive substance). This calculation is performed in the radioactivity calculation means 5 realized in the calculation processing device 6.

この様に、本発明の放射能の計測方法及び計測装置では、3次元モンテカルロ計算手法を使用して換算係数を求めることができるので、測定対象物18に応じて作成しなければならない校正用放射線源を用いることなく測定対象物18の放射能を迅速かつ高精度に計測することができる。   As described above, in the radioactivity measurement method and measurement apparatus of the present invention, the conversion factor can be obtained using the three-dimensional Monte Carlo calculation method. Therefore, the calibration radiation that must be created according to the measurement object 18. The radioactivity of the measuring object 18 can be measured quickly and with high accuracy without using a source.

次に、放射能濃度の計測方法及び計測装置について説明する。   Next, a radioactivity concentration measuring method and measuring apparatus will be described.

図4に本発明の放射能濃度計測方法の一実施形態を、図5に放射能濃度計測方法を実施する放射能濃度計測装置の実施形態の一例を示す。この放射能濃度計測装置は、図2の放射能計測装置に重量又は体積測定手段13と放射能濃度算出手段12の機能を付加したものである。   FIG. 4 shows an embodiment of the radioactivity concentration measuring method of the present invention, and FIG. 5 shows an example of an embodiment of the radioactivity concentration measuring apparatus for carrying out the radioactivity concentration measuring method. This radioactivity concentration measurement apparatus is obtained by adding the functions of weight or volume measurement means 13 and radioactivity concentration calculation means 12 to the radioactivity measurement apparatus of FIG.

放射能濃度算出手段12は、放射能算出手段5によって求めた測定対象物18の放射能を重量又は体積で除して放射能濃度を算出するもので、本実施形態では例えばコンピュータ9の演算処理装置6が測定対象物18の放射能を重量又は体積で除する演算処理を行わせるプログラムによって放射能算出手段5を実現する。また、重量又は体積測定手段13は、測定対象物18の重量又は体積を測定するもので、本実施形態では測定対象物18の重量を測定する計量器である。この計量器13による測定結果はインターフェース7を介してコンピュータ9の放射能濃度算出手段12に入力される。   The radioactivity concentration calculation means 12 calculates the radioactivity concentration by dividing the radioactivity of the measurement object 18 obtained by the radioactivity calculation means 5 by the weight or volume. In this embodiment, for example, the arithmetic processing of the computer 9 is performed. The radioactivity calculation means 5 is realized by a program that causes the apparatus 6 to perform arithmetic processing for dividing the radioactivity of the measurement object 18 by weight or volume. Further, the weight or volume measuring means 13 measures the weight or volume of the measuring object 18 and is a measuring instrument that measures the weight of the measuring object 18 in this embodiment. The measurement result by the measuring instrument 13 is input to the radioactivity concentration calculating means 12 of the computer 9 via the interface 7.

このような計測装置によって実施される放射能濃度計測方法は、前述の放射能計測方法に測定対象物18の重量又は体積を測定する重量又は体積測定工程31と、上述の放射能の計測方法により求めた放射能を重量又は体積で除して放射能濃度を求める放射能濃度算出工程33を含むものである。   The radioactivity concentration measurement method carried out by such a measuring device is based on the above-described radioactivity measurement method by the weight or volume measurement step 31 for measuring the weight or volume of the measurement object 18 and the radioactivity measurement method described above. It includes a radioactivity concentration calculation step 33 for obtaining the radioactivity concentration by dividing the obtained radioactivity by weight or volume.

例えば、重量によって放射能濃度を求める場合を例に説明すると、先ず放射能計測に先立って重量又は体積測定工程31で測定対象物18の重量を計量器13によって測定しコンピュータ9上の放射能濃度算出手段12に入力する。その後、放射能計測ルーチン32において図1の方法を実施して測定対象物18の放射能を計測する。そして、放射能濃度算出手段12において、放射能算出手段5で求めた放射能を計量器13で求めた重量で除して放射能濃度を算出する(放射能濃度算出工程33)。例えば、測定対象物18の重量がD、放射能がEとすると、放射能濃度はE/Dによって求められる。そして、求められた放射能濃度は出力装置10に出力され、任意の形態で表示ないし印刷される。   For example, the case where the radioactivity concentration is obtained by weight will be described as an example. First, the radioactivity concentration on the computer 9 is measured by measuring the weight of the measurement object 18 by the weighing instrument 13 in the weight or volume measurement step 31 prior to the radioactivity measurement. Input to the calculation means 12. Thereafter, in the radioactivity measurement routine 32, the method of FIG. Then, the radioactivity concentration calculation means 12 calculates the radioactivity concentration by dividing the radioactivity obtained by the radioactivity calculation means 5 by the weight obtained by the measuring instrument 13 (radioactivity concentration calculation step 33). For example, when the weight of the measurement object 18 is D and the radioactivity is E, the radioactivity concentration is obtained by E / D. The obtained radioactivity concentration is output to the output device 10 and displayed or printed in an arbitrary form.

なお、重量に代えて体積によって放射能濃度を求める場合には、重量又は体積測定手段13として測定対象物18の体積を測定できる体積測定手段を使用する。この場合の体積測定手段は、例えば3次元形状計測装置11により測定した測定対象物18の3次元形状データに基づいて体積を求めるものであり、通常コンピュータ9の演算処理装置6を体積測定手段として機能させる。このようにして求めた測定対象物18の体積がFであるとすると、放射能濃度算出工程33ではE/Fを計算して放射能濃度を求める。   In addition, when calculating | requiring a radioactive concentration with a volume instead of a weight, the volume measuring means which can measure the volume of the measuring object 18 is used as a weight or volume measuring means 13. FIG. The volume measuring means in this case is for obtaining the volume based on, for example, the three-dimensional shape data of the measurement object 18 measured by the three-dimensional shape measuring apparatus 11, and the arithmetic processing unit 6 of the computer 9 is usually used as the volume measuring means. Make it work. Assuming that the volume of the measurement object 18 thus obtained is F, the radioactivity concentration calculation step 33 calculates E / F to obtain the radioactivity concentration.

