[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006077492A - Earthquake resisting pier - Google Patents

Earthquake resisting pier Download PDF

Info

Publication number
JP2006077492A
JP2006077492A JP2004263807A JP2004263807A JP2006077492A JP 2006077492 A JP2006077492 A JP 2006077492A JP 2004263807 A JP2004263807 A JP 2004263807A JP 2004263807 A JP2004263807 A JP 2004263807A JP 2006077492 A JP2006077492 A JP 2006077492A
Authority
JP
Japan
Prior art keywords
earthquake
column
pier
resistant
yield point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004263807A
Other languages
Japanese (ja)
Inventor
Hidesada Kaneharu
英貞 金治
Tetsuya Nonaka
哲也 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMATO SEKKEI KK
Hanshin Expressway Public Corp
Original Assignee
YAMATO SEKKEI KK
Hanshin Expressway Public Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMATO SEKKEI KK, Hanshin Expressway Public Corp filed Critical YAMATO SEKKEI KK
Priority to JP2004263807A priority Critical patent/JP2006077492A/en
Publication of JP2006077492A publication Critical patent/JP2006077492A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an earthquake resisting pier capable of preventing the collapse of the pier irrespective of the direction of an indefinite vibration of an earthquake and having a low manufacturing cost. <P>SOLUTION: A steel pipe pile K as the foundation is placed on each summit forming a polygon to the ground, and each column 20 is connected to the upper end section of the steel pipe pile K. A tie member 30 connecting both columns 20 and 20 adjacent to each other is so constituted that a mounting steel materials 31 of both end sections connected to the column 20 and a low yield point steel material 32 provided between the mounting steel materials and formed of a steel material having a yield point lower than that of each mounting steel material 31 are connected by means of welding. In this way, the tie member 30 is connected to the columns 20 and 20 adjacent to each other so that four sides of a regular square can be formed in each column 20 placed on each summit of the regular square against ground G to form one earthquake resisting pier 10 by bundling four columns 20. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、地震の揺れに耐える耐震橋脚に関する。   The present invention relates to an earthquake-resistant pier that can withstand earthquake shaking.

一般に、構造物には、地震発生時における地震の振動に対応するために耐震構造や免震構造、制震構造等が採用されている。
例えば、図13(a)に示すような鋼製橋脚300の場合は、コンクリートにより製作されたフーチング330上に鋼板により箱状または円筒状に製作された柱部分320が設けられ、この柱部分320の下端部にベースプレート340が設けられ、アンカーフレーム370がフーチング330に埋設され、これらのベースプレート340とアンカーフレーム370とがアンカーボルト350及びナット360,360により締め付けられて、柱部分320とフーチング330とが連結されている。このように構成される鋼製橋脚300は、柱部分320が降伏、損傷するまでの間、地震力に耐えられるようになっている。したがって、柱部分320が降伏、損傷してしまうと、橋脚のみならず高架橋全体の大規模な改修等が必要となるため、橋脚の構造を頑丈なものとする必要があった。
そこで、橋脚の柱部分320が降伏、損傷しないように、例えば、特許文献1及び特許文献2に示すような耐震構造を有する耐震橋脚が提案されている。
In general, seismic structures, seismic isolation structures, vibration control structures, and the like are employed for structures in order to cope with earthquake vibrations when an earthquake occurs.
For example, in the case of a steel pier 300 as shown in FIG. 13A, a column part 320 made of a steel plate in a box shape or a cylindrical shape is provided on a footing 330 made of concrete, and this column part 320. A base plate 340 is provided at the lower end of the base plate 340, an anchor frame 370 is embedded in the footing 330, and the base plate 340 and the anchor frame 370 are fastened by an anchor bolt 350 and nuts 360 and 360 to Are connected. The steel pier 300 constructed as described above can withstand the seismic force until the column portion 320 yields and is damaged. Therefore, if the column part 320 yields and is damaged, a large-scale repair of the entire viaduct as well as the pier is necessary, so that the structure of the pier needs to be sturdy.
Then, the earthquake-resistant pier which has an earthquake-proof structure as shown in patent document 1 and patent document 2 is proposed so that the pillar part 320 of a pier may not yield and damage, for example.

特許文献1に示されている耐震橋脚300aは、図13(b)に示すように、上部ブラケット380aが柱部分320の上部に取り付けられ、下部ブラケット380bが柱部分320下部側のベースプレート340に取り付けられており、この上部ブラケット380aと下部ブラケット380bとの間には、両端に制震部材390,390を備えた棒部材310が配置され、各端部の制震部材390,390が上部ブラケット380a又は下部ブラケット380bと接合されている。ここで、制震部材390は、柱部分320よりも降伏点が低い鋼材で形成されている。これにより、地震によって耐震橋脚300aが振動した場合、柱部分320よりも先に制震部材390が降伏するので、柱部分320が降伏、損傷することがなく、耐震橋脚300aを地震の振動から守ることができる。
しかしながら、このような、耐震橋脚300aでは、棒部材310が地震の振動によって大きく揺れてしまった場合は、この棒部材310の振動が地震の振動に付加された状態で制震部材390に作用する恐れがあり、地震発生後、地震力の小さい早い時期に制震部材390が降伏する危険性がある。この場合、早い時期に制震部材が降伏すると、地震の振動が耐震橋脚300aの柱部分320に負荷をかけて、柱部分320を降伏、損傷させる危険性がある。また、下部の制震部材390が降伏した場合、棒部材310が揺れて柱部分320に損傷を与える恐れがあり、上部の制震部材390が降伏した場合、棒部材310の重みで下部の制震部材390が降伏して、道路周辺に棒部材310が倒壊する恐れもある。
さらに、フーチング330に埋設されるアンカーフレーム370は高価であって、耐震橋脚300aのコスト増加の原因の一つにあげられる。このような高価な耐震橋脚300aは、公共事業削減の中、道路建設の予算削減に対応しにくいため、従来の耐震性を確保しつつ安価な耐震構造の耐震橋脚が望まれている。
As shown in FIG. 13B, the earthquake-resistant pier 300a disclosed in Patent Document 1 has an upper bracket 380a attached to the upper part of the column part 320 and a lower bracket 380b attached to the base plate 340 on the lower side of the column part 320. Between the upper bracket 380a and the lower bracket 380b, rod members 310 having vibration damping members 390 and 390 are arranged at both ends, and the vibration damping members 390 and 390 at the ends are connected to the upper bracket 380a. Alternatively, it is joined to the lower bracket 380b. Here, the vibration control member 390 is formed of a steel material having a lower yield point than the column portion 320. Thereby, when the earthquake-resistant bridge pier 300a vibrates due to an earthquake, the damping member 390 yields before the column portion 320, so that the column portion 320 is not yielded and damaged, and the earthquake-resistant bridge pier 300a is protected from earthquake vibration. be able to.
However, in such an earthquake-resistant bridge pier 300a, when the bar member 310 is greatly shaken by the vibration of the earthquake, the vibration of the bar member 310 is applied to the vibration control member 390 in a state added to the vibration of the earthquake. There is a risk that after the earthquake occurs, the damping member 390 may yield at an early time when the seismic force is small. In this case, if the damping member yields at an early stage, there is a risk that the vibration of the earthquake will apply a load to the column portion 320 of the earthquake resistant pier 300a, yielding and damaging the column portion 320. In addition, if the lower damping member 390 yields, the rod member 310 may sway and damage the column portion 320. If the upper damping member 390 yields, the lower damping member 390 may be damaged by the weight of the rod member 310. The seismic member 390 may surrender and the bar member 310 may collapse around the road.
Furthermore, the anchor frame 370 embedded in the footing 330 is expensive, and is one of the causes of the cost increase of the earthquake resistant pier 300a. Such an expensive earthquake-resistant bridge pier 300a is difficult to cope with a budget reduction for road construction in the reduction of public works. Therefore, an earthquake-resistant bridge pier with an inexpensive earthquake-resistant structure is desired while ensuring the conventional earthquake resistance.

