[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006072874A - Signal light - Google Patents

Signal light Download PDF

Info

Publication number
JP2006072874A
JP2006072874A JP2004257949A JP2004257949A JP2006072874A JP 2006072874 A JP2006072874 A JP 2006072874A JP 2004257949 A JP2004257949 A JP 2004257949A JP 2004257949 A JP2004257949 A JP 2004257949A JP 2006072874 A JP2006072874 A JP 2006072874A
Authority
JP
Japan
Prior art keywords
light
optical lens
lens
led element
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004257949A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sekii
広行 関井
Masashi Minoshima
雅志 蓑島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2004257949A priority Critical patent/JP2006072874A/en
Publication of JP2006072874A publication Critical patent/JP2006072874A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/14Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/26Refractors, transparent cover plates, light guides or filters not provided in groups F21S43/235 - F21S43/255

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Traffic Control Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the combination of an optical lens and a micro lens in a signal light using an LED element as a light source for increasing the light output from each LED element and realizing uniform light emission with, even illuminance causing no dark part in a gap between the LED elements, when the number of the LED elements is reduced. <P>SOLUTION: This signal light is provided with a light source, constructed of a plurality of LED elements 3 arranged on a plane and an optical lens 41, arranged correspondingly in front of the respective LED elements 3. A group of micro lenses, which are arranged on the light emission face 41d side of the optical lens 41, integrally with it or separately from it for light distribution control, is arranged; and the light emission face 41d of the optical lens 41 is formed into a shape returning light reaching the light emission face 41d through the vicinity of an inflection point between a convex face 41a and a concave face 41b into parallel light. In this way, light within a strong light distribution area of the LED element can be distributed to a dark part generated due to the lens shape. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数のLED素子を光源とした信号灯に関する。   The present invention relates to a signal lamp using a plurality of LED elements as light sources.

従来から、複数配列されたLED素子の発光を効率良く集光するために、砲弾型のLED素子の前面に集光用凸レンズを配置した交通信号灯がある。この種の信号灯においては、信号灯から近距離の地点では配光から外れた状態となるため、信号灯の発光の視認が困難となる。また、西日(太陽光)等の外光がレンズにより各LED素子に集光され、LED素子実装基板面等で鏡面反射されると、点灯の視認性が悪くなり、点灯していないのに、点灯しているように見える場合がある(これを擬似点灯と言う)。この問題を解消するために、レンズと別体又は一体に光拡散用のプリズムを設けることが知られている(例えば、特許文献1参照)。   Conventionally, there is a traffic signal lamp in which a convex lens for condensing is arranged in front of a bullet-type LED element in order to efficiently collect light emitted from a plurality of arranged LED elements. In this type of signal lamp, since it is out of the light distribution at a short distance from the signal lamp, it is difficult to visually recognize the light emitted from the signal lamp. In addition, when external light such as western sunlight (sunlight) is condensed on each LED element by the lens and is specularly reflected on the LED element mounting substrate surface, etc., the visibility of lighting deteriorates and it is not lit. , It may appear to be lit (this is called pseudo-lighting). In order to solve this problem, it is known to provide a light diffusion prism separately or integrally with the lens (for example, see Patent Document 1).

また、個々のLED素子から発せられる光を効率的に屈折させて活用できるように、LED素子の前面にそれぞれに対応、かつ対面してレンズカット部を施したレンズを配置することが知られている(例えば、特許文献2参照)。
特開2002−183891号公報 特開昭63−23604号公報
In addition, it is known to arrange a lens with a lens cut portion corresponding to and facing each other on the front surface of the LED element so that light emitted from each LED element can be efficiently refracted and utilized. (For example, refer to Patent Document 2).
JP 2002-183891 A Japanese Unexamined Patent Publication No. 63-23604

ところで、信号灯としての発光径はほぼ250mm〜350mmであり、所定の光度を持たせつつ、発光径内部をできるだけ均一に発光させる必要があるが、上記特許文献1に示されるような、光拡散用のプリズムを持つ信号灯にあっても、砲弾型のLED素子を密接配置した場合、LED素子の個数が増え、コスト高となり、しかも、発光の隙間に暗部が生じる。LED素子の個数を減らし、個々のLED素子の光出力を高めると、LED素子間の隙間の暗部が一層目立つ。また、特許文献2に示されるようなレンズを持つ信号灯においても、依然として、レンズ間の隙間には暗部ができ、また、配光制御すると、個々のレンズの出射側で発光の輝度むらが大きくなる。特に、レンズ形状とLED素子の配光分布とに起因して、弱い発光領域ができ、例えば円環状に暗い部分ができるといった問題があった。   By the way, the light emission diameter as a signal lamp is approximately 250 mm to 350 mm, and it is necessary to emit light within the light emission diameter as uniformly as possible while maintaining a predetermined luminous intensity. Even in the case of a signal lamp having a prism, when the bullet-type LED elements are closely arranged, the number of LED elements increases, resulting in a high cost, and a dark portion is generated in the light emission gap. When the number of LED elements is reduced and the light output of each LED element is increased, the dark part of the gap between the LED elements becomes more conspicuous. Further, even in a signal lamp having a lens as disclosed in Patent Document 2, there is still a dark part in the gap between the lenses, and when the light distribution is controlled, the luminance unevenness of light emission increases on the exit side of each lens. . In particular, due to the lens shape and the light distribution of the LED elements, there is a problem that a weak light emitting region is formed, for example, a dark portion is formed in an annular shape.