この様に、本発明の放射能濃度の計測方法及び計測装置では、測定対象物18毎に異なった校正用放射線源を用いることなく測定対象物18の放射能を計測しているので、迅速かつ高精度に、しかも様々な形状や大きさの測定対象物18に対しても的確に測定対象物18の放射能濃度を計測することができる。   As described above, in the radioactivity concentration measuring method and measuring apparatus of the present invention, the radioactivity of the measuring object 18 is measured without using a different calibration radiation source for each measuring object 18. It is possible to accurately measure the radioactivity concentration of the measurement object 18 with high accuracy and with respect to the measurement object 18 of various shapes and sizes.

次に放射能表面密度の計測方法及び計測装置について説明する。   Next, a measuring method and measuring apparatus for the radioactivity surface density will be described.

図6に本発明の放射能表面密度計測方法の一実施形態を、図7にこの放射能表面密度計測方法を実施する計測装置の一実施形態をそれぞれ示す。この放射能表面密度計測装置は、例えば図2の放射能計測装置に表面積測定手段14と放射能表面密度算出手段15の機能を付加したものである。   FIG. 6 shows an embodiment of the radioactive surface density measuring method of the present invention, and FIG. 7 shows an embodiment of a measuring apparatus for carrying out the radioactive surface density measuring method. This radioactivity surface density measuring apparatus is obtained by adding the functions of the surface area measuring means 14 and the radioactivity surface density calculating means 15 to the radioactivity measuring apparatus of FIG.

放射能表面密度算出手段15は、放射能算出手段5によって求めた測定対象物18の放射能を表面積で除して放射能表面密度を算出するもので、本実施形態では例えばコンピュータ9の演算処理装置6をプログラムで放射能表面密度算出手段15として機能させることにより実現する。また、表面積測定手段14は、例えば3次元形状計測装置11により測定した測定対象物18の形状データから表面積を求めるもので、本実施形態では、例えばコンピュータ9の演算処理装置6が所定のプログラムに基づいた演算を行うことで表面積を求める表面積測定手段14として機能させることにより実現している。   The radioactivity surface density calculation means 15 calculates the radioactivity surface density by dividing the radioactivity of the measurement object 18 obtained by the radioactivity calculation means 5 by the surface area. In this embodiment, for example, the calculation process of the computer 9 is performed. It implement | achieves by making the apparatus 6 function as the radioactive surface density calculation means 15 by a program. Further, the surface area measuring means 14 obtains the surface area from the shape data of the measuring object 18 measured by, for example, the three-dimensional shape measuring apparatus 11, and in the present embodiment, for example, the arithmetic processing unit 6 of the computer 9 sets a predetermined program. This is realized by functioning as the surface area measuring means 14 for obtaining the surface area by performing a calculation based on the calculation.

このような放射能表面密度計測装置によって実施される放射能表面密度計測方法は、前述の放射能計測方法に、測定対象物18の表面積を測定する表面積測定工程42と、上述の放射能の測定方法により求めた放射能を表面積で除して放射能表面密度を求める放射能表面密度算出工程43を含むものである。   The radioactivity surface density measurement method carried out by such a radioactivity surface density measurement apparatus includes a surface area measurement step 42 for measuring the surface area of the measurement object 18 and the radioactivity measurement described above. It includes a radioactivity surface density calculating step 43 for determining the radioactivity surface density by dividing the radioactivity obtained by the method by the surface area.

この放射能表面密度計測方法について具体的に説明すると、先ず、放射能計測ルーチン41において図1の放射能計測方法を実施して測定対象物18の放射能を計測する。この場合、図1の仮想計数算出工程22において測定対象物18の仮想3次元モデル16の表面から放射線例えばγ線を仮想的に発生させるようにする。即ち、測定対象物18の表面汚染をシミュレーションする。そして、次の表面積測定工程42では、コンピュータ9の演算処理装置6と所定の演算プログラムが実現する表面積測定手段14において、測定対象物18の3次元形状に関するデータに基づいて測定対象物18の表面積を算出する。その後、放射能表面密度算出工程43において、測定対象物18の表面汚染に関する放射能を測定対象物18の表面積で除して放射能表面密度を算出する。いま、測定対象物18の表面積がGであったとすると、放射能表面密度はE/Gによって求められる。そして求めた放射能表面密度は出力装置10に出力され、任意の形態で表示ないし印刷される。   The radioactivity surface density measurement method will be specifically described. First, the radioactivity measurement routine 41 performs the radioactivity measurement method of FIG. 1 to measure the radioactivity of the measurement object 18. In this case, in the virtual count calculation step 22 of FIG. 1, radiation, for example, γ rays are virtually generated from the surface of the virtual three-dimensional model 16 of the measurement object 18. That is, the surface contamination of the measurement object 18 is simulated. Then, in the next surface area measuring step 42, the surface area of the measuring object 18 is calculated based on the data relating to the three-dimensional shape of the measuring object 18 in the surface area measuring means 14 realized by the arithmetic processing unit 6 of the computer 9 and a predetermined arithmetic program. Is calculated. Thereafter, in a radioactivity surface density calculation step 43, the radioactivity surface density is calculated by dividing the radioactivity related to the surface contamination of the measurement object 18 by the surface area of the measurement object 18. Now, assuming that the surface area of the measuring object 18 is G, the radioactive surface density is obtained by E / G. The obtained radioactivity surface density is output to the output device 10 and displayed or printed in an arbitrary form.

なお、この放射能表面密度計測方法では、測定対象物18の放射能を求めた後に測定対象物18の表面積を求めるようにしているが、即ち放射能計測ルーチン41の実行後に表面積測定工程42を実行するようにしているが、測定対象物18の放射能を求めるために仮想モデル化工程21において測定対象物18の3次元形状を計測した段階で、即ち放射能計測ルーチン41で実行する仮想モデル化工程21において測定対象物18の表面積を求めるようにしても良い。   In this radioactivity surface density measurement method, the surface area of the measurement object 18 is obtained after obtaining the radioactivity of the measurement object 18, that is, after the execution of the radioactivity measurement routine 41, the surface area measurement step 42 is performed. In order to obtain the radioactivity of the measurement object 18, the virtual model executed at the stage of measuring the three-dimensional shape of the measurement object 18 in the virtual modeling step 21, that is, the radioactivity measurement routine 41 is executed. In the conversion step 21, the surface area of the measurement object 18 may be obtained.

