[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006063127A - Transparent thermoplastic resin - Google Patents

Transparent thermoplastic resin Download PDF

Info

Publication number
JP2006063127A
JP2006063127A JP2004244918A JP2004244918A JP2006063127A JP 2006063127 A JP2006063127 A JP 2006063127A JP 2004244918 A JP2004244918 A JP 2004244918A JP 2004244918 A JP2004244918 A JP 2004244918A JP 2006063127 A JP2006063127 A JP 2006063127A
Authority
JP
Japan
Prior art keywords
resin
monomer
hydrogenation reaction
meth
water absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004244918A
Other languages
Japanese (ja)
Inventor
Nobuya Saegusa
暢也 三枝
Shojiro Kuwabara
章二郎 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2004244918A priority Critical patent/JP2006063127A/en
Publication of JP2006063127A publication Critical patent/JP2006063127A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent thermoplastic resin excellent in transparency and water absorption properties. <P>SOLUTION: The transparent thermoplastic resin is produced by hydrogenating ≥70% to <97% of aromatic rings in a copolymer having ≥0.25 to <1.0 molar ratio (A/B) expressed by a structural unit originating from a (meth)acrylic ester monomer unit (A mole) over a structural unit (B mole) of an aromatic vinyl monomer in the structural units of the copolymer obtained by polymerizing the monomer composition comprising the (meth)acrylic ester monomer and the aromatic vinyl monomer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は熱可塑性透明樹脂に関する。   The present invention relates to a thermoplastic transparent resin.

非晶性プラスチックの分野ではアクリル樹脂、メタクリル樹脂、スチレン系樹脂、ポリカーボネート樹脂、環状ポリオレフィン樹脂など、様々な材料が使用されており、それぞれの用途にあった性能を使い分けている。メタクリル酸メチル−スチレン共重合体(以下MS樹脂と略す。)はメタクリル樹脂の持つ優れた透明性を生かしつつ、かつ寸法安定性、剛性、比重などの物性バランスを改善した透明樹脂である。その性質を生かし、看板や照明カバー、建材などに広く使われているが、近年では導光板やレンズシート、前面パネルなど、様々なフラットディスプレイ産業におけるディスプレイ部材としての用途が拡大している。特にMS樹脂はメタクリル樹脂に比べ樹脂の吸水率が小さいことから、寸法安定性が優れている点で有用である。しかしながらこのMS樹脂は芳香環骨格を有するため、メタクリル樹脂に比べると透明性が劣ることなど、用途が限定される場合があった。またその寸法安定性、耐熱性に関してもさらなる改善が求められている。   In the field of amorphous plastics, various materials such as acrylic resin, methacrylic resin, styrene resin, polycarbonate resin, and cyclic polyolefin resin are used, and the performance suitable for each application is properly used. A methyl methacrylate-styrene copolymer (hereinafter abbreviated as MS resin) is a transparent resin that improves the balance of physical properties such as dimensional stability, rigidity, and specific gravity while taking advantage of the excellent transparency of methacrylic resin. Taking advantage of this property, it is widely used for signboards, lighting covers, building materials, etc., but in recent years, its use as a display member in various flat display industries such as a light guide plate, a lens sheet, and a front panel is expanding. In particular, MS resin is useful in that it has excellent dimensional stability because the water absorption of the resin is smaller than that of methacrylic resin. However, since this MS resin has an aromatic ring skeleton, its use may be limited, such as poor transparency compared to a methacrylic resin. Further improvements are also required in terms of dimensional stability and heat resistance.

また、スチレン系樹脂の芳香環を水素化(核水添ともいう。)する技術は古くから知られており、ポリスチレンから得られるポリビニルシクロヘキサンは、機械強度に劣るという欠点はあるものの、透明性と耐熱変形性に優れた樹脂である。その優れた透明性と耐熱変形性から、光ディスク基盤への応用が検討されてきた(特許文献1参照。)。MS樹脂を核水添した樹脂も、この光ディスク用途に応用した例として一部の組成で開示されている(特許文献2参照。)が、金属との密着性が不足すること、耐熱変形性が必ずしも十分でないことから、光ディスクの基盤としては十分にその性能を発揮することができないことがあった。またプラスチックレンズへの応用も一部の組成で開示されている(特許文献3参照。)。
特開昭63−43910号公報 特開平6−25326号公報 特開平4−75001号公報
In addition, a technique for hydrogenating an aromatic ring of a styrenic resin (also referred to as nuclear hydrogenation) has been known for a long time. Polyvinylcyclohexane obtained from polystyrene has a disadvantage that it is inferior in mechanical strength. It is a resin with excellent heat distortion resistance. Due to its excellent transparency and heat distortion resistance, application to an optical disk substrate has been studied (see Patent Document 1). A resin in which MS resin is nucleated with hydrogen is also disclosed in some compositions as an example of application to this optical disc application (see Patent Document 2). However, the adhesion to metal is insufficient and the heat distortion resistance is low. Since this is not always sufficient, the performance of the optical disk base may not be sufficiently exhibited. Application to plastic lenses is also disclosed with some compositions (see Patent Document 3).
Japanese Unexamined Patent Publication No. 63-43910 JP-A-6-25326 JP-A-4-75001

本発明は上で述べた熱可塑性透明樹脂に要求されている透明性、耐熱性、吸水性のバランスに優れた熱可塑性透明樹脂を提供することを課題とする。   An object of the present invention is to provide a thermoplastic transparent resin excellent in the balance of transparency, heat resistance, and water absorption required for the thermoplastic transparent resin described above.

