JP2006058677A - Scanning exposure apparatus - Google Patents
Scanning exposure apparatus Download PDFInfo
- Publication number
- JP2006058677A JP2006058677A JP2004241374A JP2004241374A JP2006058677A JP 2006058677 A JP2006058677 A JP 2006058677A JP 2004241374 A JP2004241374 A JP 2004241374A JP 2004241374 A JP2004241374 A JP 2004241374A JP 2006058677 A JP2006058677 A JP 2006058677A
- Authority
- JP
- Japan
- Prior art keywords
- laser
- laser light
- laser beam
- light
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Laser Beam Printer (AREA)
- Mechanical Optical Scanning Systems (AREA)
Abstract
Description
本発明は、画像濃度に応じて変調されたレーザ光を感光体上に走査露光する走査露光装置に関するものである。 The present invention relates to a scanning exposure apparatus that scans and exposes a photosensitive member with laser light modulated in accordance with image density.
画像データの記録を行う写真プリンタとして、レーザ光を使用するレーザプリンタが知られている。レーザプリンタでは、シート状の感光体を副走査方向に搬送しながら、これに垂直な主走査方向にレーザ光を走査露光する。感光体には、例えば銀塩感材が使用され、走査露光が行われた感光体には画像が潜像として記録され、現像されることにより画像が顕在化する。 Laser printers that use laser light are known as photographic printers that record image data. In a laser printer, a sheet-shaped photosensitive member is conveyed in the sub-scanning direction, and laser light is scanned and exposed in a main scanning direction perpendicular thereto. For example, a silver salt sensitive material is used for the photoreceptor, and an image is recorded as a latent image on the photoreceptor subjected to scanning exposure, and the image becomes apparent when developed.
このようなレーザプリンタに用いられる走査露光装置は、赤、緑、青の各色のレーザ光を発生する光源を備えており、カラー画像データに基づいて色ごとにレーザ光を変調し、変調されたレーザ光をポリゴンミラーによって主走査方向に偏向して走査露光を行うとともに、感光体を副走査方向に搬送する。 The scanning exposure apparatus used in such a laser printer includes a light source that generates laser light of each color of red, green, and blue, and modulates the laser light for each color based on color image data. Laser light is deflected in the main scanning direction by a polygon mirror to perform scanning exposure, and the photosensitive member is conveyed in the sub-scanning direction.
このような走査露光装置において、例えば、赤色レーザ光及び青色レーザ光の光源には、半導体レーザが用いられ、緑色レーザ光の光源には、半導体レーザ励起型固体レーザに2次高周波発生(SHG:Second Harmonic Generation)素子を組み合わせて使用したSHGレーザが用いられる。上記半導体レーザでは、電流を制御したり(強度変調)、デューティを制御したり(パルス幅変調)することで画像濃度に応じた変調が可能であるが、SHGレーザでは、画像濃度に応じた変調を行うために、音響光学変調素子(AOM:Acousto-Optic Modulator)等の外部変調器を使用している(例えば、特許文献1参照)。AOMは、音響光学回折を用いた光変調器であり、レーザ光に対して垂直方向に超音波を伝搬させ、その超音波の強度を制御することで回折光の強度を変調するものである。 In such a scanning exposure apparatus, for example, a semiconductor laser is used as a light source for red laser light and blue laser light, and a secondary high-frequency generation (SHG: SHG) is used as a light source for green laser light. A SHG laser using a combination of (Second Harmonic Generation) elements is used. In the semiconductor laser, modulation according to the image density is possible by controlling the current (intensity modulation) or controlling the duty (pulse width modulation), but in the SHG laser, the modulation according to the image density is possible. For this purpose, an external modulator such as an acousto-optic modulator (AOM) is used (see, for example, Patent Document 1). The AOM is an optical modulator that uses acousto-optic diffraction, and modulates the intensity of diffracted light by propagating ultrasonic waves in a direction perpendicular to laser light and controlling the intensity of the ultrasonic waves.
