JP2006073445A - Processing method of dump liquid - Google Patents
Processing method of dump liquid Download PDFInfo
- Publication number
- JP2006073445A JP2006073445A JP2004257863A JP2004257863A JP2006073445A JP 2006073445 A JP2006073445 A JP 2006073445A JP 2004257863 A JP2004257863 A JP 2004257863A JP 2004257863 A JP2004257863 A JP 2004257863A JP 2006073445 A JP2006073445 A JP 2006073445A
- Authority
- JP
- Japan
- Prior art keywords
- dump
- liquid
- acid
- battery
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 64
- 238000003672 processing method Methods 0.000 title abstract description 3
- 239000000126 substance Substances 0.000 claims abstract description 42
- 238000006243 chemical reaction Methods 0.000 claims abstract description 35
- 239000002253 acid Substances 0.000 claims abstract description 17
- 238000007664 blowing Methods 0.000 claims abstract description 15
- 238000009835 boiling Methods 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 9
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 abstract description 60
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 abstract description 41
- 239000003792 electrolyte Substances 0.000 abstract description 40
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 abstract description 38
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 abstract description 19
- 235000019253 formic acid Nutrition 0.000 abstract description 19
- 238000003860 storage Methods 0.000 abstract description 11
- 238000010438 heat treatment Methods 0.000 abstract description 9
- 238000001704 evaporation Methods 0.000 abstract description 8
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 238000003912 environmental pollution Methods 0.000 abstract description 5
- 238000012545 processing Methods 0.000 abstract description 3
- 239000000243 solution Substances 0.000 description 35
- 150000007524 organic acids Chemical class 0.000 description 25
- 230000005484 gravity Effects 0.000 description 19
- 239000008151 electrolyte solution Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 235000005985 organic acids Nutrition 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000005260 corrosion Methods 0.000 description 9
- 230000007797 corrosion Effects 0.000 description 9
- 230000008020 evaporation Effects 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- -1 polyethylene Polymers 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- YADSGOSSYOOKMP-UHFFFAOYSA-N dioxolead Chemical compound O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Filling, Topping-Up Batteries (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、鉛蓄電池の製造過程における化成処理後排除されるダンプ液を活用するためのダンプ液の処理法に関する。 The present invention relates to a method for treating a dump solution for utilizing a dump solution that is eliminated after a chemical conversion treatment in the production process of a lead storage battery.
従来、密閉式や液式の鉛蓄電池の製造過程において、未化成の正,負極板の化成処理が行われるが、その化成処理後排除せしめた遊離硫酸電解液、即ち、ダンプ液は廃棄されていたが、その強酸性のためばかりでなく、鉛やカーボンを含有しているため、廃棄されたダンプ液により、環境汚染の問題を生ずることに鑑み、これを防止するため、例えば、特開2003−7330公報の発明が提案されている。
この発明は、従来廃棄されていたダンプ液に含有する鉛やカーボンは、本来鉛蓄電池に含まれているものであるから、このようなダンプ液を化成用硫酸電解液として再利用しても鉛蓄電池に何等悪影響を及ぼすものではないとの見地から、電槽化成を行うに当たり、他の電池の電槽化成後に排除されたダンプ液をその電池の電槽化成用電解液として使用することを特徴とし、これによりダンプ液の廃棄による環境汚染問題を解消すると同時に該ダンプ液を電槽化成用電解液として再利用することができるようにした発明を提案したものである。
In the present invention, since lead and carbon contained in a dumping solution that has been disposed of in the past are originally contained in a lead storage battery, even if such dumping solution is reused as a sulfuric acid electrolyte for chemical conversion, lead is used. From the standpoint that it does not have any adverse effect on the storage battery, in performing battery case formation, the dump liquid removed after battery case formation of other batteries is used as the electrolyte for battery case formation of the battery. Thus, the invention has been proposed in which the environmental pollution problem due to the disposal of the dump solution is solved and at the same time the dump solution can be reused as the electrolytic solution for forming a battery case.
