JP2006066271A - 画像表示装置の製造方法 - Google Patents
画像表示装置の製造方法 Download PDFInfo
- Publication number
- JP2006066271A JP2006066271A JP2004248611A JP2004248611A JP2006066271A JP 2006066271 A JP2006066271 A JP 2006066271A JP 2004248611 A JP2004248611 A JP 2004248611A JP 2004248611 A JP2004248611 A JP 2004248611A JP 2006066271 A JP2006066271 A JP 2006066271A
- Authority
- JP
- Japan
- Prior art keywords
- ion pump
- substrate
- image display
- display device
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 63
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 42
- 108010083687 Ion Pumps Proteins 0.000 claims abstract description 128
- 239000000758 substrate Substances 0.000 claims abstract description 64
- 238000007789 sealing Methods 0.000 claims abstract description 14
- 230000002093 peripheral effect Effects 0.000 claims abstract description 6
- 239000011521 glass Substances 0.000 claims description 73
- 239000010408 film Substances 0.000 claims description 59
- 239000010409 thin film Substances 0.000 claims description 29
- 238000005304 joining Methods 0.000 claims description 22
- 239000011261 inert gas Substances 0.000 claims description 14
- 230000003213 activating effect Effects 0.000 claims description 2
- 230000006866 deterioration Effects 0.000 abstract description 5
- 229910052751 metal Inorganic materials 0.000 description 47
- 239000002184 metal Substances 0.000 description 47
- 239000007789 gas Substances 0.000 description 24
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 21
- 238000012545 processing Methods 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 18
- 238000001994 activation Methods 0.000 description 11
- 239000010419 fine particle Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 229910004298 SiO 2 Inorganic materials 0.000 description 9
- 238000007639 printing Methods 0.000 description 9
- 230000006378 damage Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000010894 electron beam technology Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 230000004913 activation Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 239000004020 conductor Substances 0.000 description 5
- 238000007872 degassing Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 229910052738 indium Inorganic materials 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 229910052763 palladium Inorganic materials 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- 229910006404 SnO 2 Inorganic materials 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 150000001722 carbon compounds Chemical class 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- HBEQXAKJSGXAIQ-UHFFFAOYSA-N oxopalladium Chemical compound [Pd]=O HBEQXAKJSGXAIQ-UHFFFAOYSA-N 0.000 description 3
- 229910003445 palladium oxide Inorganic materials 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- NWPNXBQSRGKSJB-UHFFFAOYSA-N 2-methylbenzonitrile Chemical compound CC1=CC=CC=C1C#N NWPNXBQSRGKSJB-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910000846 In alloy Inorganic materials 0.000 description 2
- -1 TiN Chemical class 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 229910006501 ZrSiO Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 239000005357 flat glass Substances 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910000986 non-evaporable getter Inorganic materials 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000010944 silver (metal) Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910019899 RuO Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- BQXQGZPYHWWCEB-UHFFFAOYSA-N carazolol Chemical compound N1C2=CC=CC=C2C2=C1C=CC=C2OCC(O)CNC(C)C BQXQGZPYHWWCEB-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Landscapes
- Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
Abstract
【課題】 本発明は、簡便な工程により、リーク等の発生がなく、特に電子源特性の経時変化が少なく、表示品位の高い、高信頼性で低コストな画像表示装置を製造する方法を提供することを目的とする。
【解決手段】 第一の基板101と第二の基板とを対向させて、この第一の基板および第二の基板の周辺部を封着して形成される真空容器と、この真空容器内に配された電子源と、イオンポンプとを備えた画像表示装置の製造方法であって、前記第一の基板101および第二の基板の周辺部を封着する工程に先立ち、前記第一の基板または前記第二の基板に形成された開口部に、イオンポンプ容器112を接合する工程を有することを特徴とする画像表示装置の製造方法。
【選択図】 図1
【解決手段】 第一の基板101と第二の基板とを対向させて、この第一の基板および第二の基板の周辺部を封着して形成される真空容器と、この真空容器内に配された電子源と、イオンポンプとを備えた画像表示装置の製造方法であって、前記第一の基板101および第二の基板の周辺部を封着する工程に先立ち、前記第一の基板または前記第二の基板に形成された開口部に、イオンポンプ容器112を接合する工程を有することを特徴とする画像表示装置の製造方法。
