[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006062994A - Production method for high quality diaminodiphenyl ether - Google Patents

Production method for high quality diaminodiphenyl ether Download PDF

Info

Publication number
JP2006062994A
JP2006062994A JP2004245070A JP2004245070A JP2006062994A JP 2006062994 A JP2006062994 A JP 2006062994A JP 2004245070 A JP2004245070 A JP 2004245070A JP 2004245070 A JP2004245070 A JP 2004245070A JP 2006062994 A JP2006062994 A JP 2006062994A
Authority
JP
Japan
Prior art keywords
reaction
diaminodiphenyl ether
product
automatically
etherification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004245070A
Other languages
Japanese (ja)
Inventor
Kazumasa Mizuno
和正 水野
Minoru Nakajima
実 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2004245070A priority Critical patent/JP2006062994A/en
Publication of JP2006062994A publication Critical patent/JP2006062994A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a diaminodiphenyl ether in a high yield with stable high quality via a stepwise producing process which uses an aminophnol and a chloronitrobenzene as starting materials and comprising an etherification process, a hydrogen addition process and a distillation purifying process, by quickly and accurately measuring a solution composition in each reaction process and reflecting the results of measurement to the automatic control of the process. <P>SOLUTION: The diaminodiphenyl ether with stable high quality is produced in high yield by installing near infrared absorption spectroscopic arrangements and directly measuring compositions of the solution in etherification, hydrogen addition and distillation purification processes which allow the accurate measurement of the reaction condition and purification condition and continuous downloading of the results to a distributed process control system for automatic calculation and control. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、エーテル化反応工程、水素添加反応工程、蒸留精製工程の各工程を経て得られるジアミノジフェニルエーテルの製造方法に関し、更に詳しくは、各工程の溶液組成を直接、近赤外線吸収スペクトル分光分析装置を用いて連続的に測定し、得られた測定結果を連続的に分散型プロセス制御システムに取り込むことにより、自動的に反応条件や蒸留条件の制御を行い、常に一定の品質となる条件で自動的に反応終了や製品の払い出しを行う、高品質ジアミノジフェニルエーテルの製造方法に関する。   The present invention relates to a method for producing diaminodiphenyl ether obtained through each step of an etherification reaction step, a hydrogenation reaction step, and a distillation purification step, and more specifically, a near-infrared absorption spectrum spectroscopic analyzer for directly analyzing the solution composition of each step. Measures reaction conditions and distillation conditions automatically by continuously taking measurements using the and incorporating the measurement results into a distributed process control system. In particular, the present invention relates to a method for producing high-quality diaminodiphenyl ether, in which the reaction is completed and the product is dispensed.

ジアミノジフェニルエーテル類は、高性能なアラミド合成繊維製造原料として有用な化合物である。これらの化合物を製造する方法として、まずハロニトロベンゼン類とアミノフェノール類とを、触媒の存在下で適当な溶媒を用いて加熱縮合させることで、中間生成物であるアミノフェニルニトロフェニルエーテル類を得て、次いで得られたアミノフェニルニトロフェニルエーテル類を触媒の存在下、水素添加反応を行うことで、ジアミノジフェニルエーテル類を得る方法が公知であると共に商業化技術として確立されている。例えば、N,N−ジメチルホルムアミドを含む液体媒質中で、アルカリ金属触媒下、アミノフェニルニトロフェニルエーテル類を生成させ、その後反応媒質中で、貴金属触媒存在下、水素添加反応をしてジアミノジフェニルエーテル類を形成する方法が開示されている(例えば特許文献1参照。)。   Diaminodiphenyl ethers are useful compounds as raw materials for producing high-performance aramid synthetic fibers. As a method for producing these compounds, first, halonitrobenzenes and aminophenols are subjected to heat condensation using an appropriate solvent in the presence of a catalyst to obtain aminophenylnitrophenyl ethers as intermediate products. Then, a method for obtaining diaminodiphenyl ethers by carrying out a hydrogenation reaction on the obtained aminophenylnitrophenyl ethers in the presence of a catalyst is known and established as a commercial technique. For example, in a liquid medium containing N, N-dimethylformamide, aminophenylnitrophenyl ethers are produced in the presence of a noble metal catalyst in the reaction medium by producing an aminophenylnitrophenyl ether in the presence of a noble metal catalyst. Has been disclosed (see, for example, Patent Document 1).

しかしながら、ジアミノジフェニルエーテル類を得るためのエーテル化反応工程、水素添加反応工程、蒸留精製工程の各工程は、工業的には回分式又は半回分式で実施されるのが一般であり、エーテル化及び水素添加の反応工程においては、一定の原料仕込み比率で配合し、更に同一温度や同一圧力条件下で反応させても、原料組成の変動や副反応などの外乱によって、バッチ毎に反応終了時間に差が生じるため、反応時間のみを終了点の目安とすると反応不十分による収率の低下を招く結果となる。   However, the etherification reaction step, the hydrogenation reaction step, and the distillation purification step for obtaining diaminodiphenyl ethers are generally carried out industrially in batch or semi-batch methods. In the reaction process of hydrogenation, even if it is blended at a constant raw material charge ratio and further reacted under the same temperature and pressure conditions, due to disturbances such as fluctuations in the raw material composition and side reactions, the reaction end time is reached for each batch Since a difference arises, if only the reaction time is used as a measure of the end point, the yield is reduced due to insufficient reaction.

同様に、蒸留精製工程においては、反応に用いた溶媒を減圧下で除去後、更にアミノフェノールやアニリンに代表される低沸点不純物を初留分として適切に除去し、ジアミノジフェニルエーテル製品の払い出しを行う必要があるが、回分式、あるいは半回分式である故、同一の減圧条件、温度条件、低沸点初留分の抜出量であっても、反応によって得られた蒸留粗原料組成の変動により、一定の品質が維持できない結果となる。   Similarly, in the distillation purification process, after removing the solvent used in the reaction under reduced pressure, low-boiling impurities such as aminophenol and aniline are appropriately removed as the first fraction, and the diaminodiphenyl ether product is discharged. Although it is necessary to be batch-type or semi-batch-type, even if the same decompression conditions, temperature conditions, and the amount of the low-boiling initial fraction are withdrawn, it may vary due to fluctuations in the distillation raw material composition obtained by the reaction. As a result, a certain quality cannot be maintained.

これらを回避するため、ガスクロマトグラフィー等を用いた組成分析を毎バッチ行い、反応終了や蒸留製品の品質を確認する方法があるが、手作業ロスが増大するだけでなく、約1時間を要する分析結果待ち時間に起因する生産能力の低下や、反応工程においては適切な反応終了点を逸したことによる副反応の進行や、また蒸留精製工程においては低沸点初留分の抜き出し不足などが発生し、しばしば製品の純度や可視光線透過率に代表される製品品質が悪化するといった問題が発生していた。   In order to avoid these problems, there is a method of confirming the completion of the reaction and the quality of the distilled product by performing composition analysis using gas chromatography or the like every batch, but not only the manual loss increases but also takes about 1 hour. Decrease in production capacity due to analysis results waiting time, progress of side reactions due to missed reaction end point in reaction process, insufficient extraction of low boiling point initial fraction in distillation purification process, etc. However, there has been a problem that the product quality represented by the purity of the product and the visible light transmittance is often deteriorated.