本発明は、上記問題を解消するものであり、光学レンズと微小レンズの組み合わせを工夫することで、個々のLED素子の光出力を高め、LED素子の個数を減らしても、LED素子間の隙間の暗部が生じないものとなり、均一な発光が実現できると共に、レンズ形状とLED素子の配光分布とに起因する発光の輝度むらを防止することができる信号灯を提供することを目的とする。   The present invention solves the above problem, and by devising a combination of an optical lens and a microlens, even if the light output of each LED element is increased and the number of LED elements is reduced, the gap between the LED elements is reduced. Therefore, it is an object of the present invention to provide a signal lamp capable of realizing uniform light emission and preventing uneven luminance of light emission due to the lens shape and the light distribution of the LED elements.

上述目的を達成するため、本発明は、面状に配置した複数のLED素子から成る光源と、各LED素子の前方に対応配置した光学レンズとを備えた信号灯において、前記光学レンズの出射面側に、該レンズと一体又は別体に配光制御のための微小なレンズを複数配置して成る微小レンズ群を設け、前記光学レンズは、LED素子に対面して形成された凸面と、この凸面の周縁部にLED素子を囲むように形成された凹面と、この凹面を透過したLED素子からの光を全反射する反射面と、前記凸面及び反射面からの光を出射する出射面とを有し、前記LED素子の配光がランバート分布の場合、前記光学レンズの凸面及び該凸面と凹面との変曲点付近を通って出射面に達する光を該出射面で平行光に戻すためのレンズ形状を該出射面に設けたものである。また、本発明は、面状に配置した複数のLED素子から成る光源と、各LED素子の前方に対応配置した光学レンズとを備えた信号灯において、前記光学レンズの出射面側に、該レンズと一体又は別体に配光制御のための微小なレンズを複数配置して成る微小レンズ群を設け、前記光学レンズは、LED素子に対面して形成された凸面と、この凸面の周縁部にLED素子を囲むように形成された凹面と、この凹面を透過したLED素子からの光を全反射する反射面と、前記凸面及び反射面からの光を出射する出射面とを有し、前記LED素子の配光が側方寄りに強い場合、前記光学レンズの反射面を、該反射光が前記出射面の弱い配光領域を通るように形成したものである。   In order to achieve the above-mentioned object, the present invention provides a signal lamp including a light source composed of a plurality of LED elements arranged in a planar shape and an optical lens arranged corresponding to the front of each LED element. In addition, a micro lens group in which a plurality of micro lenses for light distribution control are arranged separately or separately from the lens is provided, and the optical lens includes a convex surface formed facing the LED element, and the convex surface. A concave surface formed so as to surround the LED element at the peripheral edge of the LED, a reflective surface that totally reflects light from the LED element that has transmitted through the concave surface, and an output surface that emits light from the convex surface and the reflective surface. When the light distribution of the LED element is Lambert distribution, the lens for returning the light reaching the exit surface through the convex surface of the optical lens and the inflection point between the convex surface and the concave surface to parallel light on the exit surface The shape was provided on the exit surface Than it is. Further, the present invention provides a signal lamp including a light source composed of a plurality of LED elements arranged in a planar shape and an optical lens arranged corresponding to the front of each LED element, and the lens on the light exit surface side of the optical lens. A microlens group comprising a plurality of microlenses for controlling light distribution is provided integrally or separately, and the optical lens has a convex surface formed facing the LED element and an LED on the peripheral edge of the convex surface. The LED element having a concave surface formed so as to surround the element, a reflective surface that totally reflects light from the LED element that has transmitted through the concave surface, and an output surface that emits light from the convex surface and the reflective surface; When the light distribution is strong to the side, the reflecting surface of the optical lens is formed so that the reflected light passes through a weak light distribution region of the emitting surface.

本発明によれば、光学レンズにより個々のLED素子からの発光面積を拡大した上で、微小レンズ群により配光するので、個々のLED素子の光出力を高め、LED素子の個数を減らしたとしても、光学レンズ間の隙間に暗部が生じ難くなり、輝度分布むらが少なくなり、均一発光が可能となる。しかも、光学レンズの凸面と凹面との変曲点付近を通って出射面に達する光を該レンズの出射面で平行光に戻すので、LED素子のランバート分布の強い範囲の光を、光学レンズ形状に起因して生じる暗部に配光することができる。これにより、発光の輝度むらを改善でき、均一な発光が可能となる。また、光学レンズの反射面による反射光が、光学レンズ形状に起因する出射面の弱い配光領域を通るようにしたので、LED素子の側方寄りに強い配光を有効に利用でき、上記と同等の作用効果が得られる。   According to the present invention, the light emitting area from each LED element is enlarged by the optical lens and the light is distributed by the micro lens group, so that the light output of each LED element is increased and the number of LED elements is reduced. However, it is difficult for dark portions to occur in the gaps between the optical lenses, the unevenness of the luminance distribution is reduced, and uniform light emission is possible. Moreover, the light that reaches the exit surface through the vicinity of the inflection point between the convex surface and the concave surface of the optical lens is converted back to parallel light on the exit surface of the lens, so that the light in the strong Lambertian distribution of the LED element It is possible to distribute light to the dark part caused by the light. As a result, the luminance unevenness of light emission can be improved, and uniform light emission can be achieved. In addition, since the light reflected by the reflecting surface of the optical lens passes through a weak light distribution region of the emitting surface due to the optical lens shape, a strong light distribution near the side of the LED element can be effectively used. Equivalent effects can be obtained.