【選択図】 図1
Description
本発明は、イオンポンプを備えた画像表示装置の製造方法に関し、特に電子源を備えた平板形の画像表示装置の製造方法に関する。
電子源として多数の電子放出素子を平面基板上に配列し、電子源から放出した電子ビームを対向する基板上の画像形成部材である蛍光体に照射し、蛍光体を発光させて画像を表示する平面状ディスプレイにおいては、電子源と画像形成部材を内包する真空容器の内部を高真空に保持する必要がある。真空容器内部にガスが発生し圧力が上昇すると、その影響の程度はガスの種類により異なるが、電子源に悪影響を及ぼして電子放出量を低下させ、明るい画像の表示ができなくなるためである。
特に平面状ディスプレイにおいては、画像表示部材から発生したガスが、画像表示エリア外に設置されたゲッタに到達する前に電子源近傍に集積し、局所的な圧力上昇とそれに伴う電子源劣化が特徴的な問題となる。特開平9−82245号公報(特許文献1)には、画像表示領域内にゲッタを配置し、発生したガスを即座に吸着して素子の劣化や破壊を抑制することが記載されている。また特開2000−133136号公報(特許文献2)では画像表示領域内に非蒸発型ゲッタを設置し、画像表示領域外に蒸発型ゲッタを配置する構成が示されている。さらに特開2000−315458(特許文献3)に示すように、真空チャンバー内で脱ガス、ゲッタ形成、封着(真空容器化)を一連の作業で行うことも考案されている。
ゲッタには、蒸発型ゲッタと非蒸発型ゲッタがあるが、蒸発型ゲッタは、水や酸素に対する排気速度はきわめて大きいけれども、アルゴン(Ar)のような不活性ガスは、蒸発型ゲッタと非蒸発型ゲッタ共に排気速度がほとんどない。アルゴンガスは電子ビームにより電離されてプラスイオンとなり、これが電子を加速するための電界で加速されて電子源に衝突することにより、電子源に損傷を与える。さらに、場合によっては内部で放電を生じさせる場合もあり、装置を破壊することもある。
一方、特開平5−121012号公報(特許文献4)には、平面ディスプレイの真空容器にスパッタイオンポンプを接続し、高真空を長時間維持する方法が記載されている。この画像表示装置は図10に示すように、蛍光面1001を有するガラス等よりなる前面パネル1201と、Al等より成り例えば箱状に成形された容器本体1005とが、前面パネル1201の周縁部と容器本体1005の開口端とを重ね合わせるように、インジウムシール等のシール材1002により、内部を気密に保持するように封着されて成り、これら前面パネル1201と容器本体1005との共働によって真空容器1006が構成される。容器本体1005の内面には、蛍光面1001と対向して、電界放出型カソードを有する電極構体1004が配される。1003は、加速電極、変調電極又は偏向電極等より成る内部電極を示す。そして容器本体1005には、例えば電極構体1004の近傍の底部に排気口である開口部107を設け、ここにおいてICFフランジ等の超高真空用のメタルシール1007によってイオンポンプ209が接続されている。
しかし、真空容器1006にICFフランジ等のメタルシール1007を介してイオンポンプ209を接合するという構成では、金属材料で作られたICFフランジといった重いメタルシール1007が平板状画像表示装置の片側に偏在する。その為、イオンポンプ209とメタルシール1007が容器本体1005に接合する部分に荷重が集中し、メタルシール1007を容器本体1005に取り付ける部分の変形や破損といった不具合が生じ、真空容器1006がリークしてしまうという事態がしばしば発生し、平板状画像表示装置の歩留まりが低下する問題がある。
特開平9−82245号公報
特開2000−133136号公報
特開2000−315458号公報
特開平5−121012号公報
本発明は、従来の問題点に鑑みてなされたもので、簡便な工程により、リーク等の発生がなく、特に電子源特性の経時変化が少なく、表示品位の高い、高信頼性で低コストな画像表示装置を製造する方法を提供することを目的とする。
本発明は、第一の基板と第二の基板とを対向させて、この第一の基板および第二の基板の周辺部を封着して形成される真空容器と、この真空容器内に配された電子源と、イオンポンプとを備えた画像表示装置の製造方法であって、前記第一の基板および第二の基板の周辺部を封着する工程に先立ち、前記第一の基板または前記第二の基板に形成された開口部に、イオンポンプ容器を接合する工程を有することを特徴とする画像表示装置の製造方法に関する。
前記イオンポンプ容器を接合する工程において、第一の基板または第二の基板に設けられた開口部に、フランジを使用することなくイオンポンプ容器を接合することが好ましい。
さらに本発明では、前記イオンポンプ容器を接合する工程を、減圧または不活性ガス雰囲気中で行うことが特に好ましい。
本発明の製造方法では、第一の基板または第二の基板に、メタルシールのためのフランジのような突起部を形成しないので、イオンポンプを接合しても場所を取らずにコンパクトで軽量なイオンポンプ接合が可能となり、画像表示装置の軽量化とローコスト化が可能になる。更に、第一の基板と第二の基板を封着する際に邪魔にならない。
また、接合部をフリットガラスで接合する態様では、リークが発生しにくく、強度も充分に強く製造歩留まりが著しく向上するとともに耐衝撃性に強い信頼性の高い画像表示装置の製造が可能になる。
さらに、イオンポンプの接合を減圧(真空)または不活性ガス中で行う態様では、第一の基板または第二の基板にそのときまで作成済みの素子等の部材に対する悪影響を低減することができるため、例えば酸化等による電子源のダメージが低減し、均一で表示品位の高い画像表示装置の作成が可能になる。また、イオンポンプの電極も酸化されない為、イオンポンプ起動時にイオンポンプ自身からの放出ガスが低減される。
以上のように、本発明によれば、画像表示する際にゲッタには吸着されにくい放出ガスを吸着する為のイオンポンプを容易に取り付けることができるので、低コストで高信頼性、かつ寿命が改善された画像表示装置の製造方法を提供することができる。
本発明の画像表示装置は、前述のとおり第一の基板と第二の基板の周辺部が封着されて形成された真空容器内に電子源を有する。以下、画像表示装置として、電子放出素子が配列された電子源を備えた電子源基板(以下、リアプレートという。)と、この電子源基板と対向して配置され、蛍光膜とアノード電極膜を有する画像形成基板(以下、フェースプレートという。)を有する構成を例に、本発明の製造方法を図1から図7を用いて説明する。
<イオンポンプの接合方法の説明>
図2及び図3は、本発明の製造方法により作成される画像表示パネルの構成を示す概略図の一例である。図2において、リアプレート101は透明なガラス基板の内側に上配線102、下配線103、電子放出部が形成された電子放出部材である表面伝導型電子放出素子(電子源)104を備え、フェースプレート201は透明なガラス基板の内側に塗布された蛍光体膜202とアノード電極膜であるメタルバック膜203とゲッタ膜204を備え、支持枠105はリアプレート101にフリットガラス106で接合されており、イオンポンプ209がリアプレート101の排気口である開口部107にフリットガラス117で接合されている。支持枠105とフェースプレート201をインジウム205等の金属を用いて真空中で加熱封着し、真空容器である外囲器を構成する。
図2及び図3は、本発明の製造方法により作成される画像表示パネルの構成を示す概略図の一例である。図2において、リアプレート101は透明なガラス基板の内側に上配線102、下配線103、電子放出部が形成された電子放出部材である表面伝導型電子放出素子(電子源)104を備え、フェースプレート201は透明なガラス基板の内側に塗布された蛍光体膜202とアノード電極膜であるメタルバック膜203とゲッタ膜204を備え、支持枠105はリアプレート101にフリットガラス106で接合されており、イオンポンプ209がリアプレート101の排気口である開口部107にフリットガラス117で接合されている。支持枠105とフェースプレート201をインジウム205等の金属を用いて真空中で加熱封着し、真空容器である外囲器を構成する。
イオンポンプ209は、アノード電極108、カソード電極109、アノード接続端子110、カソード接続端子111を有するイオンポンプ容器112と磁石208から構成されており、アノード接続端子110とカソード接続端子111はイオンポンプ駆動用のイオンポンプ電源207に配線接続されている。
イオンポンプ容器は、アノード電極、カソード電極を内包し、かつ真空容器に連通して接続されることで、容器内部およびそれに連通する真空容器内を減圧または真空に保つ。通常、磁石はイオンポンプ容器の外部に配置される。
本発明に用いるイオンポンプとしては、ゲッター膜をポンプ壁に蒸着させることによるエベイパーイオンポンプ(Evapor−ion pump)、ゲッター膜をスパッターするのにイオン自身を利用するスパッターイオンポンプ(Sputter−ion pump)等から適宜選択して用いることが可能である。中でも構成が簡単で、小型・軽量化が可能なスパッターイオンポンプを好適に用いることができる。
イオンポンプ容器を構成する材料は、ガラス、セラミックス、金属等から適宜選択することができ、軽量化、小型化の観点から成型ガラス、ガラス板をフリットガラスで接合したガラス構成体等が好適に用いられ、陰極に使用される金属としてはTi、Ta等が好適に用いられる。