そこで、安定した高品質を有するジアミノジフェニルエーテルを、高収率で製造する上で、迅速な測定法を採用し、常に一定の品質を有する製品を製造するための、安定した品質管理、製造工程の制御を行う方法が望まれていた。
特開昭48−22433号公報
Therefore, in order to produce diaminodiphenyl ether having a stable and high quality in a high yield, a rapid measurement method is adopted, and a stable quality control and production process for producing a product having a constant quality at all times is adopted. A method of performing control has been desired.
Japanese Patent Laid-Open No. 48-22433

本発明の目的は、上記従来技術の問題点を解決するため、エーテル化反応工程、水素添加反応工程、蒸留精製工程の各工程を経て得られるジアミノジフェニルエーテルの製造プロセスにおいて、各工程の溶液組成を迅速、かつ正確に測定し、得られた測定結果をプロセス制御システムに反映させることにより、自動的に反応条件や蒸留条件の制御を行い、常に一定の品質となる適正な条件で反応終了や製品の払い出しを行う、高品質ジアミノジフェニルエーテルの製造方法を提供することにある。   The object of the present invention is to solve the problems of the prior art described above, in the production process of diaminodiphenyl ether obtained through each step of the etherification reaction step, hydrogenation reaction step, distillation purification step, the solution composition of each step. By measuring the results quickly and accurately and reflecting the obtained measurement results in the process control system, the reaction conditions and distillation conditions are automatically controlled, and the reaction is completed and the products are kept under appropriate conditions that always provide a constant quality. Is to provide a method for producing high-quality diaminodiphenyl ether.

発明者らは、上記目的を達成するため、アミノフェノールとクロロニトロベンゼンとを原料として、ジアミノジフェニルエーテルを得るためのエーテル化反応工程、水素添加反応工程、蒸留精製工程の各工程において、迅速にプロセス溶液の組成を測定し、更にプロセス自動運転制御に反映させる方法に関し鋭意検討を行った。   In order to achieve the above-mentioned object, the inventors have rapidly used a process solution in each of the etherification reaction step, hydrogenation reaction step, and distillation purification step to obtain diaminodiphenyl ether using aminophenol and chloronitrobenzene as raw materials. The composition was measured, and further investigations were made on how to reflect the results in the automatic process control.

その結果、近赤外線吸収スペクトル分光分析装置を用いて、各工程の溶液組成を直接測定することで、反応状態や精製の状況が迅速、かつ正確に測定可能であることを見出し、更に得られた測定結果を分散型プロセス制御システムに連続的に取り込み自動演算、自動制御させれば、手作業ロスを低減し、かつ高純度品質を有するジアミノジフェニルエーテルが、高収率で安定して生産できることを見出し、本発明を完成するに至った。   As a result, it was found that reaction conditions and purification conditions can be measured quickly and accurately by directly measuring the solution composition of each step using a near infrared absorption spectrum spectrometer. Finding that diaminodiphenyl ether with high purity quality can be stably produced in high yield by reducing the manual work loss by continuously taking the measurement results into the distributed process control system and performing automatic calculation and control. The present invention has been completed.

即ち、本発明の目的は、
アミノフェノールとクロロニトロベンゼンとを原料とし、エーテル化反応工程、水素添加反応工程、蒸留精製工程の各工程を逐次的に通過させることによってジアミノジフェニルエーテルを製造するプロセスにおいて、
(a)エーテル化反応工程では、原料であるアミノフェノール、クロロニトロベンゼン、及び中間生成物であるアミノフェニルニトロフェニルエーテルの、反応溶液中の濃度を、近赤外線吸収スペクトル分光分析装置を用いて連続的に測定し、得られた結果を連続的に分散型プロセス制御システムに取り込み自動演算させることでエーテル化反応転化率を算出し、反応温度と反応時間とを制御しつつ、反応転化率が98%以上となった時点で自動的に反応を停止し次工程への払い出しを行い、次いで、
(b)水素添加反応工程では、中間生成物であるアミノフェニルニトロフェニルエーテルと生成物であるジアミノジフェニルエーテルとの反応溶液中の濃度を、近赤外線吸収スペクトル分光分析装置を用いて連続的に測定し、得られた結果を連続的に分散型プロセス制御システムに取り込み自動演算させることで水素添加反応転化率を算出し、反応温度、反応圧力、反応時間、水素供給量を制御しつつ、反応転化率が99%以上となった時点で自動的に反応を停止し次工程への払い出しを行い、次いで、
(c)蒸留精製工程では、蒸留留出液中のジアミノジフェニルエーテル以外の不純物の濃度、同時に留出液の400〜700nmの可視光線透過率を、近赤外線吸収スペクトル分光分析装置を用いて連続的に測定し、得られた結果を連続的に分散型プロセス制御システムに取り込み、(1)ジアミノジフェニルエーテル以外の不純物濃度が5wt%以下で、かつ、(2)400〜700nmの可視光線透過率が60%以上、となるまでジアミノジフェニルエーテルより低沸点の初留成分を分離除去させた後、製品である高純度のジアミノジフェニルエーテルを留出させると共に流路変更により自動的に製品の払い出しを行い、更にジアミノジフェニルエーテルより高沸点の重質物が留出する以前の任意の段階で、自動的に製品の払い出しを停止することを特徴とする、高品質ジアミノジフェニルエーテルの製造方法により達成することができる。
That is, the object of the present invention is to
In the process of producing diaminodiphenyl ether by sequentially passing each step of etherification reaction step, hydrogenation reaction step, distillation purification step using aminophenol and chloronitrobenzene as raw materials,
(A) In the etherification reaction step, the concentrations of aminophenol, chloronitrobenzene as raw materials, and aminophenylnitrophenyl ether as an intermediate product in the reaction solution are continuously measured using a near infrared absorption spectrum spectrometer. The etherification reaction conversion rate is calculated by continuously taking the obtained results into a distributed process control system and automatically calculating them, and the reaction conversion rate is 98% while controlling the reaction temperature and reaction time. At this point, the reaction is automatically stopped and paid out to the next process.
(B) In the hydrogenation reaction step, the concentration of the intermediate product, aminophenylnitrophenyl ether, and the product, diaminodiphenyl ether, in the reaction solution is continuously measured using a near-infrared absorption spectrum spectrometer. The results obtained are continuously taken into a distributed process control system and automatically calculated to calculate the hydrogenation reaction conversion rate, while controlling the reaction temperature, reaction pressure, reaction time, and hydrogen supply rate while controlling the reaction conversion rate. Automatically stops the reaction when it reaches 99% or more, and pays out to the next process.
(C) In the distillation purification step, the concentration of impurities other than diaminodiphenyl ether in the distilled distillate, and simultaneously the visible light transmittance of 400 to 700 nm of the distillate are continuously measured using a near infrared absorption spectrum spectrometer. Measured, and the results obtained are continuously incorporated into a distributed process control system. (1) Impurity concentration other than diaminodiphenyl ether is 5 wt% or less, and (2) Visible light transmittance at 400 to 700 nm is 60%. After the initial boiling component of diaminodiphenyl ether is separated and removed from the diaminodiphenyl ether until the above is obtained, the product, high-purity diaminodiphenyl ether is distilled off and the product is automatically discharged by changing the flow path, and the diaminodiphenyl ether is further removed. Automatically stops product withdrawal at any stage prior to the distillation of the higher boiling heavy matter. Characterized in that it can be achieved by the method for producing a high-quality diaminodiphenyl ether.