以下、本発明の実施形態に係る信号灯について図面を参照して説明する。図1は信号灯の構成を、図2は信号灯の要部正面構成を、図3は信号灯の要部構成を概念的に示す。図1において、信号灯1は、回路配線が施された基板2上に前面視円形に複数個配列実装したLED素子3から成る光源と、この光源の前面に各LED素子3に対応して設けられた光学レンズプレート4と、樹脂又は金属材から成る黒色の背面本体5と、耐紫外線特性を有する樹脂材で成る透明又は色付き前面カバー6と、電源回路7とを備える。電源回路7は、電源線8から電源供給を受けて、基板2の回路に配線9を通して光源点灯用の電力を供給する。信号灯は、赤色、青色、黄色の3色から成るが、ここでは、その内の1つのみを図示している。   Hereinafter, signal lights according to embodiments of the present invention will be described with reference to the drawings. 1 shows the configuration of the signal lamp, FIG. 2 conceptually shows the front configuration of the main part of the signal lamp, and FIG. 3 conceptually shows the main configuration of the signal lamp. In FIG. 1, a signal lamp 1 is provided corresponding to each LED element 3 on a front surface of the light source, and a light source composed of a plurality of LED elements 3 arranged and mounted in a circle in front view on a circuit board 2 on which circuit wiring is applied. The optical lens plate 4, a black back body 5 made of a resin or a metal material, a transparent or colored front cover 6 made of a resin material having ultraviolet resistance, and a power circuit 7. The power supply circuit 7 receives power supply from the power supply line 8 and supplies power for lighting the light source through the wiring 9 to the circuit of the substrate 2. The signal light is composed of three colors of red, blue, and yellow, but only one of them is shown here.

光学レンズプレート4は、透明又は色付きのアクリル等の樹脂素材又はガラスで構成され、各LED素子3の前方に対応配置した複数の光学レンズ41と、その出射面側に該レンズ41と一体又は別体に形成した配光制御のための複数の微小レンズ42からなる微小レンズ群とを備える。各LED素子3を単位LEDと称したとき、各光学レンズ41は単位レンズと称される。個々の光学レンズ41により個々のLED素子3からの発光面積を拡大している。各光学レンズ41は、本実施形態では、図2、図3に示したように、正面視正六角形とされ、レンズ間の隙間も樹脂により一体形成され、隙間を可能な限り抑制し、可能な限り暗部が生じることを低減している。なお、各光学レンズ41は正六角形に限られるものではない。LED素子3の数量は、適宜数とすればよく、例えば、30個乃至90個とする。また、光学レンズプレート4の外周部は、発光部が円形になるように、レンズの一部をカットしている。   The optical lens plate 4 is made of a resin material such as transparent or colored acrylic or glass, and a plurality of optical lenses 41 arranged corresponding to the front of each LED element 3, and the lens 41 is integrated or separated on the exit surface side. And a microlens group including a plurality of microlenses 42 for light distribution control formed on the body. When each LED element 3 is referred to as a unit LED, each optical lens 41 is referred to as a unit lens. The light emitting area from each LED element 3 is expanded by each optical lens 41. In this embodiment, as shown in FIGS. 2 and 3, each optical lens 41 has a regular hexagonal shape when viewed from the front, and the gap between the lenses is integrally formed of a resin so as to suppress the gap as much as possible. As much as possible, the occurrence of dark areas is reduced. Each optical lens 41 is not limited to a regular hexagon. The number of the LED elements 3 may be an appropriate number, for example, 30 to 90. Further, a part of the lens is cut at the outer peripheral portion of the optical lens plate 4 so that the light emitting portion is circular.

微小レンズ群は、光学レンズ41と一体又は別体に多数の微小レンズ42を緊密に並べたものであり、図1では別部材のレンズシート44上に微小レンズ42を形成した例を示している。微小レンズ群は、配光機能を持たせると共に均一な発光を図り、しかも正面から見たとき平面部が無いようにして、入射した西日等の反射を抑制し、反射光に起因する擬似発光を防止している。   The micro lens group is formed by closely arranging a large number of micro lenses 42 integrally or separately with the optical lens 41, and FIG. 1 shows an example in which the micro lenses 42 are formed on a lens sheet 44 which is a separate member. . The micro lens group has a light distribution function and emits light uniformly, and when viewed from the front, it has no flat part, suppresses reflection of incident western sun, and simulates light emission caused by reflected light. Is preventing.