上記、特許文献2および3で開示されているMMA共重合率の低いMS樹脂の芳香環を高い水素化反応率まで反応させた樹脂(MMA構成単位/スチレン構成単位(モル比)=0.92以下、水素化反応率97%または100%)では、主鎖が切断して分子量が低下する事による機械強度低下の現象が起こり、必ずしも満足のいく結果が得られず、実用に耐えない場合があった。本発明は上記事情に鑑み鋭意検討した結果、(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーから選択したモノマー組成物を重合して得られる、特定の構成単位の組成からなる共重合体の芳香環の70%以上97%未満の範囲で水素化反応することによって得られる熱可塑性透明樹脂が、透明性、耐熱性、機械物性の物性バランスが良いことを見出し、本発明に到った。
すなわち本発明は(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーとを含むモノマー組成物を重合して得られる共重合体の構成単位において芳香族ビニルモノマー由来の構成単位(Bモル)に対する(メタ)アクリル酸エステルモノマー由来の構成単位(Aモル)のモル比(A/B)が0.25以上1.0未満である共重合体の芳香環の70%以上97%未満を水素化反応することによって得られる熱可塑性透明樹脂に関するものである。なお、本発明における(メタ)アクリル酸とはメタクリル酸とアクリル酸とを指す表記である。
Resins obtained by reacting the aromatic ring of the MS resin having a low MMA copolymerization rate disclosed in Patent Documents 2 and 3 to a high hydrogenation reaction rate (MMA constituent unit / styrene constituent unit (molar ratio) = 0.92) Hereinafter, when the hydrogenation reaction rate is 97% or 100%), the mechanical strength is reduced due to the main chain being cut and the molecular weight is lowered, so that a satisfactory result cannot always be obtained and it may not be practically used. there were. The present invention has been intensively studied in view of the above circumstances, and as a result, the fragrance of a copolymer comprising a composition of a specific structural unit obtained by polymerizing a monomer composition selected from a (meth) acrylic acid ester monomer and an aromatic vinyl monomer. The present inventors have found that a thermoplastic transparent resin obtained by performing a hydrogenation reaction in a range of 70% or more and less than 97% of the ring has a good balance of physical properties of transparency, heat resistance, and mechanical properties.
That is, the present invention relates to a copolymer unit obtained by polymerizing a monomer composition containing a (meth) acrylic acid ester monomer and an aromatic vinyl monomer, with respect to the structural unit (B mole) derived from the aromatic vinyl monomer. ) Hydrogenation reaction of 70% or more and less than 97% of the aromatic ring of the copolymer having a molar ratio (A / B) of the structural unit (A mole) derived from the acrylate monomer of 0.25 or more and less than 1.0 It is related with the thermoplastic transparent resin obtained by this. In the present invention, (meth) acrylic acid is a notation indicating methacrylic acid and acrylic acid.

本発明により得られる熱可塑性透明樹脂は、透明性、耐熱性、吸水性、機械物性のバランスが優れている。この樹脂を含有する光学材料組成物を成形してなる光学物品は吸水率が低いため、寸法安定性に優れる。   The thermoplastic transparent resin obtained by the present invention has an excellent balance of transparency, heat resistance, water absorption, and mechanical properties. An optical article formed by molding an optical material composition containing this resin has a low water absorption, and thus has excellent dimensional stability.

本発明で用いる(メタ)アクリル酸エステルモノマーは、具体的には(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボルニルなどの(メタ)アクリル酸アルキル類;(メタ)アクリル酸(2−ヒドロキシエチル)や(メタ)アクリル酸(2−ヒドロキシプロピル)、(メタ)アクリル酸(2−ヒドロキシ−2−メチルプロピル)などの(メタ)アクリル酸ヒドロキシアルキル類;(メタ)アクリル酸(2−メトキシエチル)、(メタ)アクリル酸(2−エトキシエチル)などの(メタ)アクリル酸アルコキシアルキル類;(メタ)アクリル酸ベンジルや(メタ)アクリル酸フェニルなどの芳香環を有する(メタ)アクリル酸エステル類;および2−(メタ)アクロイルオキシエチルホスホリルコリンなどのリン脂質類似官能基を有する(メタ)アクリル酸エステル類などをあげることができるが、物性面のバランスから、メタクリル酸アルキルを単独で用いるか、あるいはメタクリル酸アルキルとアクリル酸アルキルを併用することが好ましい。さらに、メタクリル酸メチル80〜100モル%およびアクリル酸アルキル0〜20モル%を用いることが好ましい。用いるアクリル酸アルキルのうち、特に好ましいものはアクリル酸メチルまたはアクリル酸エチルである。   Specific examples of the (meth) acrylic acid ester monomer used in the present invention include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate, and (meth) acrylic acid. (Meth) acrylic acid alkyls such as stearyl, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate; (meth) acrylic acid (2-hydroxyethyl), (meth) acrylic acid (2-hydroxypropyl), ( (Meth) acrylic acid (2-hydroxy-2-methylpropyl) and other (meth) acrylic acid hydroxyalkyls; (meth) acrylic acid (2-methoxyethyl), (meth) acrylic acid (2-ethoxyethyl) and the like Alkoxyalkyl (meth) acrylates; benzyl (meth) acrylate and (meth) acrylic acid (Meth) acrylic acid esters having an aromatic ring such as nyl; and (meth) acrylic acid esters having a phospholipid-like functional group such as 2- (meth) acryloyloxyethyl phosphorylcholine, etc. From the viewpoint of physical properties, it is preferable to use alkyl methacrylate alone or to use alkyl methacrylate and alkyl acrylate together. Furthermore, it is preferable to use methyl methacrylate 80-100 mol% and alkyl acrylate 0-20 mol%. Of the alkyl acrylates used, particularly preferred are methyl acrylate or ethyl acrylate.

本発明の芳香族ビニルモノマーとは、具体的にスチレン、α―メチルスチレン、p−ヒドロキシスチレン、アルコキシスチレン、およびクロロスチレンなどの芳香族ビニル化合物があげられるが、スチレンが好適に用いられる。   Specific examples of the aromatic vinyl monomer of the present invention include aromatic vinyl compounds such as styrene, α-methylstyrene, p-hydroxystyrene, alkoxystyrene, and chlorostyrene, and styrene is preferably used.