本発明の製造方法によれば、ジアミノジフェニルエーテル製造プロセスの反応溶液組成及び製品組成を迅速、かつ正確に測定することができ、更に得られた測定結果を連続的に分散型プロセス制御システムに取り込むことで、自動的に反応条件や蒸留条件に関する様々な制御が行えるので、常に一定の高品質を有するジアミノジフェニルエーテルを高収率で得ることができる。   According to the production method of the present invention, the reaction solution composition and product composition of the diaminodiphenyl ether production process can be measured quickly and accurately, and the obtained measurement results are continuously taken into the distributed process control system. Thus, since various controls relating to reaction conditions and distillation conditions can be performed automatically, it is possible to always obtain diaminodiphenyl ether having a certain high quality in a high yield.

以下、本発明を詳細に説明する。
本発明において原料とするアミノフェノールとは、具体的にはo−、m−、p−アミノフェノールが挙げられ、クロロニトロベンゼンとは、具体的にはo−、p−クロロニトロベンゼンが挙げられ、またこれらをエーテル化縮合反応することで得られるアミノフェニルニトロフェニルエーテルとは、上記粗原料の組み合わせに対応するアミノフェニルニトロフェニルエーテルである。
Hereinafter, the present invention will be described in detail.
Specific examples of the aminophenol used as a raw material in the present invention include o-, m-, and p-aminophenol, and specific examples of chloronitrobenzene include o- and p-chloronitrobenzene. Aminophenyl nitrophenyl ether obtained by subjecting these to etherification condensation reaction is aminophenyl nitrophenyl ether corresponding to the combination of the above raw materials.

また本発明に用いられる近赤外線スペクトル分光分析装置は、オンライン対応機種であればいずれも採用することが可能であるが、本発明においては、ジアミノジフェニルエーテル製品の可視光線透過率を測定対象項目の1つと設定しているので、測定波長範囲が400〜2500nmを有する機種を用いるのが好ましい。また測定点が3つの工程と多岐に渡るため、1台の分光分析装置でも対応可能なように、例えば多測定点対応型の機種が好ましい。このように設定することで反応溶液中の所定の物質の濃度を連続的に測定し、得られた結果を連続的に分散型プロセス制御システムに取り込み自動演算させ反応転化率を算出することができる。更にその結果から反応温度・圧力・時間等を制御しつつ反応転化率が所定の値以上となった時点で自動的に反応を停止し次工程への払い出しができるようになる。更に分光分析装置で測定点となるセルは、透過タイプであればフローセル型、挿入型いずれも採用可能である。   In addition, any near-infrared spectroscopic analyzer used in the present invention can be adopted as long as it is an on-line compatible model. In the present invention, the visible light transmittance of a diaminodiphenyl ether product is one of the items to be measured. Therefore, it is preferable to use a model having a measurement wavelength range of 400 to 2500 nm. In addition, since the measurement points are divided into three processes, for example, a multi-measurement point compatible model is preferable so that even one spectroscopic analyzer can be used. By setting in this way, the concentration of a predetermined substance in the reaction solution can be continuously measured, and the obtained result can be continuously taken into the distributed process control system and automatically calculated to calculate the reaction conversion rate. . Furthermore, from the result, the reaction is automatically stopped when the reaction conversion rate becomes a predetermined value or more while controlling the reaction temperature, pressure, time, etc., and the next process can be dispensed. Furthermore, as a cell to be a measurement point in the spectroscopic analyzer, either a flow cell type or an insertion type can be adopted as long as it is a transmission type.

測定点となるセルを取り付ける部位は、測定対象液が存在する容器や配管に公知の方法で直接取り付ければ良いが、特にジアミノジフェニルエーテルを得るためのエーテル化反応工程、及び水素添加反応工程の測定溶液中には、アルカリ金属塩類や貴金属類といった粒子状の触媒が0.2〜10重量%存在するため、光散乱の影響により近赤外スペクトル分光分析装置の測定に誤差を生じさせる可能性がある。したがって、可能な限り触媒粒子を除去した後の液を測定するのが好ましく、反応器循環配管などに、公知の固液分離装置を設置して触媒粒子を分離した後の溶液配管に測定点を設ければ、安定した測定を行うことができる。また、粒子などによる外乱の影響のない蒸留精製工程においても、製品留出液の送液ポンプの出側配管に設置するのが、メンテナンスの上で好ましい。   The site to which the measurement point cell is attached may be directly attached to the container or pipe in which the liquid to be measured exists by a known method, but in particular, the etherification reaction step for obtaining diaminodiphenyl ether and the measurement solution for the hydrogenation reaction step Among them, there are 0.2 to 10% by weight of particulate catalysts such as alkali metal salts and noble metals, which may cause errors in the measurement of the near-infrared spectrum analyzer due to the influence of light scattering. . Therefore, it is preferable to measure the liquid after removing the catalyst particles as much as possible, and install a known solid-liquid separation device in the reactor circulation piping or the like to set the measurement point on the solution piping after separating the catalyst particles. If provided, stable measurement can be performed. In addition, in the distillation purification process that is not affected by disturbance due to particles or the like, it is preferable in terms of maintenance to install the product distillate in the delivery pipe of the liquid feed pump.