図4は、本実施形態による光学レンズ41の基本構成を示す。同図は、レンズ断面を示すが、破断線は省いており(以下、同様)、また、光学レンズ41の出射面に設けられる微小レンズ群も図示を省いている。光学レンズ41は、光軸Xに対して回転対称形状とされ、LED素子3に対面する中央部に形成された凸面41aと、この凸面41aの周縁部にLED素子3を囲むように形成された凹面41bと、この凹面41bを透過したLED素子3からの光を全反射する反射面41cと、光軸Xと垂直に交わる出射面41dとを有する。このような基本形状の光学レンズ41を、本明細書では、ハイブリッドレンズと称する。また、LED素子3の発光面3aは面的にあるが、レンズ形状設計は、点光源Aを基に行う。LED素子3は、発光面3aの中心が点光源Aの位置になるように配置する。   FIG. 4 shows a basic configuration of the optical lens 41 according to the present embodiment. This figure shows a lens cross section, but the broken line is omitted (the same applies hereinafter), and the minute lens group provided on the exit surface of the optical lens 41 is also omitted. The optical lens 41 has a rotationally symmetric shape with respect to the optical axis X, and is formed so as to surround the LED element 3 on the convex surface 41a formed at the central portion facing the LED element 3 and the peripheral portion of the convex surface 41a. It has a concave surface 41b, a reflective surface 41c that totally reflects light from the LED element 3 that has passed through the concave surface 41b, and an output surface 41d that intersects the optical axis X perpendicularly. In this specification, the optical lens 41 having such a basic shape is referred to as a hybrid lens. Further, although the light emitting surface 3a of the LED element 3 is planar, the lens shape design is performed based on the point light source A. The LED element 3 is arranged so that the center of the light emitting surface 3a is the position of the point light source A.

上記光学レンズ41の凸面41aは、点光源Aからの光のうち、この面に入射した光が入射屈折後、光軸Xと平行な光線となるように形状に設定する。凹面41bは、光を入射屈折させる面であり、反射面41cに導く。凹面41bと光軸Xとの成す角度θは、レンズ成型用金型の抜き勾配確保のための0度以上の角度である。反射面41cは、この面で全反射した光線が光軸Xと平行な光となるように形状を設定する。出射面41dは、本例では平面であり、出射される光は、点光源の場合、平行光になる(実際には光源は大きさを持つので、光軸Xを中心に、ある程度広がりを持つ)。出射面41dには、図示していない微小レンズ群が設けられる。L1は、反射面41cの最外周に届く光線を示し、少なくとも、この光線L1を反射面41cで利用できるようにレンズ口径は決定される。   The convex surface 41a of the optical lens 41 is set in a shape such that light incident on this surface of the light from the point light source A becomes a light beam parallel to the optical axis X after incident refraction. The concave surface 41b is a surface that refracts light and guides it to the reflective surface 41c. The angle θ formed by the concave surface 41b and the optical axis X is an angle of 0 ° or more for securing the draft angle of the lens molding die. The shape of the reflecting surface 41c is set so that the light beam totally reflected by this surface becomes light parallel to the optical axis X. The exit surface 41d is a flat surface in this example, and the emitted light becomes parallel light in the case of a point light source (in fact, since the light source has a size, it has a certain extent around the optical axis X). ). A minute lens group (not shown) is provided on the emission surface 41d. L1 indicates a light beam that reaches the outermost periphery of the reflection surface 41c, and the lens aperture is determined so that at least the light beam L1 can be used by the reflection surface 41c.

図5、図6(a)(b)は光学レンズ41及びその出射面に設けられる微小レンズ42の構成を示す。図5では、微小レンズ42は光学レンズ41と一体に設けられている。光学レンズ41は、ハイブリッドレンズの基本形状はそのままに、微小レンズ42の設計により、任意の配光に制御でき、信号灯に必要な水平面より下方向に配光する非対称配光とすることができる。それと同時に、均一発光が可能で、輝度分布むらが抑制される。図6(a)(b)では、微小レンズ42は、光学レンズ41の出射面にそれとは別部材のレンズシート44(又はカバー)に設けられている。同図(a)(b)では、レンズシート44の微小レンズ42が有る面を内外、逆としている。微小レンズ群は、光学レンズ41とは別部材のレンズシートに設けてもよいし、また、光学レンズ41の出射面を押し出しにより一体に形成してもよい。   FIGS. 5, 6A and 6B show the configuration of the optical lens 41 and the minute lens 42 provided on the exit surface thereof. In FIG. 5, the micro lens 42 is provided integrally with the optical lens 41. The optical lens 41 can be controlled to an arbitrary light distribution by the design of the microlens 42 without changing the basic shape of the hybrid lens, and can be an asymmetric light distribution that distributes light below the horizontal plane required for the signal lamp. At the same time, uniform light emission is possible, and uneven brightness distribution is suppressed. 6A and 6B, the micro lens 42 is provided on the exit surface of the optical lens 41 on a lens sheet 44 (or cover) which is a separate member. In FIGS. 4A and 4B, the surface of the lens sheet 44 on which the microlenses 42 are present is reversed inside and outside. The minute lens group may be provided on a lens sheet that is a separate member from the optical lens 41, or the emission surface of the optical lens 41 may be integrally formed by extrusion.