また、特許文献2に示されている耐震橋脚400は、図14に示すように、ラーメン橋脚における一対の立設する脚部410,410の間に設けた耐震梁420に降伏点の低い極軟鋼材421が備えられた構造となっており、地震が発生した場合に極軟鋼材421が最初に降伏し、又は降伏点を超えて変形することで、耐震橋脚400(ラーメン橋脚)を保護することができるようになっている。
しかしながら、このような耐震橋脚400は、地震による揺れがどの方向に作用するか不確定であるため、一方向にしか設けられていない耐震梁420では不確定な方向に揺れる地震の揺れに対応できない恐れがあった。
また、この耐震橋脚400(ラーメン橋脚)の場合、脚部410と脚部410との間隔が広いため、この間隔に耐震梁420を設けると、耐震梁420の大型化、高性能化が要求され、耐震梁420の製造コストが増大するという問題もある。
また、このような耐震梁420は、ラーメン橋脚形式にしか適応することができないため、汎用性が低いという問題もあった。
特開平10−131120号公報(段落0020〜0029、図3) 特開2001−64913号公報(段落0020〜0029、図1)
Further, as shown in FIG. 14, an earthquake-resistant bridge pier 400 shown in Patent Document 2 is an extremely soft low yield point on an earthquake-resistant beam 420 provided between a pair of standing legs 410 and 410 in a ramen pier. The structure is equipped with a steel material 421. When an earthquake occurs, the ultra-soft steel material 421 first yields or deforms beyond the yield point to protect the earthquake resistant pier 400 (ramen pier). Can be done.
However, since such an earthquake-resistant bridge pier 400 is uncertain in which direction the shaking due to the earthquake acts, the earthquake-resistant beam 420 provided only in one direction cannot cope with the shaking of the earthquake that shakes in an uncertain direction. There was a fear.
In the case of the seismic bridge pier 400 (ramen pier), since the space between the leg 410 and the leg 410 is wide, if the seismic beam 420 is provided at this space, the seismic beam 420 needs to be increased in size and performance. There is also a problem that the manufacturing cost of the earthquake-resistant beam 420 increases.
In addition, since such a seismic resistant beam 420 can be applied only to a ramen pier type, there is a problem that versatility is low.
JP-A-10-131120 (paragraphs 0020-0029, FIG. 3) JP 2001-64913 A (paragraphs 0020 to 0029, FIG. 1)

そこで、本発明は、前記した問題を解決し、不確定な地震の揺れの方向によらず橋脚の倒壊を防ぎ、また、建設コストが低い耐震橋脚を提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-described problems, to prevent a pier from collapsing regardless of an uncertain earthquake shaking direction, and to provide an earthquake-resistant pier having a low construction cost.

前記課題を解決するため、本発明は、基礎に立設される複数の柱材と、隣り合う前記柱材同士を連結するつなぎ部材と、を備え、前記各柱材が鋼管材であり、前記各柱材が揺れた場合に前記つなぎ部材が変形することを特徴とする耐震橋脚である。   In order to solve the above-mentioned problem, the present invention comprises a plurality of column members erected on a foundation, and a connecting member that connects the adjacent column members, and each of the column members is a steel pipe material, The seismic bridge pier is characterized in that the connecting member is deformed when each column member swings.

このように、つなぎ部材が隣り合う柱材に接続しており、各柱材が揺れた場合につなぎ部材が変形するので、各柱材の揺れによる倒壊を防ぐことができるようになっている。
また、柱材に既製の鋼管材を用いたことにより製作コストを、柱材(鋼管材)の架設期間が短縮されることにより耐震橋脚の架設コストを低くすることができる。
なお、建設コストとは、製作コストと架設コストとを合計させたコストをいう。
In this manner, the connecting members are connected to the adjacent column members, and the connecting members are deformed when the respective column members are shaken, so that the collapse due to the shaking of the respective column members can be prevented.
Moreover, it is possible to reduce the manufacturing cost by using a ready-made steel pipe material for the column material, and the installation cost of the earthquake-resistant pier by shortening the erection period of the column material (steel pipe material).
The construction cost is a total cost of production cost and erection cost.

また、本発明は、請求項1に記載の発明であって、前記複数の柱材が、多角形を形成する頂点上に各々配置されていることを特徴とする耐震橋脚である。   Moreover, this invention is invention of Claim 1, Comprising: These pillar materials are each arrange | positioned on the vertex which forms a polygon, It is an earthquake-resistant pier characterized by the above-mentioned.

「多角形を形成する頂点上に各々配置」とは、地面に対して多角形を描くように、その多角形の頂点位置に、複数の柱材を各々配置するということである。   “Arrange each on the vertex forming the polygon” means that a plurality of column members are respectively arranged at the vertex position of the polygon so as to draw the polygon with respect to the ground.

このように、複数の柱材が、多角形を形成する頂点上に各々配置されているので、これら複数の柱材につなぎ部材を連結することにより、不確定な地震の揺れの方向によらず、柱材を保護することができるようになっている。   In this way, since the plurality of pillars are arranged on the vertices forming the polygon, by connecting the connecting members to the plurality of pillars, regardless of the direction of uncertain earthquake shaking. The column material can be protected.

また、本発明は、請求項1又は請求項2に記載の発明であって、前記つなぎ部材が、前記各柱材に取り付けられる取付用鋼材と、これら取付用鋼材の間に設けられる低降伏点鋼材とを備え、前記低降伏点鋼材の降伏点が前記取付用鋼材及び前記柱材の降伏点よりも低く設定されて構成されていることを特徴とする耐震橋脚である。   Moreover, this invention is invention of Claim 1 or Claim 2, Comprising: The low yield point provided between the steel materials for attachment in which the said connection member is attached to each said column material, and these steel materials for attachment An earthquake resistant pier comprising a steel material, wherein the yield point of the low yield point steel material is set lower than the yield point of the mounting steel material and the column material.

このように、つなぎ部材が、柱材に取り付けられる取付用鋼材と、この取付用鋼材よりも降伏点の低い低降伏点鋼材から構成されており、低降伏点鋼材の両端部に取付用鋼材を備えて、隣り合う柱材の間に配置させて、取付用鋼材を柱材に取り付ける。
これにより、地震力により各柱材が揺れた場合、つなぎ部材を取り付けた位置において、各柱材の相対変位によりつなぎ部材にせん断力が作用し、つなぎ部材の低降伏点鋼材が、取付用鋼材及び柱材よりも先に降伏する。
このように、つなぎ部材が低降伏点鋼材を備えることにより、柱材が降伏する前に低降伏点鋼材が先に降伏し、地震エネルギを吸収するので、柱材を降伏または損傷させずに地震力から保護することができるようになっている。
In this way, the connecting member is composed of a mounting steel material to be attached to the column material and a low yield point steel material having a lower yield point than the mounting steel material, and the mounting steel material is attached to both ends of the low yield point steel material. It is provided and it arrange | positions between adjacent pillar materials, and attaches the steel material for attachment to a pillar material.
As a result, when each column member is shaken by the seismic force, a shear force acts on the connection member due to the relative displacement of each column member at the position where the connection member is attached, and the low yield point steel material of the connection member is the steel material for mounting. And yield before the column.
In this way, the connecting member is provided with the low yield point steel material, so that the low yield point steel material yields first and the seismic energy is absorbed before the column material yields, so the earthquake does not yield or damage the column material. It can be protected from power.

また、本発明は、請求項1又は請求項2に記載の発明であって、前記つなぎ部材が、前記各柱材に取り付けられる取付用鋼材と、これら取付用鋼材の間に設けられるゴムダンパー部材とを備え、前記ゴムダンパー部材がせん断変形することを特徴とする耐震橋脚である。   Moreover, this invention is invention of Claim 1 or Claim 2, Comprising: The said connection member is the steel material for attachment attached to each said column material, and the rubber damper member provided between these steel materials for attachment And the rubber damper member undergoes shear deformation.