この様に、本発明の放射能表面密度の計測方法及び計測装置では、測定対象物18に応じた校正用放射線源を用いることなく測定対象物18の放射能を計測しているので、迅速かつ高精度に、しかも様々な形状や大きさの測定対象物18に対しても的確に測定対象物18の放射能表面密度を計測することができる。また、測定対象物18から放出されるγ線を対象にして放射能表面密度の計測を行うので、β線を対象にして放射能表面密度の計測を行う場合と違って、サーベイメータの挿入が不可能な例えば細管の内周面の放射能表面密度を高精度に計測することができる。   Thus, in the measuring method and measuring apparatus of the radioactivity surface density of the present invention, the radioactivity of the measuring object 18 is measured without using the calibration radiation source corresponding to the measuring object 18, so that It is possible to accurately measure the radioactivity surface density of the measurement object 18 with high accuracy and with respect to the measurement object 18 of various shapes and sizes. In addition, since the measurement of the radioactivity surface density is performed on the γ-rays emitted from the measurement object 18, unlike the case of measuring the radioactivity surface density on the β-rays, it is not possible to insert a survey meter. For example, the radioactivity surface density of the inner peripheral surface of the thin tube can be measured with high accuracy.

図8に、上述の放射能濃度計測方法及び放射能表面密度計測方法を使用して、例えば原子炉廃止措置で発生する解体廃棄物の放射能レベルを検認するシステムの概念の一例を示す。   FIG. 8 shows an example of a concept of a system that verifies the radioactivity level of demolition waste generated by, for example, reactor decommissioning using the above-described radioactivity concentration measurement method and radioactivity surface density measurement method.

原子炉の廃止措置を行うことで、様々の形状、大きさ、放射能レベル等の解体廃棄物51(測定対象物18)が多量に発生する。これらの放射性廃棄物51は形状測定部52に搬送されて3次元形状計測装置11によって3次元形状が測定される。次の放射線・重量測定部53には放射線検出器1及び計量器13が設置されており、形状測定が行われた放射性廃棄物51の重量を測定すると共に放射性廃棄物51から放出される放射線を計数し、放射能濃度と表面密度が求められる。そして、検認部54で放射能濃度と放射能表面密度についての検認が行われた後、それぞれのレベルに応じて各解体廃棄物51が適切に処分・再利用される。このようにして解体廃棄物51の放射能レベルを検認することで、多量の解体廃棄物51を迅速に検認することが可能になり、将来の原子炉廃止措置により多量に発生することが予想される解体廃棄物51の処理処分・再利用に良好に対応することが可能となる。   By decommissioning the reactor, a large amount of demolition waste 51 (measurement object 18) of various shapes, sizes, radioactivity levels, etc. is generated. These radioactive wastes 51 are conveyed to the shape measuring unit 52 and the three-dimensional shape measurement apparatus 11 measures the three-dimensional shape. The radiation detector 1 and the measuring instrument 13 are installed in the next radiation / weight measuring unit 53 to measure the weight of the radioactive waste 51 on which the shape measurement has been performed and to emit radiation emitted from the radioactive waste 51. Count and determine the radioactivity concentration and surface density. Then, after the verification about the radioactivity concentration and the radioactivity surface density is performed by the verification unit 54, each demolition waste 51 is appropriately disposed and reused according to each level. By checking the radioactivity level of the demolition waste 51 in this way, it becomes possible to quickly check a large amount of the demolition waste 51, which may be generated in large quantities due to future nuclear reactor decommissioning. It is possible to cope with the expected disposal and reuse of the dismantled waste 51.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、上述のようにして放射能の計測を行っても良いが、本発明ではさらに以下のようにして放射能の計測を行っている。即ち、3次元モンテカルロ計算コードによるシミュレーションによって測定対象物18の3次元モデル16から放出された仮想γ線を放射線検出器1の3次元モデル17で計数する場合に、上下の3次元モデル17をそれぞれ多数のセルの集合体として、各セル毎に仮想γ線の入射を計数するようにしても良い。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention. For example, the radioactivity may be measured as described above, but in the present invention, the radioactivity is further measured as follows. That is, when the virtual γ rays emitted from the three-dimensional model 16 of the measurement object 18 by the simulation using the three-dimensional Monte Carlo calculation code are counted by the three-dimensional model 17 of the radiation detector 1, the upper and lower three-dimensional models 17 are respectively determined. As an aggregate of a large number of cells, the incidence of virtual γ rays may be counted for each cell.

即ち、放射線検出器を複数のセルの集合とすると共に測定対象物をセルに対向する部位の集合として概念し、仮想モデル化工程では放射線検出器を複数のセルの集合体として仮想3次元モデル化すると共に測定対象物を部位の集合体として仮想3次元モデル化し、測定対象物の仮想3次元モデルの部位毎に換算係数設定工程を行って当該部位毎にセルの各々について換算係数を求めると共に、放射線検出器のセル毎に実際計数率算出工程を行ってセルの各々について計数率を求め、放射能算出工程を行って測定対象物の部位毎に放射能を求めた後、各部位の放射能より測定対象物全体の放射能を求めるようにしても良い。   That is, the radiation detector is a set of a plurality of cells and the measurement object is a concept of a set of parts facing the cell. In the virtual modeling step, the radiation detector is a set of a plurality of cells to be a virtual three-dimensional model. And a virtual three-dimensional model of the measurement object as a collection of parts, and performing a conversion coefficient setting step for each part of the virtual three-dimensional model of the measurement object to obtain a conversion coefficient for each of the cells for each part, The actual count rate calculation process is performed for each cell of the radiation detector to obtain the count rate for each cell, the radioactivity calculation process is performed to determine the radioactivity for each part of the measurement object, and then the radioactivity of each part Further, the radioactivity of the entire measurement object may be obtained.