これらモノマーを重合する方法は、公知の方法を用いることができるが、工業的にはラジカル重合による方法が簡便でよい。ラジカル重合は塊状重合法、溶液重合法、乳化重合法、懸濁重合法など公知の方法を適宜選択することができる。例えば、塊状重合法や溶液重合法の例としてはモノマーと連鎖移動剤、重合開始剤とを配合したモノマー組成物を完全混合槽に連続的にフィードし、100〜180℃で重合する連続重合法などがある。溶液重合法ではトルエンやキシレン、シクロヘキサンやメチルシクロヘキサンなどの炭化水素系溶媒、酢酸エチルなどのエステル系溶媒やアセトン、メチルエチルケトンなどのケトン系溶媒、テトラヒドロフランやジオキサンなどのエーテル系溶媒、メタノールやイソプロパノールなどのアルコール系溶媒などの溶媒を、モノマー組成物と共にフィードする。重合後の反応液は重合槽から抜き出して脱揮押出機や減圧脱揮槽に導入することで揮発分を脱揮して樹脂を得ることができる。   A known method can be used as a method for polymerizing these monomers, but a method based on radical polymerization may be simple industrially. For the radical polymerization, a known method such as a bulk polymerization method, a solution polymerization method, an emulsion polymerization method or a suspension polymerization method can be appropriately selected. For example, as an example of a bulk polymerization method or a solution polymerization method, a continuous polymerization method in which a monomer composition containing a monomer, a chain transfer agent, and a polymerization initiator is continuously fed to a complete mixing tank and polymerized at 100 to 180 ° C. and so on. In the solution polymerization method, hydrocarbon solvents such as toluene, xylene, cyclohexane and methylcyclohexane, ester solvents such as ethyl acetate, ketone solvents such as acetone and methyl ethyl ketone, ether solvents such as tetrahydrofuran and dioxane, methanol and isopropanol, etc. A solvent, such as an alcohol solvent, is fed with the monomer composition. The reaction liquid after the polymerization can be extracted from the polymerization tank and introduced into a devolatilizing extruder or a vacuum devolatilization tank to devolatilize the volatile matter and obtain a resin.

メタクリル系樹脂の場合、共重合体の構成単位の組成は仕込んだモノマーの組成とは必ずしも一致せず、重合反応によって実際にポリマーに取り込まれたモノマーの量によって決定される。共重合体の構成単位の比は、重合率が100%であれば仕込みモノマー組成比と一致するが、実際には50〜80%の重合率で製造する場合が多く、反応性の高いモノマーほどポリマーに取り込まれ易いため、モノマーの仕込み組成と共重合体の構成単位の組成にズレが生じるので、仕込みモノマーの組成比を適宜調整する必要がある。本発明で水素化反応に用いる共重合体の構成単位のモル比(A/B)としては、0.25以上1.0未満である。0.25未満になると機械強度が著しく劣り実用性に耐えない場合がある。1.0以上であると、極性基が多く含有されるため、吸水率が上昇し、寸法安定性が不足する場合がある。物性バランスの面からさらに好ましい範囲を例示するならば、0.3以上0.95以下である。   In the case of a methacrylic resin, the composition of the structural unit of the copolymer does not necessarily match the composition of the charged monomer, and is determined by the amount of monomer actually incorporated into the polymer by the polymerization reaction. The ratio of the constituent units of the copolymer is the same as the charged monomer composition ratio when the polymerization rate is 100%, but in practice, it is often produced at a polymerization rate of 50 to 80%. Since it is easily incorporated into the polymer, there is a difference between the charged composition of the monomer and the composition of the constituent unit of the copolymer, so the composition ratio of the charged monomer needs to be adjusted appropriately. The molar ratio (A / B) of the structural units of the copolymer used for the hydrogenation reaction in the present invention is 0.25 or more and less than 1.0. If it is less than 0.25, the mechanical strength is remarkably inferior and may not be practical. If it is 1.0 or more, a large amount of polar groups are contained, so that the water absorption rate increases and the dimensional stability may be insufficient. If a more preferable range is illustrated from the viewpoint of balance of physical properties, it is 0.3 or more and 0.95 or less.

上記手法などで得られた共重合体は、適当な溶媒にて溶解して水素化反応を行うが、重合の際と同じ溶媒を用いても良いし、異なる溶媒を用いても良い。水素化反応では水素化反応前後の共重合体の溶解性や水素の溶解性が良好なもののうち、水素化される部位を持たないものが好ましい。例えば、シクロヘキサンやメチルシクロヘキサンなどの炭化水素系溶媒、酢酸エチルなどのエステル系溶媒やアセトン、メチルエチルケトンなどのケトン系溶媒、テトラヒドロフランやジオキサンなどのエーテル系溶媒、メタノールやイソプロパノールなどのアルコール系溶媒が用いられる。   The copolymer obtained by the above method or the like is dissolved in an appropriate solvent and subjected to a hydrogenation reaction. The same solvent as that used in the polymerization may be used, or a different solvent may be used. In the hydrogenation reaction, among those having good solubility of the copolymer before and after the hydrogenation reaction and hydrogen solubility, those having no site to be hydrogenated are preferable. For example, hydrocarbon solvents such as cyclohexane and methylcyclohexane, ester solvents such as ethyl acetate, ketone solvents such as acetone and methyl ethyl ketone, ether solvents such as tetrahydrofuran and dioxane, and alcohol solvents such as methanol and isopropanol are used. .

水素化反応はバッチ式反応や連続流通式反応など、公知の手法を用いることができるが、好ましい条件として、水素圧は3から30MPa、反応温度は60から250℃の範囲内で行われる。反応温度が低すぎると反応が進行しにくく、反応温度が高すぎると分子鎖の切断による分子量の低下が起こったり、エステル部位の反応までもが進行しやすくなる。分子鎖の切断による分子量低下を防ぎかつ円滑に反応を進行させるには、用いる触媒の種類および濃度、共重合体の溶液濃度、分子量などにより適宜決定される適切な温度、水素圧により水素化反応を行うことが好ましい。   The hydrogenation reaction may be carried out using a known method such as a batch reaction or a continuous flow reaction. As preferable conditions, the hydrogen pressure is 3 to 30 MPa and the reaction temperature is 60 to 250 ° C. If the reaction temperature is too low, the reaction is difficult to proceed. If the reaction temperature is too high, the molecular weight is reduced due to the cleavage of the molecular chain, or the reaction at the ester site is likely to proceed. In order to prevent molecular weight drop due to molecular chain scission and allow the reaction to proceed smoothly, the hydrogenation reaction is performed at an appropriate temperature and hydrogen pressure appropriately determined by the type and concentration of the catalyst used, the solution concentration of the copolymer, the molecular weight, etc. It is preferable to carry out.