しかし乍ら、上記特許文献1に提案の発明により、該ダンプ液を上記のように再利用することにより、環境汚染問題が解消されるが、ダンプ液をそのまゝ電槽化成処理に再利用するときは、その再利用後、還液式により、新しい正規の硫酸電解液を注液して製造した液式鉛蓄電池は、使用中に、正極端子部に腐食を生じることが認められた。その原因を追究したところ、電槽化成処理中に化成処理硫酸相当量の酢酸やギ酸が生成し、化成処理後に排出されるダンプ液には、これらの有機酸が含有するので、これを化成処理用電解液として再利用した後排出しても、そのこれら有機酸を含有する化成処理用電解液の一部は、極板群に付着して電池内に残留するので、化成後の電池に新たな正規の硫酸電解液を注入して液式鉛蓄電池を製造したときは、その使用中に、これら有機酸が正極端子部を腐食させて電池の作動を阻害したり、使用寿命を短縮するなどの弊害をもたらすことが判明した。
また、更に、このようにダンプ液の再利用を繰り返すときは、その繰り返し回数の増大に伴い、ダンプ液中のこれら有機酸の含有量は増大するので、上記の弊害は益々顕著になることが判明した。
上記に鑑み、本発明の目的は、該ダンプ液を廃棄することなく、環境汚染の問題を生じないようにすると共に、上記の問題を解消し、同時に、これを化成処理用電解液として再利用したり、或いは製造する電池の電解液として利用することができるようにするダンプ液の処理法を提供することに在る。
However, according to the invention proposed in the above-mentioned Patent Document 1, by reusing the dump liquid as described above, the problem of environmental pollution is solved. When reusing, the liquid lead-acid battery manufactured by injecting a new regular sulfuric acid electrolyte by the return liquid method after reuse was found to cause corrosion in the positive electrode terminal portion during use. When the cause was investigated, acetic acid and formic acid equivalent to the chemical conversion treatment sulfuric acid were generated during the chemical conversion treatment, and these organic acids are contained in the dump liquid discharged after the chemical conversion treatment. Even if it is discharged after being reused as an electrolyte, a part of the electrolyte for chemical conversion treatment containing these organic acids adheres to the electrode plate group and remains in the battery. When a liquid lead-acid battery is manufactured by injecting a normal sulfuric acid electrolyte, these organic acids corrode the positive electrode terminal part during its use, impeding the operation of the battery, shortening the service life, etc. It was found to bring about evils.
Further, when the reuse of the dump solution is repeated as described above, the content of these organic acids in the dump solution increases with an increase in the number of repetitions, and thus the above-described adverse effects may become more prominent. found.
In view of the above, an object of the present invention is to eliminate the problem of environmental pollution without discarding the dump solution, and to solve the above problem, and at the same time, reuse it as an electrolytic solution for chemical conversion treatment. Or providing a method for treating a dump solution that can be used as an electrolyte of a battery to be manufactured.
本発明は、鉛蓄電池の製造過程における化成処理後、該鉛蓄電池の化成処理後、該鉛蓄電池から排出せしめたダンプ液に煮沸処理又は/及び水蒸気吹込み処理を行うことを特徴とするダンプ液の処理法に存する。 The present invention relates to a dump liquid characterized in that after the chemical conversion treatment in the production process of the lead storage battery, after the chemical conversion treatment of the lead storage battery, the dump liquid discharged from the lead storage battery is boiled or / and steam injected. It exists in the processing method.
請求項1に係る上記の処理により、ダンプ液に含有する酢酸及びギ酸の殆どを蒸発除去することができ、得られる該処理済のダンプ液を化成処理用に再利用し、また、化成完了後の鉛蓄電池に従来新しく注液される電解液の代わりに注液し利用することができ、これら有機酸による正極端子の腐食を生じていた従来の課題が解消されると共に、鉛蓄電池の化成処理を安定良好に行うことができ、また、安定良好な鉛蓄電池を製造することができる。 By the above treatment according to claim 1, most of acetic acid and formic acid contained in the dump solution can be removed by evaporation, and the obtained treated dump solution can be reused for the chemical conversion treatment. Can be used in place of the newly injected electrolyte in conventional lead-acid batteries, eliminating the conventional problems that have caused corrosion of the positive electrode terminal by these organic acids, and converting the lead-acid battery The lead storage battery can be manufactured stably and satisfactorily.
次に、本発明の実施の形態を詳述する。
本発明によれば、未化成の正,負極板の化成処理としては、タンク化成又は電槽化成のいずれでもよい。化成処理は、一般に主として好ましく使用される電槽化成が行われるので、これを例にとり、以下詳述する。
Next, an embodiment of the present invention will be described in detail.
According to the present invention, the chemical conversion treatment of the unformed positive and negative electrode plates may be either tank formation or battery case formation. In the chemical conversion treatment, battery case chemical conversion which is generally preferably used is performed, and this will be described in detail as an example.
未化成の正,負極板により極板群を組み立て、これを電槽内に収納した後、電槽内に比重1.15〜1.25(20℃)の範囲の硫酸電解液を所定量注入し、常法に従い所定の電流で所定の時間通電することにより、電槽化成処理を行う。その電槽化成完了後、鉛蓄電池を逆さにして、遊離電解液を排出(ダンプ)させ、ダンプ液をガラス製、金属製の加熱処理に適した容器内に回収する。 After assembling the electrode plate group with unformed positive and negative electrode plates and storing it in the battery case, a predetermined amount of sulfuric acid electrolyte solution having a specific gravity of 1.15 to 1.25 (20 ° C.) is injected into the battery case. Then, the battery case chemical conversion treatment is performed by energizing with a predetermined current for a predetermined time according to a conventional method. After the battery case formation is completed, the lead storage battery is turned upside down to discharge (dump) the free electrolyte, and the dump solution is collected in a glass or metal container suitable for heat treatment.