このように、つなぎ部材が、柱材に取り付けられる取付用鋼材と、せん断変形するゴムダンパー部材とから構成されており、ゴムダンパー部材の両端部に取付用鋼材を備えて、隣り合う柱材の間に配置させて、取付用鋼材を柱材に取り付ける。
これにより、地震力により各柱材が揺れた場合、つなぎ部材を取り付けた位置において、各柱材の相対変位によりつなぎ部材にせん断力が作用しても、つなぎ部材のゴムダンパー部材がせん断変形して地震エネルギを吸収することができるようになっている。
このように、つなぎ部材がゴムダンパー部材を備えていることにより、柱材を降伏または損傷させずに地震力から保護することができるようになっている。
As described above, the connecting member is composed of the mounting steel material attached to the column material and the rubber damper member that undergoes shear deformation, and includes the mounting steel material at both ends of the rubber damper member, Place the steel material for mounting on the column material.
As a result, when each column member is shaken by the seismic force, the rubber damper member of the connecting member undergoes shear deformation even if a shearing force acts on the connecting member due to the relative displacement of each column member at the position where the connecting member is attached. It can absorb the seismic energy.
As described above, since the connecting member includes the rubber damper member, the column member can be protected from the seismic force without yielding or damaging.

また、本発明は、請求項1乃至請求項4のいずれか1項に記載の発明であって、前記つなぎ部材が交換可能に設けられていることを特徴とする耐震橋脚である。   Moreover, this invention is invention of any one of Claim 1 thru | or 4, Comprising: The said connection member is provided so that replacement | exchange is possible, It is an earthquake-resistant bridge pier characterized by the above-mentioned.

このように、つなぎ部材を交換可能にすることで、例えば、地震や経年変化によりつなぎ部材が損傷した場合であっても、新たなつなぎ部材に交換することができるので、引き続き耐震橋脚の耐震構造の性能を保持することができる。   In this way, by making the connecting member replaceable, for example, even when the connecting member is damaged due to an earthquake or secular change, it can be replaced with a new connecting member. Performance can be maintained.

このような耐震橋脚によれば、不確定な地震の揺れの方向によらず橋脚の倒壊を防ぎ、建設コストを低くすることができる。   According to such an earthquake-resistant pier, it is possible to prevent the pier from collapsing regardless of the direction of uncertain earthquake shaking and to reduce the construction cost.

本発明を実施するための最良の一形態(以下「実施形態」という)について、図面を参照して詳細に説明する。
なお、説明において、同一要素には同一符号を用い、重複する説明を省略する。
A best mode for carrying out the present invention (hereinafter referred to as “embodiment”) will be described in detail with reference to the drawings.
In the description, the same reference numerals are used for the same elements, and redundant descriptions are omitted.

(第一の実施形態)
図1は、本発明の第一の実施形態に係る耐震橋脚の一例を示す斜視図である。図2は、図1のA部拡大図である。図3は、つなぎ部材の一例を示す斜視図である。図4は、本発明の第一の実施形態に係る耐震橋脚の一例を示す平面図である。
(First embodiment)
FIG. 1 is a perspective view showing an example of a seismic pier according to the first embodiment of the present invention. FIG. 2 is an enlarged view of part A in FIG. FIG. 3 is a perspective view illustrating an example of a connecting member. FIG. 4 is a plan view showing an example of the earthquake-resistant pier according to the first embodiment of the present invention.

本発明の第一の実施形態に係る耐震橋脚10は、図1に示すように、複数の柱材20と、隣り合う柱材20,20を連結するつなぎ部材30とから構成されており、各柱材20,20・・・は、基礎に立設している。この耐震橋脚10は、直上からの荷重を受ける耐震橋脚であって、1本の柱材20だけでは耐震橋脚10としての役割を果たさないが、複数の柱材20,20・・・を用いて、つなぎ部材30,30・・・により隣り合う柱材20を連結することで耐震橋脚10としての役割を果たす。
なお、本実施形態において、耐震橋脚10を構成する柱材20を4本用いた単橋脚形式の場合について説明する。
As shown in FIG. 1, the earthquake-resistant pier 10 according to the first embodiment of the present invention includes a plurality of column members 20 and connecting members 30 that connect adjacent column members 20, 20. The column members 20, 20... Are erected on the foundation. The seismic bridge pier 10 is a seismic bridge pier that receives a load from directly above, and only one pillar member 20 does not serve as the earthquake resistant bridge pier 10, but a plurality of pillar members 20, 20. , Connecting the adjacent column members 20 by the connecting members 30, 30...
In the present embodiment, a case of a single pier type using four column members 20 constituting the earthquake-resistant pier 10 will be described.

耐震橋脚10の柱材20が立設される基礎には鋼管杭Kが用いられ、鋼管杭Kは、地面に対して正四角形を形成する各頂点上(図4参照)に配置されている。また、各鋼管杭K,K・・・は、その上端部を地表に残して地中に設けられている(図1参照)。
したがって、各鋼管杭K,K・・・の上端部に立設される柱材20,20・・・も、地面に対して正四角形を形成する各頂点上に位置することとなる。
A steel pipe pile K is used as a foundation on which the column member 20 of the earthquake-resistant pier 10 is erected, and the steel pipe pile K is disposed on each vertex (see FIG. 4) forming a regular square with respect to the ground. Moreover, each steel pipe pile K, K ... is provided in the ground leaving the upper end part on the ground surface (refer FIG. 1).
Therefore, the column members 20, 20... Standing on the upper ends of the steel pipe piles K, K... Are also located on the vertices forming a regular square with respect to the ground.

柱材20は、図2に示すように、中空であって、長尺の鋼管材を用いており、例えば、杭として用いられている鋼製管材を用いることができる。この柱材20は、その下端部を基礎である鋼管杭Kの上端部と接合することにより立設する。
ここで、鋼管杭Kと接合している柱材20の下端部(基部)には、コンクリートを充填(合成構造)してもよい(図示せず)。これにより、各柱材20の耐震性を向上させることができる。
As shown in FIG. 2, the column member 20 is hollow and uses a long steel pipe material. For example, a steel pipe material used as a pile can be used. The column member 20 is erected by joining the lower end portion thereof to the upper end portion of the steel pipe pile K which is a foundation.
Here, the lower end (base) of the column member 20 joined to the steel pipe pile K may be filled with concrete (composite structure) (not shown). Thereby, the earthquake resistance of each pillar material 20 can be improved.

また、柱材20は、所定の長さの鋼管杭を軸方向に連設して用いることもできる。したがって、橋脚として必要となる高さに対応して、本発明の耐震橋脚10の高さを適宜変更することができるようになっている。
なお、図1に示すように、この各柱材20の上部には梁材Hが設けられ、その梁材Hに橋桁材(図示せず)を架設することができるようになっている。
Moreover, the column material 20 can also be used by connecting a steel pipe pile of a predetermined length in the axial direction. Therefore, the height of the earthquake-resistant pier 10 of the present invention can be changed as appropriate in accordance with the height required for the pier.
As shown in FIG. 1, a beam member H is provided on the upper portion of each column member 20, and a bridge girder member (not shown) can be installed on the beam member H.

つなぎ部材30は、図3に示すように、柱材20(図1,図2参照)に取り付けられる取付用鋼材31,31と取付用鋼材31の間に設けられ低降伏点鋼材32とから構成されており、取付用鋼材31には剛性の高い板状の鋼材が用いられ、また、低降伏点鋼材32には各柱材20及び取付用鋼材31の降伏点よりも低い降伏点を有する板状の鋼材が用いられている。この低降伏点鋼材32は溶接又はボルト・ナット(図示せず)により取付用鋼材31に接合される。   As shown in FIG. 3, the connecting member 30 includes a steel member 31 for mounting attached to the column member 20 (see FIGS. 1 and 2) and a steel member 32 having a low yield point provided between the steel member 31 for mounting. The mounting steel material 31 is made of a plate-shaped steel material having high rigidity, and the low yield point steel material 32 is a plate having a yield point lower than the yield point of each of the column members 20 and the mounting steel material 31. Steel material is used. The low yield point steel 32 is joined to the mounting steel 31 by welding or bolts and nuts (not shown).

低降伏点鋼材32の両端部に接合された取付用鋼材31と低降伏点鋼材32とは、I型鋼材のウェブとして用いられる。これにより、耐震橋脚10が受けるせん断力は、ウェブとなる両端部の取付用鋼材31と低降伏点鋼材32とが受け持つこととなる。また、ウェブとなる両端部の取付用鋼材31と低降伏点鋼材32との上部及び下部には低降伏点鋼材32よりも降伏点が高い鋼製のフランジF,Fが設けられる。   The mounting steel 31 and the low yield steel 32 joined to both ends of the low yield steel 32 are used as a web of I-type steel. Thereby, the shearing force which the earthquake-resistant bridge pier 10 receives will be handled by the steel 31 for attachment and the low yield point steel 32 of the both ends used as a web. In addition, steel flanges F and F having a higher yield point than the low yield point steel material 32 are provided at the upper and lower portions of the attachment steel material 31 and the low yield point steel material 32 at both ends to be the web.