従来の特開平5−121012号公報のようなメタルシールにてイオンポンプを接合する方法では、真空容器を形成した後のイオンポンプ容器を取り付けていると考えられる。一方、本発明では、真空容器の形成前、即ちフェースプレートとリアプレートを対向させて封着する前にイオンポンプ容器を接続する。尚、フェースプレートとリアプレートの周辺部を封着する際には、支持枠を介してフェースプレートとリアプレートを封着する場合の他に、支持枠を使用しない場合もある。
特開平5−121012号公報では、ICFフランジのようなメタルシールのために真空容器から突出したフランジ部を設けている。本発明ではこのようなフランジ部を設けないことが好ましい。特にイオンポンプ容器をフェースプレートまたはリアプレートに設けた開口部に直接接合することが好ましい。このため、ICFフランジのようなメタルシールが不要になり、場所を取らずにコンパクトで軽量なイオンポンプ接合が可能となり、画像表示装置の軽量化とローコスト化が可能になる。更に、イオンポンプがリアプレートに接続されていても、メタルシールの無いコンパクトな構成なので、フェースプレートとリアプレートの真空封着の際に邪魔にならない。
イオンポンプとフェースプレートまたはリアプレートとの接合は、真空が維持できる適当な接着剤を用いることができるが、フリットガラスを用いることが好ましい。接合部がフリットガラスだけなのでリークが発生しにくく、強度も充分に強く製造歩留まりが著しく向上するとともに耐衝撃性に強い信頼性の高い画像表示装置の製造が可能になる。
使用できるフリットガラスには、その成分系からSiO2系、Te系、PbO系、V2O5系、Zn系があり、これに酸化物フィラーを混入することで、熱膨張係数αを調節したフリットガラスから適宜用いることができる。前記耐火物フィラーとしては、PbTiO3、ZrSiO4、Li2O−Al2O3−2SiO2、2MgO−2Al2O3―5SiO2、Li2O―Al2O3―4SiO3、Al2O3―TiO2、2ZnO―SiO2、SiO2、SnO2等の一種類または数種類混合したフリットガラスを適宜用いることができる。
真空雰囲気または不活性ガス雰囲気における焼成では発泡を伴い、接着強度、機密性が確保できないので、大気雰囲気中で仮焼成を行い、真空雰囲気中で加熱しフリットガラスを脱泡させた後に、接合するのが好ましい。
フリットガラスは粉末である為、有機バインダーを用いてペースト化し、接合部に塗布して用いる。ペースト化したフリットガラスの塗布方法としては、エアー圧を用いたディスペンス法が一般的であるが、ディッピング法、印刷法などを適宜用いることができる。また予めリング状及び短冊状のシートに形成し、仮焼成及び脱ガスを施したプリフォーム品も用いることができる。
フリットガラスの焼成時には、フリットガラスが焼成温度で硬い水飴状になる為、これを押しつぶす為の押し付け圧力が必要であり、0.5g/mm2以上の押し付け圧力が好適に用いられる。
まず、フェースプレートにイオンポンプ容器を接合する場合について説明する。この場合は、真空容器を形成する前の種々の段階において、イオンポンプ容器を接合することができるが、フェースプレートの内面には、画像形成部材として少なくとも蛍光膜およびメタルバックが形成されており、通常は、画像形成部材が形成された後、ゲッター膜が設けられるときはゲッター膜形成前の段階で、イオンポンプ容器を接合することが好ましい。
次に、リアプレートにイオンポンプ容器を接合する場合について説明する。リアプレート上には、電子放出素子が形成されるため、後述するように素子電極間に導電性薄膜を形成した後に、フォーミング処理および必要により活性化処理を行う。イオンポンプ容器の取り付けは、種々の段階で行うことができるが、例えば(i)導電性薄膜形成後フォーミング処理前、(ii)フォーミング処理後活性化処理前、(iii)フォーミング処理および活性化処理(行う場合)の後(つまり電子源である電子放出素子完成後)、のいずれかの段階で行うことができる。好ましくは、(iii)の電子放出素子完成後に、イオンポンプ容器を接合する。
本発明では、イオンポンプ容器の接合を、減圧(真空)または不活性ガス雰囲気中で行うことが特に好ましい。イオンポンプ容器の接合を減圧(真空)または不活性ガス中で行うことにより、接合時までに完成されている素子等の部材に対するダメージを低減することができる。この態様は、特にリアプレートに電子源が形成された後にイオンポンプ容器を接合する場合(上記(iii))に特に有効であり、酸化等による電子源へのダメージが低減され、均一で表示品位の高い画像表示装置の作成が可能になる。
また、イオンポンプの電極も酸化されない為、イオンポンプ起動時にイオンポンプ自身からの放出ガスが低減される。この効果はフェースプレートにイオンポンプ容器を接続する場合にも同様に発現される。
減圧(真空)の程度は、10-2Pa以下が好ましく、さらに10-4Pa以下が好ましい。不活性ガスとしては、Ar、N2、Xe、Ne、He等からを適宜選択して用いることが可能である。中でも取り扱いが容易なAr、N2等が好適に用いられる。
次に、図1を用いて、フリットガラス106で支持枠105が接合されたリアプレート101にイオンポンプ容器112をフリットガラス117で接合する方法の例を説明する。
図1に示すように、表面伝導型電子放出素子104の形成された面と反対側のリアプレート101面の排気口である開口部107上に、フリットガラス117を塗布したイオンポンプ容器112、イオンポンプ容器112を押さえる支持台115、該支持台115に荷重を与える重り116という構成で、真空ベーク炉114に設置し、排気口113から減圧下に排気した状態で加熱し、フリットガラス117を溶融し、接合する。重り116はフリットガラス117に荷重を与えるためのものであり、支持台115と共にフリットガラス117が加熱溶融した際に、支持枠105の位置ずれ防止とフリットガラス117を一定の厚みに押し付ける役割を持つ。
この説明では、イオンポンプをリアプレートに接合するに際し真空雰囲気でフリットガラスを加熱溶融させる例を示したが、減圧下に排気したあと不活性ガスを導入し、不活性ガス雰囲気を用いることもできる。例えば図8に示すように、不活性ガス雰囲気中で加熱できるように真空ベーク炉114に不活性ガス導入用のガス導入口801を配管することもできる。
このような接合工程を、以下で説明する画像表示装置の製造工程の中に組み込む。
<画像表示装置全体の説明>
画像表示装置全体について説明する。図3において、容器外端子(不図示)から変調信号入力を下配線103を通じ、走査信号入力を上配線102を通じ電圧印加し、高圧端子Hv(不図示)で高圧を印加して画像を表示するものである。イオンポンプ209は排気口107で真空容器と接合されており、駆動用電源(不図示)で駆動することにより放出ガスの排気を行う。同図において、104は電子源である表面伝導型電子放出素子であり、102、103は表面伝導型放出素子の一対の素子電極と接続された上配線(Y方向配線)及び下配線(X方向配線)である。
画像表示装置全体について説明する。図3において、容器外端子(不図示)から変調信号入力を下配線103を通じ、走査信号入力を上配線102を通じ電圧印加し、高圧端子Hv(不図示)で高圧を印加して画像を表示するものである。イオンポンプ209は排気口107で真空容器と接合されており、駆動用電源(不図示)で駆動することにより放出ガスの排気を行う。同図において、104は電子源である表面伝導型電子放出素子であり、102、103は表面伝導型放出素子の一対の素子電極と接続された上配線(Y方向配線)及び下配線(X方向配線)である。
図4(a)は、リアプレート101上に設置された表面伝導型電子放出素子104、及び、同電子源を駆動するための配線などの一部を示した概略図である。同図において103は下配線、102は上配線、401は上配線102と下配線103を電気的に絶縁する層間絶縁膜を示している。
図4(b)は図4(a)の表面伝導型電子放出素子104の構造をAからA’の断面を拡大して示し、402、403は素子電極、405は導電性薄膜、404は電子放出部である。
まず、表面伝導型電子放出素子を用いた画像表示装置例について述べる。
図2及び図3の構成において、リアプレート101としてソーダガラス、ホウケイ酸ガラス、石英ガラス、SiO2を表面に形成したガラス基板及び、アルミナ等のセラミック基板等の絶縁性基板が用いられ、フェースプレート201としては透明なソーダガラス等のガラス基板が用いられる。
図2及び図3の構成において、リアプレート101としてソーダガラス、ホウケイ酸ガラス、石英ガラス、SiO2を表面に形成したガラス基板及び、アルミナ等のセラミック基板等の絶縁性基板が用いられ、フェースプレート201としては透明なソーダガラス等のガラス基板が用いられる。
表面伝導型電子放出素子104の素子電極(図4の402,403に相当)の材料としては、一般的導電体が用いられ、例えば、Ni、Cr、Au、Mo、W、Pt、Ti、Al、Cu、Pd等の金属或いは合金、及び、Pd、Ag、Au、RuO2、Pd−Ag等の金属或いは金属酸化物とガラス等から構成される印刷導体、In2O3−SnO2等の透明導電体及び、ポリシリコンなどの半導体材料等から適宜選択される。
素子電極の作成法は真空蒸着法、スパッタ法、化学気相堆積法等を用いる事で上記電極材料を成膜でき、フォトリソグラフィ技術(エッチング、リフトオフなどの加工技術も含む)等によって所望の形状に加工するか、その他の印刷法によっても作製可能である。要するに前記の素子電極材料の形状を所望の形状に形成できればよく、特に製法は問わない。
図4(a)に示す素子電極間隔Lは好ましくは数百nmから数百μmである。再現性良く作製する事が要求されるため、より好ましい素子電極間Lは数μmから数十μmである。素子電極長さWは電極の抵抗値、電子放出特性等から数μmから数百μmが好ましく、又素子電極402、403の膜厚は数十nmから数μmが好ましい。尚、図4(b)に示した構成だけでなく、リアプレート101上に導電性薄膜405、素子電極402、403の電極の順に形成させた構成にしてもよい。