しかしながら、上記の走査露光装置では、赤色レーザ光及び青色レーザ光には直接変調が用いられ、緑色レーザ光にはAOMによる外部変調が用いられており、レーザ光によって変調方式が異なるため、たとえ各レーザ光のビーム径を等しくしても感光体に照射される光量分布が変調方式によって異なり、色間差が生じ、記録画像に色の滲みが生じるといった問題があった。 However, in the above scanning exposure apparatus, direct modulation is used for the red laser beam and the blue laser beam, and external modulation by AOM is used for the green laser beam. Even if the beam diameters of the laser beams are the same, the distribution of the amount of light applied to the photoconductor varies depending on the modulation method, resulting in a difference between colors and a color blur in the recorded image.
本発明は、上記事情を考慮してなされたものであり、レーザ光の変調方式の違いによる記録画像の色の滲みを低減させることを可能とする走査露光装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a scanning exposure apparatus that can reduce color bleeding of a recorded image due to a difference in a modulation method of laser light.
本発明の走査露光装置は、第1レーザ光を射出する第1光源と、前記第1レーザ光とは波長の異なる第2レーザ光を射出する第2光源と、第1光源から射出された前記第1レーザ光の伝搬方向とブラッグ条件を満たす方向に超音波を通過させることによって前記第1レーザ光の強度変調を行う音響光学変調素子と、この音響光学変調素子から射出された前記第1レーザ光及び前記第2光源から射出された第2レーザ光を偏向して被走査面上の所定方向に走査する偏向器とを備えた走査露光装置において、前記被走査面上へ仮想的に投影された前記超音波の伝搬方向が、前記偏向器による前記各レーザ光の走査方向と同方向であって、前記被走査面上における前記第2レーザ光のスポット径を、前記第1レーザ光のスポット径より大きくしたことを特徴とする。 The scanning exposure apparatus of the present invention includes a first light source that emits a first laser beam, a second light source that emits a second laser beam having a wavelength different from that of the first laser beam, and the first light source that emits the first laser beam. An acousto-optic modulator that modulates the intensity of the first laser beam by passing an ultrasonic wave in a direction that satisfies the Bragg condition and the propagation direction of the first laser beam, and the first laser emitted from the acousto-optic modulator And a deflector that deflects the light and the second laser light emitted from the second light source and scans in a predetermined direction on the surface to be scanned, and is virtually projected onto the surface to be scanned. The propagation direction of the ultrasonic wave is the same as the scanning direction of each laser beam by the deflector, and the spot diameter of the second laser beam on the surface to be scanned is defined as the spot of the first laser beam. Larger than the diameter The features.
また、本発明の走査露光装置は、第1レーザ光を射出する第1光源と、前記第1レーザ光とは波長の異なる第2レーザ光を射出する第2光源と、第1光源から射出された前記第1レーザ光の伝搬方向とブラッグ条件を満たす方向に超音波を通過させることによって前記第1レーザ光の強度変調を行う音響光学変調素子と、この音響光学変調素子から射出された前記第1レーザ光及び前記第2光源から射出された第2レーザ光を偏向して被走査面上の所定方向に走査する偏向器とを備えた走査露光装置において、前記被走査面上へ仮想的に投影された前記超音波の伝搬方向が、前記偏向器による前記各レーザ光の走査方向と同方向であって、前記被走査面上における前記第1レーザ光及び前記第2レーザ光のスポット径をほぼ等しくし、前記第2レーザ光を変調する画像信号パルスのデューティを、前記第1レーザ光を変調する画像信号パルスのデューティより大きくしたことを特徴とする。 In the scanning exposure apparatus of the present invention, the first light source that emits the first laser light, the second light source that emits the second laser light having a wavelength different from that of the first laser light, and the first light source are emitted. An acoustooptic modulator that modulates the intensity of the first laser beam by passing an ultrasonic wave in a direction that satisfies the Bragg condition and the propagation direction of the first laser beam, and the first beam emitted from the acoustooptic modulator. A scanning exposure apparatus comprising a deflector that deflects one laser beam and the second laser beam emitted from the second light source to scan in a predetermined direction on the surface to be scanned, virtually onto the surface to be scanned The propagation direction of the projected ultrasonic wave is the same as the scanning direction of each laser beam by the deflector, and the spot diameters of the first laser beam and the second laser beam on the surface to be scanned are set. Approximately equal and The duty of the image signal pulses for modulating the laser beam, characterized by being larger than the duty of the image signal pulses for modulating the first laser beam.