このつなぎ部材30は、図2に示すように、隣り合う柱材20,20の間に配置され、つなぎ部材30の取付用鋼材31の柱材20側端部を柱材20に溶接又はボルト・ナット(図示せず)で取り付けられる。   As shown in FIG. 2, the connecting member 30 is disposed between adjacent column members 20, 20, and the column member 20 side end portion of the mounting steel material 31 of the connecting member 30 is welded to the column member 20. It is attached with a nut (not shown).

ここで、つなぎ部材30は、柱材20の長さによって、地面G(図1参照)の位置に対して、高さ方向に所定の間隔で、適宜、配置することができる。   Here, the connecting member 30 can be appropriately arranged at predetermined intervals in the height direction with respect to the position of the ground G (see FIG. 1), depending on the length of the column member 20.

図1に示すように、つなぎ材30が柱材20に複数取り付けられている場合の各つなぎ材30の取り付け間隔は、例えば、地面Gからの長さが30mである柱材20を用いた場合は、地面Gから高さ方向に10mの位置に第1のつなぎ部材30Aを取り付け、第1のつなぎ部材30Aを取り付けた位置から高さ方向上方に6mずつ2箇所に第2,第3のつなぎ部材30B,30Cを取り付けることができる。   As shown in FIG. 1, when a plurality of connecting members 30 are attached to the pillar member 20, the attachment interval of the connecting members 30 is, for example, when the pillar member 20 having a length of 30 m from the ground G is used. The first connecting member 30A is attached at a position 10 m in the height direction from the ground G, and the second and third connecting portions are provided at two locations 6 m above the height direction from the position where the first connecting member 30 A is attached. The members 30B and 30C can be attached.

このように、地面Gに対して正四角形の各頂点に配置したそれぞれの柱材20,20・・・に、正四角形の4辺を形成するようにつなぎ部材30を隣り合う柱材20,20に取り付けて、4本の柱材20,20・・・を束ねることにより、単橋脚形式(橋脚が1基である)の耐震橋脚10を形成する。   In this way, the column members 20, 20 adjacent to the connecting members 30 so as to form four sides of the regular square are formed on the respective column members 20, 20. And the four pillar members 20, 20... Are bundled to form a single pier type earthquake-resistant pier 10 (one pier is provided).

この耐震橋脚10において、地震が発生した場合のつなぎ部材30,30・・・の役割を説明する。図5は、図1のB矢視方向から耐震橋脚10を見た場合の、耐震橋脚10が地震により揺れた場合の柱材20,20の上端部の変位を示す平面図であり、(a)は、西側に柱材20,20・・・の上端部が変位した場合を示す平面図であり、(b)は、北側に柱材20,20・・・の上端部が変位した場合を示す平面図である。図6は、耐震橋脚10の柱材20が曲がった状態の一例を示す側面図である。
なお、方向を示す東,西,南,北は、図5の紙面上において、上方向を北、下方向を南、左方向を西、右方向を東、とする。
In this earthquake-resistant pier 10, the role of the connecting members 30, 30 ... when an earthquake occurs will be described. FIG. 5 is a plan view showing the displacement of the upper ends of the column members 20 and 20 when the seismic pier 10 is shaken by an earthquake when the seismic pier 10 is viewed from the direction of arrow B in FIG. ) Is a plan view showing a case where the upper end portions of the column members 20, 20... Are displaced to the west side, and (b) is a case where the upper end portions of the column members 20, 20,. FIG. FIG. 6 is a side view showing an example of a state in which the column member 20 of the earthquake-resistant pier 10 is bent.
In the direction of east, west, south, and north, the upper direction is north, the lower direction is south, the left direction is west, and the right direction is east.

この耐震橋脚10は、図6に示すように、東西側に揺れる地震が発生すると、各柱材20,20・・・は、鋼管杭Kと接合した下端部から略S字形状に曲がる。このとき、各柱材20,20・・・が西側に曲げられた場合について説明すると、図5(a)に示すように、柱材20,20・・・が曲げられると、北側のつなぎ部材30の北西側の柱材20の取り付け位置と北東側の柱材20の取り付け位置とに相対変位が生じ、北側のつなぎ部材30がせん断力を受けることとなる。同様に、南側のつなぎ部材30の南西側の柱材20の取り付け位置と南東側の柱材20の取り付け位置とに相対変位が生じ、南側のつなぎ部材30がせん断力を受けることとなる。一方、西側のつなぎ部材30と東側のつなぎ部材30とには、せん断力の影響をほとんど受けることがない。   As shown in FIG. 6, when the earthquake swaying in the east-west direction occurs, each column member 20, 20... Bends from the lower end joined to the steel pipe pile K into a substantially S shape. At this time, when the column members 20, 20... Are bent to the west side, as shown in FIG. 5 (a), when the column members 20, 20,. The relative displacement occurs between the attachment position of the column member 20 on the northwest side 30 and the attachment position of the column member 20 on the northeast side, and the connecting member 30 on the north side receives a shearing force. Similarly, relative displacement occurs between the mounting position of the column member 20 on the southwest side of the connecting member 30 on the south side and the mounting position of the column member 20 on the southeast side, and the connecting member 30 on the south side receives a shearing force. On the other hand, the linking member 30 on the west side and the linking member 30 on the east side are hardly affected by the shearing force.

このように、地震が発生すると、柱材20,20は略S字形状に曲がり、北側のつなぎ部材30と南側のつなぎ部材30とがせん断力を受け、柱材20,20・・・が倒壊に至る前に、北側、南側それぞれのつなぎ部材30,30の取付用鋼材31,31及びフランジF,F、さらに柱材20,20・・・よりも早く低降伏点鋼材32,32が降伏して柱材20,20・・・の倒壊を防ぐ。   Thus, when an earthquake occurs, the column members 20 and 20 are bent into a substantially S shape, the north-side connecting member 30 and the south-side connecting member 30 receive a shearing force, and the column members 20, 20. Before reaching the end, the steel members 31 and 31 and the flanges F and F of the connecting members 30 and 30 on the north side and the south side, and the low yield point steel materials 32 and 32 yield earlier than the column members 20, 20. This prevents the column members 20, 20 ... from collapsing.

また、北側のつなぎ部材30の低降伏点鋼材32と南側のつなぎ部材30の低降伏点鋼材32とは、地震の規模により、北側、南側のつなぎ部材30,30の両方、又は、いずれか一方が降伏することにより柱材20,20・・・の倒壊を防ぐことができる。
したがって、つなぎ部材30の低降伏点鋼材32が地震力(地震エネルギ)を吸収することにより、低降伏点鋼材32が損傷することなく各柱材20及び取付用鋼材31よりも早く降伏し、各柱材20の倒壊を防ぐことができる。つまり、つなぎ部材30の低降伏点鋼材32が各柱材20の身代わりとなって降伏することで、各柱材20を保護することができる。
ここで、降伏とは、鋼材としての機能を有しつつ鋼材が塑性域に入った状態を示している。また、損傷とは、鋼材がその機能を果たせない状態となっていることを示している。
Further, the low yield point steel material 32 of the north side connecting member 30 and the low yield point steel material 32 of the south side connecting member 30 may be either the north side or the south side connecting members 30, 30 or one of them depending on the magnitude of the earthquake. Can yield to prevent the column members 20, 20 ... from collapsing.
Therefore, the low yield point steel material 32 of the connecting member 30 absorbs the seismic force (seismic energy), so that the low yield point steel material 32 yields faster than the respective column members 20 and the mounting steel material 31 without being damaged. The collapse of the column member 20 can be prevented. That is, the low yield point steel material 32 of the connecting member 30 yields as a substitute for each column material 20, whereby each column material 20 can be protected.
Here, the yield indicates a state in which the steel material enters the plastic region while having a function as a steel material. Moreover, damage has shown that the steel material is in the state which cannot fulfill the function.