具体的にその一例を説明すると、例えば図9に示すように放射線検出器1を4つのセル1aの集合体として構成した場合、この放射線検出器1の上に載せて測定する測定対象物18をセル1aに対向する部位18aの集合として概念する。そして、各部位18aの中では放射能濃度や放射能表面密度は均一であると仮定し、シミュレーションを行って3次元モデルの各部位毎にセルの各々について換算係数を求める。   Specifically, for example, when the radiation detector 1 is configured as an assembly of four cells 1a as shown in FIG. 9, a measurement object 18 to be measured on the radiation detector 1 is measured. It is conceptualized as a set of parts 18a facing the cell 1a. Then, assuming that the radioactivity concentration and the radioactivity surface density are uniform in each part 18a, a conversion coefficient is obtained for each cell in each part of the three-dimensional model by performing simulation.

先ず最初に、3次元モデル16の第1の部位から放出された放射線が3次元モデル17の第1〜第4のセルに計数される時の計数効率(換算係数)を測定対象物18の形状を測定した結果をもとに、3次元モンテカルロ計算コードで求める。この結果が例えば、第1のセルで計数される時の効率(換算係数)が0.4、第2のセルで計数される時の効率(換算係数)が0.15、第3のセルで計数される時の効率(換算係数)が0.15、第4のセルで計数される時の効率(換算係数)が0.07であったとする。   First, the counting efficiency (conversion factor) when the radiation emitted from the first part of the three-dimensional model 16 is counted in the first to fourth cells of the three-dimensional model 17 is the shape of the measurement object 18. Based on the measurement result, a three-dimensional Monte Carlo calculation code is used. For example, the efficiency (conversion factor) when counting in the first cell is 0.4, the efficiency (conversion factor) when counting in the second cell is 0.15, and the result is It is assumed that the efficiency (conversion coefficient) at the time of counting is 0.15, and the efficiency (conversion coefficient) at the time of counting by the fourth cell is 0.07.

同様にして、3次元モデル16の第2〜第4の部位から放出された放射線が3次元モデル17の第1〜第4のセルに計数される時の換算係数を測定対象物18の形状を測定した結果をもとに、3次元モンテカルロ計算コードで求める。これらの結果が表1に示す値であったとする。   Similarly, the conversion factor when the radiation emitted from the second to fourth parts of the three-dimensional model 16 is counted in the first to fourth cells of the three-dimensional model 17 is the shape of the measurement object 18. Based on the measured results, the three-dimensional Monte Carlo calculation code is used. These results are assumed to be the values shown in Table 1.

Figure 2006084478
Figure 2006084478

一方、放射線検出器1のセル1aの実際の計数は、第1のセル1aが100、第2のセル1aが50、第3のセル1aが50、第4のセル1aが40であったとする。   On the other hand, the actual count of the cell 1a of the radiation detector 1 is 100 for the first cell 1a, 50 for the second cell 1a, 50 for the third cell 1a, and 40 for the fourth cell 1a. .

以上の結果を行列で表すと、部位18a別の放射能R1〜R4と放射線検出器1の4つのセル1aでの計数率の関係は、数式2のようになる。なお、第1の部位18aの放射能をR1,第2の部位18aの放射能をR2,第3の部位18aの放射能をR3,第4の部位18aの放射能をR4とする。   When the above results are expressed in a matrix, the relationship between the radioactivity R1 to R4 for each part 18a and the count rate in the four cells 1a of the radiation detector 1 is expressed by Equation 2. The radioactivity of the first part 18a is R1, the radioactivity of the second part 18a is R2, the radioactivity of the third part 18a is R3, and the radioactivity of the fourth part 18a is R4.

Figure 2006084478
Figure 2006084478

この様にして第1〜第4の部位18aの放射能R1〜R4を求めた後、これらの放射能R1〜R4の総和を求める。上述の例では、数式3となることから、測定対象物18全体の放射能は308.3Bqとなる。   Thus, after calculating | requiring the radioactivity R1-R4 of the 1st-4th site | part 18a, the sum total of these radioactivity R1-R4 is calculated | required. In the above example, since Equation 3 is obtained, the radioactivity of the entire measurement object 18 is 308.3 Bq.

〈数3〉
測定対象物18全体の放射能=R1+R2+R3+R4
=225.1+18.7+19.8+44.7=308.3
<Equation 3>
Radioactivity of the entire measurement object 18 = R1 + R2 + R3 + R4
= 225.1 + 18.7 + 19.8 + 44.7 = 308.3

放射能濃度や放射能表面密度が均一ではなく各所に偏在している場合、均一分布を仮定して求めた換算係数では誤差が大きくなる。特に、測定対象物18の放射能レベルが低い場合には放射能検出器1を測定対象物18に近づけて測定を行う必要があり、放射能検出器1を測定対象物18に近づけて測定する場合には放射能の偏在が換算係数の値に大きく影響する。しかしながら、上述の様にすることで、偏在状況(偏在の分布)を考慮して換算係数を求めることができ、測定対象物18の放射能が偏在していても、放射能濃度や放射能表面密度の高精度な評価が可能になる。   When the radioactivity concentration and the radioactivity surface density are not uniform but unevenly distributed in various places, the conversion factor obtained assuming a uniform distribution has a large error. In particular, when the radioactivity level of the measurement object 18 is low, it is necessary to perform measurement by bringing the radioactivity detector 1 close to the measurement object 18, and the radioactivity detector 1 is measured close to the measurement object 18. In some cases, the uneven distribution of radioactivity greatly affects the value of the conversion factor. However, the conversion factor can be obtained in consideration of the uneven distribution state (distribution of uneven distribution) by doing as described above, and even if the radioactivity of the measurement object 18 is unevenly distributed, the radioactivity concentration and the radioactivity surface Highly accurate evaluation of density is possible.