以下にジアミノジフェニルエーテルを得るためのプロセスにおける、近赤外線分光分析装置を用いた測定方法について逐次説明する。(1)エーテル化反応工程における測定対象物質は、原料のアミノフェノールとクロロニトロベンゼン及び縮合反応によって得られるアミノフェニルニトロフェニルエーテルである。これらの物質は、N,N−ジメチルホルムアミド溶媒中で測定すると1400〜2200nmの近赤外波長範囲に、それぞれ特徴的なスペクトルを与えるため、種々反応率の異なった工程反応溶液の近赤外線吸収スペクトルを測定すると同時に、同反応溶液の化学分析を行い、近赤外線吸収スペクトルの数値処理データと化学分析値との相関を取れば、それぞれの物質の濃度に対応した検量線を求めることができる。   The measurement method using a near-infrared spectroscopic analyzer in the process for obtaining diaminodiphenyl ether will be sequentially described below. (1) The substance to be measured in the etherification reaction step is raw material aminophenol, chloronitrobenzene and aminophenylnitrophenyl ether obtained by a condensation reaction. Since these substances give characteristic spectra in the near infrared wavelength range of 1400 to 2200 nm when measured in N, N-dimethylformamide solvent, the near infrared absorption spectra of the process reaction solutions having various reaction rates are different. At the same time, chemical analysis of the reaction solution is carried out, and a calibration curve corresponding to the concentration of each substance can be obtained by correlating the numerical processing data of the near infrared absorption spectrum with the chemical analysis value.

次いで、(2)水素添加反応工程における測定対象物質は、エーテル化反応によって得られた中間生成物アミノフェニルニトロフェニルエーテルと、製品となるジアミノジフェニルエーテルである。これらの物質は、N,N−ジメチルホルムアミド溶媒中で測定すると1400〜2200nmの近赤外波長範囲に、それぞれ特徴的なスペクトルが見られ、その中でも1500nm、及び2000nm付近で、水素添加反応によりニトロ基がアミノ基に変化するのに伴う、近赤外線吸収スペクトルの変化が特に見出せる。よってエーテル化反応と同様に、種々反応率の異なった工程反応溶液の近赤外線吸収スペクトルを測定すると同時に、同反応溶液の化学分析を行い、近赤外線吸収スペクトルの数値処理データと化学分析値との相関を取れば、それぞれの物質の濃度に対応した検量線を求めることができる。   Next, (2) the substance to be measured in the hydrogenation reaction step is an intermediate product aminophenylnitrophenyl ether obtained by the etherification reaction and diaminodiphenyl ether as a product. These substances show characteristic spectra in the near infrared wavelength range of 1400 to 2200 nm when measured in N, N-dimethylformamide solvent, and among them, nitro compounds are obtained by hydrogenation at around 1500 nm and 2000 nm. In particular, a change in the near-infrared absorption spectrum can be found as the group changes to an amino group. Therefore, similar to the etherification reaction, near infrared absorption spectra of process reaction solutions having various reaction rates are measured, and at the same time, chemical analysis of the reaction solution is performed, and numerical processing data and chemical analysis values of the near infrared absorption spectrum are compared. If correlation is taken, a calibration curve corresponding to the concentration of each substance can be obtained.

次いで、(3)蒸留精製工程における測定対象物質は、製品であるジアミノジフェニルエーテル以外の不純物濃度と、製品留出液の400〜700nmの可視光線透過率である。ジアミノジフェニルエーテルは、1400〜2200nmの近赤外波長範囲に特徴的なスペクトルが見られるが、その中でも純度を低下させる大きな要因であるジアミノジフェニルエーテル以外でそれより低沸点の不純物は1400〜1500nmの領域で特に近赤外線吸収スペクトルに変化を与え、またそれより高沸点の不純物については1500nm付近と、1900〜2200nmのスペクトル領域において、その特徴が見出せる。よって種々精製の度合いを変えた工程溶液の近赤外線吸収スペクトルを測定すると同時に、同溶液の化学分析を行い、近赤外線吸収スペクトルの数値処理データと化学分析値との相関を取れば、それぞれの物質の濃度に対応した検量線を求めることができる。ここで、ジアミノジフェニルエーテルより低沸点の不純物とは、具体的にはアミノフェノール及びアニリンであり、ジアミノジフェニルエーテルより高沸点の不純物(重質化成分)とは、具体的にはN−フェニルホルムアミド、及びN,N−ジフェニルホルムアミドである。   Next, (3) the substance to be measured in the distillation purification step is the impurity concentration other than the product diaminodiphenyl ether and the visible light transmittance of 400 to 700 nm of the product distillate. Diaminodiphenyl ether has a characteristic spectrum in the near-infrared wavelength range of 1400 to 2200 nm. Among them, impurities having a lower boiling point other than diaminodiphenyl ether, which is a major factor that lowers purity, are in the region of 1400 to 1500 nm. In particular, the near-infrared absorption spectrum is changed, and impurities having a higher boiling point can be found in the vicinity of 1500 nm and in the spectral region of 1900 to 2200 nm. Therefore, the near-infrared absorption spectra of process solutions with various levels of purification can be measured, and at the same time, chemical analysis of the solutions can be performed, and the correlation between the numerical processing data of the near-infrared absorption spectra and the chemical analysis values can be obtained. A calibration curve corresponding to the concentration of can be obtained. Here, impurities having a lower boiling point than diaminodiphenyl ether are specifically aminophenol and aniline, and impurities having a higher boiling point (heavy component) than diaminodiphenyl ether are specifically N-phenylformamide, and N, N-diphenylformamide.

一方、400〜700nmの可視光線透過率については、近赤外線吸収スペクトル分光分析装置が分光能力を有するタイプであれば、可視光線領域の吸収スペクトルをそのまま活用することが可能で、化学分析値との差を簡単な係数を用いて補正した後に相関を取れば、可視光線透過率に対応した検量線を求めることができる。また化学分析値との測定誤差を少なくする方法として、可視光線領域のほかに近赤外線領域の吸収スペクトルの一部を、スペクトル解析補正項として追加することも可能である。   On the other hand, for the visible light transmittance of 400 to 700 nm, if the near-infrared absorption spectrum spectrometer is a type having a spectral capability, the absorption spectrum in the visible light region can be used as it is, and the chemical analysis value If the correlation is obtained after correcting the difference using a simple coefficient, a calibration curve corresponding to the visible light transmittance can be obtained. Further, as a method of reducing the measurement error from the chemical analysis value, a part of the absorption spectrum in the near infrared region in addition to the visible light region can be added as a spectrum analysis correction term.