また、耐震橋脚10は、南北側に揺れる地震が発生すると、各柱材20,20・・・は、鋼管杭Kと取り付けた下端部から南北側に反復するように曲げられる。このとき、各柱材20,20・・・が北側に曲げられた場合について説明すると、図5(b)に示すように、柱材20,20・・・が曲げられると、西側のつなぎ部材30の北西側の柱材20の取り付け位置と南西側の柱材20の取り付け位置とに相対変位が生じ、西側のつなぎ部材30がせん断力を受けることとなる。同様に、東側のつなぎ部材30の北東側の柱材20の取り付け位置と南東側の柱材20の取り付け位置とに相対変位が生じ、東側のつなぎ部材30がせん断力を受けることとなる。一方、北側のつなぎ部材30と南側のつなぎ部材30とには、せん断力の影響をほとんど受けることがない。   Moreover, when the earthquake swaying on the north-south side occurs, the column members 20, 20,... Are bent so as to repeat from the lower end attached to the steel pipe pile K to the north-south side. At this time, a case where each column member 20, 20... Is bent to the north side will be described. As shown in FIG. 5 (b), when the column members 20, 20,. A relative displacement occurs between the attachment position of the column member 20 on the northwest side 30 and the attachment position of the column member 20 on the southwest side, and the linking member 30 on the west side receives a shearing force. Similarly, relative displacement occurs between the attachment position of the column member 20 on the northeast side and the attachment position of the column member 20 on the southeast side of the linking member 30 on the east side, and the linking member 30 on the east side receives a shearing force. On the other hand, the connecting member 30 on the north side and the connecting member 30 on the south side are hardly affected by the shearing force.

西側のつなぎ部材30と東側のつなぎ部材30がせん断力を受けると、柱材20,20・・・が倒壊に至る前に、西側、東側それぞれのつなぎ部材30,30の取付用鋼材31,31及びフランジF,F、さらに柱材20,20・・・よりも早く低降伏点鋼材32,32が降伏して、柱材20,20・・・の倒壊を防ぐ。   When the connecting member 30 on the west side and the connecting member 30 on the east side receive a shearing force, the steel members 31 and 31 for mounting the connecting members 30 and 30 on the west side and the east side before the column members 20, 20. Further, the low yield point steel materials 32, 32 yield earlier than the flanges F, F, and the column members 20, 20,... To prevent the collapse of the column members 20, 20,.

また、西側のつなぎ部材30の低降伏点鋼材32と東側のつなぎ部材30の低降伏点鋼材32は、地震の規模により、西側、東側のつなぎ部材30,30の両方、又は、いずれか一方が降伏することにより柱材20,20・・・の倒壊を防ぐことができる。   Further, the low yield point steel 32 of the west connecting member 30 and the low yield point steel 32 of the east connecting member 30 may be either the west or east connecting members 30, 30 or either of them depending on the magnitude of the earthquake. By yielding, it is possible to prevent the column members 20, 20 ... from collapsing.

また、耐震橋脚10は、図示しないが、北西−南東側や北東−南西側に揺れる地震が発生すると、各柱材20,20・・・は、鋼管杭Kと接合した下端部から北西−南東側や北東−南西側に反復するように曲げられ、北側,南側,西側,東側の各つなぎ部材30,30・・・が水平面内でせん断力を受ける。
これらつなぎ部材30,30・・・は、水平面内のせん断力を受けると、降伏点を超えない範囲で弾性変形するが、降伏点を超える前に取付用鋼材31及びフランジF,柱材20よりも早く低降伏点鋼材32,32・・・が垂直面内のせん断力で降伏して、柱材20,20・・・の倒壊を防ぐ。
Moreover, although the earthquake-resistant pier 10 is not shown in the figure, when an earthquake swaying in the northwest-southeast side or the northeast-southwest side occurs, each column member 20, 20. It is bent so that it repeats to the east side or the northeast-southwest side, and the connecting members 30, 30... On the north side, the south side, the west side, and the east side receive a shearing force in a horizontal plane.
When these connecting members 30, 30... Receive a shearing force in a horizontal plane, they elastically deform within a range not exceeding the yield point, but before the yield point is exceeded, from the mounting steel material 31, the flange F, and the column material 20. As soon as the low yield point steel materials 32, 32... Are yielded by the shearing force in the vertical plane, the column materials 20, 20.

これにより、あらゆる方向で揺れる地震が発生しても、倒壊しない耐震橋脚10とすることができる。   Thereby, even if the earthquake which shakes in all directions occurs, it can be set as the earthquake-resistant pier 10 which does not collapse.

また、地震により降伏した低降伏点鋼材32は、新たな低降伏点鋼材と取り替えることができる。地震により降伏した低降伏点鋼材32については、目視で確認することができるため、容易に降伏した低降伏点鋼材32を見つけることができる。降伏した低降伏点鋼材32は、つなぎ部材30の両端部の取付用鋼材31から切断又はボルト・ナットを取ることで取り外される。そして、新たな低降伏点鋼材を降伏した低降伏点鋼材32が取り外された位置に溶接によりつなぎ部材30の両端部の取付用鋼材31に接合される。   Moreover, the low yield point steel 32 yielded by the earthquake can be replaced with a new low yield point steel. Since the low yield point steel material 32 yielded by the earthquake can be visually confirmed, the low yield point steel material 32 yielded can be easily found. The yielding low yield point steel 32 is removed by cutting or removing bolts and nuts from the mounting steel 31 at both ends of the connecting member 30. And it joins to the steel material 31 for attachment of the both ends of the connecting member 30 by the welding in the position where the low yield point steel material 32 which yielded the new low yield point steel material was removed.

このように、耐震橋脚10を構成したので、建設コストの低コスト化を実現でき、不確定な方向に発生する地震の揺れにも確実に対応することができる。   As described above, since the earthquake-resistant pier 10 is configured, it is possible to reduce the construction cost, and it is possible to surely cope with the shaking of the earthquake occurring in an uncertain direction.

(第二の実施形態)
本発明の第二の実施形態に係る耐震橋脚11は、つなぎ部材がゴムダンパー部材を備えている点で第一の実施形態と異なる。
図7は、本発明の第二の実施形態に係る耐震橋脚の一例を示す部分斜視図である。図8は、本発明の第二の実施形態に係る耐震橋脚のつなぎ部材の一例を示す斜視図である。図9は、本発明の第二の実施形態に係る耐震橋脚の一例を示す平面図である。図10は、本発明の第二の実施形態に係る耐震橋脚が地震により揺れた状態の一例を示す平面図である。図11は、耐震橋脚11の柱材20が曲がった状態の一例を示す側面図である。
(Second embodiment)
The earthquake-resistant pier 11 according to the second embodiment of the present invention is different from the first embodiment in that the connecting member includes a rubber damper member.
FIG. 7 is a partial perspective view showing an example of an earthquake-resistant pier according to the second embodiment of the present invention. FIG. 8 is a perspective view showing an example of a connecting member of an earthquake-resistant pier according to the second embodiment of the present invention. FIG. 9 is a plan view showing an example of an earthquake-resistant pier according to the second embodiment of the present invention. FIG. 10 is a plan view showing an example of a state in which the earthquake-resistant pier according to the second embodiment of the present invention is shaken by an earthquake. FIG. 11 is a side view showing an example of a state in which the column member 20 of the earthquake-resistant pier 11 is bent.