導電性薄膜405は良好な電子放出特性を得るためには、微粒子で構成された微粒子膜が特に好ましく、その膜厚は、素子電極402、403へのステップカバレージ、素子電極402、403間の抵抗値及び、後述する通電フォーミング条件などによって設定されるが、好ましくは0.1nmから数百nmで、特に好ましくは1nmから50nmである。その抵抗値は、Rsが102〜107Ω/□の値である。尚、Rsは、厚さがt、幅がw、長さがlの薄膜の抵抗Rを、R=Rs(l/w)とおいたときに現れる量である。
又、導電性薄膜405を構成する材料は、Pd,Pt,Ru,Ag,Au,Ti,In,Cu,Cr,Fe,Zn,Sn,Ta,W,Pb等の金属、PdO,SnO2,In2O3,PbO,Sb2O3等の酸化物、HfB2,ZrB2,LaB6,CeB6,YB4,GdB4等の硼化物、TiC,ZrC,HfC,TaC,SiC,WC等の炭化物、TiN,ZrN,HfN等の窒化物、Si,Ge等の半導体、カーボンなどをあげることができる。
尚、ここで述べる微粒子膜とは、複数の微粒子が集合した膜であり、その微細構造として、微粒子が個々に分散配置した状態のみならず、微粒子が互いに隣接、或いは重なり合った状態(島状も含む) の膜を指しており、微粒子の直径は0.1nmから数百nmであり、好ましくは、1nmから20nmである。
導電性薄膜405の作製法は素子電極402、403を設けたリアプレート101に、有機金属溶液を塗布して乾燥させる事により有機金属薄膜を形成する。ここで言う有機金属溶液とは、前述の導電性薄膜405を形成する金属を主元素とする有機金属化合物の溶液の事を言う。
その後、有機金属薄膜を加熱焼成処理し、リフトオフ、エッチング等によりパターニングし、導電性薄膜405を形成する。尚、導電性薄膜405の形成法として、有機金属溶液の塗布法により説明したが、これに限るものでなく真空蒸着法、スパッタ法、化学気相堆積法、分散塗布法、ディッピング法、スピンナー法等によって形成される場合もある。
電子放出部404は導電性薄膜405の一部に形成された高抵抗の亀裂であり、通電フォーミングと呼ばれる処理により形成される。通電フォーミングは素子電極402、403間に不図示の電極より通電を行い、導電性薄膜405を局所的に破壊、変形もしくは変質せしめ、構造を変化形成させるものである。通電時の電圧波形は特にパルス波形が好ましく、パルス波高値が一定の電圧パルスを連続的に印加する場合とパルス波高値を増加させながら、電圧パルスを印加する場合とがある。フォーミング処理は通電処理に限るものではなく、導電性薄膜405に亀裂等の間隔を生じさせて高抵抗状態を形成する処理を用いても良い。
通電フォーミングが終了した素子に活性化と呼ぶ処理を施す事が望ましい。活性化処理とは、素子電流(素子電極402、403間に流れる電流)、放出電流(電子放出部404より放出される素子電流)を著しく変化させる処理である。例えば、有機物質ガスなどの炭素化合物ガスを含有する雰囲気下で、通電フォーミングと同様に、パルスの印加を繰り返すことで行うことができる。この時の好ましい有機物質の圧力は、素子を配置する真空容器の形状や、有機物質の種類などにより異なる為、場合に応じ適宜設定される。
活性化処理により、雰囲気中に存在する有機物質から、炭素或いは炭素化合物からなる有機薄膜が導電性薄膜405上に堆積する。活性化処理は素子電流と放出電流を測定しながら、例えば、放出電流が飽和した時点で終了する。印加する電圧パルスは画像表示時の動作駆動電圧か、それよりも大きな電圧で行う事が好ましい。
形成された亀裂内には、0.1nmから数十nmの粒径の導電性微粒子を有する事もある。導電性微粒子は導電性薄膜405を構成する物質の少なくとも一部の元素を含んでいる。又、電子放出部404及び、その近傍の導電性薄膜405は炭素及び、炭素化合物を有する事もある。
尚、表面伝導型電子放出素子104としてリアプレート101の面上に平面状に表面伝導型電子放出素子104を形成した平面型の他、リアプレート101に垂直な面上に形成した垂直型でもよく、更には、熱カソードを用いた熱電子源、電界放出型電子放出素子等、要するに電子放出素子を用いた画像表示装置を例にするならば、電子を放出する素子であれば、特に制限はされない。
次に図3及び図4を用いて、表面伝導型電子放出素子104の配列、及び、同素子に画像表示用の電気(電力)信号を供給する配線に付いて説明する。配線の例としてそれぞれ直交した二つの配線(Y:上配線102、及び、X:下配線103、これを単純マトリクス配線と呼ぶ)を用いる事ができ、表面型電子放出素子104の素子電極402、403のそれぞれに、上配線102からは素子電極402を通して、下配線103からは素子電極403と接続する。上配線102、及び、下配線103は真空蒸着法、スクリーン印刷法、オフセット印刷法などの印刷法、スパッタ法等を用いて形成された導電性金属等で構成することができ、その材料、膜厚、幅は適宜設計される。中でも製造コストが安く、取り扱いが容易な印刷法を用いるのが好適である。
使用する導電性ペーストは、Ag,Au,Pd,Pt等の貴金属、Cu,Ni等の卑金属の単独、ないしは、これらを任意に組み合わせた金属を含み、印刷機で配線パターンを印刷後、500℃以上の温度で焼成する。形成された上下印刷配線などの厚さは、数μm 〜数百μm程度である。更に少なくとも上配線102と下配線103が重なるところには、ガラスペーストを印刷、焼成(500℃以上)した厚さ数〜数百μm程度の層間絶縁膜401を挟み、電気的な絶縁をとる。
Y方向の上配線102の端部は表面伝導型電子放出素子104のY側の行を入力信号に応じて走査するための画像表示信号である走査信号を印加するため、走査側電極駆動手段としての駆動回路部と電気的に接続されることになる。一方、X方向の下配線の端部は、表面伝導型電子放出素子104の列の各列を入力信号に応じて変調するための画像表示信号である変調信号を印加するため、変調信号駆動手段としての駆動回路部と電気的に接続されることになる。
フェースプレート201の内側に塗布された蛍光体膜202はモノクロームの場合は単一の蛍光体のみからなるが、カラー画像を表示する場合、赤、緑、青の三原色を発光する蛍光体を黒色導電材で分離した構造とする。黒色導電材はその形状により、ブラックストライプ、ブラックマトリックスなどと呼ばれる。作製法としては蛍光体スラリーを用いたフォトリソグラフィー法、或いは印刷法があり、所望の大きさの画素にパターニングし、それぞれの色の蛍光体を形成する。
蛍光体膜202上にはアノード電極膜であるメタルバック膜203が形成されている。メタルバック膜203はAl等の導電性薄膜により構成されている。メタルバック膜203は、蛍光体膜202で発生した光のうち、電子源となるリアプレート101の方向に進む光を反射して輝度を向上させるものである。更に、メタルバック膜203はフェースプレート201の画像表示領域に導電性を与えて電荷が蓄積されるのを防ぎ、リアプレート101の表面伝導型電子放出素子104に対してアノード電極の役割を果たすものである。メタルバック膜203はフェースプレート201、画像表示装置内に残留したガスが電子線で電離されて生成するイオンにより、蛍光体膜202が損傷することを防ぐなどの機能も有している。
メタルバック膜203には高電圧を印加するため、高圧印加装置と電気的に接続されることになる。
支持枠105はフェースプレート201とリアプレート101との間の空間を気密封止するものである。支持枠105はフェースプレート201に対してはIn(インジウム)205を用いて接合され、リアプレート101に対して、フリットガラス106によって接合されることで外囲器としての密封容器が構成される。支持枠105はフェースプレート201とリアプレート101と同材質、或いはそれらとほぼ同程度の熱膨張率を持つガラス、セラミックス、又は、金属などを使用する事が出来る。
支持枠105は電子放出部404が形成される前、即ちフォーミング・活性化する前にリアプレート101にフリットガラス106で接合しておくのがよい。尚Inで接合する場合は、フェースプレート201とリアプレート101と支持枠105で密封容器を作成する時に接合するのが好ましい。
次に、フリットガラス106で支持枠105が接合されたリアプレート101にイオンポンプ容器112をフリットガラス117で接合する。既に図1を用いて説明したように、表面伝導型電子放出素子104の形成された面と反対側のリアプレート101面の排気口107上に、フリットガラス117を塗布したイオンポンプ容器112を載せ、真空ベーク炉114内に設置し、イオンポンプ容器112を支持台115で押さえ且つ重り116で支持台115に荷重を与えながら、排気口113から減圧下に排気した状態で加熱し、フリットガラス117を溶融して接合する。
尚、前述のとおり不活性ガス中で、イオンポンプ容器をリアプレートに接合してもよい。
イオンポンプ容器を接合するフリットガラスについては前述したとおりであるが、真空容器の接合およびその他の接合に用いられるフリットガラスも同様なものを使用することができる。即ち、フリットガラスには、その成分系からSiO2系、Te系、PbO系、V2O5系、Zn系があり、これに酸化物フィラーを混入することで、熱膨張係数αを調節したフリットガラスから適宜用いることができる。前記耐火物フィラーとしては、PbTiO3、ZrSiO4、Li2O−Al2O3−2SiO2、2MgO−2Al2O3―5SiO2、Li2O―Al2O3―4SiO3、Al2O3―TiO2、2ZnO―SiO2、SiO2、SnO2等の一種類または数種類混合したフリットガラスを適宜用いることができる。