上記(1)〜(3)のようにして、得られた検量線を有する近赤外線吸収スペクトル分光分析装置を、ジアミノジフェニルエーテルを製造するためのエーテル化反応工程、水素添加反応工程、蒸留精製工程の各工程に設置することで、プロセス溶液中の濃度変化や、可視光線透過率がたちどころに得られるので、反応の進行状況、及び製品の精製状況がリアルタイムで観察可能となる。そして検量線から反応転化率を算出し、その結果から反応温度・圧力・時間等を制御して反応転化率が所定の値以上となった時点で自動的に反応停止し、次工程に払い出しを行うことができる。その反応転化率はエーテル化反応工程においては98%以上が、水素添加反応工程においては99%以上が好ましい。また蒸留精製工程におけるジアミノジフェニルエーテル以外の不純物濃度は5wt%以下となる時点で、400〜700nmの可視光線透過率が60%以上となるまでジアミノジフェニルエーテルより低沸点の初留成分を分離除去させることが好ましい。その後高純度のジアミノジフェニルエーテルを留出させると共に流路変更により自動的にジアミノジフェニルエーテルを蒸留精製装置から払い出しを行い、ジアミノジフェニルエーテルより高沸点の重質物が流出する以前の任意の段階で、自動的にジアミノジフェニルエーテルの払い出しを停止することができる。   As in the above (1) to (3), the near-infrared absorption spectrum spectroscopic analyzer having the obtained calibration curve is subjected to an etherification reaction step, a hydrogenation reaction step, and a distillation purification step for producing diaminodiphenyl ether. By installing in each step, the concentration change in the process solution and visible light transmittance can be obtained quickly, so that the progress of the reaction and the purification status of the product can be observed in real time. Then, the reaction conversion rate is calculated from the calibration curve, and the reaction temperature, pressure, time, etc. are controlled from the results, and when the reaction conversion rate exceeds a predetermined value, the reaction is automatically stopped and the next process is dispensed. It can be carried out. The reaction conversion rate is preferably 98% or more in the etherification reaction step and 99% or more in the hydrogenation reaction step. In addition, when the concentration of impurities other than diaminodiphenyl ether in the distillation purification step is 5 wt% or less, the first-boiling components having a lower boiling point than diaminodiphenyl ether can be separated and removed until the visible light transmittance at 400 to 700 nm becomes 60% or more. preferable. After that, diaminodiphenyl ether of high purity is distilled off, and diaminodiphenyl ether is automatically discharged from the distillation purification device by changing the flow path. Dispensing of diaminodiphenyl ether can be stopped.

また当該近赤外線を用いた測定方法は、ジアミノジフェニルエーテルを得るプロセスの方式が回分式、連続式のどちらでも採用することができる。
更に、近赤外分光分析装置を用いて得られた測定結果は、分散型プロセス制御システムに連続的に取り込むことで、様々なプロセス制御が可能となり、全自動で反応終了や製品の払い出しを行うシステムを構築できる。その結果、高品質のジアミノジフェニルエーテルを高収率で得ることが可能となる。
Moreover, the measurement method using the near-infrared ray can employ either a batch method or a continuous method for obtaining diaminodiphenyl ether.
Furthermore, measurement results obtained using a near-infrared spectroscopic analyzer can be continuously loaded into a distributed process control system, enabling various process controls, and the reaction is completed and products are dispensed automatically. A system can be constructed. As a result, high quality diaminodiphenyl ether can be obtained in high yield.

以下実施例により本発明の内容を更に具体的に説明するが本発明はこれにより何等限定を受けるものではない。   The contents of the present invention will be described more specifically with reference to the following examples, but the present invention is not limited thereto.

[実施例1]
m−アミノフェノールと、p−クロロニトロベンゼンとを原料とし、エーテル化反応工程、水素添加反応工程、蒸留精製工程を逐次的に通過させることで得られる3、4’−ジアミノジフェニルエーテルを製造するプロセスにおいて、市販品の多測定点対応型のオンライン近赤外線吸収スペクトル分光分析装置(測定波長領域:400〜2500nm)を設置した。
[Example 1]
In a process for producing 3,4′-diaminodiphenyl ether obtained by sequentially passing an etherification reaction step, a hydrogenation reaction step, and a distillation purification step using m-aminophenol and p-chloronitrobenzene as raw materials. A commercially available on-line near-infrared absorption spectrum spectrometer (measurement wavelength region: 400 to 2500 nm) corresponding to multiple measurement points was installed.

エーテル化反応工程においては、エーテル化反応器の循環配管に分岐配管を取り付け、該分岐配管に触媒を除去するための液体サイクロンを設置し、溶液出側の配管に近赤外線測定点となるセルを挿入した。当該液体サイクロンの2つの出口、即ち溶液側及び触媒粒子スラリー側の配管は、測定点を通過した後、各々反応器へ戻る流れを有している。   In the etherification reaction step, a branch pipe is attached to the circulation pipe of the etherification reactor, a liquid cyclone for removing the catalyst is installed in the branch pipe, and a cell serving as a near-infrared measurement point is installed in the pipe on the solution outlet side. Inserted. The two outlets of the hydrocyclone, that is, the piping on the solution side and the catalyst particle slurry side, each have a flow returning to the reactor after passing through the measurement point.

エーテル化反応器にm−アミノフェノールとp−クロロニトロベンゼンとを当モル量、溶媒としてN,N−ジメチルホルムアミド、触媒として全仕込み量に対して5重量%の炭酸カリウムを仕込み、撹拌及び循環を行いながら、常圧下で150℃まで加熱した。   An etherification reactor is charged with equimolar amounts of m-aminophenol and p-chloronitrobenzene, N, N-dimethylformamide as a solvent, and 5% by weight of potassium carbonate as a catalyst, and stirred and circulated. While performing, it was heated to 150 ° C. under normal pressure.

近赤外線吸収スペクトル分光分析装置より連続的に得られた物質の濃度は、分散型プロセス制御システムに取り込まれ、エーテル化反応転化率と反応時間とをトレンドで連続表示させることで、反応の進行状況を監視した。更に反応進行の度合いを表す反応転化率と反応時間とからなる基本パターンを、分散型プロセス制御システムに記憶させ、反応転化率が基本パターンから上下に2%の偏差で外れた場合、オペレータにアラームで知らせると同時に、上偏差の場合は温度をマイナス側、下偏差の場合は温度をプラス側に変化させることで、反応転化率と反応時間とを自動的に補正するプロセス制御を行った。また反応転化率が98%に達した時に、オペレータに終了メッセージで知らせると同時に、自動的に反応を終了させ、次工程へ払い出すシステムを構築した。近赤外線吸収スペクトル分光分析装置で得られた反応転化率と、工程溶液の化学分析測定によって得られた反応転化率の標準偏差は、0.3%であった。   The concentration of the substance continuously obtained from the near infrared absorption spectrum analyzer is taken into the distributed process control system, and the progress of the reaction is displayed by continuously displaying the etherification reaction conversion rate and reaction time in a trend. Monitored. Furthermore, a basic pattern consisting of reaction conversion rate and reaction time indicating the degree of reaction progress is stored in the distributed process control system, and if the reaction conversion rate deviates by 2% from the basic pattern, it alerts the operator. At the same time, the process control was performed to automatically correct the reaction conversion rate and reaction time by changing the temperature to the minus side in the case of an upper deviation and to the plus side in the case of a lower deviation. When the reaction conversion rate reached 98%, an operator was notified with an end message, and at the same time, a reaction was automatically terminated and a system for paying off to the next process was constructed. The standard deviation of the reaction conversion rate obtained by the near-infrared absorption spectrum spectrometer and the reaction conversion rate obtained by the chemical analysis measurement of the process solution was 0.3%.