上記の化成処理中に、鉛蓄電池の極板群を構成するポリエチレンセパレータに含まれる浸透剤、例えば、ジアルキルスルホコハク酸系界面活性剤は電解液中に拡散し、陽極酸化を受けて酢酸が生成したり、負極の添加剤であるリグニンに含まれる酢酸及びギ酸が硫酸電解液中に溶解して来る。従って、回収したダンプ液には酢酸やギ酸が含有してくることになる。一方、同時に、ダンプ作業において、極板群にこれら有機酸を含有する電解液の一部が残留することになる。 During the chemical conversion treatment, a penetrant contained in the polyethylene separator constituting the electrode group of the lead storage battery, for example, a dialkylsulfosuccinic acid-based surfactant diffuses into the electrolytic solution and undergoes anodization to produce acetic acid. Alternatively, acetic acid and formic acid contained in lignin, which is an additive for the negative electrode, are dissolved in the sulfuric acid electrolyte. Therefore, acetic acid and formic acid are contained in the collected dump solution. On the other hand, at the same time, a part of the electrolyte containing these organic acids remains in the electrode plate group in the dumping operation.
而して、かゝるダンプ液をそのまゝ化成処理用電解液として再利用すると、含有するこれら有機酸により鉛の溶解度が増大し、正極においては、表面の緻密な二酸化鉛保護膜を破壊する不都合を生ずることが認められた。
かゝる有機酸を含有するダンプ液を他の電池の化成処理用電解液としての再利用を繰り返すと、この回数の増大に伴い、ダンプ液中のこれら有機酸の濃度は高まり、上記の不都合を促進することゝなる。
また、このような再利用を繰り返されたダンプ液で化成処理完了後の電池の極板群には排出されない有機酸を多量に含む電解液が付着残留するので、この電池を密閉鉛蓄電池とした場合には、電池の作動に不都合を生じる。また、この電池に新たな正規の電解液を注入し、液式鉛電池とするときは、残留の有機酸は、特に、電解液面に集まり、特に正極端子の下部は、使用時の過充電時に発生する酸素ガスにより腐食し、更に腐食が進行し、破断する不都合を生じる。
このような不都合は、ダンプ液の繰り返しの回数が多いほど生じ易い。
Thus, when such dump solution is reused as an electrolytic solution for chemical conversion treatment, the solubility of lead is increased by these organic acids contained, and in the positive electrode, the dense lead dioxide protective film on the surface is destroyed. It was recognized that this would cause inconvenience.
If the dump solution containing such organic acid is repeatedly reused as an electrolyte for chemical conversion treatment of other batteries, the concentration of these organic acids in the dump solution increases with the increase in the number of times, and the above disadvantages are caused. To be promoted.
In addition, since the electrolyte solution containing a large amount of organic acid that is not discharged remains attached to the electrode plate group of the battery after the chemical conversion treatment is completed with the dump liquid that has been repeatedly reused, this battery is a sealed lead-acid battery. In some cases, the operation of the battery is inconvenient. In addition, when a new regular electrolyte solution is injected into this battery to form a liquid lead battery, residual organic acids are collected particularly on the electrolyte surface, and especially the lower part of the positive electrode terminal is overcharged during use. Corrosion is caused by the oxygen gas generated from time to time, and further corrosion progresses, causing inconvenience of breaking.
Such an inconvenience is more likely to occur as the dump liquid is repeated more frequently.
かゝる問題を解決するため、該ダンプ液を活性炭層を通過させ、これら有機酸を吸着除去せしめてみたが、作業能率が悪く、煩わしいばかりでなく、有用な硫酸の一部も吸着除去されるなどの不都合を伴った。 In order to solve such a problem, the dump liquid was passed through the activated carbon layer to adsorb and remove these organic acids. However, the working efficiency was poor and troublesome, and a part of useful sulfuric acid was also adsorbed and removed. It was accompanied by inconvenience such as.
而して、本願の発明者等は、高能率に且つ安価に該ダンプ液を化成処理用の電解液として再利用し、或いは正規の硫酸電解液の代わりに使用するに適する手段につき、鋭意研究を進めていたところ、該ダンプ液を加熱することにより、これらの有機酸を短時間に効率良く蒸発除去でき、上記の使用目的に適した有機酸が殆ど除去された、実質上含まない電解液とすることができることを知見した。 Thus, the inventors of the present application have made extensive studies on means suitable for reusing the dump solution as an electrolytic solution for chemical conversion treatment at high efficiency and at a low cost, or using it instead of a regular sulfuric acid electrolytic solution. However, by heating the dump solution, these organic acids can be efficiently evaporated and removed in a short time, and the organic acid suitable for the above-mentioned purpose of use is almost removed. It was found that it can be.