この本発明の第二の実施形態に係る耐震橋脚11のつなぎ部材40は、図7及び図9に示すように、取付用鋼材41,41とゴムダンパー部材42とから構成されており、耐震橋脚11の柱材が地震等により揺れると、隣り合う柱材20同士の相対変位により受けるせん断力に耐えることで、各柱材20,20・・・の座屈または倒壊を防ぐ役割を果たす。
取付用鋼材41は、図8に示すように、箱型となっており、一方の端部が柱材20に取り付けられ、他方の端部が後述するゴムダンパー部材42を取り付けられるようになっている。
ゴムダンパー部材42は、一般的な橋梁の支承に使われる積層ゴムのゴム支承が用いられ、例えば地震時における各柱材20の相対変位によってせん断変形してこの相対変位によって受けるせん断力に耐える役割を果たす。
このゴムダンパー部材42に用いられる積層ゴムのゴム支承は、図8及び図9に示すように、その積層面が柱材20の立設方向に対して並行になるように、取付用鋼材41,41に取り付けられる。
As shown in FIG. 7 and FIG. 9, the connecting member 40 of the earthquake-resistant pier 11 according to the second embodiment of the present invention is composed of mounting steel materials 41 and 41 and a rubber damper member 42. When the 11 column members are shaken due to an earthquake or the like, the column members 20, 20... Play a role to prevent buckling or collapse of the column members 20, 20.
As shown in FIG. 8, the mounting steel material 41 has a box shape, one end is attached to the column member 20, and the other end is attached to a rubber damper member 42 described later. Yes.
The rubber damper member 42 is a laminated rubber rubber bearing used for general bridge bearings. For example, the rubber damper member 42 has a function of shearing deformation due to relative displacement of each column member 20 during an earthquake and withstanding the shearing force received by the relative displacement. Fulfill.
As shown in FIGS. 8 and 9, the rubber bearing of the laminated rubber used for the rubber damper member 42 has a mounting steel material 41, so that the laminated surface is parallel to the standing direction of the column member 20. 41 is attached.

この耐震橋脚11において、地震が発生した場合のつなぎ部材40,40・・・の役割を説明する。なお、方向を示す東,西,南,北は、図10の紙面上において、上方向を北、下方向を南、左方向を西、右方向を東、とする。   In this earthquake-resistant pier 11, the role of the connecting members 40, 40... When an earthquake occurs will be described. In the direction of east, west, south, and north, the upper direction is north, the lower direction is south, the left direction is west, and the right direction is east on the page of FIG.

耐震橋脚11は、図10に示すように、例えば、北東−南西側に揺れる地震が発生すると、各柱材20,20・・・は、鋼管杭Kと接合した下端部から北東−南西側に反復するように曲げられ、北側,南側,西側,東側の各つなぎ部材40,40・・・がせん断力を受ける。   As shown in FIG. 10, for example, when the earthquake swaying in the northeast-southwest side occurs, each column member 20, 20... Extends from the lower end joined to the steel pipe pile K to the northeast-southwest side. The connecting members 40, 40... On the north side, the south side, the west side, and the east side are subjected to a shearing force by being bent repeatedly.

このとき、平面視における耐震橋脚11の揺れの状態を説明すると、図10に示すように、北西側の柱材20と南東側の柱材20は、互いに遠ざかる方向に曲がり、北東側の柱材20と南西側の柱材20は、互いに近づく方向に曲がる。このため、北西側の柱材20と北東側の柱材20及び北西側の柱材20と南西側の柱材20は、それぞれ相対変位し、各柱材20,20・・・と連結するつなぎ部材40がせん断力を受ける。同様に、南東側の柱材20と北東側の柱材20及び南東側の柱材20と南西側の柱材20は、それぞれ相対変位し、各柱材20,20・・・と連結するつなぎ部材40がせん断力を受ける。すると、各つなぎ部材40,40・・・のゴムダンパー部材42が弾性変形し、各つなぎ部材40,40・・・はせん断力に耐えることとなる。   At this time, the state of the shaking of the earthquake-resistant bridge pier 11 in plan view will be described. As shown in FIG. 10, the column member 20 on the northwest side and the column member 20 on the southeast side are bent away from each other, and the column member on the northeast side. 20 and the column member 20 on the southwest side bend in a direction approaching each other. For this reason, the column member 20 on the northwest side and the column member 20 on the northeast side and the column member 20 on the northwest side and the column member 20 on the southwest side are displaced relative to each other, and are connected to the respective column members 20, 20. The member 40 receives a shearing force. Similarly, the column material 20 on the southeast side and the column material 20 on the northeast side, and the column material 20 on the southeast side and the column material 20 on the southwest side are displaced relative to each other, and are connected to the column materials 20, 20. The member 40 receives a shearing force. Then, the rubber damper members 42 of the connecting members 40, 40... Are elastically deformed, and the connecting members 40, 40.

また、側面視における耐震橋脚11の揺れの状態を説明すると、図11に示すように、地震の揺れにより柱材20,20は略S字形状になるように揺れる。このとき、隣り合う柱材20,20の間に設けられたつなぎ部材40には、略S字形状に曲がる柱材20,20の相対変位によりせん断力が作用する。このとき、このせん断力は、ゴムダンパー部材42に作用し、ゴムダンパー部材42をせん断変形させる。
これらつなぎ部材40,40・・・は、自身がもつ弾性力により作用したせん断力に耐えるので、柱材20,20・・・の倒壊を防ぐことができる。
Moreover, the state of the shaking of the earthquake-resistant pier 11 in a side view will be described. As shown in FIG. 11, the column members 20 and 20 are shaken so as to have a substantially S shape by the shaking of the earthquake. At this time, a shearing force is applied to the connecting member 40 provided between the adjacent column members 20 and 20 due to the relative displacement of the column members 20 and 20 that are bent in a substantially S shape. At this time, the shearing force acts on the rubber damper member 42 to cause the rubber damper member 42 to undergo shear deformation.
These linking members 40, 40,... Can withstand the shearing force applied by their own elastic force, so that the column members 20, 20,.

これにより、あらゆる方向で揺れる地震が発生しても、倒壊しない耐震橋脚11とすることができる。
また、ゴムダンパー部材42は、地震が発生した場合であっても繰り返し使用することができるが、ゴムダンパー部材42が劣化した場合は、新たなゴムダンパー部材と取り替えることができる。
このように、耐震橋脚11を構成したので、建設コストの低コスト化を実現でき、不確定な方向に発生する地震の揺れにも確実に対応することができる。
Thereby, even if the earthquake which shakes in all directions occurs, it can be set as the earthquake-resistant pier 11 which does not collapse.
The rubber damper member 42 can be used repeatedly even when an earthquake occurs. However, when the rubber damper member 42 deteriorates, it can be replaced with a new rubber damper member.
Thus, since the earthquake-resistant pier 11 was comprised, construction cost reduction can be implement | achieved and it can respond reliably also to the shaking of the earthquake which generate | occur | produces in an uncertain direction.

したがって、第二の実施形態に係る耐震橋脚11のつなぎ部材40の構成要素であるゴムダンパー部材42は、第一の実施形態に係る耐震橋脚10のつなぎ部材30の構成要素である低降伏点鋼材32よりも高価ではあるものの、当該低降伏点鋼材32は降伏するたびに交換が必要であるのに対しゴムダンパー部材42は繰り返しの使用に耐えることができるため、第二の実施形態に係る耐震橋脚11のトータル的な建設コストを小さくすることができる。
これにより、第一の実施系地に係る耐震橋脚10及び第二の実施形態に係る耐震橋脚11は、従来の橋脚より安価に設けることができる。
Therefore, the rubber damper member 42 which is a constituent element of the connecting member 40 of the earthquake-resistant bridge pier 11 according to the second embodiment is a low yield point steel material which is a constituent element of the connecting member 30 of the earthquake-resistant bridge pier 10 according to the first embodiment. Although the low yield point steel 32 needs to be replaced every time it yields, the rubber damper member 42 can withstand repeated use, although it is more expensive than 32, the seismic resistance according to the second embodiment. The total construction cost of the pier 11 can be reduced.
Thereby, the earthquake-resistant pier 10 according to the first implementation site and the earthquake-resistant pier 11 according to the second embodiment can be provided at a lower cost than the conventional pier.

(第三の実施形態)
次に、第一の実施形態に係る耐震橋脚10をラーメン構造の橋脚の脚部として用いた場合について説明する。図12は、ラーメン構造の耐震橋脚の一例を示す斜視図である。
(Third embodiment)
Next, the case where the earthquake-resistant pier 10 which concerns on 1st embodiment is used as a leg part of a pier of a ramen structure is demonstrated. FIG. 12 is a perspective view showing an example of an earthquake-resistant pier having a ramen structure.

本発明の第三の実施形態に係る耐震橋脚12は、図12に示すように、第一の実施形態に係る耐震橋脚10を2基並べ、各柱材20,20・・・・に掛かるように梁材Hが横架され固定されたラーメン構造となっている。   As shown in FIG. 12, the seismic pier 12 according to the third embodiment of the present invention is arranged so that two seismic piers 10 according to the first embodiment are arranged on each column member 20, 20. It has a rigid frame structure in which the beam material H is mounted horizontally.