次いで、水素添加反応工程においては、水素添加反応器の循環配管に分岐配管を取り付け、該分岐配管に触媒を除去するための液体サイクロンを設置し、溶液出側の配管に近赤外線測定点となるセルを挿入した。当該液体サイクロンの2つの出口、即ち溶液側及び触媒粒子スラリー側の配管は、各々反応器へ戻る流れを有している。   Next, in the hydrogenation reaction step, a branch pipe is attached to the circulation pipe of the hydrogenation reactor, a liquid cyclone for removing the catalyst is installed in the branch pipe, and a near-infrared measurement point is provided on the solution outlet side pipe. A cell was inserted. The two outlets of the hydrocyclone, that is, the pipes on the solution side and the catalyst particle slurry side, each have a flow returning to the reactor.

上述の、エーテル化反応工程で得られた混合溶液は、触媒を除去する工程を通過した後、全量水素添加反応器へ導き、触媒として1重量%のパラジウム−炭素を加え、撹拌及び循環を行いながら水素を供給し、100℃、0.7MPaで反応させた。   The mixed solution obtained in the etherification reaction step described above passes through the step of removing the catalyst, and then the whole amount is led to the hydrogenation reactor, and 1% by weight of palladium-carbon is added as the catalyst, followed by stirring and circulation. While supplying hydrogen, the reaction was conducted at 100 ° C. and 0.7 MPa.

近赤外線分光分析装置より連続的に得られた物質の濃度は、分散型プロセス制御システムに取り込まれ、水素添加反応転化率と反応時間とをトレンドで連続表示させることで、反応の進行状況を監視した。更に反応進行の度合いを表す反応転化率と反応時間からなる基本パターンを、分散型プロセス制御システムに記憶させておき、反応転化率が基本パターンから上下に2%の偏差で外れた場合、オペレータにアラームで知らせると同時に、上偏差の場合は温度及び/又は圧力をマイナス側、下偏差の場合は温度及び/又は圧力をプラス側に変化させることで、反応転化率と反応時間とを自動的に補正するプロセス制御を行った。   The concentration of the substance continuously obtained from the near-infrared spectrometer is incorporated into the distributed process control system, and the progress of the reaction is monitored by continuously displaying the hydrogenation reaction conversion rate and reaction time in a trend. did. Furthermore, a basic pattern consisting of reaction conversion rate and reaction time indicating the degree of reaction progress is stored in the distributed process control system, and if the reaction conversion rate deviates from the basic pattern by 2% vertically, the operator is At the same time as alarming, by changing the temperature and / or pressure to the minus side in the case of an upper deviation and changing the temperature and / or pressure to the plus side in the case of a lower deviation, the reaction conversion rate and reaction time are automatically set. Correction process control was performed.

また反応転化率が、99%に達した時に、オペレータに終了メッセージで知らせると同時に、自動的に反応を終了させ、次工程へ払い出すシステムを構築した。近赤外線吸収スペクトル分光分析装置で得られた反応転化率と、工程溶液の化学分析測定によって得られた反応転化率の標準偏差は、0.1%であった。   When the reaction conversion rate reached 99%, an operator was notified with an end message, and at the same time, the reaction was automatically terminated and a system for paying off to the next process was constructed. The standard deviation of the reaction conversion obtained by the near-infrared absorption spectrum spectrometer and the reaction conversion obtained by chemical analysis measurement of the process solution was 0.1%.

次いで、蒸留精製工程においては、蒸留塔の還流配管に分岐させたサイドフロー配管を取り付け、近赤外線測定点となるセルを挿入した。当該サイドフロー配管は、測定点を通過した後、再度還流配管へ戻る流れを有している。   Next, in the distillation purification step, a side flow pipe branched to the reflux pipe of the distillation tower was attached, and a cell serving as a near infrared measurement point was inserted. The side flow pipe has a flow that returns to the reflux pipe again after passing through the measurement point.

上述の水素添加反応工程で得られた混合溶液は、触媒を除去する工程を通過した後、全量ホールドタンクへ導き、蒸留塔のポットへはホールドタンクよりポットレベル80%まで仕込み、溶媒(N,N−ジメチルホルムアミド)を2kPaの減圧下、150〜200℃で除去した。   The mixed solution obtained in the above-described hydrogenation reaction step passes through the step of removing the catalyst, and is then led to the entire hold tank. The pot of the distillation tower is charged to a pot level of 80% from the hold tank, and the solvent (N, N-dimethylformamide) was removed at 150-200 ° C. under a reduced pressure of 2 kPa.

溶媒除去後、2kPaの減圧下、250〜270℃で蒸留精製を開始し、近赤外線吸収スペクトル分光分析装置より連続的に得られた留出液中の全不純物質の濃度が2重量%以下、及び500nmにおける可視光透過率が60%以上となる条件まで初留成分を抜き出し、上記設定値に達すればオペレータにメッセージで知らせると共に、流路を変更して製品の払い出しを開始した。なおこの際の不純物は分析の結果、低沸点成分はm−アミノフェノールとアニリンであり、高沸点成分(重質化成分)はN−フェニルホルムアミド及びN,N−ジフェニルホルムアミドであった。   After removing the solvent, distillation purification was started at 250 to 270 ° C. under a reduced pressure of 2 kPa, and the concentration of all impurities in the distillate continuously obtained from the near infrared absorption spectrum spectrometer was 2% by weight or less, In addition, the first-run components were extracted until the visible light transmittance at 500 nm was 60% or more, and when the set value was reached, the operator was notified by a message, and the flow path was changed to start dispensing the product. As a result of analysis, impurities at this time were m-aminophenol and aniline as low-boiling components, and N-phenylformamide and N, N-diphenylformamide as high-boiling components (heavy components).

分散型プロセス制御システムでは、常に不純物の濃度、及び可視光線透過率をトレンド表示させると共に、システムによる監視をしながら蒸留精製を行うので、品質に異常が発生すれば、自動的に製品払い出しを停止させることが可能である。更に蒸留塔塔底の液レベルを連続的にシステム監視し、蒸留塔ポットの液レベルが10%となれば自動的に蒸留を停止して、重質物であるポット残液を払出すシステムを構築した。   In the distributed process control system, the concentration of impurities and visible light transmittance are always displayed as a trend, and distillation purification is performed while monitoring by the system, so if there is an abnormality in quality, product delivery is automatically stopped. It is possible to make it. In addition, the system continuously monitors the liquid level at the bottom of the distillation column, and when the liquid level in the distillation column pot reaches 10%, the distillation is automatically stopped and a system for discharging the heavy pot residue is constructed. did.

近赤外線吸収スペクトル分光分析装置で得られた測定値と、工程溶液の化学分析測定によって得られた値の標準偏差は、不純物濃度で0.1〜0.2重量%、可視光線透過率で3%であった。   The standard deviation between the measured value obtained by the near-infrared absorption spectrum spectrometer and the value obtained by the chemical analysis measurement of the process solution is 0.1 to 0.2% by weight as the impurity concentration and 3 as the visible light transmittance. %Met.