触媒には公知の触媒を使用することができる。具体的にはニッケル、パラジウム、白金、コバルト、ルテニウム、ロジウムなどの金属、または該金属の酸化物、塩、錯体などの化合物をカーボン、アルミナ、シリカ、シリカ・アルミナ、珪藻土等の多孔性担体に担持した固体触媒が挙げられる。これらのなかでもニッケル、パラジウム、白金をカーボン、アルミナ、シリカ、シリカ・アルミナ、珪藻土に担持したものが好ましく用いられる。担持量としては0.1〜30wt%が好ましい。   A known catalyst can be used as the catalyst. Specifically, metals such as nickel, palladium, platinum, cobalt, ruthenium, and rhodium, or compounds such as oxides, salts, and complexes of the metals are used as porous carriers such as carbon, alumina, silica, silica / alumina, and diatomaceous earth. Examples include a supported solid catalyst. Of these, nickel, palladium, and platinum supported on carbon, alumina, silica, silica / alumina, and diatomaceous earth are preferably used. The supported amount is preferably 0.1 to 30 wt%.

また水素化反応率は芳香環の70%以上97%未満以下であることが好ましく、さらに好ましくは75%以上95%未満、特に好ましくは80%以上90%未満である。70%未満の場合には樹脂が白濁して透明性が低下したり、ガラス転移温度の向上などの性能向上効果が小さく好ましくない。水素化反応率が97%以上では、必然的に水素化反応の時間を長くしたり、水素圧や反応温度を高くする必要があるため、芳香族ビニルモノマーの構成割合の多い本発明における共重合体では、水素化反応前後で重量平均分子量の低下が起こり、機械物性が低下するので好ましくない。水素化反応前後で重量平均分子量の低下の度合いをGPCを用いたポリスチレン換算の分子量測定で比較することは、樹脂の屈折率が異なってくること、溶離中でのポリマーの凝集形態によって見かけの分子量に差が出てくることなど問題はあるが、水素化反応前後で30%〜50%もの重量平均分子量の低下が観測される。   The hydrogenation reaction rate is preferably 70% or more and less than 97% or less of the aromatic ring, more preferably 75% or more and less than 95%, and particularly preferably 80% or more and less than 90%. If it is less than 70%, the resin becomes cloudy and the transparency is lowered, and the performance improvement effect such as the improvement of the glass transition temperature is small, which is not preferable. When the hydrogenation reaction rate is 97% or more, it is inevitably necessary to lengthen the hydrogenation reaction time or to increase the hydrogen pressure or the reaction temperature. The coalescence is not preferable because the weight average molecular weight is lowered before and after the hydrogenation reaction and the mechanical properties are lowered. Comparing the degree of decrease in the weight average molecular weight before and after the hydrogenation reaction by measuring the molecular weight in terms of polystyrene using GPC is that the refractive index of the resin is different, and the apparent molecular weight depends on the polymer aggregation during elution Although there is a problem such as a difference in weight, a decrease in weight average molecular weight of 30% to 50% is observed before and after the hydrogenation reaction.

本発明の熱可塑性透明樹脂は、可視光領域の光線を良好に透過するため、外観は透明である。3.2mm厚の成型品の全光線透過率は90%以上であることが好ましい。成型品表面の反射による損失が免れないため、この全光線透過率の上限は屈折率に依存するが、光学材料として使用される場合にはさらに高度な透明性が要求される場合があり、さらに好ましくは91%以上、最も好ましくは92%以上である。   Since the thermoplastic transparent resin of the present invention transmits light in the visible light region satisfactorily, the appearance is transparent. The total light transmittance of a molded product having a thickness of 3.2 mm is preferably 90% or more. Since the loss due to reflection on the surface of the molded product is unavoidable, the upper limit of the total light transmittance depends on the refractive index, but when used as an optical material, a higher degree of transparency may be required. Preferably it is 91% or more, Most preferably, it is 92% or more.

本発明の熱可塑性透明樹脂は、吸水率が低いため、寸法安定性に優れた物品を製造することができる。極性基を多く含む樹脂は吸水率が高く、A/Bが小さいものはエステル基の数が少ないため、より低吸水である。具体的に飽和吸水率は0.5%以下であることが好ましく、0.3%以下で有ることがより好ましい。   Since the thermoplastic transparent resin of the present invention has a low water absorption, an article excellent in dimensional stability can be produced. A resin containing a large amount of polar groups has a high water absorption rate, and a resin having a small A / B has a low water absorption because the number of ester groups is small. Specifically, the saturated water absorption is preferably 0.5% or less, and more preferably 0.3% or less.

本発明の熱可塑性透明樹脂を含む光学材料組成物は透明性、耐熱性、機械物性のバランスが優れているうえ、吸水率が低い。この光学材料組成物を用いて射出成形や押出成形することで、寸法安定性に特に優れた光学物品を製造することができる。具体的な用途としては、各種導光板や導光体、光ファイバー、ディスプレイ前面パネル、プラスチックレンズ、プリズム、プラスチックレンズ基板、光学フィルター、光学フィルム、光記録媒体基盤などをあげることができる。   The optical material composition containing the thermoplastic transparent resin of the present invention has an excellent balance of transparency, heat resistance and mechanical properties, and has a low water absorption. An optical article having particularly excellent dimensional stability can be produced by injection molding or extrusion molding using this optical material composition. Specific applications include various light guide plates and light guides, optical fibers, display front panels, plastic lenses, prisms, plastic lens substrates, optical filters, optical films, optical recording medium substrates, and the like.