なお、前記第1光源は、半導体レーザ励起型の固体レーザと、この固体レーザから射出されたレーザ光を波長変換する波長変換素子とからなる光源などを用いる。また、前記第2光源は、半導体レーザからなることが好ましい。 As the first light source, a light source including a semiconductor laser excitation type solid-state laser and a wavelength conversion element for wavelength-converting laser light emitted from the solid-state laser is used. The second light source is preferably a semiconductor laser.
本発明の走査露光装置は、被走査面上へ仮想的に投影された超音波の伝搬方向が、偏向器による前記各レーザ光の走査方向と同方向であって、被走査面上における第2レーザ光のスポット径を、第1レーザ光のスポット径より大きくしたので、被走査面上に走査露光される第1レーザ光の1画素分の積分光量分布の拡幅に合わせるように、第2レーザ光の1画素分の積分光量分布が広がり、記録画像の色の滲みを低減させることができる。 In the scanning exposure apparatus of the present invention, the propagation direction of the ultrasonic wave virtually projected onto the surface to be scanned is the same as the scanning direction of each laser beam by the deflector, and the second direction on the surface to be scanned is the second. Since the spot diameter of the laser light is made larger than the spot diameter of the first laser light, the second laser is adjusted so as to match the widening of the integrated light amount distribution for one pixel of the first laser light that is scanned and exposed on the surface to be scanned. The integrated light quantity distribution for one pixel of light spreads, and the color blur of the recorded image can be reduced.
また、本発明の走査露光装置は、被走査面上へ仮想的に投影された超音波の伝搬方向が、偏向器による各レーザ光の走査方向と同方向であって、被走査面上における第1レーザ光及び第2レーザ光のスポット径をほぼ等しくし、第2レーザ光を変調する画像信号パルスのデューティを、第1レーザ光を変調する画像信号パルスのデューティより大きくしたので、被走査面上に走査露光される第1レーザ光の1画素分の積分光量分布の拡幅に合わせるように、第2レーザ光の1画素分の積分光量分布が広がり、記録画像の色の滲みを低減させることができる。 In the scanning exposure apparatus of the present invention, the propagation direction of the ultrasonic wave virtually projected onto the surface to be scanned is the same as the scanning direction of each laser beam by the deflector, and the first direction on the surface to be scanned is Since the spot diameters of the first laser beam and the second laser beam are made substantially equal and the duty of the image signal pulse for modulating the second laser beam is made larger than the duty of the image signal pulse for modulating the first laser beam, the surface to be scanned The integrated light amount distribution for one pixel of the second laser light is widened so as to match the widening of the integrated light amount distribution for one pixel of the first laser light that is scanned and exposed above, and the color blur of the recorded image is reduced. Can do.