このように構成されたラーメン構造の耐震橋脚12は、不確定な方向に揺れる地震が発生したとしても、前記のとおり、各耐震橋脚10,10が地震の揺れに対抗するので、隣り合う柱材20,20を連結するつなぎ部材30が、柱材20が倒壊する前に地震力(地震エネルギ)を吸収することにより降伏して、各耐震橋脚10,10の柱材20,20・・・を保護することができる。   As described above, the seismic bridge piers 12 of the ramen structure constructed in this way resists the shaking of the earthquake as described above even if an earthquake shaking in an uncertain direction occurs. The connecting member 30 connecting the 20 and 20 yields by absorbing the seismic force (earthquake energy) before the column member 20 collapses, and the column members 20, 20. Can be protected.

このように、ラーメン構造の耐震橋脚12を構成したので、低コストを実現でき、不確定な方向に発生する地震の揺れにも対応することができる。   As described above, since the ramen-structured earthquake-resistant bridge pier 12 is configured, low cost can be realized, and it is possible to cope with earthquake shaking that occurs in an uncertain direction.

なお、低降伏点鋼材32を用いたつなぎ部材30に替えて、ゴムダンパー部材42を用いたつなぎ部材40を備えた耐震橋脚11を2基並べた構造としても同様の効果を奏する。   In addition, it replaces with the connection member 30 using the low yield point steel material 32, and there exists the same effect also as a structure which arranged the earthquake-resistant bridge pier 11 provided with the connection member 40 using the rubber damper member 42 in order.

以上、本発明について、好適な実施形態の例を説明した。しかし、本発明は、前記実施形態に限られず、前記の各構成要素については、本発明の趣旨を逸脱しない範囲で、適宜設計変更が可能である。   Heretofore, examples of preferred embodiments have been described for the present invention. However, the present invention is not limited to the above-described embodiment, and the design of each of the above-described components can be appropriately changed without departing from the spirit of the present invention.

例えば、基礎は、鋼管杭のほかに、地中に埋設されるフーチングを用いることもできる。このフーチングは、例えば、コンクリート構造物であって、その上面が矩形形状になっており、地中に設けられた複数の鋼管杭により支持されている。このように支持されたフーチングの上面に柱材を、フーチングの上部に対して多角形を形成するように、その多角形の頂点上にそれぞれ配置し固定することもできる。
したがって、柱材を支持する基礎の種類に制限されることなく、柱材を基礎に立設することができる。
なお、柱材20,20・・・は、その下端部をフーチング内に埋設させて立設してもよい。この場合、柱材20の下端部には、外周面に沿ってスタッドを取り付けておく。これにより、スタッドが硬化したコンクリートに引っかかるので柱材20がフーチングから抜け出るのを防止することができる。
For example, a footing buried in the ground can be used for the foundation in addition to the steel pipe pile. The footing is, for example, a concrete structure, the upper surface of which is rectangular, and is supported by a plurality of steel pipe piles provided in the ground. It is also possible to place and fix the column material on the upper surface of the footing supported in this manner, so as to form a polygon with respect to the upper portion of the footing, respectively, on the vertex of the polygon.
Therefore, the pillar material can be erected on the foundation without being limited to the kind of foundation that supports the pillar material.
The column members 20, 20... May be erected with their lower ends embedded in the footing. In this case, a stud is attached to the lower end portion of the column member 20 along the outer peripheral surface. Thereby, since the stud is caught by the hardened concrete, it is possible to prevent the column member 20 from coming out of the footing.

また、柱材の配置位置は正四角形に限られず、地面に対して三角形、角形(長方形)、五角形、六角形等、多角形となる各頂点上にしても良い。   In addition, the position of the column member is not limited to a regular square, and may be on each vertex of a polygon such as a triangle, a rectangle (rectangle), a pentagon, or a hexagon with respect to the ground.

また、柱材の長さ(耐震橋脚の高さ)に応じて、つなぎ部材を高さ方向に2段、4段、等、複数段設けても良い。このようにすることにより、耐震橋脚が高架橋の橋脚として用いられる場合であっても、不確定な方向に発生する地震の揺れにも対応することができる。   Moreover, according to the length of a pillar material (height of an earthquake-resistant pier), you may provide several steps, such as a 2 step | paragraph and 4 steps | paragraphs, in a height direction. By doing in this way, even if an earthquake-resistant bridge pier is used as a viaduct pier, it can respond to the shaking of the earthquake which occurs in an uncertain direction.

また、地面は傾斜していても良い。したがって、傾斜している地面に耐震橋脚を設ける場合は、傾斜した地面に対して多角形を描くように、その多角形の各頂点上に基礎としての鋼管杭を設置し、その各鋼管杭の外部に露出する端部に柱材の下端部を接合して、柱材を多角形の各頂点上に配置することができる。
このようにして設ける耐震橋脚は、例えば、法面に脚部を設置する高速道路等に架けられるラーメン橋脚の脚部として用いることができる。
Moreover, the ground may be inclined. Therefore, when installing seismic piers on sloping ground, install steel pipe piles as the foundation on each vertex of the polygon so that a polygon is drawn on the sloping ground. The column material can be disposed on each vertex of the polygon by joining the lower end of the column material to the end portion exposed to the outside.
The seismic pier provided in this way can be used, for example, as a leg part of a ramen pier that is hung on an expressway or the like in which a leg part is installed on a slope.

本発明の第一の実施形態に係る耐震橋脚の一例を示す斜視図である。It is a perspective view which shows an example of the earthquake-resistant pier which concerns on 1st embodiment of this invention. 図1のA部拡大図である。It is the A section enlarged view of FIG. つなぎ部材の一例を示す斜視図である。It is a perspective view which shows an example of a connection member. 本発明の第一の実施形態に係る耐震橋脚の一例を示す平面図である。It is a top view which shows an example of the earthquake-resistant pier which concerns on 1st embodiment of this invention. (a)は、一方向に柱材が変位した場合を示す平面図であり、(b)は、他の方向に柱材が変位した場合を示す平面図である。(A) is a top view which shows the case where a pillar material is displaced to one direction, (b) is a top view which shows the case where a pillar material is displaced to another direction. 耐震橋脚の柱材が曲がった状態の一例を示す側面図である。It is a side view which shows an example in the state where the pillar material of the earthquake-resistant pier was bent. 本発明の第二の実施形態に係る耐震橋脚の一例を示す部分斜視図である。It is a fragmentary perspective view which shows an example of the earthquake-resistant pier which concerns on 2nd embodiment of this invention. 本発明の第二の実施形態に係る耐震橋脚のつなぎ部材の一例を示す斜視図である。It is a perspective view which shows an example of the connection member of the earthquake-resistant bridge pier which concerns on 2nd embodiment of this invention. 本発明の第二の実施形態に係る耐震橋脚の一例を示す平面図である。It is a top view which shows an example of the earthquake-resistant pier which concerns on 2nd embodiment of this invention. 本発明の第二の実施形態に係る耐震橋脚が地震により揺れた状態の一例を示す平面図である。It is a top view which shows an example of the state where the earthquake-resistant pier concerning 2nd embodiment of this invention was shaken by the earthquake. 耐震橋脚11の柱材20が曲がった状態の一例を示す側面図である。It is a side view showing an example of the state where pillar material 20 of earthquake-resistant pier 11 bent. ラーメン構造の耐震橋脚の一例を示す斜視図である。It is a perspective view which shows an example of an earthquake-resistant pier of a ramen structure. (a)は、従来の耐震橋脚を示す側面図であり、(b)は、(a)を変形させた従来の耐震橋脚を示す側面図である。(A) is a side view which shows the conventional earthquake-resistant pier, (b) is a side view which shows the conventional earthquake-resistant pier which deform | transformed (a). 他の従来の耐震橋脚を示す側面図である。It is a side view which shows the other conventional earthquake-resistant pier.