上述の具体例では、放射線検出器1を4つのセル1aの集合としていたが、セル1aの数は4つに限るものではない。セル1aの数を増やすことで測定対象物18の放射能の分布をより詳細に評価できるようになる。   In the specific example described above, the radiation detector 1 is a set of four cells 1a, but the number of cells 1a is not limited to four. By increasing the number of cells 1a, the radioactivity distribution of the measurement object 18 can be evaluated in more detail.

この様な方法を実施する放射能の計測装置は、例えば図2に示す放射能の計測装置において、放射線検出器1は複数のセルの集合であり、3次元モデル化手段2は放射線検出器1を複数のセルの集合体として仮想3次元モデル化すると共に測定対象物をセルに対向する部位の集合体として仮想3次元モデル化し、換算係数設定手段は測定対象物の部位毎に放射線検出器のセル各々について換算係数を求め、放射能算出手段5は測定対象物の部位毎に放射能を求めると共に、各部位の放射能より測定対象物全体の放射能を求めるように構成したものである。   The radioactivity measurement apparatus that implements such a method is, for example, the radioactivity measurement apparatus shown in FIG. 2, in which the radiation detector 1 is a set of a plurality of cells, and the three-dimensional modeling means 2 is the radiation detector 1. And a virtual three-dimensional model as a collection of a plurality of cells and a virtual three-dimensional model of a measurement object as a collection of parts facing the cell, and the conversion coefficient setting means is provided for each part of the measurement object. A conversion coefficient is obtained for each cell, and the radioactivity calculation means 5 is configured to obtain the radioactivity for each part of the measurement object and obtain the radioactivity of the whole measurement object from the radioactivity of each part.

また、上述の説明では、3次元モンテカルロ計算コードを使用したシミュレーションを行って換算係数を求めているが、換算係数を設定する方法としてはこれに限られるものではない。例えば、点減衰核コードとよばれる遮へい計算用のコードを使用して換算係数を求めるようにしても良い。   In the above description, the conversion coefficient is obtained by performing a simulation using a three-dimensional Monte Carlo calculation code. However, the method for setting the conversion coefficient is not limited to this. For example, a conversion coefficient may be obtained using a code for shielding calculation called a point attenuation kernel code.

即ち、換算係数設定工程において、測定対象物と放射線検出器との間に存在する媒質の厚さ、当該媒質の減衰係数、当該媒質のビルドアップ係数、及び測定対象物と放射線検出器との間の距離に基づいて近似的に算出した媒質通過前後の放射線の数の相関関係より換算係数を求めるようにした放射能の計測方法であっても良い。   That is, in the conversion coefficient setting step, the thickness of the medium existing between the measurement object and the radiation detector, the attenuation coefficient of the medium, the build-up coefficient of the medium, and between the measurement object and the radiation detector Alternatively, a radioactivity measurement method may be used in which a conversion coefficient is obtained from the correlation between the number of radiations before and after passing through the medium approximately calculated based on the distance.

具体的に説明すると、測定対象物18から放出された放射線が測定対象物18と放射線検出器1との間に存在する媒質を通過する場合、その通過前後の放射線の数の関係は、次の数式4で近似的に求めることができる。   More specifically, when the radiation emitted from the measurement object 18 passes through the medium existing between the measurement object 18 and the radiation detector 1, the relationship between the number of radiations before and after the passage is as follows: Approximate expression 4 can be obtained.

〈数4〉
I=(1/(4πr))IBe−μd
<Equation 4>
I = (1 / (4πr 2 )) I 0 Be −μd

ここで、Iはある媒質を通過した後の放射線の数、Iはある媒質を通過する前に発生する放射線の数、μは減衰係数(cm−1)、dは測定対象物18の放射線が通過する部分の厚さ(cm)、Bはビルドアップ係数、rは測定対象物と放射線検出器1の距離である。減衰係数μとビルドアップ係数Bは媒質の種類に応じて定まる値、厚さdは測定対象物18の形態や放射能汚染の位置等に応じて定まる値である。また、距離rは仮想モデル工程21において形成した仮想3次元モデル16,17の位置関係に基づいて求めることができる。尚、この仮想3次元モデル16,17の位置関係に基づいて厚さdを求めるようにしても良い。放射線の遮蔽計算に用いる点減衰核法では、上述の式を利用して計算を行っている。 Here, I is the number of radiation after passing through a certain medium, I 0 is the number of radiation generated before passing through a certain medium, μ is an attenuation coefficient (cm −1 ), and d is the radiation of the measurement object 18. Is the thickness (cm) of the part through which B passes, B is the build-up coefficient, and r is the distance between the measurement object and the radiation detector 1. The attenuation coefficient μ and the build-up coefficient B are values determined according to the type of the medium, and the thickness d is a value determined according to the form of the measurement object 18, the position of radioactive contamination, and the like. The distance r can be obtained based on the positional relationship between the virtual three-dimensional models 16 and 17 formed in the virtual model process 21. The thickness d may be obtained based on the positional relationship between the virtual three-dimensional models 16 and 17. In the point decay kernel method used for radiation shielding calculation, calculation is performed using the above formula.

上述の式によりIとIの関係がわかるので、換算係数算出工程では換算係数を求めることができる。即ち、Iが測定対象物18の仮想3次元モデル16から放出される仮想放射線の発生数に対応し、Iが放射線検出器1の仮想3次元モデル17への仮想放射線の入射数に対応し、I/Iが換算係数となる。そして、換算係数を求めた後は、上述の場合と同様の手順で測定対象物の放射能を求め、放射能濃度や放射能表面密度を求める。この放射能の計測方法では、計測された放射能は近似的な値ではあるが、計算量が少なくてすむので短時間で簡単に放射能を求めることができる。 Since the relationship between I and I 0 is known from the above equation, the conversion coefficient can be obtained in the conversion coefficient calculation step. That is, I 0 corresponds to the number of virtual radiations emitted from the virtual three-dimensional model 16 of the measurement object 18, and I corresponds to the number of virtual radiations incident on the virtual three-dimensional model 17 of the radiation detector 1. , I / I 0 is a conversion factor. And after calculating | requiring a conversion factor, the radioactivity of a measuring object is calculated | required in the same procedure as the above-mentioned case, and a radioactivity density | concentration and a radioactivity surface density are calculated | required. In this radioactivity measurement method, the measured radioactivity is an approximate value, but the calculation amount is small, so that the radioactivity can be easily determined in a short time.