図1は、レーザプリンタ2を示す概略図であり、レーザプリンタ2は、各種画像処理を行う画像処理部3、走査露光装置4、シート状の感光体5を搬送する搬送ローラ6、搬送ローラ6を駆動するモータ7などからなる。画像処理部3には、写真フイルムのフイルム画像をCCDスキャナで読み取ることによって得られた画像データや、デジタルカメラの撮影での撮影によって得られた画像データが入力される。画像処理部3は、入力された画像データに対して補正等の各種画像処理を行って、記録用画像データとして走査露光装置4へ出力する。
FIG. 1 is a schematic diagram showing a
走査露光装置4は、詳しくは後述するが、赤、緑、青の各色に対応したレーザ光8a〜8cを発振する複数のレーザ光源を備えており、画像処理部3から入力された記録用画像データに応じて変調したレーザ光を感光体5に照射するとともに、主走査方向X(図2参照)に走査露光を行う。感光体5は、シート状であり、赤色(R)レーザ光8aに感光する赤色感光層5a、緑色(G)レーザ光8bに感光する緑色感光層5b、青色(B)レーザ光8cに感光する青色感光層5cが順に支持体5d上に積層されている。
As will be described in detail later, the scanning exposure apparatus 4 includes a plurality of laser light sources that oscillate
搬送ローラ6は、モータ7によって駆動され、感光体5を主走査方向Xと直交する副走査方向Yに一定速度で搬送する。このように、感光体5は、副走査方向Y(図2参照)に搬送されながら、走査露光装置4によって主走査方向Xに振られたレーザ光8a〜8cが照射され、1ラインずつ露光が行われる。なお、感光体5は、レーザプリンタ2によって走査露光されて、画像が潜像として各感光層5a〜5cに記録された後、現像されることにより画像が顕在化される。
The
図3は、走査露光装置4の構成を示す。走査露光装置4は、レーザ光源11〜13を備えている。レーザ光源11は、例えば波長が680nmのRレーザ光8aを射出するR半導体レーザ14と、その射出側に配置された集光レンズ15とからなる。同様に、レーザ光源13は、例えば波長が410nmのBレーザ光8cを射出するB半導体レーザ16と、その射出側に配置された集光レンズ17とからなる。R半導体レーザ14及びB半導体レーザ16の発振を直接オン/オフするとともに、駆動電流を制御することで、Rレーザ光8a及びBレーザ光8cはそれぞれ変調される。
FIG. 3 shows the configuration of the scanning exposure apparatus 4. The scanning exposure apparatus 4 includes
レーザ光源12は、半導体レーザ18、その射出側に配置された集光レンズ19、及びレーザ結晶(レーザ活性媒質)20で構成される半導体レーザ励起型固体レーザ21と、その射出側に配置された波長変換素子としての2次高周波発生(SHG)素子22とを組み合わせてなるSHGレーザである。半導体レーザ励起型固体レーザ21は、例えば波長が1064nmのレーザ光を射出する。SHG素子22は、半導体レーザ励起型固体レーザ21から入射されたらレーザ光を半分の波長に変換し、波長が532nmのGレーザ光8bを射出する。
The
レーザ光源12の射出側には、集光レンズ23及び、詳しくは後述する、外部変調器としての音響光学変調素子(AOM)24が順に配置されている。レーザ光源12から射出されたGレーザ光8bは、集光レンズ23を介してAOM24に入射すると音響光学効果が作用して回折が生じ、強度が変調されるとともに回折光として射出される。AOM24から射出された回折光のうち、1次回折光以外の回折光を遮蔽する遮蔽板25が設けられている。遮蔽板25によって1次回折光のみが選択的にAOM24から射出される。
On the emission side of the
レーザ光源11,13及びAOM24の射出側には、平面ミラー26が配置されており、レーザ光源11,13から射出されたR及びBレーザ光8a,8c、AOM24の1次回折光として射出されたGレーザ光8bは、平面ミラー26によって反射される。平面ミラー26の射出側には、コリメータレンズ27、シリンドリカルレンズ28、及びポリゴンミラー(偏向器)29が順に配置されている。
On the emission side of the
平面ミラー26によって反射された各レーザ光8a〜8cは、コリメータレンズ27及びシリンドリカルレンズ28を介してポリゴンミラー29の反射面上のほぼ同一位置に照射され、反射される。ポリゴンミラー29は図中C方向(時計回り方向)にほぼ一定の角速度で回転しており、各レーザ光8a〜8cを偏向し、感光体5に対して前述の主走査方向Xに走査を行う。ポリゴンミラー29の射出側には、感光体5の露光面(被走査面)上の走査速度を補正するfθレンズ30、及び副走査方向Y(図3では紙面に垂直方向)にレンズパワーを持つ面倒れ補正用のシリンドリカルレンズ31が配置されている。
The