符号の説明Explanation of symbols

10,11,12 耐震橋脚
20 柱材
30 つなぎ部材
31 取付用鋼材
32 低降伏点鋼材
40 つなぎ部材
41 取付用鋼材
42 ゴムダンパー部材
F フランジ
G 地面
K 鋼管杭(基礎)
10, 11, 12 Seismic bridge pier 20 Column material 30 Connecting member 31 Steel member for mounting 32 Low yield point steel member 40 Connecting member 41 Steel member for mounting 42 Rubber damper member F Flange G Ground K Steel pipe pile (foundation)

Claims (5)

基礎に立設される複数の柱材と、隣り合う前記柱材同士を連結するつなぎ部材と、を備え、
前記各柱材が鋼管材であり、前記各柱材が揺れた場合に前記つなぎ部材が変形することを特徴とする耐震橋脚。
A plurality of column members erected on the foundation, and a connecting member that connects the adjacent column members,
Each said pillar material is a steel pipe material, and when each said pillar material shakes, the said connection member deform | transforms, The earthquake-resistant bridge pier characterized by the above-mentioned.
前記複数の柱材が、多角形を形成する頂点上に各々配置されていることを特徴とする請求項1に記載の耐震橋脚。   The earthquake-resistant bridge pier according to claim 1, wherein the plurality of column members are respectively arranged on vertices forming a polygon. 前記つなぎ部材が、前記各柱材に取り付けられる取付用鋼材と、これら取付用鋼材の間に設けられる低降伏点鋼材とを備え、
前記低降伏点鋼材の降伏点が前記取付用鋼材及び前記柱材の降伏点よりも低く設定されて構成されていることを特徴とする請求項1又は請求項2に記載の耐震橋脚。
The connecting member includes a mounting steel material to be attached to each column member, and a low yield point steel material provided between the mounting steel materials,
The earthquake resistant pier according to claim 1 or 2, wherein a yield point of the low yield point steel material is set lower than a yield point of the mounting steel material and the column material.
前記つなぎ部材が、前記各柱材に取り付けられる取付用鋼材と、これら取付用鋼材の間に設けられるゴムダンパー部材とを備え、
前記ゴムダンパー部材がせん断変形することを特徴とする請求項1又は請求項2に記載の耐震橋脚。
The connecting member includes a mounting steel material to be attached to each column member, and a rubber damper member provided between the mounting steel materials,
The earthquake-resistant bridge pier according to claim 1 or 2, wherein the rubber damper member undergoes shear deformation.
前記つなぎ部材が交換可能に設けられていることを特徴とする請求項1乃至請求項4のいずれか1項に記載の耐震橋脚。   The earthquake-resistant pier according to any one of claims 1 to 4, wherein the connecting member is provided so as to be replaceable.
JP2004263807A 2004-09-10 2004-09-10 Earthquake resisting pier Pending JP2006077492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004263807A JP2006077492A (en) 2004-09-10 2004-09-10 Earthquake resisting pier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004263807A JP2006077492A (en) 2004-09-10 2004-09-10 Earthquake resisting pier

Publications (1)

Publication Number Publication Date
JP2006077492A true JP2006077492A (en) 2006-03-23

Family

ID=36157168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004263807A Pending JP2006077492A (en) 2004-09-10 2004-09-10 Earthquake resisting pier

Country Status (1)

Country Link
JP (1) JP2006077492A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080293A (en) * 2009-10-08 2011-04-21 Kajima Corp Seismic response controlled bridge pier
JP2015105562A (en) * 2013-12-03 2015-06-08 公益財団法人鉄道総合技術研究所 Aseismic reinforcement method for rigid-frame viaduct arranging beams in intermediate layer
CN105220624A (en) * 2015-11-06 2016-01-06 沈阳建筑大学 A kind of bent cap truss-like reinforcing construction and construction method thereof
CN106012813A (en) * 2016-07-08 2016-10-12 南京工业大学 Energy-consuming assembly type pier structure and construction method
CN107974931A (en) * 2017-11-23 2018-05-01 南京工业大学 Self-energy-consumption high pier structure system with post-earthquake recoverable performance
CN108532447A (en) * 2018-06-13 2018-09-14 华侨大学 The stub structure and bridge that can quickly repair
CN108729343A (en) * 2018-05-24 2018-11-02 西南交通大学 It can restore assembled energy consumption stub structure after a kind of shake
CN112095442A (en) * 2020-09-11 2020-12-18 中铁二院昆明勘察设计研究院有限责任公司 Replaceable bridge damping energy-consumption connecting piece structure
CN113152283A (en) * 2019-10-21 2021-07-23 宁波市政工程建设集团股份有限公司 Construction method of cantilever or large-crotch-diameter support system of prefabricated small box girder type hidden cover beam of road bridge

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080293A (en) * 2009-10-08 2011-04-21 Kajima Corp Seismic response controlled bridge pier
JP2015105562A (en) * 2013-12-03 2015-06-08 公益財団法人鉄道総合技術研究所 Aseismic reinforcement method for rigid-frame viaduct arranging beams in intermediate layer
CN105220624A (en) * 2015-11-06 2016-01-06 沈阳建筑大学 A kind of bent cap truss-like reinforcing construction and construction method thereof
CN105220624B (en) * 2015-11-06 2016-08-24 沈阳建筑大学 A kind of bent cap truss-like reinforcing construction and construction method thereof
CN106012813A (en) * 2016-07-08 2016-10-12 南京工业大学 Energy-consuming assembly type pier structure and construction method
CN107974931A (en) * 2017-11-23 2018-05-01 南京工业大学 Self-energy-consumption high pier structure system with post-earthquake recoverable performance
CN107974931B (en) * 2017-11-23 2019-05-31 南京工业大学 Self-energy-consumption high pier structure system with post-earthquake recoverable performance
CN108729343A (en) * 2018-05-24 2018-11-02 西南交通大学 It can restore assembled energy consumption stub structure after a kind of shake
CN108532447A (en) * 2018-06-13 2018-09-14 华侨大学 The stub structure and bridge that can quickly repair
CN113152283A (en) * 2019-10-21 2021-07-23 宁波市政工程建设集团股份有限公司 Construction method of cantilever or large-crotch-diameter support system of prefabricated small box girder type hidden cover beam of road bridge
CN113152283B (en) * 2019-10-21 2022-06-10 宁波市政工程建设集团股份有限公司 Construction method of large-crotch-diameter supporting system of small box girder type hidden cover beam prefabricated on road and bridge
CN112095442A (en) * 2020-09-11 2020-12-18 中铁二院昆明勘察设计研究院有限责任公司 Replaceable bridge damping energy-consumption connecting piece structure

Similar Documents

Publication Publication Date Title
US7188452B2 (en) Sleeved bracing useful in the construction of earthquake resistant structures
US6698053B2 (en) Method for seismically reinforcing a reinforced concrete frame
US20080022610A1 (en) Composite energy absorbing structure
JP6563780B2 (en) Bridge structure
JP2007023626A (en) Vibration-controlled base-isolated structure
JP2005299080A (en) Earthquake-resistant bridge pier
JP2006077492A (en) Earthquake resisting pier
JP5575838B2 (en) Beam support structure of building
JP6671612B2 (en) Viaduct collapse prevention structure
JP2001262774A (en) Steel concrete composite structural member
JP6563781B2 (en) Pedestal structure and construction method of pedestal structure
JP4472726B2 (en) Base-isolated building structure
JP2005330675A (en) Tower-like structure
JP4408181B2 (en) Seismic strength reinforcement method for bridges and piers
JP5590994B2 (en) Seismic construction method and structure using elastoplastic brace
JP2010047933A (en) Damping reinforcement frame
JP2008162657A (en) Structure and construction method for leg of spherical tank
JP6275314B1 (en) Seismic reinforcement structure for bridges
JP2005083136A (en) Composite structure support
JP6029847B2 (en) Column fixing structure, column construction method, and column repair method
JP4432581B2 (en) Building structure that can change floor height
JP6126789B2 (en) Tank support structure
JP2006168799A (en) Reinforcing structure at leg of spherical tank and reinforcing method
JP6243168B2 (en) Column base reinforcement structure
JP2832708B2 (en) Anchor frame

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070518

A711 Notification of change in applicant

Effective date: 20070530

Free format text: JAPANESE INTERMEDIATE CODE: A711

RD02 Notification of acceptance of power of attorney

Effective date: 20070530

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070530

A621 Written request for application examination

Effective date: 20070706

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091013