真空雰囲気または不活性ガス雰囲気における焼成では発泡を伴い、接着強度、機密性が確保できないので、大気雰囲気中で仮焼成を行い、真空雰囲気中で加熱しフリットガラスを脱泡させた後に、接合するのが好ましい。
フリットガラスは粉末である為、有機バインダーを用いてペースト化し、接合部に塗布して用いる。ペースト化したフリットガラスの塗布方法としては、エアー圧を用いたディスペンス法が一般的であるが、ディッピング法、印刷法などを適宜用いることができる。また予めリング状及び短冊状のシートに形成し、仮焼成及び脱ガスを施したプリフォーム品も用いることができる。
フリットガラスの焼成時には、フリットガラスが焼成温度で硬い水飴状になる為、これを押しつぶす為の押し付け圧力が必要であり、0.5g/mm2以上の押し付け圧力が好適に用いられる。
支持枠105及びイオンポンプ容器112を接合したリアプレート101、フェースプレート201を準備した後、基板の電子線洗浄、ゲッタ膜204の蒸着形成、外囲器としての密封容器の形成(支持枠105及びイオンポンプ容器112を接合したリアプレート101とフェースプレート201との接合)を、真空雰囲気を維持した状態で実施する。
図6は本発明で用いる真空処理装置の全体概念図である。ロード室602は基板を搬入、搬出するために用いられ、真空処理室603においてベーキング、ゲッタ成膜、封着等の処理を行う。ゲートバルブ605はロード室602と真空処理室603を仕切るためのもので、搬送治具604により基板を搬送する。排気手段1(606)によりロード室602を真空排気し、排気手段2(607)により真空処理室603を真空排気する。搬出入口601により基板を搬出入する。
図7は真空処理室603で実施される工程概念図を示し、706は上ホットプレート、707は下ホットプレートを示し、他の構成部材は前述する番号と同一のものは同一の部材を示す。図6に示すように、蛍光体膜202、メタルバック膜203が形成されたフェースプレート201と、支持枠105及びイオンポンプ容器112を接合したリアプレート101とを一緒に、大気開放されたロード室602の搬出入口601を開け、搬送治具604にこれらの基板を載せ、圧力を10-4Pa以下程度まで排気する。次に、予め圧力を排気手段2(607)で10-5Pa程度まで排気しておいた真空処理室603に通じるゲートバルブ605を開け真空処理室603に搬送治具604を搬送後、ゲートバルブ605を閉める。
ゲッタ膜の材料としてはBa、Mg、Ca、Ti、Zr、Hf、V、Nb、Ta、W等の金属及びこれらの合金を用いることができるが、好ましくは蒸気圧が低く取り扱い易いアルカリ土類金属であるBa、Mg、Ca及びこれらの合金が適宜用いられる。中でも安価でゲッター材料を保持している金属製カプセルから容易に蒸発できるといった工業的にも製造が容易なBa又はBaを含む合金が好ましい。
次に、真空処理室603で実施される製造工程の概要を図7に示す。図に示すように、真空処理室603に搬入されたフェースプレート201とリアプレート101を上ホットプレート706と下ホットプレート707で夫々保持し、ベーキング加熱することで脱ガス処理する。この時、リアプレート101は上ホットプレート706側に有り、リアプレート101の裏面に接合されたイオンポンプ容器112が壊れないように逃げ部708が上ホットプレート706に形成されている。ベーキング温度は50℃から400℃まで適宜選択することができ、部材の耐熱性が許す限り高温で処理したほうが良い。次に、ホットプレートを上下に逃がしながら同時にリアプレート101も上昇させ、フェースプレート201上面に空間を設ける。この空間に片側の蓋状冶具703をフェースプレート201上に移動する。外部の電源からゲッタブラシ状接触電極705、ゲッタ配線端子704、ゲッタ配線702を通して電流を供給し、ゲッタを加熱することでフラッシュさせフェースプレート201上にゲッタ膜204をフェースプレート201の半面に成膜する。
同様に残りの半面にもゲッタ膜204を成膜する。次に、蓋状冶具703を逃がし、再び上ホットプレート706と下ホットプレート707の間の所定の位置にIn合金などを充填したフェースプレート201と予め支持枠105とイオンポンプ容器112を接合してあるリアプレート101を挟み込み、加熱しながら加重を加えることでIn合金を溶融し、フェースプレート201とリアプレート101と支持枠105に囲まれた真空容器(真空外囲器)を作成する。
尚、カラー表示の画像表示装置の場合は表面伝導型電子放出素子104と蛍光体膜202の画素(不図示)を一対一に対応させるため、フェースプレート201とリアプレート101の位置合わせを行い真空封着する。その後、室温程度まで冷却する。次に、再び上ホットプレート706と下ホットプレート707を夫々上下に逃がし、密封容器をロード室602に搬送し、搬出入口601より外に取り出す。
以上の工程により、リアプレート101、支持枠105、フェースプレート201で囲まれる空間は、大気圧以下の圧力に密封維持可能な真空容器として形成される。次に、イオンポンプ容器112に磁石208を取り付けて、イオンポンプ電源207とアノード接続端子110及びカソード接続端子111を配線接続する。
上述した一連の処理により、真空容器は画像表示装置となる。上述したように作製した画像表示装置において、イオンポンプ電源207の電源を入れ、イオンポンプ209を稼動する。次に、上配線102に接続された走査駆動手段、下配線103に接続された変調駆動手段より、各表面伝導型電子放出素子104に画像信号である走査信号と変調信号を提供する。
それらの差電圧として駆動電圧すなわち電気信号が印加され、導電性薄膜405を電流が流れ、その一部が亀裂である電子放出部404より電子が前記電気信号に従った電子ビームとなって放出され、メタルバック膜203、蛍光体膜202に印加された高電圧(1〜10KV)によって加速され、蛍光体膜202に衝突し蛍光体を発光させ、画像を表示する。尚、ここでのメタルバック膜203の目的は、蛍光体のうち内面側への光をフェースプレート201側へ鏡面反射する事により輝度を向上する事、電子ビーム加速電圧を印加するための電極として作用する事、前記密封容器内で発生した負イオンの衝突によるダメージからの蛍光体膜202の保護などである。
イオンポンプ209は印加電圧が1KV前後から動作をはじめるが、印加電圧が上がると消費電力が大きくなることや、絶縁対策を確実に施さねばならないといった弊害が大きくなる。そこで、効率よくイオンポンプ209を駆動する電圧としては3〜5KVが好適に用いられる。
画像が表示されると、電子が放出され画像表示装置内の部材からガスが放出される。これらのガスの内電子放出素子にダメージを与え易いH2、O2、CO、CO2などのガスはゲッタ膜204に吸着される。一方、不活性ガスであるArは、ゲッタ膜204に吸着されないが、リアプレート101に取り付けられたイオンポンプ209により排気され、Ar分圧が素子に影響のある圧力である10-6Pa以下に抑えることができ、Arによる素子へのダメージ(主に電離したArイオンスパッタによる素子破壊)が抑えられる。従って、長時間画像表示をしても輝度劣化の無い長寿命の画像表示装置が得られる。また、小型で軽量のイオンポンプがフリットガラスでリアプレートに直接接合されているので、画像表示装置は薄くて、軽量なものとなる。
尚、イオンポンプ209はリアプレート101のみならず、フェースプレート201に接合しても同様な効果が得られる。
上述した電子源として表面伝導型電子放出素子のほか、電界放出型電子放出素子を用いたものや、単純マトリクス型のほか、電子源から出た電子ビームを制御電極(グリッド電極配線)を用いて制御し画像を表示する画像表示装置などにおいても、本発明の画像表示装置の製造方法を応用する事が出来る。密封容器内を大気圧以下に保持する事を必要とする機器・装置であれば、本発明の画像表示装置の製造方法は応用ができる。
以下、本発明について、実施例を用いて具体的に説明する。
<実施例1>
画像表示装置の製造方法であるイオンポンプの接合方法に図1を用いて、また画像表示装置としての真空容器の作成方法について、図2から図7を使って説明する。
画像表示装置の製造方法であるイオンポンプの接合方法に図1を用いて、また画像表示装置としての真空容器の作成方法について、図2から図7を使って説明する。
まず、画像表示装置としての密封容器の作成方法について述べる。リアプレート101として厚さ2.8mm、大きさ240mm×320mm、フェースプレート201として厚さ2.8mm、大きさ190mm×270mmのソーダガラス(SL:日本板硝子(株)製)を用い、リ
アプレート101には画像領域外でガラス枠105の内側になる場所に8mmφの排気口107を開けたものを用いた。
前記リアプレート101上に電子源である表面伝導型電子放出素子104の素子電極402及び403は、白金を蒸着法によって成膜し、フォトリソグラフィ技術(エッチング、リフトオフ法等の加工技術を含む)によって加工し、膜厚100nm、電極間隔L=2μm、素子電極長さW=300μmの形状に加工した。
アプレート101には画像領域外でガラス枠105の内側になる場所に8mmφの排気口107を開けたものを用いた。
前記リアプレート101上に電子源である表面伝導型電子放出素子104の素子電極402及び403は、白金を蒸着法によって成膜し、フォトリソグラフィ技術(エッチング、リフトオフ法等の加工技術を含む)によって加工し、膜厚100nm、電極間隔L=2μm、素子電極長さW=300μmの形状に加工した。