AOM24は、図4に示すように、音響光学媒質である直方形の結晶体24aと、結晶体24aの上面に配置されたトランスデューサ24bとによって構成されている。AOM24は、上記Gレーザ光8bが入射光として結晶体24aの一面から入射して、他面へ透過するように走査露光装置4内に配置されている。トランスデューサ24bには、AOMドライバ32が接続されており、AOMドライバ32は高周波信号をトランスデューサ24bへ入力する。トランスデューサ24bは、入力された高周波信号に応じた周波数(数百MHz)の超音波を生成し、この超音波を音波波束33として結晶体24a内に伝搬させる。この音波波束33の伝搬方向Pは、結晶体24a内の矢印Pで示された方向であり、Gレーザ光8bの入射方向とブラッグ条件を満たす角度で交差する。
As shown in FIG. 4, the AOM 24 includes a
結晶体24a内で音波波束33が生成された部分は、その伝搬方向Pに沿って屈折率が周期的に変化している。結晶体24a内に入射したGレーザ光8bは、音波波束33を横切ると、音響光学効果が作用して回折が生じ、上記高周波信号の振幅に応じた強度の回折光として結晶体24aから射出される。前述のように、射出された回折光のうち1次回折光のみが遮蔽板25を通過して平面ミラー26へ向かう。従って、Gレーザ光8bは、結晶体24a内で音波波束33を横切ったときのみ1次回折光として平面ミラー26へ射出されることとなる。
In the portion where the
図5は、AOM24の音波波束33の伝搬方向Pと、感光体5上でのGレーザ光8bの主走査方向Xとの関係を簡易的に示した図である。音波波束33の伝搬方向P、ポリゴンミラー29の回転方向C、及び主走査方向Xは同図に示すような関係にある。同図中の矢印P′は、伝搬方向Pが平面ミラー26で仮想的に反射された方向を示し、同図中の矢印P″は、この方向P′がポリゴンミラー29で仮想的に反射され、感光体5に仮想的に投影された方向を示す。以下、伝搬方向Pと主走査方向Xとの関係を、投影方向P″と主走査方向Xとの関係によって表す。本実施形態では、伝搬方向Pの感光体5上への投影方向P″が主走査方向Xと同方向になっている。
FIG. 5 is a diagram simply showing the relationship between the propagation direction P of the
図6は、AOM24の結晶体24a内において、Gレーザ光8bを音波波束33が通過する際の様子を示す図であり、Gレーザ光8bの伝搬方向に垂直な断面における時間的変化を示す。結晶体24a内に入射したGレーザ光8bは、音波波束33に重なった部分のみが変調されて1次回折光として射出される。Gレーザ光8bが部分的に変調され始めてから全てが変調されるまでの変調開始時(t0〜t3)に要される時間τは、音波波束33の伝搬速度をV、Gレーザ光8bのビーム径をDとしたとき、τ=D/Vの関係を満たす。また、変調終了時(t4〜t7)の期間も同様に、時間τが要される。
FIG. 6 is a diagram showing a state in which the
なお、Gレーザ光8bのビーム強度が図7に示すようなガウス分布を有するとき、ビーム径Dは、例えば、相対強度が1/e2(e:自然対数の底)での分布の広がり(標準偏差σの4倍に相当する変位)と定義される。
Note that when the beam intensity of the
AOM24の結晶体24a内で1つの音波波束33により変調され、1次回折光として射出されたGレーザ光8bのビーム強度は、図8に示すように時間的に変化する。t0からt7までの経過時間が1画素当りの露光時間(10-7〜10-8sec程度)に相当し、この露光時間は画像信号パルス幅によって決定される。ビーム径Dが小さいほど、ビーム強度の立ち上がり及び立ち下がり時の応答時間τは短く、感光体5に投影されるビームの鮮鋭度は向上する。
The beam intensity of the
感光体5の露光面は、AOM24の位置(回折点)と光学的に共役な関係となる位置に配置されているため、AOM24によって変調されたGレーザ光8bは、ビーム形状が等しくそのまま露光面に投影され、露光面でのスポット径はビーム径Dにほぼ等しい。1画素分のGレーザ光8bは、図9に示すように、主走査方向Xに走査されながら感光体5の露光面に投影される。図5で示したように、音波波束33の伝搬方向P(投影方向P″)と主走査方向Xとが同じ向きとなっているため、露光面に投影されたGレーザ光8bの1画素分の投影領域(図9でハッチングを施した領域)は、主走査方向Xに大きな広がりを持つ。これは、変調開始時(t0〜t3)には、Gレーザ光8bが部分的に変調され始めるとともに、変調部分が主走査方向Xの後方側に投影され、変調終了時(t4〜t7)には、変調部分が主走査方向Xの前方側に投影されるためである。
Since the exposure surface of the
図10は、ある特定条件下において、特定時間ごとに得られるGレーザ光8bのビーム強度分布を、1画素分重ねて示したものである。図11は、この各時間のビーム強度分布を重ね合わせて得られる1画素分の積分光量分布を示し、感光体5にはこの積分光量分布に基づいた露光が行われる。このように、レーザ光源12から射出される1画素分のGレーザ光8bは、AOM24での上記変調により、主走査方向Xに関する広がりが拡大する。
FIG. 10 shows the beam intensity distribution of the