以上の工程を連続的に逐次通過させ、最終的に製品として得られた3,4’−ジアミノジフェニルエーテルの品質は常に、純度が99.5wt%以上、500nmにおける可視光線透過率が80%以上を有するものであった。また分析結果待ちに起因する工程の遅れ時間は特になかった。   The quality of the 3,4′-diaminodiphenyl ether finally obtained as a final product after passing through the above steps continuously always has a purity of 99.5 wt% or more and a visible light transmittance at 500 nm of 80% or more. I had it. In addition, there was no particular process delay due to waiting for the analysis results.

[実施例2]
3,4’−ジアミノジフェニルエーテルを得るためのエーテル化反応工程、水素添加反応工程において、溶液中の触媒粒子を除去せずに、近赤外線吸収スペクトル分光分析装置を用いて測定したところ、化学分析値から算出した反応添加率との標準偏差が5%であった。したがって3,4’−ジアミノジフェニルエーテルを得るためのエーテル化反応工程、水素添加反応工程において近赤外分析を行うには、溶液中に存在する触媒粒子の除去は必須では無いが、安定した測定精度を得るには触媒粒子の除去操作を行った方が更によい結果が得られることが確認された。また実施例1同様に分析結果待ちに起因する工程の遅れ時間は特になかった。
[Example 2]
In the etherification reaction step and the hydrogenation reaction step for obtaining 3,4′-diaminodiphenyl ether, the chemical analysis value was measured using a near-infrared absorption spectrum spectrometer without removing the catalyst particles in the solution. The standard deviation from the reaction addition rate calculated from the above was 5%. Therefore, in order to perform near infrared analysis in the etherification reaction step and hydrogenation reaction step for obtaining 3,4′-diaminodiphenyl ether, it is not essential to remove the catalyst particles present in the solution, but stable measurement accuracy. It was confirmed that better results were obtained by removing the catalyst particles in order to obtain the above. Further, as in Example 1, there was no particular process delay time due to waiting for the analysis result.

[比較例1]
3,4’−ジアミノジフェニルエーテルを得るプロセスで、エーテル化反応工程、水素添加反応工程の反応終了時期、及び蒸留精製工程の製品払い出し時期を、全てガスクロマトグラフィーで判断した場合、分析結果待ちによる工程遅れ時間が、1日当たり約3時間生じた。
[Comparative Example 1]
In the process of obtaining 3,4'-diaminodiphenyl ether, when the completion of reaction in the etherification reaction step, the hydrogenation reaction step, and the delivery time of the product in the distillation purification step are all determined by gas chromatography, a step waiting for the analysis result There was a delay of about 3 hours per day.

本発明の製造方法によれば、ジアミノジフェニルエーテル製造プロセスの反応溶液組成及び製品組成を迅速、かつ正確に測定することができ、更に得られた測定結果を連続的に分散型プロセス制御システムに取り込むことで、自動的に反応条件や蒸留条件に関する様々な制御が行えるので、常に一定の高品質を有するジアミノジフェニルエーテルを高収率で得ることができる。また分析結果待ちに起因する工程の遅れ時間が発生しにくいので時間の面においても効率的に製造することができる。   According to the production method of the present invention, the reaction solution composition and product composition of the diaminodiphenyl ether production process can be measured quickly and accurately, and the obtained measurement results are continuously taken into the distributed process control system. Thus, since various controls relating to reaction conditions and distillation conditions can be performed automatically, it is possible to always obtain diaminodiphenyl ether having a certain high quality in a high yield. Further, since the process delay time caused by waiting for the analysis result hardly occurs, the manufacturing can be efficiently performed in terms of time.

Claims (2)

アミノフェノールとクロロニトロベンゼンとを原料とし、エーテル化反応工程、水素添加反応工程、蒸留精製工程の各工程を逐次的に通過させることによってジアミノジフェニルエーテルを製造するプロセスにおいて、
(a)エーテル化反応工程では、原料であるアミノフェノール、クロロニトロベンゼン、及び中間生成物であるアミノフェニルニトロフェニルエーテルの、反応溶液中の濃度を、近赤外線吸収スペクトル分光分析装置を用いて連続的に測定し、得られた結果を連続的に分散型プロセス制御システムに取り込み自動演算させることでエーテル化反応転化率を算出し、反応温度と反応時間とを制御しつつ、反応転化率が98%以上となった時点で自動的に反応を停止し次工程への払い出しを行い、次いで、
(b)水素添加反応工程では、中間生成物であるアミノフェニルニトロフェニルエーテルと生成物であるジアミノジフェニルエーテルとの反応溶液中の濃度を、近赤外線吸収スペクトル分光分析装置を用いて連続的に測定し、得られた結果を連続的に分散型プロセス制御システムに取り込み自動演算させることで水素添加反応転化率を算出し、反応温度、反応圧力、反応時間、水素供給量を制御しつつ、反応転化率が99%以上となった時点で自動的に反応を停止し次工程への払い出しを行い、次いで、
(c)蒸留精製工程では、蒸留留出液中のジアミノジフェニルエーテル以外の不純物の濃度、同時に留出液の400〜700nmの可視光線透過率を、近赤外線吸収スペクトル分光分析装置を用いて連続的に測定し、得られた結果を連続的に分散型プロセス制御システムに取り込み、(1)ジアミノジフェニルエーテル以外の不純物濃度が5wt%以下で、かつ、(2)400〜700nmの可視光線透過率が60%以上、となるまでジアミノジフェニルエーテルより低沸点の初留成分を分離除去させた後、製品である高純度のジアミノジフェニルエーテルを留出させると共に流路変更により自動的に製品の払い出しを行い、更にジアミノジフェニルエーテルより高沸点の重質物が留出する以前の任意の段階で、自動的に製品の払い出しを停止することを特徴とする、高品質ジアミノジフェニルエーテルの製造方法。
In the process of producing diaminodiphenyl ether by sequentially passing each step of etherification reaction step, hydrogenation reaction step, distillation purification step using aminophenol and chloronitrobenzene as raw materials,
(A) In the etherification reaction step, the concentrations of aminophenol, chloronitrobenzene as raw materials, and aminophenylnitrophenyl ether as an intermediate product in the reaction solution are continuously measured using a near infrared absorption spectrum spectrometer. The etherification reaction conversion rate is calculated by continuously taking the obtained results into a distributed process control system and automatically calculating them, and the reaction conversion rate is 98% while controlling the reaction temperature and reaction time. At this point, the reaction is automatically stopped and paid out to the next process.
(B) In the hydrogenation reaction step, the concentration of the intermediate product, aminophenylnitrophenyl ether, and the product, diaminodiphenyl ether, in the reaction solution is continuously measured using a near-infrared absorption spectrum spectrometer. The results obtained are continuously taken into a distributed process control system and automatically calculated to calculate the hydrogenation reaction conversion rate, while controlling the reaction temperature, reaction pressure, reaction time, and hydrogen supply rate while controlling the reaction conversion rate. Automatically stops the reaction when it reaches 99% or more, and pays out to the next process.
(C) In the distillation purification step, the concentration of impurities other than diaminodiphenyl ether in the distilled distillate, and simultaneously the visible light transmittance of 400 to 700 nm of the distillate are continuously measured using a near infrared absorption spectrum spectrometer. Measured, and the results obtained are continuously incorporated into a distributed process control system. (1) Impurity concentration other than diaminodiphenyl ether is 5 wt% or less, and (2) Visible light transmittance at 400 to 700 nm is 60%. After the initial boiling component of diaminodiphenyl ether is separated and removed from the diaminodiphenyl ether until the above is obtained, the product, high-purity diaminodiphenyl ether is distilled off and the product is automatically discharged by changing the flow path, and the diaminodiphenyl ether is further removed. Automatically stops product withdrawal at any stage prior to the distillation of the higher boiling heavy matter. Characterized that, the method of producing a high-quality diaminodiphenyl ether to.
ジアミノジフェニルエーテル以外の不純物が、低沸点成分としてアミノフェノール及びアニリンであり、高沸点重質化成分としてのN−フェニルホルムアミド、及びN,N−ジフェニルホルムアミドである、請求項1記載の製造方法。   The production method according to claim 1, wherein the impurities other than diaminodiphenyl ether are aminophenol and aniline as low-boiling components, and N-phenylformamide and N, N-diphenylformamide as high-boiling heavy components.
JP2004245070A 2004-08-25 2004-08-25 Production method for high quality diaminodiphenyl ether Pending JP2006062994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004245070A JP2006062994A (en) 2004-08-25 2004-08-25 Production method for high quality diaminodiphenyl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004245070A JP2006062994A (en) 2004-08-25 2004-08-25 Production method for high quality diaminodiphenyl ether