次に、リアプレート101に上配線102(100本)の幅は500μm、厚さ12μm、下配線103(600本)の幅は300μm、厚さは8μmであり、それぞれAgペーストインキを印刷、焼成し形成した。外部の駆動回路への引き出し端子も同様に作成した。層間絶縁層401はガラスペーストを印刷、焼成(焼成温度550℃)し、厚さは20μmとした。
次に、前記リアプレート101を洗浄し、DDS(ジメチルジエトキシシラン:信越化学社製)のエチルアルコール希釈溶液で、スプレー法にて散布し、120℃で加熱乾燥した。導電性薄膜405として水85%、イソプロピルアルコール15%からなる水溶液に、パラジウム−プロリン錯体15Wt%を溶解し、有機パラジウム含有液を、インクジェット塗布装置で塗布した後、350℃で10分間の加熱処理をして、PdO(酸化パラジウム)からなる微粒子膜を形成し、φ60μmの導電性薄膜405とした。
次に、前記リアプレート101を洗浄し、DDS(ジメチルジエトキシシラン:信越化学社製)のエチルアルコール希釈溶液で、スプレー法にて散布し、120℃で加熱乾燥した。導電性薄膜405として水85%、イソプロピルアルコール15%からなる水溶液に、パラジウム−プロリン錯体15Wt%を溶解し、有機パラジウム含有液を、インクジェット塗布装置で塗布した後、350℃で10分間の加熱処理をして、PdO(酸化パラジウム)からなる微粒子膜を形成し、φ60μmの導電性薄膜405とした。
次に、支持枠105の形状は、厚さ2mm、外形150mm×230mm、幅10mm、材質はソーダガラス(SL;日本板硝子製)を用いた。支持枠105と同形状のシート状フリットガラス106であるLS7305(日本電気硝子社製)を前記リアプレート101の接合場所に設置し、支持枠105上から1g/mm2の荷重を加えた状態で、クリーンオーブン内に設置し、430℃で30分間加熱し、接合した。同時に高圧端子も支持枠105同様にリアプレート101に接合した。
以上のように作成したリアプレート101を図5に示す真空排気装置を用いて、以下のフォーミングと活性化を行った。先ず、図5に示すように、基板ステージ503上に設置されたリアプレート101を取り出し電極(不図示)を除く領域をOリング502によりシールし、真空容器501によって覆った。基板ステージ503には、リアプレート101をステージ上に固定する為の静電チャック504を有していて、リアプレート101の裏面に形成されたITO膜510と静電チャック内部の電極間に1KVを印加して、リアプレート101をチャックした。
次に真空容器内部を磁気浮上型ターボモレキュラ-ポンプ505で排気し、フォーミング工程以降の工程を以下のように行った。
先ず、真空容器内部を10-4Paまで排気し、パルス幅1msecの矩形波形をスクロール周波数10Hzで順次、上配線102に印加し、電圧は12Vとした。また、下配線103はグランドに設置した。真空容器内部には水素と窒素の混合ガス(2%H2、98%N2)を導入し、圧力は1000Paに保った。ガス導入はマスフローコントローラ508によって制御し、一方真空容器からの排気流量は、排気装置と流量制御用のコンダクタンスバルブ507によって制御した。導電性薄膜405に流れる電流値がほぼ0になったところで、電圧印加を中止した。真空容器内部のH2とN2の混合ガスを排気して、フォーミングを完了させ、リアプレート101のすべての導電性薄膜405に亀裂を形成することで電子放出部404を作成した。
次に活性化工程を行った。真空容器501内を10-5Paまで排気した後、真空容器内にトルニトリル(分子量:117)を分圧にして1×10-4Paまで導入した。上配線102を10ラインに時分割(スクロール)で電圧を印加した。電圧印加条件は波高値は±14V、パルス幅1msecの両極の矩形波を用い全ての素子を活性化した。
活性化終了後、真空容器501に残存するトルニトリルを排気した後で、大気圧に戻しリアプレート101を取り出した。
イオンポンプは平板状のアノード電極108とカソード電極109がTiからなり、これらをガラスからなるイオンポンプ容器112に配置し、該アノード電極108と該カソード電極109夫々に配線されたアノード接続端子110とカソード接続端子111を該イオンポンプ容器112の外側に有する構成の2極型スパッターイオンポンプを用いた。イオンポンプ容器112は、前記アノード電極108と前記カソード電極109が収納できる大きさ(W30mm×D30mm×H30mm)で成型加工した青板ガラスを用いた。前記アノード端子110とカソード端子111のイオンポンプ容器112の取り出し口には、フリットガラスにASF1304(旭硝子社製)を塗布し、450℃、30分間加熱、焼成した。その後、Heリークディテクターでリークチェックしたが、検出限界値の10-12Pa・m3/sec以下であった。
次に、イオンポンプ容器112のリアプレート101に対して接合する箇所(容器の接合面4辺)に、フリットガラスであるVS−2(日本電気硝子社製)を有機バインダーでペースト化したものをディスペンサーで塗布した。400℃、30分間加熱し仮焼成を行い、更に脱ガス処理として減圧下で480℃、3時間の脱ガス焼成を行った。室温に戻った後、Heリークディテクターでリークチェックしたところ、検出限界値の10-12Pa・m3/sec以下であった。
次に、アノード電極108とアノード電極端子110及びカソード電極109とカソード電極端子111を接続する為に、YAGレーザで溶接を行った。Heリークディテクターでリークチェックしたところ、検出限界値の10-12Pa・m3/sec以下であった。
次に図1に示すように、真空ベーク炉114内の支持台(不図示)に設置されたリアプレート101の排気口107が設けられた面上に、フリットガラス117を塗布したイオンポンプ容器112を置く。支持台115でイオンポンプ容器112を押さえた状態で、重り116を支持台上に置く。重り116はフリットガラス117の接合面に0.5g/mm2になるような重量にした。
真空ベーク炉114の真空排気口113から排気することで10-4Paになるまで減圧状態にし、390℃に加熱し、80分間保持した。室温に戻ったところで、大気圧にし、リアプレート101を取り出した。全ての表面伝導型電子放出素子104を観察したところ、ダメージを受けている素子は無かった。一方、減圧下ではなく大気中で前記の基板を焼成したところ、素子が焼失等によるダメージを受けた。Heリークディテクターで接合部のリークチェックしたところ、検出限界値の10-12Pa・m3/sec以下であった。
繰り返し100枚同様に製造したが全てリークは発生しなかった(歩留まり100%)。
比較として、図10に示すようなメタルシール1007を取り付ける方法で、リアプレートにイオンポンプ容器を取り付けたところ、100枚中50枚にリークが発生した(歩留まり50%)。
比較として、図10に示すようなメタルシール1007を取り付ける方法で、リアプレートにイオンポンプ容器を取り付けたところ、100枚中50枚にリークが発生した(歩留まり50%)。
また、イオンポンプ容器112を取り付けることによる重量増は10gであった。一方、比較例ではメタルシール1007による接合で、500gの重量増があった。大きさも、本実施例はリアプレート101面から30mmの出っ張りであるのに対して、比較例は100mmであった。
次に、支持枠105上にInを塗布し、上配線102上に、20ライン毎にスペーサ206を設置した。スペーサ206は画像表示エリア外に絶縁性の台を設け、アロンセラミックW(東亞合成社製)で接着固定した。
一方フェースプレート201は、蛍光体膜202にストライプ状の蛍光体(R、G、B)と黒色導電材(ブラックストライプ)とが交互に形成されたものに、アルミニウム薄膜よりなるメタルバック膜203として厚さ200nm作製した。次に、フェースプレート201周縁部に予め設けられた銀ペーストパターン上にInを塗布した。
前記支持枠105及びイオンポンプ容器112を接合したリアプレート101と、フェースプレート201を搬送冶具604にセットし、図6に示す真空処理装置の搬出入口601を開け、大気圧のロード室602に投入する。搬出入口601を閉めた後、ロード室602を3×10-5Pa程度まで圧力を下げ、ゲートバルブ605を開いて搬送冶具604を予め1×10-5Pa程度に排気手段2である607で圧力を下げてある真空処理室603に搬入し、ゲートバルブ605を閉めた。搬送冶具604が所定の位置に収まった後、図7に示すようにリアプレート101に上ホットプレート706、フェースプレート201に下ホットプレート707を密着させ、300℃で1時間加熱した。
次に、リアプレート101とそれを支持する搬送冶具604の一部を、上ホットプレート706と共に上方向に30cm程上昇させた。次に、リアプレート101とフェースプレート201の間の空間に、一方の蓋状冶具703をフェースプレート201上に移動した。蓋状冶具703内側天井に設置されているBaゲッタのコンテナに12Aの電流を10秒間づつ順次印加し、Ba膜をフェースプレート201のメタルバック膜203上に50nm付着させた。蓋状冶具703を元に戻し、他方の蓋状冶具703についても同様な操作を行った。
次に、蓋状冶具703を元の位置に戻し、リアプレート101と搬送冶具604の一部である支持具と上側ホットプレート706を下げ、上ホットプレート706及び下ホットプレート707を180℃に加熱した。180℃で3時間保持した後、リアプレート101と搬送冶具604の一部である支持具と上側ホットプレート706を更に下げ、リアプレート101とフェースプレート201と支持枠105に60Kg/cm2の加重をかけた。この状態で加熱を止め、自然冷却し室温まで温度を下げ封着を完了した。