Rレーザ光8a及びBレーザ光8cは、それぞれR半導体レーザ14及びB半導体レーザ16の発振を直接オン/オフするとともに、駆動電流を制御することによって変調(直接変調)され、感光体5の露光面に投影される。露光面での各レーザ光8a〜8cのスポット径を等しくした場合、Gレーザ光8bの積分光量分布が主走査方向Xに関して拡幅されるのに対し、Rレーザ光8a及びBレーザ光8cは、R半導体レーザ14及びB半導体レーザ16が画像信号パルス幅に基づいてオン/オフされることで露光時間の制御が行われるので、R及びBの積分光量分布は狭く、Gレーザ光8bのように拡幅されることはない。
The
このようにR,G,Bによって積分光量分布が異なると、カラー画像パターンを感光体5に露光した場合、GとR,Bとの間の積分光量分布の差異に起因して、現像後の色が滲む。これを防止するため、走査露光装置4は、レーザ光源11,13に対して、強度変調あるいはパルス幅変調のいずれかを行い、R及びBの積分光量分布を補正する。これにより色間差が低減され、記録画像に色の滲みが解消される。
If the integrated light quantity distribution is different depending on R, G, and B in this way, when the color image pattern is exposed on the
強度変調の場合には、図12に示すように、R,G,Bの各色において画像信号パルスのデューティを等しく保ったまま(T1=T2)、直接変調されるRレーザ光8a及びBレーザ光8cのビーム径D2を、音響光学変調されるGレーザ光8bのビーム径D1より大きい適宜の値に設定される。これにより、主走査方向Xに関するGの積分光量分布幅w1と、R,Bの積分光量分布幅w2とがほぼ等しくなるように補正される。
In the case of intensity modulation, as shown in FIG. 12, the
パルス幅変調の場合には、図13に示すように、R,G,Bの各色においてビーム径を等しく保ったまま(D1=D2)、直接変調されるRレーザ光8a及びBレーザ光8cの画像信号パルスのデューティT2を、音響光学変調されるGレーザ光8bの画像信号パルスのデューティT1より大きい適宜の値に設定される。ここで、レーザ光8a〜8cの各画像信号パルスの周波数はほぼ等しくしている。これにより、主走査方向Xに関するGの積分光量分布幅w1と、R,Bの積分光量分布幅w2とがほぼ等しくなるように補正される。
In the case of pulse width modulation, as shown in FIG. 13, the
上記実施形態において、Gレーザ光8bを外部変調器としてのAOM24によって音響光学変調を行い、Rレーザ光8a及びBレーザ光8cを直接変調するようにしたが、本発明はこれに限られるものではなく、レーザ光8a〜8cのいずれをAOM24によって響光学変調するようにしてもよい。
In the above embodiment, the
また、上記実施形態において、Gレーザ光8bのレーザ光源12を半導体レーザ励起型固体レーザとSHG素子とを組み合わせてなるSHGレーザとし、Rレーザ光8a及びBレーザ光8cのレーザ光源11,13を半導体レーザとして構成したが、本発明はこれに限られるものではなく、各レーザ光8a〜8cのレーザ光源として、半導体レーザ、固体レーザ、ガスレーザ等の各種レーザ光源を用いることができる。
In the above embodiment, the
さらに、上記実施形態において、R,G,Bに関する3種類のレーザ光源11〜13を用いたが、本発明はこれに限られるものではなく、レーザ光源の数、各レーザ光の波長、及び音響光学変調するレーザ光源などは適宜変更してよい。
Further, in the above embodiment, three types of
2 レーザプリンタ
3 画像処理部
4 走査露光装置
5 感光体
8a 赤色レーザ光(第2レーザ光)
8b 緑色レーザ光(第1レーザ光)
8c 青色レーザ光(第2レーザ光)
11 レーザ光源(第2光源)
12 レーザ光源(第1光源)
13 レーザ光源(第2光源)
14 赤色半導体レーザ
16 青色半導体レーザ
21 半導体レーザ励起型固体レーザ
22 2次高周波発生素子(波長変換素子)
24 音響光学変調素子
24a 結晶体
24b トランスデューサ
29 ポリゴンミラー(偏向器)
33 音波波束
2
8b Green laser beam (first laser beam)
8c Blue laser light (second laser light)
11 Laser light source (second light source)
12 Laser light source (first light source)
13 Laser light source (second light source)
DESCRIPTION OF
24
33 Sound wave packet
Claims (4)