化成完了後のダンプ液に溶解分散している酢酸やギ酸は低級脂肪酸であり、希硫酸と比較すると非常に弱い弱酸であるために、ダンプ液中ではプロトンが電離しない状態、いわゆる遊離した状態である。また、これら有機酸は水や硫酸と比較して蒸気圧が小さいために、ダンプ液を沸騰させれば蒸発し易い。また、水を沸騰させて生ずる水蒸気をダンプ液中に吹き込むことにより、特に、液中に分散している有機酸に対して効率良く蒸発を促すことができると共に水蒸気の吹込みにより同時に蒸発する水を補給し、該ダンプ液の水分蒸発による濃縮を防止することができるので、ダンプ液中の硫酸の濃度に大きな変化なしにダンプ液を処理でき、電槽化成用電解液として再利用するに当たり、その硫酸濃度を再利用に当するように加水調節作業する手間を省くことができる。 Acetic acid and formic acid dissolved and dispersed in the dump solution after the chemical conversion is a lower fatty acid and is a weak acid that is very weak compared to dilute sulfuric acid, so that protons are not ionized in the dump solution, so-called free state. is there. Moreover, since these organic acids have a lower vapor pressure than water and sulfuric acid, they easily evaporate if the dump liquid is boiled. In addition, by blowing water vapor generated by boiling water into the dump liquid, it is possible to promote efficient evaporation particularly for the organic acid dispersed in the liquid, and at the same time, water that evaporates simultaneously by blowing water vapor. In order to prevent the concentration of the dump liquid due to water evaporation, the dump liquid can be processed without a large change in the concentration of sulfuric acid in the dump liquid. It is possible to save the labor of adjusting the amount of water so that the sulfuric acid concentration can be reused.
該ダンプ液を加熱処理手段は、煮沸処理単独、水蒸気吹込み処理単独、煮沸処理と水蒸気吹込み処理の併用が考えられる。加熱器としては、電熱ヒーター、ガスヒーターなどを用い、ダンプ液を収容した容器を加熱する。水蒸気吹込みによる加熱、例えば釜内の水を沸騰させて生ずる水蒸気を導管の先端を該ダンプ液を容れた容器の該ダンプ液内に挿入した状態で行う。
ダンプ液の加熱処理は、化成処理完了後に排出されるダンプ液毎に行ってもよいが、複数回のダンプ液を収容し得る加熱処理用容器に回収して、一度に行うようにすれば作業能率上好ましい。有機酸を除去された処理済みのかゝる大量のダンプ液を再利用するには、複数回に分けて再利用することは勿論である。
As the heat treatment means for the dump liquid, boiling treatment alone, steam blowing treatment alone, or combined use of boiling treatment and steam blowing treatment can be considered. As the heater, an electric heater, a gas heater or the like is used to heat the container containing the dump liquid. Heating by blowing water vapor, for example, water vapor generated by boiling water in the kettle is performed with the end of the conduit inserted into the dump liquid in a container containing the dump liquid.
The heat treatment of the dump liquid may be performed for each dump liquid discharged after completion of the chemical conversion treatment, but if it is performed at once by collecting it in a heat treatment container that can store a plurality of dump liquids. It is preferable in terms of efficiency. Of course, in order to recycle a large amount of the treated dump liquid from which the organic acid has been removed, it can be reused in several batches.
電槽化成に適した比重に調節された硫酸電解液を、電槽化成するべき未化成の正,負極板群を収容した鉛蓄電池の電槽内にその所定量を注液し、常法により電槽化成を行った後、ダンプにより遊離電解液を適当な大きさの加熱処理容器に回収し、これを直ちに上記の加熱手段により加熱し、上記有機酸の蒸発除去作業を行うことにより、有機酸が殆ど除去された、新しい正規の硫酸電解液と変わらない良質の硫酸電解液から成る処理済みのダンプ液が得られる。而して、これを電槽化成用に再利用することができ、或いは液式鉛蓄電池製造用の硫酸電解液の代わりに、そのまゝ、或いは必要に応じ比重を調整した後、利用できる。処理済みのダンプ液を電槽化成用に再利用する場合に、必要に応じ、その比重を化成用電解液に適する比重に調節する。 A predetermined amount of sulfuric acid electrolyte adjusted to a specific gravity suitable for battery case formation is poured into the battery case of a lead storage battery containing unformed positive and negative electrode plates to be formed into a battery case. After the formation of the battery case, the free electrolyte is recovered in a heat treatment container of an appropriate size by dumping, and this is immediately heated by the heating means described above, and the organic acid is removed by evaporation. A treated dump solution consisting of a good quality sulfuric acid electrolyte, which is almost the same as a new regular sulfuric acid electrolyte, with almost no acid removed, is obtained. Thus, it can be reused for forming a battery case, or can be used as it is, or after adjusting the specific gravity as needed, instead of the sulfuric acid electrolyte for producing a liquid lead-acid battery. When the treated dump solution is reused for battery case formation, the specific gravity is adjusted to a specific gravity suitable for the conversion electrolyte as necessary.