ゲートバルブ605を開け、真空処理室603からロード室602に真空容器を搬出し、ゲートバルブ605を閉めた後、ロード室602を大気まで圧力を戻してから、搬出入口601から密封容器を搬出した。上述のように作製した、密封容器にはクラックや割れ等は全く発生していなかった。この密封容器を画像表示可能なように電圧印加装置と高圧印加装置とケーブルで接続し、更にイオンポンプ容器112のアノード接続端子110とカソード接続端子111を配線でイオンポンプ電源207と配線接続し、磁石208を取り付けて画像表示装置を組み立てた。
次に、イオンポンプ電源207に5KVの電圧をかけ、イオンポンプ中心で1400G以上の磁場でイオンポンプ209を駆動した。又、画像表示装置に接続された電圧印加装置から16.7μsec、60Hz、15Vの画像信号を電子放出素子に供給し、同時に高圧印加装置により10KVの高圧を印加し表面伝導型電子放出素子104を発光させ、画像表示装置を画像表示させた。
寿命評価のために画像表示装置を連続表示させ、輝度が半分になるまでの時間を測定したところ15000時間であった。
また、信頼性試験として耐衝撃試験を行ったところ、比較例では10パネル中5パネルにリークが発生し、画像表示ができなくなったが、本実施例では1パネルもリークが発生しなかった。尚、耐衝撃試験はJIS C 0041にもとづいた落下衝撃試験であり、室温(23±5℃、50〜70%RH)、正弦半波パルス、加速度50G、作用時間11ms、加速方向6方向の条件で各方向連続3回行った。
画像表示装置の製造歩留まりを、図10のようなメタルシールを用いてリアプレートにイオンポンプ容器を接続した場合(比較例という。)と比較すると、比較例ではメタルシール取り付けの際のリークが主たる原因で総合歩留まりが30%であったが、本実施例では、95%であった。また、容器実装後の画像表示装置の厚みを測定したところ、比較例に比べ100mm程薄くすることができた。また、総重量を測定したところ比較例に比べ500g軽かった。
本実施例で作成した画像表示装置は、イオンポンプがリアプレート裏面にフリットにて接合されたガラス容器内に内包されており、リークの発生が無く、小型、軽量、高信頼性、低コストである。更に、イオンポンプの取り付けが容易にできるので寿命が長い画像表示装置を作成できた。
<実施例2>
実施例2として、イオンポンプ容器112をリアプレート101に接合する際にAr雰囲気中で接合する製造方法について説明する。図8に本実施例による画像表示装置の製造方法を示す。実施例1と異なるのは、イオンポンプ容器102をAr雰囲気中でフリットガラス117で接合する点である。
実施例2として、イオンポンプ容器112をリアプレート101に接合する際にAr雰囲気中で接合する製造方法について説明する。図8に本実施例による画像表示装置の製造方法を示す。実施例1と異なるのは、イオンポンプ容器102をAr雰囲気中でフリットガラス117で接合する点である。
以下に本実施例の画像表示装置の作成方法について説明する。イオンポンプの作成は実施例1と同様に作成した。実施例1と同様に全ての工程において、Heリークディテクターでリークチェックしたが、検出限界値の10-12Pa・m3/sec以下であった。
次に図8に示すように、真空ベーク炉114内の支持台(不図示)に設置されたリアプレート101の排気口107が設けられた面上に、フリットガラス117を塗布したイオンポンプ容器112を置く。支持台115でイオンポンプ容器112を押さえた状態で、重り116を支持台上に置く。重り116はフリットガラス117の接合面に0.5g/mm2になるような重量にした。
真空ベーク炉114を真空排気口113より排気することで、10-4Paになるまで減圧した後で、Arを1013hPaになるまでガス導入口801より導入し圧力を保持した。その後、実施例1と同様に加熱した後、室温に戻ったところでガス導入口を閉めて、リアプレート101を取り出した。全ての表面伝導型電子放出素子104を観察したところ、ダメージを受けている素子は無かった。一方、Ar雰囲気下ではなく大気中で前記の基板を焼成したところ、素子が焼失等によるダメージを受けた。
次に、実施例1と同様にフェースプレート201とリアプレート101を接合した。
以上のように作成した画像表示装置のイオンポンプ電源207に5KVの電圧をかけ、イオンポンプ中心で1400G以上の磁場でイオンポンプ209を駆動した。又、画像表示装置に接続された電圧印加装置から16.7μsec、60Hz、15Vの画像信号を電子放出素子に供給し、同時に高圧印加装置により10KVの高圧を印加し表面伝導型電子放出素子104を発光させ、画像表示装置を画像表示させた。
寿命評価のために画像表示装置を連続表示させ、輝度が半分になるまでの時間を測定したところ15000時間であった。
また、信頼性試験として実施例1と同様の耐衝撃試験を行った。比較例として、図10のようなメタルシールによりイオンポンプをリアプレートに接合した以外は、この実施例と同じ条件にて画像表示装置を作製した。比較例では10パネル中5パネルにリークが発生し、画像表示ができなくなったが、本実施例では1パネルもリークが発生しなかった。
画像表示装置の製造歩留まりを比較例と比較したところ、比較例ではメタルシール取り付けの際のリークが主たる原因で総合歩留まりが30%であったが、本実施例では、95%であった。また、容器実装後の画像表示装置の厚みを測定したところ、比較例に比べ100mm程薄くすることができた。また、総重量を測定したところ比較例に比べ500g軽かった。
本実施例で作成した画像表示装置は、イオンポンプがリアプレート裏面にフリットにて接合されたガラス容器内に内包されており、リークの発生が無く、小型、軽量、高信頼性、低コストである。更に、イオンポンプの取り付けが容易にできるので寿命が長い画像表示装置を作成できた。
<実施例3>
実施例3として、電子源として電界放出型電子放出素子を用いた画像表示装置の製造方法について説明する。図9に本実施例で用いた電界放出型電子放出素子901の構造を示す。同図において902は負電極、903は正電極であり、905はその先端を鋭角にした電子を放出する電子放出部、904は絶縁層である。このような構成において正電極903と負電極902に正電極903が高電位になるように電圧を印加すると、電子放出部905に電界が集中しトンネル効果によって電子放出部905より電子を放出する。
実施例3として、電子源として電界放出型電子放出素子を用いた画像表示装置の製造方法について説明する。図9に本実施例で用いた電界放出型電子放出素子901の構造を示す。同図において902は負電極、903は正電極であり、905はその先端を鋭角にした電子を放出する電子放出部、904は絶縁層である。このような構成において正電極903と負電極902に正電極903が高電位になるように電圧を印加すると、電子放出部905に電界が集中しトンネル効果によって電子放出部905より電子を放出する。
以下に本実施例の画像表示装置の作成方法について説明する。リアプレート101は実施例1と同一のものを用い、先ず電界放出型電子放出素子901をリアプレート101上に作成する。負電極902、正電極903としての厚さ0.3μmのMoを用い、電界放出部905の先端角は45度、1画素に対応する電子源には100個の電子放出部905を持ち、絶縁層904として厚さ1μmのSiO2を用いた。Mo、SiO2はスパッタ法によって堆積させ、加工はフォトリソグラフィ技術(エッチング、リフトオフ等の加工技術も含む)によって行った。次に実施例1と同様に同一の方法で、同一の構造、部材の上配線102、下配線103を形成した。尚、正電極903の一部が下配線103電気的に接触するように、又負電極902の一部が上配線102と電気的に接触するようにした。更に実施例1と同様の方法で、同一の構造、部材を使用しリアプレート101とフェースプレート201を作成した。
次に、実施例1と後は全く同様にして画像表示装置を作成した。このように作成した画像表示装置のイオンポンプ電源207に5KVの電圧をかけ、イオンポンプ中心で1400G以上の磁場でイオンポンプ209を駆動した。又、画像表示装置に接続された電圧印加装置から16.7μsec、60Hz、15Vの画像信号を電子放出素子に供給し、同時に高圧印加装置により10KVの高圧を印加し表面伝導型電子放出素子104を発光させ、画像表示装置を画像表示させた。
寿命評価のために画像表示装置を連続表示させ、輝度が半分になるまでの時間を測定したところ15000時間であった。
また、信頼性試験として実施例1と同様の耐衝撃試験を行った。比較例として、図10のようなメタルシールによりイオンポンプをリアプレートに接合した以外は、この実施例と同じ条件にて画像表示装置を作製した。比較例では10パネル中5パネルにリークが発生し、画像表示ができなくなったが、本実施例では1パネルもリークが発生しなかった。
画像表示装置の製造歩留まりを比較例と比較したところ、比較例ではメタルシール取り付けの際のリークが主たる原因で総合歩留まりが30%であったが、本実施例では、95%であった。また、容器実装後の画像表示装置の厚みを測定したところ、比較例に比べ100mm程薄くすることができた。また、総重量を測定したところ比較例に比べ500g軽かった。
本実施例で作成した画像表示装置は、イオンポンプがリアプレート裏面にフリットにて接合されたガラス容器内に内包されており、リークの発生が無く、小型、軽量、高信頼性、低コストである。更に、イオンポンプの取り付けが容易にできるので寿命が長い画像表示装置を作成できた。
以上のように、本発明の画像装置の製造方法を用いることにより、軽量でリークの無くしかもイオンポンプがリアプレート裏面にフリットにて接合されたガラス容器内に内包された単純な構成でイオンポンプを画像表示装置に接合することができるので、ローコストで高信頼性な画像表示装置作成が可能となる。また、ゲッタ膜による吸着能力の低い放出ガスをイオンポンプにより排気することが容易に可能となり、画像表示時の放出ガスによる電子源の劣化を抑えることができるので画像表示装置の寿命を大幅に延ばすことが可能となる。従って、本発明による画像表示装置の製造方法を用いることにより、長寿命、高信頼性、ローコストな画像表示装置を作成することが可能となる。