本発明の熱可塑性透明樹脂は酸化防止剤などを配合しない状態であっても、高い耐熱分解性を有しているが、酸化分解に対しては適当な酸化防止剤を配合することにより、耐熱分解性の性能を向上させることができる。酸化防止剤としては公知のものを使用することができるが、具体的にはヒンダードフェノール系酸化防止剤、リン酸系酸化防止剤などが挙げられ、これを単独または併用して用いると良い。添加量は樹脂に対して50〜10000ppm程度が好ましい。   The thermoplastic transparent resin of the present invention has high heat decomposability even in a state where no antioxidant or the like is blended. However, by adding a suitable antioxidant against oxidative degradation, Degradability can be improved. Known antioxidants can be used, and specific examples include hindered phenolic antioxidants and phosphoric acid antioxidants, which may be used alone or in combination. The addition amount is preferably about 50 to 10,000 ppm with respect to the resin.

また、必要に応じて本発明の熱可塑性透明樹脂のバランスを損なわない程度に他の添加剤たとえば帯電防止剤、顔料や染料などの着色剤、UV吸収剤、離型剤、可塑剤、滑剤、難燃剤、防菌剤などを配合しても良い。   In addition, other additives such as antistatic agents, colorants such as pigments and dyes, UV absorbers, mold release agents, plasticizers, lubricants, as long as they do not impair the balance of the thermoplastic transparent resin of the present invention, if necessary. You may mix | blend a flame retardant, a fungicide, etc.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明はこれらの例によりその範囲を限定されるものではない。なお、熱可塑性透明樹脂の評価方法は次の通りである。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited by these examples. In addition, the evaluation method of a thermoplastic transparent resin is as follows.

(1)共重合体中の構成単位のモル比算出はH―NMR測定(400MHz)により行った。
(2)樹脂の水素化反応率は水素化反応前後のUVスペクトル測定における260nmの吸光度の減少率で評価した。
(3)重量平均分子量は、東ソー製GPC8020シリーズを用い、THFを溶離液として示差屈折率検出計を用いて測定し、ポリスチレン換算で求めた。
(4)全光線透過率は、日本電色工業製色度・濁度測定器COH−300Aを用いて、3.2mm厚の平板を透過法で測定した。
(5)飽和吸水率には射出成形によって得られた50φ、3.2mm厚の円盤の試験片を用いた。重量変化がなくなるまで80℃の熱風乾燥機で乾燥させ、乾燥重量とし、常温の蒸留水に浸漬させ飽和した重量を吸水重量として、以下の式で計算した。
(飽和吸水率)=[(吸水重量)―(乾燥重量)]/(乾燥重量)×100
(1) The molar ratio of the structural units in the copolymer was calculated by 1 H-NMR measurement (400 MHz).
(2) The hydrogenation reaction rate of the resin was evaluated by the rate of decrease in absorbance at 260 nm in the UV spectrum measurement before and after the hydrogenation reaction.
(3) The weight average molecular weight was measured in terms of polystyrene by using a GPC8020 series manufactured by Tosoh Corporation and using a differential refractive index detector with THF as an eluent.
(4) The total light transmittance was measured by a transmission method on a 3.2 mm thick flat plate using a chromaticity / turbidity measuring device COH-300A manufactured by Nippon Denshoku Industries Co., Ltd.
(5) For the saturated water absorption rate, a 50φ, 3.2 mm-thick disc specimen obtained by injection molding was used. It dried with the hot-air dryer of 80 degreeC until there was no weight change, it was set as the dry weight, and the weight saturated by being immersed in distilled water at normal temperature was made into the water absorption weight, and it computed with the following formula | equation.
(Saturated water absorption) = [(Water absorption weight) − (Dry weight)] / (Dry weight) × 100

<製造例1>
モノマー成分としてメタクリル酸メチル20.4モル%とスチレン79.4モル%を、連鎖移動剤としてn−ドデシルメルカプタンを0.17モル%、重合開始剤としてt−アミルパーオキシ2−エチルヘキサノエートを4.2×10−3モル%の濃度となるように配合したモノマー組成物をヘリカルリボン翼付き10リットル完全混合槽に1kg/時間で連続的にフィードし、平均滞留時間2.5時間、重合温度150℃で連続重合を行った。
<Production Example 1>
20.4 mol% methyl methacrylate and 79.4 mol% styrene as monomer components, 0.17 mol% n-dodecyl mercaptan as chain transfer agent, and t-amylperoxy 2-ethylhexanoate as polymerization initiator the 4.2 × 10 -3 mol% of the monomer composition was blended so that the concentration was continuously fed at 1 kg / time 10 l complete mixing tank with a helical ribbon blade, the average residence time of 2.5 hours, Continuous polymerization was carried out at a polymerization temperature of 150 ° C.

重合槽液面が一定となるように、底部から反応液をギヤポンプで抜き出し、重合液を150℃に維持しながら、ベント口を備えた脱揮押出機に導入して揮発分を脱揮し、ストランドを切断してペレットとした(樹脂A)。このとき共重合体中の構成モノマー単位のモル比(A/B)は0.25、重量平均分子量は22.3万であった。   The reaction liquid is withdrawn from the bottom with a gear pump so that the polymerization tank liquid level is constant, and while maintaining the polymerization liquid at 150 ° C., it is introduced into a devolatilizing extruder equipped with a vent port to devolatilize the volatile matter, The strand was cut into pellets (Resin A). At this time, the molar ratio (A / B) of the constituent monomer units in the copolymer was 0.25, and the weight average molecular weight was 23,000.