次に、更に詳細な実施例につき詳述する。
実施例1
比重1.190(20℃)の硫酸電解液を、未化成正,負極板から成る極板群を収容した各鉛蓄電池を9個用意し、その電槽内に遊離する液が存する状態にその所定量を注液し、常法により電槽化成処理を行った後、その各電池を逆さにして遊離する電解液をビーカー内に排出させ、各ビーカー内に、比重1.230(20℃)のダンプ液500ccを回収した。
次いで、かゝるダンプ液500cc容りのビーカー9個のうち、1つのビーカー内のダンプ液はそのまゝとし、残る8個のダンプ液容りビーカーについては、100℃の水蒸気を吹込みによる加熱処理を行ったが、この場合、その水蒸気吹込み処理時間を下記表1に示すように、各ビーカー毎に処理時間を変えて有機酸の蒸発除去処理を行った。かくして、9種類のダンプ液のサンプルA〜Iを得た。
このように得られた9種類のダンプ液のサンプルA〜Iの夫々について有機酸量を分析するために、各ダンプ液50gを水蒸気蒸留し、その各蒸留液を100cc採取して、これらを疎水性アニオン交換カラムによるイオンクロマトグラフでギ酸と酢酸の濃度を測定した。その測定結果は表1に示す通りであった。尚、表1中、対照電解液とは、濃硫酸を水で希釈して比重1.230(20℃)に調製して成る通常の電槽化成用電解液を意味する。この対照電解液についてもその蒸留液100ccを上記の定量法により酢酸とギ酸の含有量を測定した。その結果は表1に示す通りであった。即ち、通常の化成用電解液には、通常、酢酸は0.458ppm程度、ギ酸は0.406ppm程度を含んでいることを示している。
また、これら9種類のサンプルA〜Iについて比重を測定した。その結果を表1に示す。これから、水蒸気吹込み処理されたサンプルB〜Iの比重は、処理しないサンプルAの比重と変わらず、水蒸気吹込み処理によりダンプ液は濃縮されないことが判る。
Next, more detailed examples will be described in detail.
Example 1
Prepare 9 lead acid batteries each containing an electrode plate group consisting of unformed positive and negative electrode plates with sulfuric acid electrolyte with a specific gravity of 1.190 (20 ° C). After injecting a predetermined amount and carrying out a battery case chemical conversion treatment by a conventional method, each of the batteries is turned upside down to discharge the released electrolyte solution into each beaker, and a specific gravity of 1.230 (20 ° C.) is placed in each beaker. 500 cc of the dump liquid was recovered.
Next, out of the 9 beakers with 500 cc of dump liquid, the dump liquid in one beaker is left as it is, and the remaining 8 dump liquid beakers are blown with 100 ° C. water vapor. In this case, as shown in Table 1 below, the evaporation time of the organic acid was removed by changing the treatment time for each beaker. Thus, nine types of dump liquid samples A to I were obtained.
In order to analyze the amount of organic acid for each of the nine types of dump liquid samples A to I thus obtained, 50 g of each dump liquid was steam distilled, 100 cc of each distillate was sampled, and these were made hydrophobic. The concentration of formic acid and acetic acid was measured by ion chromatography using a neutral anion exchange column. The measurement results were as shown in Table 1. In Table 1, the reference electrolytic solution means a normal electrolytic solution for forming a battery case prepared by diluting concentrated sulfuric acid with water to a specific gravity of 1.230 (20 ° C.). Also for this control electrolyte, the contents of acetic acid and formic acid were measured for 100 cc of the distilled liquid by the above quantitative method. The results were as shown in Table 1. That is, it is shown that a normal chemical electrolyte contains about 0.458 ppm of acetic acid and about 0.406 ppm of formic acid.
Moreover, specific gravity was measured about these nine types of samples AI. The results are shown in Table 1. From this, it can be seen that the specific gravity of the samples B to I subjected to the steam blowing treatment is not different from the specific gravity of the sample A that is not treated, and the dump liquid is not concentrated by the steam blowing treatment.