ここで、図7を参照して、本発明を適用していない光学レンズを用いた場合の、レンズ形状とLED素子の配光特性に起因して輝度むらが生じる様子を説明する。光学レンズ41は、図4に示したものと同等のものであり、光学レンズ41の成形時には、凹面41bに金型を引き抜くためのテーパが必要であり、その形状のために、凹面41bに対応する光軸Xに直交する方向幅Wの領域は、発光しない部分となる。LED素子3が、光軸X方向に強く、側方向に弱いランバート配光特性を持つものであるとすると、側方向から出射し凹面41bを通って反射面41cにより反射され、出射面41dより出射される光線Lは、光量が弱いものとなる。このように、発光しない部分と弱く発光する部分とが近接して生じる。このため、出射面41dを正面から見ると、図8に示すように、円環状の暗部Bが生じ、発光の均一性を大きく損なう。   Here, with reference to FIG. 7, a description will be given of how luminance unevenness occurs due to the lens shape and the light distribution characteristics of the LED elements when an optical lens to which the present invention is not applied is used. The optical lens 41 is equivalent to that shown in FIG. 4, and when the optical lens 41 is molded, the concave surface 41b needs a taper for pulling out the mold, and because of its shape, it corresponds to the concave surface 41b. A region having a width W in the direction perpendicular to the optical axis X is a portion that does not emit light. If the LED element 3 has a Lambertian light distribution characteristic that is strong in the optical axis X direction and weak in the lateral direction, the LED element 3 emits from the lateral direction, is reflected by the reflecting surface 41c through the concave surface 41b, and is emitted from the emitting surface 41d. The light beam L is weak in light quantity. As described above, a portion that does not emit light and a portion that emits light weakly occur in the vicinity. For this reason, when the emission surface 41d is viewed from the front, an annular dark portion B is generated as shown in FIG. 8, and the uniformity of light emission is greatly impaired.

そこで、本発明の信号灯は、LED素子の強い配光範囲の光を有効に使い、光学レンズ形状に起因した出射面の暗部に配光することにより、光学レンズの出射面に暗部が発生しないようにして発光の輝度むらを改善し、より均一発光性を高めるものである。まず、図9及び図10を参照して、LED素子の配光がランバート分布の場合を説明する。なお、光学レンズ41は、上述したように、均一発光を可能とする微小レンズ42を持つが、図10では微小レンズ42を省いている。図9は、LED素子3の配光が素子正面方向に強い、一般的なランバート分布である場合を示し、図10は、その場合に輝度むらを改善できるハイブリッドな光学レンズ41の実施例を示す。   Therefore, the signal lamp of the present invention effectively uses the light in the strong light distribution range of the LED element and distributes the light to the dark part of the exit surface due to the shape of the optical lens so that the dark part does not occur on the exit surface of the optical lens. Thus, the luminance unevenness of light emission is improved, and the uniform light emission property is enhanced. First, the case where the light distribution of the LED element is Lambert distribution will be described with reference to FIGS. As described above, the optical lens 41 has the micro lens 42 that enables uniform light emission, but the micro lens 42 is omitted in FIG. FIG. 9 shows a case where the light distribution of the LED element 3 is a general Lambert distribution which is strong in the front direction of the element, and FIG. 10 shows an embodiment of the hybrid optical lens 41 which can improve luminance unevenness in that case. .

図10において、光学レンズ41は、LED素子3の配光が入射面中央部(太線で示す)の凸面41a及びこの凸面41aと凹面41bとの変曲点α付近を通って上面部の出射面41dに達する光を、出射面41dで平行光に戻すためのレンズ上面形状41e(太線で示す)を出射面に設けている。このように光学レンズを形成することにより、LED素子3のランバート分布の強い範囲の光を、光学レンズ41の形状に起因して生じる方向幅Wの発光しない暗部に配光することができる。詳細には、レンズの変曲点αを通って屈折する光線Lが、レンズ上面形状41eの範囲で端部βの周辺に到達するようにレンズ形状を設計する。これにより、LED配光の強い範囲を有効に使い、発光の輝度むらを改善でき、均一な発光が可能となる。なお、凹面41bは、凸面41aと反射面41cとの間、すなわち、変曲点αともう一つの変曲点γとの間の面である。   In FIG. 10, the optical lens 41 has a light distribution of the LED element 3 passing through the convex surface 41a at the center of the incident surface (indicated by a thick line) and the vicinity of the inflection point α between the convex surface 41a and the concave surface 41b. A lens upper surface shape 41e (indicated by a thick line) for returning light reaching 41d to parallel light on the output surface 41d is provided on the output surface. By forming the optical lens in this manner, light in a range where the Lambert distribution of the LED element 3 is strong can be distributed to a dark portion where light is not emitted with a direction width W caused by the shape of the optical lens 41. Specifically, the lens shape is designed so that the light beam L refracted through the lens inflection point α reaches the periphery of the end β within the range of the lens upper surface shape 41e. Thereby, the strong range of LED light distribution can be used effectively, luminance unevenness of light emission can be improved, and uniform light emission can be achieved. The concave surface 41b is a surface between the convex surface 41a and the reflective surface 41c, that is, a surface between the inflection point α and another inflection point γ.