<実施例1>
上記、樹脂Aをジオキサンに溶解し、10wt%ジオキサン溶液を調製した。1000mLオートクレーブ装置に10wt%ジオキサン溶液を500重量部、10wt%Pd/C(NEケムキャット社製)を1重量部仕込み、水素圧10MPaで200℃、5時間保持して水素化反応した。フィルターにより触媒を除去した後、ジオキサンを加熱留去して反応液を50wt%まで濃縮、トルエンで再び10wt%まで希釈することを繰り返して溶媒置換し、50wt%トルエン溶液を得た。これを再びベント口を備えた脱揮押出機に導入して揮発分を脱揮、ストランドを切断してペレットを得た(樹脂A1)。水素化反応率は95%であった。重量平均分子量を評価した。結果を表1に示す。
樹脂A1を用いて射出成形機(ファナック製AUTOSHOT100B)により、シリンダ温度260℃で50φ、3.2mm厚さの円盤を作製し、全光線透過率、飽和吸水率を評価した。結果を表1に示す。
<Example 1>
Resin A was dissolved in dioxane to prepare a 10 wt% dioxane solution. A 1000 mL autoclave apparatus was charged with 500 parts by weight of a 10 wt% dioxane solution and 1 part by weight of 10 wt% Pd / C (manufactured by NE Chemcat), and the hydrogenation reaction was carried out while maintaining the hydrogen pressure at 10 MPa at 200 ° C. for 5 hours. After removing the catalyst with a filter, dioxane was heated to distill off, the reaction solution was concentrated to 50 wt%, and diluted with toluene again to 10 wt% to replace the solvent, thereby obtaining a 50 wt% toluene solution. This was again introduced into a devolatilizing extruder equipped with a vent port to volatilize volatile components, and the strand was cut to obtain pellets (resin A1). The hydrogenation reaction rate was 95%. The weight average molecular weight was evaluated. The results are shown in Table 1.
Using resin A1, a disk having a diameter of 50φ and a thickness of 3.2 mm was produced at a cylinder temperature of 260 ° C. by an injection molding machine (FANUC AUTOSHOT 100B), and the total light transmittance and saturated water absorption were evaluated. The results are shown in Table 1.

<実施例2>
上記、樹脂Aの水素化反応の時間を短縮させた以外は実施例1と同様にして、水素化反応率の異なるペレット(水素化反応率75%、樹脂A2)を得た。樹脂A2を用い、実施例1と同様にして、重量平均分子量、全光線透過率、飽和吸水率を評価した。結果を表1に示す。
<Example 2>
Except that the time for the hydrogenation reaction of the resin A was shortened, pellets having different hydrogenation reaction rates (hydrogenation reaction rate 75%, resin A2) were obtained in the same manner as in Example 1. Using resin A2, the weight average molecular weight, the total light transmittance, and the saturated water absorption were evaluated in the same manner as in Example 1. The results are shown in Table 1.

<比較例1>
上記、樹脂Aの水素化反応の時間を延長させた以外は実施例1と同様にして、水素化反応率の異なるペレット(水素化反応率100%、樹脂A3)を得た。樹脂A3を用い、実施例1と同様にして、重量平均分子量、全光線透過率、飽和吸水率を評価した。結果を表2に示す。
<Comparative Example 1>
Except for extending the time for the hydrogenation reaction of the resin A, pellets having different hydrogenation reaction rates (hydrogenation reaction rate 100%, resin A3) were obtained in the same manner as in Example 1. Using resin A3, the weight average molecular weight, total light transmittance, and saturated water absorption were evaluated in the same manner as in Example 1. The results are shown in Table 2.

<比較例2>
上記、樹脂Aの水素化反応の時間を短縮させた以外は実施例1と同様にして、水素化反応率の異なるペレット(水素化反応率65%、樹脂A4)を得た。樹脂A4を用い、実施例1と同様にして、重量平均分子量、全光線透過率、飽和吸水率を評価した。結果を表2に示す。
<Comparative Example 2>
Except that the time for the hydrogenation reaction of the resin A was shortened, pellets having different hydrogenation reaction rates (hydrogenation reaction rate 65%, resin A4) were obtained in the same manner as in Example 1. Using resin A4, the weight average molecular weight, the total light transmittance, and the saturated water absorption were evaluated in the same manner as in Example 1. The results are shown in Table 2.

<製造例2>
モノマー成分としてメタクリル酸メチル30モル%とアクリル酸メチル6モル%、スチレン64モル%を用いた以外は製造例1と同様にして樹脂を合成した(樹脂B)。共重合体中の構成モノマー単位のモル比(A/B)は0.5、重量平均分子量は17.4万であった。
<Production Example 2>
A resin was synthesized in the same manner as in Production Example 1 except that 30 mol% of methyl methacrylate, 6 mol% of methyl acrylate, and 64 mol% of styrene were used as monomer components (Resin B). The molar ratio (A / B) of the constituent monomer units in the copolymer was 0.5, and the weight average molecular weight was 174,000.

<実施例3>
上記、樹脂Bを用いた以外は実施例1と同様にして、水素化反応してペレットを得た(樹脂B1)。水素化反応率は96%であった。樹脂B1を用い、実施例1と同様にして、重量平均分子量、全光線透過率、飽和吸水率を評価した。結果を表1に示す。
<Example 3>
A pellet was obtained by a hydrogenation reaction in the same manner as in Example 1 except that the resin B was used (resin B1). The hydrogenation reaction rate was 96%. Using resin B1, the weight average molecular weight, total light transmittance, and saturated water absorption were evaluated in the same manner as in Example 1. The results are shown in Table 1.

<実施例4>
上記、樹脂Bの水素化反応の時間を短縮させた以外は実施例3と同様にして、水素化反応率の異なるペレット(水素化反応率75%、樹脂B2)を得た。樹脂B2を用い、実施例1と同様にして、重量平均分子量、全光線透過率、飽和吸水率を評価した。結果を表1に示す。
<Example 4>
Except that the time for the hydrogenation reaction of the resin B was shortened, pellets having different hydrogenation reaction rates (hydrogenation reaction rate 75%, resin B2) were obtained in the same manner as in Example 3. Using resin B2, the weight average molecular weight, total light transmittance, and saturated water absorption were evaluated in the same manner as in Example 1. The results are shown in Table 1.

<比較例3>
上記、樹脂Bの水素化反応の時間を延長させた以外は実施例3と同様にして、水素化反応率の異なるペレット(水素化反応率98%、樹脂B3)を得た。樹脂B3を用い、実施例1と同様にして、重量平均分子量、全光線透過率、飽和吸水率を評価した。結果を表2に示す。
<Comparative Example 3>
Pellets with different hydrogenation reaction rates (hydrogenation reaction rate 98%, resin B3) were obtained in the same manner as in Example 3 except that the time for the hydrogenation reaction of resin B was extended. Using resin B3, the weight average molecular weight, total light transmittance, and saturated water absorption were evaluated in the same manner as in Example 1. The results are shown in Table 2.