この方法を実施する放射能の計測装置は、図10に示すように、測定対象物18から放出される放射線を計数する放射線検出器1と、測定対象物18と放射線検出器1との間に存在する媒質の厚さ、当該媒質の減衰係数、当該媒質のビルドアップ係数、及び測定対象物18と放射線検出器1との間の距離に基づいて近似的に算出した媒質通過前後の放射線の数の相関関係より換算係数を算出する換算係数設定手段19と、放射線検出器1による実際の計数率と換算係数とにより測定対象物の実際の放射能を算出する放射能算出手段5を備えて構成される。そして、例えば図10の計測装置に図5に示す重量又は体積測定手段13と放射能濃度算出手段12の機能を付加することで、放射能濃度計測装置が構成される。さらに、例えば図10の計測装置に図7に示す表面積測定手段14と放射能表面密度算出手段15の機能を付加することで、放射能表面密度計測装置が構成される。   As shown in FIG. 10, the radioactivity measuring apparatus that implements this method includes a radiation detector 1 that counts radiation emitted from the measurement object 18, and a measurement object 18 and the radiation detector 1. The number of radiation before and after passing through the medium approximately calculated based on the thickness of the existing medium, the attenuation coefficient of the medium, the build-up coefficient of the medium, and the distance between the measurement object 18 and the radiation detector 1 The conversion coefficient setting means 19 for calculating the conversion coefficient from the correlation of the above and the radioactivity calculation means 5 for calculating the actual radioactivity of the measurement object based on the actual count rate and the conversion coefficient by the radiation detector 1 are provided. Is done. Then, for example, by adding the functions of the weight or volume measuring means 13 and the radioactive concentration calculating means 12 shown in FIG. 5 to the measuring apparatus of FIG. 10, the radioactive concentration measuring apparatus is configured. Further, for example, by adding the functions of the surface area measuring means 14 and the radioactive surface density calculating means 15 shown in FIG. 7 to the measuring apparatus of FIG. 10, the radioactive surface density measuring apparatus is configured.

また、点減衰核コードを使用してシミュレーションを行い換算係数を求める場合であっても、3次元モンテカルロ計算コードを使用してシミュレーションを行い換算係数を求める場合と同様に、上下の3次元モデル17をそれぞれ多数のセルの集合体として、各セル毎に仮想γ線の入射を計数するようにしても良い。   Further, even when a simulation is performed using a point decay kernel code to obtain a conversion coefficient, the upper and lower three-dimensional models 17 are calculated in the same manner as when a simulation is performed using a three-dimensional Monte Carlo calculation code to obtain a conversion coefficient. May be counted as an aggregate of a large number of cells, and the incidence of virtual γ rays may be counted for each cell.

本発明の放射能の計測方法の実施形態の一例を示すフローチャートである。It is a flowchart which shows an example of embodiment of the measuring method of the radioactivity of this invention. 本発明の放射能の計測装置の実施形態の一例を示す概略構成図である。It is a schematic block diagram which shows an example of embodiment of the measuring device of the radioactivity of this invention. 放射線検出器と測定対象物の位置関係を示す概念図で、(A)は実際の幾何学的位置関係を示す概念図、(B)は仮想的に3次元モデル化した位置関係を示す概念図である。The conceptual diagram which shows the positional relationship of a radiation detector and a measurement object, (A) is a conceptual diagram which shows actual geometric positional relationship, (B) is the conceptual diagram which shows the positional relationship virtually modeled in three dimensions It is. 本発明の放射能濃度の計測方法の実施形態の一例を示すフローチャートである。It is a flowchart which shows an example of embodiment of the measuring method of the radioactive concentration of this invention. 本発明の放射能濃度の計測装置の実施形態の一例を示す概略構成図である。It is a schematic block diagram which shows an example of embodiment of the measuring apparatus of the radioactive concentration of this invention. 本発明の放射能表面密度の計測方法の実施形態の一例を示すフローチャートである。It is a flowchart which shows an example of embodiment of the measuring method of the radioactive surface density of this invention. 本発明の放射能表面密度の計測装置の実施形態の一例を示す概略構成図である。It is a schematic block diagram which shows an example of embodiment of the measuring apparatus of the radioactive surface density of this invention. 原子炉廃止措置で発生する解体廃棄物の放射能レベルを検認するシステムの概念図である。It is a conceptual diagram of the system which verifies the radioactivity level of the demolition waste generated by the nuclear reactor decommissioning. 複数のセル(放射線検出器)の集合からなる放射線検出器の概念図である。It is a conceptual diagram of the radiation detector which consists of a collection of a some cell (radiation detector). 本発明の放射能の計測装置の実施形態の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of embodiment of the measuring device of the radioactivity of this invention.