図11は、LED素子3の配光が素子の側方(周囲)寄りに強い、バットウィング分布である場合を示し、図12(a)(b)は、その場合に輝度むらを改善できるハイブリッドな光学レンズ41の実施例を示す。この光学レンズ41は、反射面41c(太線で示す)を、反射光が出射面41dの弱い配光領域(レンズ形状に起因する)を通るように形成している。出射面41dのうち、外周領域、つまり反射面41cからの反射光が到達する領域は、図12(a)に示すように、球面形状41f(太線で示す)に、又は、図12(b)に示すように、円錐形状41g(太線で示す)とし、平行光が出射されるようにしている。これにより、上記と同様に、LED配光の強い範囲を有効に使い、発光の輝度むらを改善でき、均一な発光が可能となる。さらに、このような形状によれば、レンズの成形性が良く、かつ、軽量化とコストダウンが実現できる。なお、出射面41dは、図12(a)(b)ともに平面状のものを示すが、これらは凸面41aの形状に合わせて設計すれば、図13(a)(b)、図14(a)(b)に示すように、凸形状でも凹形状でも構わない。   FIG. 11 shows a case where the light distribution of the LED element 3 is a batwing distribution that is strong toward the side (periphery) of the element, and FIGS. 12A and 12B are hybrids that can improve luminance unevenness in that case. An example of the optical lens 41 will be described. The optical lens 41 is formed with a reflection surface 41c (indicated by a thick line) so that the reflected light passes through a weak light distribution region (due to the lens shape) of the emission surface 41d. Of the exit surface 41d, the outer peripheral region, that is, the region where the reflected light from the reflection surface 41c reaches, is formed into a spherical shape 41f (indicated by a thick line) as shown in FIG. 12 (a), or FIG. As shown in FIG. 4, the conical shape is 41 g (indicated by a thick line) so that parallel light is emitted. Thereby, similarly to the above, it is possible to effectively use the strong range of the LED light distribution, improve the luminance unevenness of light emission, and enable uniform light emission. Furthermore, according to such a shape, the moldability of the lens is good, and weight reduction and cost reduction can be realized. In addition, although the output surface 41d shows a planar shape in FIGS. 12 (a) and 12 (b), if these are designed in accordance with the shape of the convex surface 41a, FIGS. 13 (a) (b) and 14 (a). ) As shown in (b), it may be convex or concave.

そして、図13(a)のように、凹形状の出射面41d’とする場合は、入射側の凸面41a’の曲率を小さくすれば、図12(a)と同じ効果、すなわち平行光が得られる。図13(b)のように、凸形状の出射面41d”とする場合には、入射側の凸面41a”の曲率を大きくすれば、図12(a)と同じ効果が得られる。   As shown in FIG. 13A, when the concave exit surface 41d ′ is used, if the curvature of the convex surface 41a ′ on the incident side is reduced, the same effect as in FIG. It is done. As shown in FIG. 13B, in the case of the convex emission surface 41d ″, the same effect as FIG. 12A can be obtained by increasing the curvature of the convex surface 41a ″ on the incident side.

また、図14(a)のように、凹形状の出射面41d’とする場合は、凸面41a’の曲率を小さくする。図14(b)のように、凸形状の出射面41d”とする場合は、凸面41a”の曲率を大きくする。これらにより、図12(b)と同じ効果が得られる。   Further, as shown in FIG. 14A, in the case of a concave emission surface 41d ', the curvature of the convex surface 41a' is reduced. As shown in FIG. 14B, when the convex emission surface 41d ″ is used, the curvature of the convex surface 41a ″ is increased. By these, the same effect as FIG.12 (b) is acquired.

なお、本発明は、上記実施例の構成に限られることなく、発明の趣旨を変更しない範囲で種々の変形が可能で、例えば、ハイブリッドレンズとした光学レンズ41は、レンズ間に暗部が生じないような任意のレンズ形状及び配置を採用することができる。また、光学レンズ41及び微小レンズ42は、信号灯の正面方向に対して信号灯として必要ない上方向への配光を少なくした上下非対称配光を実現するような形態としてもよい。   The present invention is not limited to the configuration of the above-described embodiment, and various modifications are possible without departing from the spirit of the invention. For example, the optical lens 41 as a hybrid lens does not have a dark portion between the lenses. Any lens shape and arrangement can be employed. Further, the optical lens 41 and the micro lens 42 may be configured to realize a vertically asymmetrical light distribution in which an upward light distribution that is not necessary as a signal lamp is reduced with respect to the front direction of the signal lamp.

本発明の一実施形態に係る信号灯の構成図。The block diagram of the signal lamp which concerns on one Embodiment of this invention. 同信号灯の要部の正面図。The front view of the principal part of the signal lamp. 同信号灯の要部を概念的に示す斜視図。The perspective view which shows notionally the principal part of the signal lamp. 同信号灯における光学レンズの基本構成の断面図。Sectional drawing of the basic composition of the optical lens in the signal lamp. 光学レンズの出射面に設けられる微小レンズの構成を示す図。The figure which shows the structure of the micro lens provided in the output surface of an optical lens. (a)(b)は同微小レンズの上記とは別の構成を示す図。(A) and (b) are diagrams showing a configuration different from the above of the microlens. 本発明を適用していない光学レンズの作用を示す図。The figure which shows the effect | action of the optical lens which has not applied this invention. 同上本発明を適用していない光学レンズの出射面を見た図。The figure which looked at the output surface of the optical lens which has not applied this invention same as the above. LEDの配光分布を示す図。The figure which shows the light distribution of LED. 本発明を適用した光学レンズの実施例を示す断面図。Sectional drawing which shows the Example of the optical lens to which this invention is applied. LEDの他の配光分布を示す図。The figure which shows the other light distribution of LED. (a)(b)は本発明を適用した光学レンズの他の実施例を示す断面図。(A) (b) is sectional drawing which shows the other Example of the optical lens to which this invention is applied. (a)(b)は図12(a)の光学レンズの変形例を示す断面図。(A) and (b) are sectional drawings which show the modification of the optical lens of Fig.12 (a). (a)(b)は図12(b)の光学レンズの変形例を示す断面図。(A) and (b) are sectional views showing a modification of the optical lens of FIG. 12 (b).