前記被走査面上へ仮想的に投影された前記超音波の伝搬方向が、前記偏向器による前記各レーザ光の走査方向と同方向であって、前記被走査面上における前記第2レーザ光のスポット径を、前記第1レーザ光のスポット径より大きくしたことを特徴とする走査露光装置。 A first light source that emits first laser light; a second light source that emits second laser light having a wavelength different from that of the first laser light; and a propagation direction of the first laser light emitted from the first light source; An acousto-optic modulator that modulates the intensity of the first laser beam by passing an ultrasonic wave in a direction that satisfies the Bragg condition, and the first laser beam and the second light source that are emitted from the acousto-optic modulator. A scanning exposure apparatus comprising: a deflector that deflects the second laser beam and scans in a predetermined direction on the surface to be scanned;
The propagation direction of the ultrasonic wave virtually projected onto the surface to be scanned is the same as the scanning direction of each laser beam by the deflector, and the second laser beam on the surface to be scanned is A scanning exposure apparatus characterized in that a spot diameter is larger than a spot diameter of the first laser beam.
前記被走査面上へ仮想的に投影された前記超音波の伝搬方向が、前記偏向器による前記各レーザ光の走査方向と同方向であって、前記被走査面上における前記第1レーザ光及び前記第2レーザ光のスポット径をほぼ等しくし、前記第2レーザ光を変調する画像信号パルスのデューティを、前記第1レーザ光を変調する画像信号パルスのデューティより大きくしたことを特徴とする走査露光装置。 A first light source that emits first laser light; a second light source that emits second laser light having a wavelength different from that of the first laser light; and a propagation direction of the first laser light emitted from the first light source; An acousto-optic modulator that modulates the intensity of the first laser beam by passing an ultrasonic wave in a direction that satisfies the Bragg condition, and the first laser beam and the second light source that are emitted from the acousto-optic modulator. A scanning exposure apparatus comprising: a deflector that deflects the second laser beam and scans in a predetermined direction on the surface to be scanned;
The propagation direction of the ultrasonic wave virtually projected onto the surface to be scanned is the same as the scanning direction of each laser beam by the deflector, and the first laser beam on the surface to be scanned and The scanning is characterized in that the spot diameters of the second laser light are made substantially equal, and the duty of the image signal pulse for modulating the second laser light is made larger than the duty of the image signal pulse for modulating the first laser light. Exposure device.