上記表1から明らかなように、水蒸気吹込み処理をしないダンプ液サンプルAが示すように、酢酸は130.5ppm、ギ酸は143.6ppm含有しているが、これに水蒸気吹込み処理を行うときは、処理時間が経過するにつれ、これら有機酸は減少し、処理時間30分で酢酸の含有量は0.570ppm以下、ギ酸の含有量は0.398ppm以下と非常に少なくなり、対照電解液と略同様になり、処理時間40分以上では、酢酸の含有量は0.298ppm以下、ギ酸の含有量は0.232ppm以下と対照電解液中の酢酸とギ酸の夫々の含有量よりも少なくなることが判り、水蒸気吹込み処理により、ダンプ液は電槽化成電解液として再利用できることを確認した。 As apparent from Table 1 above, as shown in the dump liquid sample A that is not subjected to the steam blowing treatment, acetic acid is contained in 130.5 ppm and formic acid is contained in 143.6 ppm. As the treatment time elapses, these organic acids decrease, and in the treatment time of 30 minutes, the acetic acid content is 0.570 ppm or less and the formic acid content is 0.398 ppm or less. In the treatment time of 40 minutes or more, the acetic acid content is 0.298 ppm or less and the formic acid content is 0.232 ppm or less, which is less than the respective contents of acetic acid and formic acid in the reference electrolyte. As a result, it was confirmed that the dump solution could be reused as a battery case forming electrolyte by steam blowing treatment.
実施例2
実施例1と同様にして得られた比重1.230(20℃)のダンプ液を、9個の還流装置を持つフラスコ内に500ccづつ回収し、ダンプ液500cc容りの該フラスコ9個のうち、その1個については、未処理のまゝに放置し、残る8個の500ccのダンプ液容りフラスコは、夫々の電熱ヒーター上に載置し、沸騰させる。該ダンプ液の沸点は107℃であった。沸騰開始点から下記の表2のように沸騰による処理時間を変えて処理した。かくして、沸騰処理時間が10分間隔で異なる120分迄の8種類のダンプ液サンプルA′〜I′を得た。
上記の9種類のダンプ液サンプルA′〜I′について、実施例1に記載したと同様の方法で酢酸及びギ酸の含有量を夫々測定し、また、その各ダンプ液サンプルA′〜I′について、常法により比重を測定した。その結果を下記表2に示す。
Example 2
500 cc of a dump liquid having a specific gravity of 1.230 (20 ° C.) obtained in the same manner as in Example 1 was collected in a flask having nine reflux devices, One of them is left untreated, and the remaining eight 500 cc dump liquid flasks are placed on each electric heater and boiled. The boiling point of the dump liquid was 107 ° C. It processed by changing the processing time by boiling as shown in Table 2 below from the boiling start point. Thus, eight types of dump liquid samples A ′ to I ′ were obtained in which the boiling treatment time was different at 10 minute intervals up to 120 minutes.
The contents of acetic acid and formic acid were measured in the same manner as described in Example 1 for the above nine types of dump liquid samples A ′ to I ′, and each of the dump liquid samples A ′ to I ′ was measured. The specific gravity was measured by a conventional method. The results are shown in Table 2 below.
表2から明らかなように、煮沸処理による酢酸とギ酸の除去効果は、水蒸気吹込み処理の場合と同様に、処理時間30分で酢酸とギ酸の含有量は著しく少なくなり、対照電解液と略同様になり、処理時間40分以上では、酢酸は0.257ppm以下、ギ酸は0.215ppm以下と対照電解液のこれら有機酸の含有量よりも著しく少ない値とすることができることが判り、煮沸処理により、ダンプ液を化成用電解液として再利用するに適することを確認した。
尚、煮沸処理により、ダンプ液さんブルの比重は僅かに変動するが、化成用電解液として許容される比重1.150〜1.250の範囲であるから、そのまゝ再利用できるが、煮沸処理に還流装置を付けない場合は、水の蒸発が増大するため、再利用に当たり、比重を調製する作業が必要となる。この点に鑑み、水蒸気吹込み処理の方が好ましく、有利である。
As can be seen from Table 2, the removal effect of acetic acid and formic acid by boiling treatment is substantially the same as that of the control electrolyte, with the contents of acetic acid and formic acid being significantly reduced after 30 minutes of treatment, as in the case of steam blowing treatment. Similarly, when the treatment time is 40 minutes or more, it can be seen that acetic acid is 0.257 ppm or less and formic acid is 0.215 ppm or less, which can be significantly lower than the content of these organic acids in the control electrolyte. The dumping solution was confirmed to be suitable for reuse as a chemical electrolyte for chemical conversion.
In addition, although the specific gravity of the dump liquor is slightly changed by the boiling treatment, it can be reused as it is because it is within the range of the specific gravity of 1.150 to 1.250 which is allowed as the electrolytic solution for chemical conversion. When a reflux apparatus is not attached to the treatment, the evaporation of water increases, so that work for adjusting the specific gravity is required for reuse. In view of this point, the steam blowing treatment is preferable and advantageous.