Publications (1)

Publication Number Publication Date
JP2006062994A true JP2006062994A (en) 2006-03-09

Family

ID=36109781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004245070A Pending JP2006062994A (en) 2004-08-25 2004-08-25 Production method for high quality diaminodiphenyl ether

Country Status (1)

Country Link
JP (1) JP2006062994A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262053A (en) * 2006-02-28 2007-10-11 Sumitomo Chemical Co Ltd Method for controlling reaction
JP2009062289A (en) * 2007-09-04 2009-03-26 Nippon Shokubai Co Ltd Method for producing acrylic acid and (meth)acrylic acid ester
JP2011173844A (en) * 2010-02-25 2011-09-08 Teijin Ltd Method for producing purified lactide
CN113588594A (en) * 2021-07-13 2021-11-02 华南理工大学 Method for measuring mass fraction of nitrobenzene
CN114149335A (en) * 2021-12-10 2022-03-08 中钢集团南京新材料研究院有限公司 Synthesis method of 4, 4' -diaminodiphenyl ether by taking parachloroaniline as initial raw material
JP7113994B1 (en) 2022-04-05 2022-08-05 信越化学工業株式会社 Method for producing single-end functional organopolysiloxane and single-end functional organopolysiloxane composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262053A (en) * 2006-02-28 2007-10-11 Sumitomo Chemical Co Ltd Method for controlling reaction
JP2009062289A (en) * 2007-09-04 2009-03-26 Nippon Shokubai Co Ltd Method for producing acrylic acid and (meth)acrylic acid ester
JP2011173844A (en) * 2010-02-25 2011-09-08 Teijin Ltd Method for producing purified lactide
CN113588594A (en) * 2021-07-13 2021-11-02 华南理工大学 Method for measuring mass fraction of nitrobenzene
CN114149335A (en) * 2021-12-10 2022-03-08 中钢集团南京新材料研究院有限公司 Synthesis method of 4, 4' -diaminodiphenyl ether by taking parachloroaniline as initial raw material
CN114149335B (en) * 2021-12-10 2023-09-22 中钢集团南京新材料研究院有限公司 Synthesis method of 4,4' -diaminodiphenyl ether by taking parachloroaniline as starting material
JP7113994B1 (en) 2022-04-05 2022-08-05 信越化学工業株式会社 Method for producing single-end functional organopolysiloxane and single-end functional organopolysiloxane composition
WO2023195358A1 (en) * 2022-04-05 2023-10-12 信越化学工業株式会社 Method for producing one-end-functional organopolysiloxane and one-end-functional organopolysiloxane composition
JP2023153550A (en) * 2022-04-05 2023-10-18 信越化学工業株式会社 Method for producing one-end functional organopolysiloxane, and one-end functional organopolysiloxane composition

Similar Documents

Publication Publication Date Title
JP5791912B2 (en) Method for continuously producing nitrobenzene
EP2630471B1 (en) Acetic acid production process
JP5419327B2 (en) Method for producing aniline
KR102052143B1 (en) Method of regulating the viscosity of a mixture comprising at least two components having different viscosities
US20100015012A1 (en) Method for producing aromatic amines or aliphatic amino alcohols
RU2561128C9 (en) Method of producing liquid-phase aromatic amines
JP2006062994A (en) Production method for high quality diaminodiphenyl ether
CN104822651B (en) The method preparing methyl formate by making methyl alcohol and reaction of carbon monoxide in the presence of comprising the catalyst system of alkali metal formate and alkali metal alcoholates
KR20170085559A (en) Processes for producing acetic acid with decanter control
US10031082B2 (en) Compositional analysis of a gas or gas stream in a chemical reactor and method for preparing chlorosilanes in a fluidized bed reactor
US8981155B2 (en) Process for preparing aromatic amines
JP4980753B2 (en) Method for stopping liquid phase reaction
CN104302616B (en) In nitro-aromatics and H-H reaction process, monitor the method for stoichiometric proportion
JP6289916B2 (en) Aromatic amine production apparatus and production method
CN115745804B (en) Method for reducing dinitrobenzene content in crude nitrobenzene
JP7111505B2 (en) Method for producing pentane diisocyanate
US20220402852A1 (en) Methods and systems of monitoring flammability of various streams during vinyl acetate production
WO2019116789A1 (en) Method and apparatus for producing fluorine-containing organic compound
JP5642570B2 (en) Method for producing terephthalic acid
US9170184B2 (en) Method of regulating the viscosity of a mixture comprising at least two components having different viscosities
JP5010312B2 (en) Reaction initiation method for liquid phase reaction
JP2005008556A (en) Method for producing ortho-alkylated hydroxyaromatic compound
JP2012001471A (en) Production step control method of sulfolane
US10995046B2 (en) Process for producing 1,2,3,4-tetrachlorobutane
JP2024501199A (en) Process for the continuous preparation of (meth)acrylates by reacting alcohol with (meth)acrylic acid using at least one control unit closed-loop controlled by a sensor (S)