符号の説明Explanation of symbols

1 信号灯
3 LED素子
4 光学レンズプレート
41 光学レンズ
41a 凸面
41b 凹面
41c 反射面
41d 出射面
41e レンズ上面形状
41f 球面形状
41g 円錐形状
42 微小レンズ
DESCRIPTION OF SYMBOLS 1 Signal lamp 3 LED element 4 Optical lens plate 41 Optical lens 41a Convex surface 41b Concave surface 41c Reflective surface 41d Output surface 41e Lens upper surface shape 41f Spherical shape 41g Conical shape 42 Micro lens

Claims (2)

面状に配置した複数のLED素子から成る光源と、各LED素子の前方に対応配置した光学レンズとを備えた信号灯において、
前記光学レンズの出射面側に、該レンズと一体又は別体に配光制御のための微小なレンズを複数配置して成る微小レンズ群を設け、
前記光学レンズは、LED素子に対面して形成された凸面と、この凸面の周縁部にLED素子を囲むように形成された凹面と、この凹面を透過したLED素子からの光を全反射する反射面と、前記凸面及び反射面からの光を出射する出射面とを有し、
前記LED素子の配光がランバート分布の場合、前記光学レンズの凸面及び該凸面と凹面との変曲点付近を通って出射面に達する光を該出射面で平行光に戻すためのレンズ形状を該出射面に設けたことを特徴とする信号灯。
In a signal lamp comprising a light source composed of a plurality of LED elements arranged in a planar shape and an optical lens arranged corresponding to the front of each LED element,
Provided on the exit surface side of the optical lens is a micro lens group in which a plurality of micro lenses for light distribution control are arranged separately or separately from the lens,
The optical lens has a convex surface formed facing the LED element, a concave surface formed so as to surround the LED element at a peripheral portion of the convex surface, and a reflection that totally reflects light from the LED element that has transmitted through the concave surface. A surface, and an exit surface that emits light from the convex surface and the reflective surface,
When the light distribution of the LED element is Lambert distribution, a lens shape for returning the light reaching the exit surface through the convex surface of the optical lens and the inflection point between the convex surface and the concave surface to parallel light on the exit surface A signal lamp provided on the emission surface.
面状に配置した複数のLED素子から成る光源と、各LED素子の前方に対応配置した光学レンズとを備えた信号灯において、
前記光学レンズの出射面側に、該レンズと一体又は別体に配光制御のための微小なレンズを複数配置して成る微小レンズ群を設け、
前記光学レンズは、LED素子に対面して形成された凸面と、この凸面の周縁部にLED素子を囲むように形成された凹面と、この凹面を透過したLED素子からの光を全反射する反射面と、前記凸面及び反射面からの光を出射する出射面とを有し、
前記LED素子の配光が側方寄りに強い場合、前記光学レンズの反射面を、該反射光が前記出射面の弱い配光領域を通るように形成したことを特徴とする信号灯。
In a signal lamp comprising a light source composed of a plurality of LED elements arranged in a planar shape and an optical lens arranged corresponding to the front of each LED element,
Provided on the exit surface side of the optical lens is a micro lens group in which a plurality of micro lenses for light distribution control are arranged separately or separately from the lens,
The optical lens has a convex surface formed facing the LED element, a concave surface formed so as to surround the LED element at a peripheral portion of the convex surface, and a reflection that totally reflects light from the LED element that has transmitted through the concave surface. A surface, and an exit surface that emits light from the convex surface and the reflective surface,
A signal lamp characterized in that when the light distribution of the LED element is strong in the lateral direction, the reflection surface of the optical lens is formed so that the reflected light passes through a light distribution region where the emission surface is weak.
JP2004257949A 2004-09-06 2004-09-06 Signal light Withdrawn JP2006072874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004257949A JP2006072874A (en) 2004-09-06 2004-09-06 Signal light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004257949A JP2006072874A (en) 2004-09-06 2004-09-06 Signal light

Publications (1)

Publication Number Publication Date
JP2006072874A true JP2006072874A (en) 2006-03-16

Family

ID=36153411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004257949A Withdrawn JP2006072874A (en) 2004-09-06 2004-09-06 Signal light

Country Status (1)