符号の説明Explanation of symbols

1 放射線検出器
2 3次元モデル化手段
3 シミュレーション手段
4 換算係数算出手段
5 放射能算出手段
12 放射能濃度算出手段
13 計量器(重量又は体積測定手段)
14 表面積測定手段
15 放射能表面密度算出手段
16 測定対象物の3次元モデル
17 放射線検出器の3次元モデル
18 測定対象物
21 仮想モデル化工程
22 仮想計数算出工程
23 換算係数算出工程
24 実際計数率算出工程
25 放射能算出工程
31 重量又は体積測定工程
33 放射能濃度算出工程
42 表面積測定工程
43 放射能表面密度算出工程
DESCRIPTION OF SYMBOLS 1 Radiation detector 2 Three-dimensional modeling means 3 Simulation means 4 Conversion coefficient calculation means 5 Radioactivity calculation means 12 Radioactivity concentration calculation means 13 Measuring instrument (weight or volume measurement means)
14 Surface area measuring means 15 Radioactive surface density calculating means 16 Three-dimensional model of measurement object 17 Three-dimensional model of radiation detector 18 Measurement object 21 Virtual modeling process 22 Virtual count calculation process 23 Conversion coefficient calculation process 24 Actual count rate Calculation step 25 Radioactivity calculation step 31 Weight or volume measurement step 33 Radioactivity concentration calculation step 42 Surface area measurement step 43 Radioactivity surface density calculation step

Claims (1)

測定対象物と放射線検出器の仮想3次元モデルを仮想3次元空間内に実際の幾何学的位置関係と同じ位置関係で配置する仮想モデル化工程と、前記測定対象物の仮想3次元モデルから放出される仮想放射線の発生数と前記放射線検出器の仮想3次元モデルへの前記仮想放射線の入射数とを関係付けて換算係数を求める換算係数設定工程と、前記測定対象物から放出された放射線の前記放射線検出器への入射を実際に計数して計数率を求める実際計数率算出工程と、当該計数率と前記換算係数より前記測定対象物の放射能を求める放射能算出工程を有し、前記放射線検出器を複数のセルの集合とすると共に前記測定対象物を前記セルに対向する部位の集合として概念し、前記仮想モデル化工程では前記放射線検出器を複数のセルの集合体として仮想3次元モデル化すると共に前記測定対象物を前記部位の集合体として仮想3次元モデル化し、前記測定対象物の仮想3次元モデルの部位毎に前記換算係数設定工程を行って当該部位毎に前記セルの各々について換算係数を求めると共に、前記放射線検出器のセル毎に前記実際計数率算出工程を行って前記セルの各々について計数率を求め、前記放射能算出工程を行って前記測定対象物の部位毎に放射能を求めた後、各部位の放射能より前記測定対象物全体の放射能を求めることを特徴とする放射能の計測方法。

A virtual modeling step of arranging a virtual three-dimensional model of the measurement object and the radiation detector in the same positional relationship as the actual geometric positional relationship in the virtual three-dimensional space, and emitting from the virtual three-dimensional model of the measurement target A conversion coefficient setting step for obtaining a conversion coefficient by associating the generated number of generated virtual radiations with the number of incident virtual radiations to the virtual three-dimensional model of the radiation detector, and the radiation emitted from the measurement object An actual count rate calculating step for actually counting the incidence on the radiation detector to obtain a count rate; and a radioactivity calculating step for obtaining the radioactivity of the measurement object from the count rate and the conversion factor, The radiation detector is set as a set of a plurality of cells and the measurement object is considered as a set of parts facing the cells. In the virtual modeling step, the radiation detector is set as a set of a plurality of cells. And a virtual three-dimensional model of the measurement object as a collection of parts, and performing the conversion coefficient setting step for each part of the virtual three-dimensional model of the measurement object, A conversion factor is determined for each of the cells, and the actual count rate calculation step is performed for each cell of the radiation detector to determine a count rate for each of the cells, and the radioactivity calculation step is performed to determine the measurement object. A radioactivity measurement method, wherein after obtaining radioactivity for each part, the radioactivity of the whole measurement object is obtained from the radioactivity of each part.

JP2005310800A 1999-03-09 2005-10-26 Measuring method for radioactivity Pending JP2006084478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005310800A JP2006084478A (en) 1999-03-09 2005-10-26 Measuring method for radioactivity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6226699 1999-03-09
JP2005310800A JP2006084478A (en) 1999-03-09 2005-10-26 Measuring method for radioactivity

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000604241 Division 1999-11-15

Publications (1)

Publication Number Publication Date
JP2006084478A true JP2006084478A (en) 2006-03-30

Family

ID=36163076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005310800A Pending JP2006084478A (en) 1999-03-09 2005-10-26 Measuring method for radioactivity

Country Status (1)

Country Link
JP (1) JP2006084478A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111793A (en) * 2006-10-31 2008-05-15 Mitsubishi Heavy Ind Ltd Radioactivity conversion factor determination method, and detection limit determination method
JP2012255742A (en) * 2011-06-10 2012-12-27 Hitachi-Ge Nuclear Energy Ltd Conveyance method of radioactive structure member
JP2013213807A (en) * 2012-03-09 2013-10-17 Seiko Eg&G Co Ltd Radiation measuring device
JP2015049128A (en) * 2013-08-30 2015-03-16 国立大学法人東北大学 Non-destructive radioactivity measurement apparatus, and radioactivity measurement method of the same
JP2015197380A (en) * 2014-04-01 2015-11-09 清水建設株式会社 Method for measuring radioactive material concentration of radioactive contaminant
JP2015219046A (en) * 2014-05-15 2015-12-07 日立Geニュークリア・エナジー株式会社 Radioactive waste radioactivity measuring method and radioactive waste radioactivity measuring device
JP2016011866A (en) * 2014-06-27 2016-01-21 株式会社環境総合テクノス Radioactivity concentration measurement system
JP2016027310A (en) * 2014-06-26 2016-02-18 東京電力株式会社 Method of determining surface source strength in radioactive substance contaminated district
JP2016114499A (en) * 2014-12-16 2016-06-23 東京電力ホールディングス株式会社 Method for obtaining intensity of punctiform radiation sources in radioactive substance contamination area
JP2017122656A (en) * 2016-01-07 2017-07-13 日立Geニュークリア・エナジー株式会社 Radioactive waste measurement system and method
JP2017161282A (en) * 2016-03-08 2017-09-14 株式会社日立パワーソリューションズ System and method for radioactive waste management
KR101838273B1 (en) * 2016-10-19 2018-03-13 울산과학기술원 Radiation monitoring system and monitoring method using thereof
CN108398713A (en) * 2017-02-08 2018-08-14 中国辐射防护研究院 Whole-body counter calibrating patterns holder is irradiated in a kind of
JP2018189516A (en) * 2017-05-08 2018-11-29 株式会社東芝 Device, method, and program for calculating surface contamination density distribution
CN109106385A (en) * 2017-06-23 2019-01-01 株式会社岛津制作所 Nuclear medicine diagnostic apparatus and its daily maintenance and inspection method
JP2019105502A (en) * 2017-12-12 2019-06-27 株式会社東芝 Learning model manufacturing method and contamination density calculation method and contamination density calculation device
KR20200114580A (en) * 2019-03-29 2020-10-07 한양대학교 산학협력단 Method and Apparatus for Measuring Gamma Radiation for Determination of Clearance Level of Nuclear Metal Radioactive Waste Having Various Shapes and Densities