<比較例4>
上記、樹脂Bの水素化反応の時間を短縮させた以外は実施例3と同様にして、水素化反応率の異なるペレット(水素化反応率62%、樹脂B4)を得た。樹脂B4を用い、実施例1と同様にして、重量平均分子量、全光線透過率、飽和吸水率を評価した。結果を表2に示す。
<Comparative example 4>
Except that the time for the hydrogenation reaction of the resin B was shortened, pellets having different hydrogenation reaction rates (hydrogenation reaction rate 62%, resin B4) were obtained in the same manner as in Example 3. Using resin B4, the weight average molecular weight, the total light transmittance, and the saturated water absorption were evaluated in the same manner as in Example 1. The results are shown in Table 2.

<製造例3>
モノマー成分としてメタクリル酸メチル48モル%、アクリル酸ブチル4.8モル%とスチレン47.2モル%を用いた以外は製造例1と同様にして樹脂を合成した(樹脂C)。共重合体中の構成モノマー単位のモル比(A/B)は0.9、重量平均分子量は19.3万であった。
<Production Example 3>
A resin was synthesized in the same manner as in Production Example 1 except that 48 mol% of methyl methacrylate, 4.8 mol% of butyl acrylate, and 47.2 mol% of styrene were used as monomer components (Resin C). The molar ratio (A / B) of the constituent monomer units in the copolymer was 0.9, and the weight average molecular weight was 193,000.

<実施例5>
上記、樹脂Cを用いた以外は実施例1と同様にして、水素化反応してペレットを得た(樹脂C1)。水素化反応率は93%であった。樹脂C1を用い、実施例1と同様にして、重量平均分子量、全光線透過率、飽和吸水率を評価した。結果を表1に示す。
<Example 5>
A pellet was obtained by a hydrogenation reaction in the same manner as in Example 1 except that the resin C was used (resin C1). The hydrogenation reaction rate was 93%. Using resin C1, the weight average molecular weight, total light transmittance, and saturated water absorption were evaluated in the same manner as in Example 1. The results are shown in Table 1.

<実施例6>
上記、樹脂Cの水素化反応の時間を短縮させた以外は実施例5と同様にして、水素化反応率の異なるペレット(水素化反応率72%、樹脂C2)を得た。樹脂C2を用い、実施例1と同様にして、重量平均分子量、全光線透過率、飽和吸水率を評価した。結果を表1に示す。
<Example 6>
Except that the time for the hydrogenation reaction of the resin C was shortened, pellets having different hydrogenation reaction rates (hydrogenation reaction rate 72%, resin C2) were obtained in the same manner as in Example 5. Using resin C2, the weight average molecular weight, total light transmittance, and saturated water absorption were evaluated in the same manner as in Example 1. The results are shown in Table 1.

<比較例5>
上記、樹脂Cの水素化反応の時間を延長させた以外は実施例5と同様にして、水素化反応率の異なるペレット(水素化反応率100%、樹脂C3)を得た。樹脂C3を用い、実施例1と同様にして、重量平均分子量、全光線透過率、飽和吸水率を評価した。結果を表2に示す。
<Comparative Example 5>
Pellets with different hydrogenation reaction rates (hydrogenation reaction rate 100%, resin C3) were obtained in the same manner as in Example 5 except that the time for the hydrogenation reaction of resin C was extended. Using resin C3, the weight average molecular weight, total light transmittance, and saturated water absorption were evaluated in the same manner as in Example 1. The results are shown in Table 2.

<比較例6>
上記、樹脂Cの水素化反応の時間を短縮させた以外は実施例5と同様にして、水素化反応率の異なるペレット(水素化反応率65%、樹脂C4)を得た。樹脂C4を用い、実施例1と同様にして、重量平均分子量、全光線透過率、飽和吸水率を評価した。結果を表2に示す。
<Comparative Example 6>
Except that the time for the hydrogenation reaction of the resin C was shortened, pellets having different hydrogenation reaction rates (hydrogenation reaction rate 65%, resin C4) were obtained in the same manner as in Example 5. Using resin C4, the weight average molecular weight, the total light transmittance, and the saturated water absorption were evaluated in the same manner as in Example 1. The results are shown in Table 2.

<製造例4>
モノマー成分としてメタクリル酸メチル59.9モル%、とスチレン39.9モル%を用いた以外は製造例1と同様にして樹脂を合成した(樹脂D)。共重合体中の構成モノマー単位のモル比(A/B)は1.5、重量平均分子量は16.3万であった。
<Production Example 4>
A resin was synthesized in the same manner as in Production Example 1 except that 59.9 mol% methyl methacrylate and 39.9 mol% styrene were used as monomer components (Resin D). The molar ratio (A / B) of the constituent monomer units in the copolymer was 1.5, and the weight average molecular weight was 163,000.

<比較例7>
上記、樹脂Dを用いた以外は実施例1と同様にして、水素化反応してペレットを得た(樹脂D1)。水素化反応率は96%であった。樹脂D1を用い、実施例1と同様にして、重量平均分子量、全光線透過率、飽和吸水率を評価した。結果を表2に示す。
<Comparative Example 7>
A pellet was obtained by a hydrogenation reaction in the same manner as in Example 1 except that the resin D was used (resin D1). The hydrogenation reaction rate was 96%. Using resin D1, the weight average molecular weight, the total light transmittance, and the saturated water absorption were evaluated in the same manner as in Example 1. The results are shown in Table 2.