The scanning exposure apparatus according to claim 1, wherein the second light source is a semiconductor laser.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004241374A JP2006058677A (en) | 2004-08-20 | 2004-08-20 | Scanning exposure apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004241374A JP2006058677A (en) | 2004-08-20 | 2004-08-20 | Scanning exposure apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006058677A true JP2006058677A (en) | 2006-03-02 |
Family
ID=36106176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004241374A Pending JP2006058677A (en) | 2004-08-20 | 2004-08-20 | Scanning exposure apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006058677A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100781283B1 (en) * | 2006-01-24 | 2007-11-30 | 엘지전자 주식회사 | Apparatus for processing image signal |
KR100843437B1 (en) | 2006-11-22 | 2008-07-03 | 삼성전기주식회사 | Method for correcting chromatic aberration of micro camera module |
EP2103997A2 (en) | 2008-03-21 | 2009-09-23 | Noritsu Koki Co., Ltd. | Color image printer and gradation correcting method therefor |
EP2104330A1 (en) | 2008-03-21 | 2009-09-23 | Noritsu Koki Co., Ltd. | Test print, color image printer using the test print and method for adjusting the color image printer using the test print |
JP2009229762A (en) * | 2008-03-21 | 2009-10-08 | Noritsu Koki Co Ltd | Light amount correction method and image forming device |
-
2004
- 2004-08-20 JP JP2004241374A patent/JP2006058677A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100781283B1 (en) * | 2006-01-24 | 2007-11-30 | 엘지전자 주식회사 | Apparatus for processing image signal |
KR100843437B1 (en) | 2006-11-22 | 2008-07-03 | 삼성전기주식회사 | Method for correcting chromatic aberration of micro camera module |
EP2103997A2 (en) | 2008-03-21 | 2009-09-23 | Noritsu Koki Co., Ltd. | Color image printer and gradation correcting method therefor |
EP2104330A1 (en) | 2008-03-21 | 2009-09-23 | Noritsu Koki Co., Ltd. | Test print, color image printer using the test print and method for adjusting the color image printer using the test print |
JP2009229762A (en) * | 2008-03-21 | 2009-10-08 | Noritsu Koki Co Ltd | Light amount correction method and image forming device |
CN101539718B (en) * | 2008-03-21 | 2011-03-02 | 诺日士钢机株式会社 | Color image printer and gradation correcting method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006058677A (en) | Scanning exposure apparatus | |
JP2006053438A (en) | Scanning exposure apparatus | |
US6552741B2 (en) | Optical scanning device, image scanning method and photographic processing device | |
US7206011B2 (en) | Apparatus for and method of recording optically scanned image | |
JP2006053240A (en) | Laser beam modulator | |
JPH0752453A (en) | Image recording device | |
US6384950B1 (en) | Optical system for scanning | |
JPS60225822A (en) | Image recording device | |
JP3514164B2 (en) | Laser exposure equipment | |
JP4635349B2 (en) | Exposure apparatus, photographic processing apparatus including the same, and exposure control method | |
JP4249405B2 (en) | Image forming apparatus | |
JP2794922B2 (en) | Image forming device | |
JP2008209687A (en) | Method for adjusting laser output | |
CN1271112A (en) | Laser explosure device | |
JPS6313467A (en) | Laser scanning type image forming device | |
JP2005055583A (en) | Method and device for adjusting acaustooptical element | |
JPH0643374A (en) | Light beam source unit and image recorder | |
JPH08132676A (en) | Image recorder | |
JP2005250390A (en) | Light source unit | |
JP2006264220A (en) | Image forming device | |
JPH01279273A (en) | Method for scanning with light beam | |
JPH01238615A (en) | Acousto-optic modulator | |
JP2000314844A (en) | Scanning optical system | |
JP2001281577A (en) | Scanning optical system and image recorder | |
JP2000330214A (en) | Photographic processor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20061225 |