また、他の実施例として上記の水蒸気吹込み処理と煮沸処理を併用する場合もあり、これにより、上記表1,表2に示すように、同様の有機酸除去効果をもたらすことを確認した。 In addition, as another example, the steam blowing process and the boiling process may be used in combination, and as a result, as shown in Tables 1 and 2, it was confirmed that the same organic acid removal effect was brought about.
実施例3
次に、ダンプ液を化成用電解液として再利用した後排出した場合に、電池内の極板群等に残存する電解液に含有する上記の有機酸による電池の正極端子に対する影響を、次のような比較試験により調べた。
即ち、上記の表1に示す水蒸気吹込み処理時間が0分、10分、30分のサンプルA,B,Dのダンプ液及び対照電解液を化成用電解液として、40 B 19タイプの各自動車用電池内に一定量づつ注液し、この4種の電池につき、常法により化成処理を行った。その後、その各電池より遊離電解液を排出し、次いで、各電池内に正規の比重をもつ硫酸電解液の所定量を注液して液式鉛蓄電池A,B,D及び対照電池を製造した。
これらの電池A,B,D及び対照電池について、電解液中の有機酸に起因する正極端子の下部の腐食の有無を確認する加速試験として、各電池につき、75℃ランプ放電で二週間の過放電後に、75℃で14.4Vの定電圧を一ヶ月行った後、解体して、正極端子の下部の腐食状態を観察した。その結果を表3に示す。
Example 3
Next, when the dump solution is reused as the chemical electrolyte and then discharged, the influence of the organic acid contained in the electrolyte remaining in the electrode plate group in the battery on the positive electrode terminal of the battery is as follows. The comparison test was conducted.
That is, each of the 40 B 19 type automobiles using the dump solution of the samples A, B, and D and the control electrolyte as the chemical electrolytes for the water vapor blowing time shown in Table 1 for 0 minutes, 10 minutes, and 30 minutes. A fixed amount of liquid was poured into the battery for chemicals, and the chemical conversion treatment was performed on these four types of batteries by a conventional method. Thereafter, the free electrolyte was discharged from each battery, and then a predetermined amount of sulfuric acid electrolyte having a normal specific gravity was poured into each battery to produce liquid lead-acid batteries A, B, D and a control battery. .
For these batteries A, B, D and the control battery, as an accelerated test for confirming the presence or absence of corrosion of the lower part of the positive electrode terminal due to the organic acid in the electrolyte, each battery was subjected to a 75 ° C. lamp discharge for 2 weeks. After discharge, a constant voltage of 14.4 V was applied at 75 ° C. for one month, and then disassembled, and the corrosion state of the lower portion of the positive electrode terminal was observed. The results are shown in Table 3.
表3から明らかなように、サンプルAのダンプ液、即ち、未処理のダンプ液を再利用した電池A及びサンプルBのダンプ液、即ち、水蒸気処理時間10分のダンプ液を再利用した電池Bでは、正極端子の下部に腐食が発生し、端子が破断寸前であった。これに対し、サンプルDのダンプ液、即ち、処理時間30分のダンプ液を再利用した電池Dの正極端子は、対照電解液を用いた対照電池の正極端子と同様に腐食が全く認められなかった。
以上の腐食試験の結果から次のことが判った。
即ち、ダンプ液中の酢酸及びギ酸の量を、本発明の処理により新しい化成用電解液として使用する対照電解液に通常含有する酢酸及びギ酸の含有量に略同等もしくはそれ以下に蒸発除去した有機酸を殆ど含まないように処理すれば、その処理済のダンプ液は化成用電解液として再利用することができること、更には、従来、化成処理完了後、排出させた後に新しい正規の比重をもつ電解液を規定量注液する代わりに、該処理済みのダンプ液をそのまゝ、或いは必要に応じ比重を調整した後、注液し、液式鉛蓄電池を製造することに利用することが明らかとなった。
尚また、処理済みのダンプ液を化成処理に再利用した後、その化成処理完了後に排出されるダンプ液につき本発明による処理を行い、化成処理用に再利用し、或いは液式電池製造用に利用することができることは言うまでもない。
As is clear from Table 3, the dump solution of sample A, that is, the battery A that reused the untreated dump solution, and the dump solution of sample B, that is, the battery B that reused the dump solution of water vapor treatment time 10 minutes. Then, corrosion occurred in the lower part of the positive electrode terminal, and the terminal was on the verge of breaking. On the other hand, the positive electrode terminal of the battery D in which the dump liquid of the sample D, that is, the dump liquid having a processing time of 30 minutes is reused, does not show any corrosion as in the positive electrode terminal of the control battery using the control electrolyte. It was.
The following was found from the results of the above corrosion tests.