101 リアプレート
102 上配線
103 下配線
104 表面伝導型電子放出素子
105 支持枠
106、117 フリットガラス
107 開口部
108 アノード電極
109 カソード電極
110 アノード接続端子
111 カソード接続端子
112 イオンポンプ容器
113 真空排気口
114 真空ベーク炉
115 支持台
116 重り
201 フェースプレート
202、1001 蛍光体膜
203 メタルバック膜
204 ゲッタ膜
205 インジウム
206 スペーサ
207 イオンポンプ電源
208 磁石
209 イオンポンプ
401 層間絶縁層
402、403 素子電極
404 電子放出部
405 導電性薄膜
501、1006 真空容器
502 Оリング
503 基板ステージ
504 静電チャック
505 ターボモレキュラーポンプ
506 電源
507 コンダクタンスバルブ
508 マスフローコントローラ
509 溝
510 ITO膜
601 搬出入口
602 ロード室
603 真空処理室
604 搬送冶具
605 ゲートバルブ
606 排気手段1
607 排気手段2
701 支持柱
702 ゲッタ配線
703 蓋状冶具
704 ゲッタ配線端子
705 ゲッタブラシ状接触電極
706 上ホットプレート
707 下ホットプレート
801 ガス導入口
901 電界放出型電子放出素子
902 負電極
903 正電極
904 絶縁層
905 電子放出部
1002 シール材
1003 内部電極
1004 電極構体
1005 容器本体
1007 メタルシール
102 上配線
103 下配線
104 表面伝導型電子放出素子
105 支持枠
106、117 フリットガラス
107 開口部
108 アノード電極
109 カソード電極
110 アノード接続端子
111 カソード接続端子
112 イオンポンプ容器
113 真空排気口
114 真空ベーク炉
115 支持台
116 重り
201 フェースプレート
202、1001 蛍光体膜
203 メタルバック膜
204 ゲッタ膜
205 インジウム
206 スペーサ
207 イオンポンプ電源
208 磁石
209 イオンポンプ
401 層間絶縁層
402、403 素子電極
404 電子放出部
405 導電性薄膜
501、1006 真空容器
502 Оリング
503 基板ステージ
504 静電チャック
505 ターボモレキュラーポンプ
506 電源
507 コンダクタンスバルブ
508 マスフローコントローラ
509 溝
510 ITO膜
601 搬出入口
602 ロード室
603 真空処理室
604 搬送冶具
605 ゲートバルブ
606 排気手段1
607 排気手段2
701 支持柱
702 ゲッタ配線
703 蓋状冶具
704 ゲッタ配線端子
705 ゲッタブラシ状接触電極
706 上ホットプレート
707 下ホットプレート
801 ガス導入口
901 電界放出型電子放出素子
902 負電極
903 正電極
904 絶縁層
905 電子放出部
1002 シール材
1003 内部電極
1004 電極構体
1005 容器本体
1007 メタルシール
Claims (8)
- 第一の基板と第二の基板とを対向させて、この第一の基板および第二の基板の周辺部を封着して形成される真空容器と、この真空容器内に配された電子源と、イオンポンプとを備えた画像表示装置の製造方法であって、
前記第一の基板および第二の基板の周辺部を封着する工程に先立ち、前記第一の基板または前記第二の基板に形成された開口部に、イオンポンプ容器を接合する工程を有することを特徴とする画像表示装置の製造方法。 - 前記イオンポンプ容器を接合する工程において、第一の基板または第二の基板に設けられた開口部に、フランジを使用することなくイオンポンプ容器を接合することを特徴とする請求項1記載の画像表示装置の製造方法。
- フリットガラスを用いて、前記イオンポンプ容器を接合することを特徴とする請求項1または2記載の画像表示装置の製造方法。
- 前記イオンポンプ容器を接合する工程を、減圧または不活性ガス雰囲気中で行うことを特徴とする請求項1〜3のいずれかに記載の画像表示装置の製造方法。
- 前記第一の基板上に電子源を形成した後に前記第一の基板に前記イオンポンプ容器を接合することを特徴とする請求項1〜4記載の画像表示装置の製造方法。
- 前記電子源は、一対の素子電極間に形成された導電性薄膜をフォーミング処理および活性化処理して形成される複数の表面伝導型電子放出素子であって、前記活性化処理後に、前記第一の基板にイオンポンプ容器を接合することを特徴とする請求項5記載の画像表示装置の製造方法。
- 前記第二の基板上に画像形成部材を形成した後に、前記第二の基板にイオンポンプ容器を接合することを特徴とする請求項1〜4のいずれかに記載の画像表示装置の製造方法。
- 前記画像表示部材が、蛍光膜およびアノード電極膜であることを特徴とする請求項7記載の画像表示装置の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004248611A JP2006066271A (ja) | 2004-08-27 | 2004-08-27 | 画像表示装置の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004248611A JP2006066271A (ja) | 2004-08-27 | 2004-08-27 | 画像表示装置の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006066271A true JP2006066271A (ja) | 2006-03-09 |
Family
ID=36112571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004248611A Pending JP2006066271A (ja) | 2004-08-27 | 2004-08-27 | 画像表示装置の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006066271A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013121900A (ja) * | 2011-12-12 | 2013-06-20 | Ulvac Japan Ltd | ガラス基板の封着方法、及び、ガラス基板の封着装置 |
-
2004
- 2004-08-27 JP JP2004248611A patent/JP2006066271A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013121900A (ja) * | 2011-12-12 | 2013-06-20 | Ulvac Japan Ltd | ガラス基板の封着方法、及び、ガラス基板の封着装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7511425B2 (en) | Image display apparatus having ion pump and electron-emitting devices in communication via mesh or stripe shaped member | |
JP4046959B2 (ja) | 電子線発生装置及び画像形成装置 | |
KR100675735B1 (ko) | 화상표시장치 | |
JP4455229B2 (ja) | 画像表示装置 | |
JP2006066273A (ja) | 画像表示装置 | |
JP3944026B2 (ja) | 外囲器及びその製造方法 | |
JP2006066271A (ja) | 画像表示装置の製造方法 | |
JP2009206093A (ja) | 真空気密容器の製造方法 | |
JPH11317152A (ja) | 電子線装置、画像表示装置および電子線装置の製造方法 | |
JP3581586B2 (ja) | スペーサの製造方法及び電子線装置の製造方法 | |
JP3099003B2 (ja) | 画像形成装置 | |
JP3740296B2 (ja) | 画像形成装置 | |
JP3056941B2 (ja) | 画像表示装置の製造方法 | |
JP2000251652A (ja) | 画像表示装置及びその製造方法 | |
JPH08167394A (ja) | 画像形成装置およびその製造方法 | |
JPH0877951A (ja) | 画像表示装置 | |
JP3174456B2 (ja) | 画像表示装置の製造方法 | |
JP2001332194A (ja) | 電子線発生装置及び画像形成装置 | |
JPH10302676A (ja) | 画像形成装置 | |
JPH07296746A (ja) | 画像表示装置とその製造方法 | |
JP2003109502A (ja) | 表示パネルの封着方法、表示パネルおよびこれを備える画像表示装置 | |
JP2000251788A (ja) | 画像形成装置及びその製造方法 | |
WO2007080770A1 (ja) | 画像表示装置 | |
JP2000251793A (ja) | 気密容器および画像表示装置 | |
JP2003086122A (ja) | 画像形成装置 |