Figure 2006063127
Figure 2006063127

Figure 2006063127
Figure 2006063127

Claims (5)

(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーとを含むモノマー組成物を重合して得られる共重合体の構成単位において芳香族ビニルモノマー由来の構成単位(Bモル)に対する(メタ)アクリル酸エステルモノマー由来の構成単位(Aモル)のモル比(A/B)が0.25以上1.0未満である共重合体の芳香環の70%以上97%未満を水素化反応することによって得られる熱可塑性透明樹脂。 (Meth) acrylic acid ester with respect to structural unit (B mole) derived from aromatic vinyl monomer in the structural unit of copolymer obtained by polymerizing monomer composition containing (meth) acrylic acid ester monomer and aromatic vinyl monomer It is obtained by hydrogenating 70% or more and less than 97% of the aromatic ring of the copolymer having a molar ratio (A / B) of the monomer-derived structural unit (A mol) of 0.25 or more and less than 1.0. Thermoplastic transparent resin. (メタ)アクリル酸エステルモノマーがメタクリル酸メチル80〜100モル%およびアクリル酸アルキル0〜20モル%からなり、芳香族ビニルモノマーがスチレンであるモノマー組成物を用いて得られる請求項1に記載の熱可塑性透明樹脂。 The (meth) acrylic acid ester monomer is composed of 80 to 100 mol% of methyl methacrylate and 0 to 20 mol% of alkyl acrylate, and is obtained using a monomer composition in which the aromatic vinyl monomer is styrene. Thermoplastic transparent resin. 3.2mm光路の全光線透過率が90%以上であることを特徴とする、請求項1または2に記載の熱可塑性透明樹脂。 The thermoplastic transparent resin according to claim 1, wherein the total light transmittance of a 3.2 mm optical path is 90% or more. 飽和吸水率が0.5%以下であることを特徴とする、請求項1〜3のいずれかに記載の熱可塑性透明樹脂。 The thermoplastic transparent resin according to any one of claims 1 to 3, wherein the saturated water absorption is 0.5% or less. 請求項1〜4のいずれかに記載の熱可塑性透明樹脂を含む光学材料組成物。 The optical material composition containing the thermoplastic transparent resin in any one of Claims 1-4.
JP2004244918A 2004-08-25 2004-08-25 Transparent thermoplastic resin Pending JP2006063127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004244918A JP2006063127A (en) 2004-08-25 2004-08-25 Transparent thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004244918A JP2006063127A (en) 2004-08-25 2004-08-25 Transparent thermoplastic resin

Publications (1)

Publication Number Publication Date
JP2006063127A true JP2006063127A (en) 2006-03-09

Family

ID=36109895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004244918A Pending JP2006063127A (en) 2004-08-25 2004-08-25 Transparent thermoplastic resin

Country Status (1)

Country Link
JP (1) JP2006063127A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116904A1 (en) * 2006-04-06 2007-10-18 Nippon Shokubai Co., Ltd. Optical films and process for production thereof
WO2010024217A1 (en) * 2008-08-28 2010-03-04 三菱瓦斯化学株式会社 Thermoplastic resin laminate
US8232342B2 (en) 2006-09-12 2012-07-31 Cheil Industries Inc. Transparent ABS resin composition having excellent impact strength and flowability
JP5712208B2 (en) * 2010-05-21 2015-05-07 三菱瓦斯化学株式会社 Synthetic resin laminate
JP5713014B2 (en) * 2010-06-21 2015-05-07 三菱瓦斯化学株式会社 Thermoplastic resin laminate
JPWO2018084068A1 (en) * 2016-11-01 2019-09-19 デンカ株式会社 Decorative film
JP2020011430A (en) * 2018-07-17 2020-01-23 三菱ケミカル株式会社 Reflector

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116904A1 (en) * 2006-04-06 2007-10-18 Nippon Shokubai Co., Ltd. Optical films and process for production thereof
KR101045184B1 (en) * 2006-04-06 2011-06-28 가부시키가이샤 닛폰 쇼쿠바이 Optical Films and Process for Production Thereof
KR101045126B1 (en) 2006-04-06 2011-06-30 가부시키가이샤 닛폰 쇼쿠바이 Optical Films and Process for Production Thereof
US8232342B2 (en) 2006-09-12 2012-07-31 Cheil Industries Inc. Transparent ABS resin composition having excellent impact strength and flowability
WO2010024217A1 (en) * 2008-08-28 2010-03-04 三菱瓦斯化学株式会社 Thermoplastic resin laminate
JPWO2010024217A1 (en) * 2008-08-28 2012-01-26 三菱瓦斯化学株式会社 Thermoplastic resin laminate
JP5712208B2 (en) * 2010-05-21 2015-05-07 三菱瓦斯化学株式会社 Synthetic resin laminate
JP5713014B2 (en) * 2010-06-21 2015-05-07 三菱瓦斯化学株式会社 Thermoplastic resin laminate
JPWO2018084068A1 (en) * 2016-11-01 2019-09-19 デンカ株式会社 Decorative film
JP2020011430A (en) * 2018-07-17 2020-01-23 三菱ケミカル株式会社 Reflector

Similar Documents

Publication Publication Date Title
JP5713014B2 (en) Thermoplastic resin laminate
JP2006063127A (en) Transparent thermoplastic resin
JP5023519B2 (en) Method for producing hydrogenated polymer
US7446152B2 (en) Method of producing hydrogenated polymers
KR101968378B1 (en) Thermoplastic resin
TWI788600B (en) Polymethacrylate composition and optical device made therefrom, and display apparatus
WO2010034952A1 (en) Transparent flat article made of nanostructured acrylic materials
JP5812001B2 (en) Thermoplastic transparent resin composition
JP2014005335A (en) Transparent resin composition
JP4479894B2 (en) Light diffusing resin
JP2014077044A (en) Method of producing nuclear hydrogenated polymer using material containing no sulfur
EP0989419B1 (en) Composition for near infrared absorption filter, and near infrared absorption filter produced using said composition
JP2017137417A (en) Acrylic resin film
JP2008291250A (en) Method for producing (meth)acrylate-styrene copolymer
JP2012214619A (en) Method for producing methacrylic resin and molded article
JP5590486B2 (en) Fumarate ester block polymer and process for producing the same
JP2016196522A (en) Thermoplastic transparent resin composition
JP6787034B2 (en) Thermoplastic copolymer resin
CN117321097A (en) Methacrylic copolymer and method for producing same
JP2006063126A (en) Injection molded product
TW202128794A (en) Thermoplastic copolymer and resin molded body