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111793A (en) * 2006-10-31 2008-05-15 Mitsubishi Heavy Ind Ltd Radioactivity conversion factor determination method, and detection limit determination method
JP2012255742A (en) * 2011-06-10 2012-12-27 Hitachi-Ge Nuclear Energy Ltd Conveyance method of radioactive structure member
JP2013213807A (en) * 2012-03-09 2013-10-17 Seiko Eg&G Co Ltd Radiation measuring device
JP2015049128A (en) * 2013-08-30 2015-03-16 国立大学法人東北大学 Non-destructive radioactivity measurement apparatus, and radioactivity measurement method of the same
JP2015197380A (en) * 2014-04-01 2015-11-09 清水建設株式会社 Method for measuring radioactive material concentration of radioactive contaminant
JP2015219046A (en) * 2014-05-15 2015-12-07 日立Geニュークリア・エナジー株式会社 Radioactive waste radioactivity measuring method and radioactive waste radioactivity measuring device
JP2016027310A (en) * 2014-06-26 2016-02-18 東京電力株式会社 Method of determining surface source strength in radioactive substance contaminated district
JP2016011866A (en) * 2014-06-27 2016-01-21 株式会社環境総合テクノス Radioactivity concentration measurement system
JP2016114499A (en) * 2014-12-16 2016-06-23 東京電力ホールディングス株式会社 Method for obtaining intensity of punctiform radiation sources in radioactive substance contamination area
JP2017122656A (en) * 2016-01-07 2017-07-13 日立Geニュークリア・エナジー株式会社 Radioactive waste measurement system and method
JP2017161282A (en) * 2016-03-08 2017-09-14 株式会社日立パワーソリューションズ System and method for radioactive waste management
KR101838273B1 (en) * 2016-10-19 2018-03-13 울산과학기술원 Radiation monitoring system and monitoring method using thereof
CN108398713A (en) * 2017-02-08 2018-08-14 中国辐射防护研究院 Whole-body counter calibrating patterns holder is irradiated in a kind of
JP2018189516A (en) * 2017-05-08 2018-11-29 株式会社東芝 Device, method, and program for calculating surface contamination density distribution
CN109106385A (en) * 2017-06-23 2019-01-01 株式会社岛津制作所 Nuclear medicine diagnostic apparatus and its daily maintenance and inspection method
CN109106385B (en) * 2017-06-23 2021-08-20 株式会社岛津制作所 Nuclear medicine diagnosis device and routine maintenance and inspection method thereof
JP2019105502A (en) * 2017-12-12 2019-06-27 株式会社東芝 Learning model manufacturing method and contamination density calculation method and contamination density calculation device
KR20200114580A (en) * 2019-03-29 2020-10-07 한양대학교 산학협력단 Method and Apparatus for Measuring Gamma Radiation for Determination of Clearance Level of Nuclear Metal Radioactive Waste Having Various Shapes and Densities
KR102266798B1 (en) * 2019-03-29 2021-06-21 한양대학교 산학협력단 Method and Apparatus for Measuring Gamma Radiation for Determination of Clearance Level of Nuclear Metal Radioactive Waste Having Various Shapes and Densities

Similar Documents

Publication Publication Date Title
WO2000054071A1 (en) Measuring method and device for radioactivity, radioactive concentration and radioactivity surface concentration
JP2006084478A (en) Measuring method for radioactivity
JP5289542B2 (en) Air dose evaluation apparatus and method
TWI400470B (en) Method for determining penetration effect and detecting efficiency and calibrating detecting efficiency of crystal
JP7000264B2 (en) Radioactivity concentration evaluation system and radioactivity concentration evaluation method
Zhang Monte Carlo simulation of mixed neutron-gamma radiation fields and dosimetry devices
JP3579664B2 (en) Method for estimating background count rate and measuring device for implementing the method
Guez et al. Counting rates modeling for PET scanners with GATE
JP6718683B2 (en) Radioactive waste measurement system and method
Jacobsson et al. Outcomes of the JNT 1955 phase I viability study of gamma emission tomography for spent fuel verification
JP2005140566A (en) Estimation method of background counting rate, and measuring instrument background counting rate
Alecksen et al. Scan MDCs for GPS-based gamma radiation surveys
JP2004245649A (en) Method for estimating background counting rate and measuring apparatus for correcting background counting rate
Hausladen et al. 3D Tomography and Image Processing Using Fast Neutrons Final Report
Beaumont et al. Imaging of fast neutrons and gamma rays from 252Cf in a heavily shielded environment
Chard et al. A good practice guide for the use of modelling codes in non destructive assay of nuclear materials
Gagliardi et al. Novel applications of state-of-the-art gamma-ray imaging technique: from nuclear decommissioning and radioprotection to radiological characterization and safeguards
Astromskas et al. Real-time source localisation by passive, fast-neutron time-of-flight with organic scintillators for facility-installed applications
Sato Estimation of radioactivity and dose equivalent rate by combining Compton imaging and Monte Carlo radiation transport code
Heath et al. Gantryless Associated-Particle Neutron Radiography
Schumann et al. QUANTOM®− Optimization of the online neutron flux measurement system
Hayes et al. Scintillator based coded-aperture imaging for neutron detection
Bochud et al. Monte Carlo simulation of a clearance box monitor used for nuclear power plant decommissioning
Shaver et al. Transport Test Problems for Hybrid Methods Development
Toubon et al. Use of mathematical modeling in nuclear measurements projects

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080402