Country Link
JP (1) JP2006072874A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192354A (en) * 2007-02-01 2008-08-21 Toyota Motor Corp Lamp structure
WO2009020214A1 (en) * 2007-08-09 2009-02-12 Sharp Kabushiki Kaisha Light emitting device and illuminating device provided with the same
JP2009266516A (en) * 2008-04-24 2009-11-12 Panasonic Electric Works Co Ltd Light-emitting unit with lens
US7980733B2 (en) 2008-06-30 2011-07-19 E-Pin Optical Industry Co., Ltd. Aspherical LED angular lens for wide distribution patterns and LED assembly using the same
US7993035B2 (en) 2008-06-30 2011-08-09 E-Pin Optical Industry Co., Ltd. Aspherical LED angular lens for narrow distribution patterns and LED assembly using the same
US8011811B2 (en) 2008-06-30 2011-09-06 E-Pin Optical Industry Co., Ltd. Aspherical LED angular lens for central distribution patterns and LED assembly using the same
KR101150713B1 (en) 2009-11-27 2012-06-08 주식회사 세코닉스 A condensing lens having a oval-shape light emitting
JP2014075331A (en) * 2012-09-13 2014-04-24 Koito Mfg Co Ltd Lighting fixture for vehicle
JP2014082163A (en) * 2012-10-18 2014-05-08 Ichikoh Ind Ltd Vehicular headlamp
JP2014175284A (en) * 2013-03-13 2014-09-22 Ichikoh Ind Ltd Vehicular lighting fixture
JP2014207125A (en) * 2013-04-12 2014-10-30 パナソニック株式会社 Illuminating device
JP2016001577A (en) * 2014-06-12 2016-01-07 パナソニックIpマネジメント株式会社 Luminaire and vehicle including the same
CN108182813A (en) * 2018-01-16 2018-06-19 宁波大学 Traffic lights intelligent prompt device
CN109764304A (en) * 2019-02-25 2019-05-17 华域视觉科技(上海)有限公司 Using the car light mould group of condenser

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192354A (en) * 2007-02-01 2008-08-21 Toyota Motor Corp Lamp structure
WO2009020214A1 (en) * 2007-08-09 2009-02-12 Sharp Kabushiki Kaisha Light emitting device and illuminating device provided with the same
US8177380B2 (en) 2007-08-09 2012-05-15 Sharp Kabushiki Kaisha Light emitting device and lighting device having the same
JP2009266516A (en) * 2008-04-24 2009-11-12 Panasonic Electric Works Co Ltd Light-emitting unit with lens
US7980733B2 (en) 2008-06-30 2011-07-19 E-Pin Optical Industry Co., Ltd. Aspherical LED angular lens for wide distribution patterns and LED assembly using the same
US7993035B2 (en) 2008-06-30 2011-08-09 E-Pin Optical Industry Co., Ltd. Aspherical LED angular lens for narrow distribution patterns and LED assembly using the same
US8011811B2 (en) 2008-06-30 2011-09-06 E-Pin Optical Industry Co., Ltd. Aspherical LED angular lens for central distribution patterns and LED assembly using the same
KR101150713B1 (en) 2009-11-27 2012-06-08 주식회사 세코닉스 A condensing lens having a oval-shape light emitting
JP2014075331A (en) * 2012-09-13 2014-04-24 Koito Mfg Co Ltd Lighting fixture for vehicle
JP2014082163A (en) * 2012-10-18 2014-05-08 Ichikoh Ind Ltd Vehicular headlamp
JP2014175284A (en) * 2013-03-13 2014-09-22 Ichikoh Ind Ltd Vehicular lighting fixture
JP2014207125A (en) * 2013-04-12 2014-10-30 パナソニック株式会社 Illuminating device
JP2016001577A (en) * 2014-06-12 2016-01-07 パナソニックIpマネジメント株式会社 Luminaire and vehicle including the same
CN105276482A (en) * 2014-06-12 2016-01-27 松下知识产权经营株式会社 Lighting apparatus and automobile including the same
CN108182813A (en) * 2018-01-16 2018-06-19 宁波大学 Traffic lights intelligent prompt device
CN109764304A (en) * 2019-02-25 2019-05-17 华域视觉科技(上海)有限公司 Using the car light mould group of condenser

Similar Documents

Publication Publication Date Title
CN104696780B (en) Backlight module and light source assembly thereof
JP5380182B2 (en) Light emitting device, surface light source, and liquid crystal display device
JP2006031941A (en) Planar light source unit
JP2008186786A (en) Led lighting fixture unit
JP2010244790A (en) Lighting device
JP2010067439A (en) Surface light-emitting device, and display device
JP2006072874A (en) Signal light
JP2011014434A5 (en)
JP5735669B2 (en) Optical lens
JP4631375B2 (en) Signal light
TW201400879A (en) Optical Lens and Backlight Module Incorporating the Same
JP2015043307A (en) One-sided light emission-type transparent light guide plate, and surface light-emitting device using the same
JP5668920B2 (en) Lighting device
JP2006048165A (en) Signal light
EP2912368B1 (en) Optical cover for a light emitting module
JPWO2012164791A1 (en) Surface light source and liquid crystal display device
JP6748424B2 (en) Light emitting device, surface light source device, and display device
KR20150137959A (en) Secondary optical element and light source module
JP5529576B2 (en) Light emitting device
JP6143976B1 (en) Lighting equipment, especially lighting equipment for road lighting
CN110360482B (en) Optical system and searchlight with diffuser and honeycomb concentrator
WO2017002725A1 (en) Light-emitting device, surface light source device and display device
JP6678524B2 (en) Lighting equipment
JP2007134344A (en) Light guide plate
US20160273732A1 (en) Indicating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070827

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091102