That is, the amount of acetic acid and formic acid in the dump solution is removed by evaporation to a level substantially equal to or less than the content of acetic acid and formic acid normally contained in the control electrolyte used as a new chemical electrolyte by treatment of the present invention If treated so that it contains almost no acid, the treated dump solution can be reused as an electrolytic solution for chemical conversion. Furthermore, conventionally, after the chemical conversion treatment is completed, it has a new normal specific gravity after being discharged. It is clear that instead of injecting a specified amount of electrolytic solution, the treated dump solution is used as it is, or after adjusting the specific gravity as necessary, and then used to produce a liquid lead-acid battery. It became.
Furthermore, after the treated dump liquid is reused for the chemical conversion treatment, the dump liquid discharged after the chemical conversion treatment is completed is treated according to the present invention and reused for the chemical conversion treatment, or for the production of a liquid battery. Needless to say, it can be used.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004257863A JP2006073445A (en) | 2004-09-06 | 2004-09-06 | Processing method of dump liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004257863A JP2006073445A (en) | 2004-09-06 | 2004-09-06 | Processing method of dump liquid |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006073445A true JP2006073445A (en) | 2006-03-16 |
Family
ID=36153823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004257863A Pending JP2006073445A (en) | 2004-09-06 | 2004-09-06 | Processing method of dump liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006073445A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018195508A (en) * | 2017-05-19 | 2018-12-06 | 株式会社Gsユアサ | Lead storage battery |
CN109361033A (en) * | 2018-12-01 | 2019-02-19 | 贵州中伟资源循环产业发展有限公司 | One kind being used for lithium battery electrolytes cold type tilting device |
CN113646925A (en) * | 2019-03-29 | 2021-11-12 | 昭和电工材料株式会社 | Lead storage battery and method for producing the same |
-
2004
- 2004-09-06 JP JP2004257863A patent/JP2006073445A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018195508A (en) * | 2017-05-19 | 2018-12-06 | 株式会社Gsユアサ | Lead storage battery |
JP7155500B2 (en) | 2017-05-19 | 2022-10-19 | 株式会社Gsユアサ | lead acid battery |
CN109361033A (en) * | 2018-12-01 | 2019-02-19 | 贵州中伟资源循环产业发展有限公司 | One kind being used for lithium battery electrolytes cold type tilting device |
CN113646925A (en) * | 2019-03-29 | 2021-11-12 | 昭和电工材料株式会社 | Lead storage battery and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR3001328B1 (en) | CHELATE-FREE CHEMICAL DECONTAMINATION REAGENT FOR REMOVING A RADIOACTIVE OXIDE DENSE LAYER ON A METAL SURFACE AND CHEMICAL DECONTAMINATION METHOD USING THE SAME | |
TWI430354B (en) | Method of manufacturing a pyramidal structure | |
Du et al. | Recovery of lithium salt from spent lithium‐ion battery by less polar solvent wash and water extraction | |
KR850007162A (en) | Decontamination method and apparatus using electrolysis | |
JP2859081B2 (en) | Wet processing method and processing apparatus | |
CN104389011A (en) | Electrochemical decontamination electrolyte | |
JP2006073445A (en) | Processing method of dump liquid | |
Narayanan et al. | Recovery of acetic acid by supported liquid membrane using vegetable oils as liquid membrane | |
JP5373067B2 (en) | Amine recovery method from amine-containing wastewater | |
CN106948000A (en) | A kind of etching process method for improving mesohigh etched foil corrosion layer intensity | |
RU2286949C2 (en) | Method and the device for underwater decomposition of the organic contents of the waste electroconductive water solutions | |
JPH1157304A (en) | Method for purifying chemicals for manufacturing semiconductor devices and regenerating system thereof | |
CN108878141A (en) | A kind of preparation method of hydrochloric acid reaming high-field electrode foil | |
JP4883975B2 (en) | Method for removing deposits on substrate surface, treatment liquid for removal and removal apparatus | |
JP2006169134A (en) | Method for producing lignin from which organic acid is removed and lead storage battery obtained by adding lignin from which organic acid is removed to negative electrode active substance | |
CN110818038A (en) | Method for treating titanium or titanium alloy pickling waste liquid by capacitive deionization technology | |
JP2015136641A (en) | Method and apparatus for treating phosphoric acid waste liquid | |
JP2005263729A (en) | High purity methanol and method for producing the same | |
JP2011215355A (en) | Method and apparatus for regenerating resist peeling liquid | |
KR100272297B1 (en) | Passivation method of nickel-containing zirconium or zirconium alloy material | |
CN116514321A (en) | Novel method for recycling mixed acid waste acid | |
CN114737197A (en) | Cleaning agent and cleaning method for high-temperature failure fracture of heat-resistant steel | |
CN1321952C (en) | Method for removing halogen anion impurity in organic electrolytic salt | |
JP4746529B2 (en) | How to remove salt | |
CN103676502B (en) | Thick film negative photoresist release agent constituent |