JP2006057133A - Method for recovering gold concentrate from residue of leached copper concentrate - Google Patents
Method for recovering gold concentrate from residue of leached copper concentrate Download PDFInfo
- Publication number
- JP2006057133A JP2006057133A JP2004239716A JP2004239716A JP2006057133A JP 2006057133 A JP2006057133 A JP 2006057133A JP 2004239716 A JP2004239716 A JP 2004239716A JP 2004239716 A JP2004239716 A JP 2004239716A JP 2006057133 A JP2006057133 A JP 2006057133A
- Authority
- JP
- Japan
- Prior art keywords
- gold
- concentrate
- sulfur
- copper
- residue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、銅精鉱浸出残渣から金濃縮物の回収方法に関し、さらに詳しくは、銅精鉱の湿式精錬法により産出される金と単体イオウを含有する浸出残渣から金と単体イオウを製品化する際に、得られた金濃縮物を用いて後工程の環境負荷性を改善しかつ経済性を向上させるとともに、高い金回収率で単体イオウとの分離を行なうことができる金濃縮物の回収方法に関する。 The present invention relates to a method for recovering a gold concentrate from a copper concentrate leaching residue, and more specifically, commercializing gold and simple sulfur from a leaching residue containing gold and simple sulfur produced by a wet refining method of copper concentrate. Of the gold concentrate that can be separated from the elemental sulfur at a high gold recovery rate while improving the environmental impact of the subsequent process and improving the economic efficiency using the obtained gold concentrate. Regarding the method.
従来、銅製錬において、銅鉱石に含有される金の回収は、その経済的な価値から不可避の課題であった。そのため、銅精錬法においては、その原料形態や処理方法に応じて、さまざまな金の回収方法が行われていた。 Conventionally, in copper smelting, recovery of gold contained in copper ore has been an unavoidable problem due to its economic value. Therefore, in the copper refining method, various gold recovery methods have been performed depending on the raw material form and processing method.
現在、世界の銅の大部分が製造されている乾式溶錬法による銅製錬では、銅精鉱を原料として、これを溶錬炉、転炉、精製炉等を用いる一連の乾式製錬で銅精鉱を処理して得られた粗銅を電解精製して、高純度の電気銅が生産される。
前記銅精鉱は、黄銅鉱(CuFeS2)、輝銅鉱(Cu2S)、斑銅鉱(Cu5FeS4)等の硫化銅鉱物を含有する鉱石を、浮遊選鉱法などの物理分離手段によって硫化鉱物を濃集することにより得られる。一般に、銅精鉱中には、上記硫化銅鉱物と、黄鉄鉱、磁硫鉄鉱等の硫化鉄鉱物、石英、珪酸塩鉱物等の脈石のほか、金、銀等の貴金属が含有されている。
乾式溶錬法では、金、銀等の貴金属は、銅電解で産出する澱物中に濃縮されるので、金の回収は、この澱物を原料として種々の方法を用いて行われている。
Currently, copper smelting by the dry smelting method, where most of the world's copper is produced, is made from copper concentrate as a raw material, and this is a series of dry smelting using a smelting furnace, converter, refining furnace, etc. The crude copper obtained by treating the concentrate is electrolytically purified to produce high-purity electrolytic copper.
The copper concentrate is obtained by sulfidizing ores containing copper sulfide minerals such as chalcopyrite (CuFeS 2 ), chalcocite (Cu 2 S), and chalcopyrite (Cu 5 FeS 4 ) by physical separation means such as a flotation method. Obtained by concentrating minerals. In general, copper concentrate contains the above-mentioned copper sulfide mineral, iron sulfide minerals such as pyrite and pyrrhotite, gangue such as quartz and silicate minerals, and noble metals such as gold and silver.
In the dry smelting method, noble metals such as gold and silver are concentrated in a starch produced by copper electrolysis, and gold is recovered using various methods using the starch as a raw material.
ところで、近年、銅精鉱を原料に用いる湿式精錬法の研究が盛んに行われている。この湿式精錬法は、硫酸又は塩酸を含む酸性水溶液を用いて、第2鉄イオン、第2銅イオン、酸素、塩素等の酸化剤の共存下で銅硫化鉱物を浸出し、銅、金等を回収するプロセスである。このプロセスのひとつとして、銅の浸出時に溶液の酸化還元電位(以下、ORPと呼称する場合がある。)を高くして、金を同時に浸出させる方法が開発されているが、この方法では金の浸出率及び回収率が低く、経済性が低い。 By the way, in recent years, researches on wet refining methods using copper concentrate as a raw material have been actively conducted. This wet refining method uses an acidic aqueous solution containing sulfuric acid or hydrochloric acid to leach copper sulfide minerals in the presence of an oxidizing agent such as ferric ion, cupric ion, oxygen, chlorine, etc. It is a process to collect. As one of the processes, a method has been developed in which gold is leached at the same time by increasing the oxidation-reduction potential of the solution (hereinafter sometimes referred to as ORP) during copper leaching. Low leaching rate and recovery rate and low economic efficiency.
したがって、意図的に、金を浸出残渣中に残留させ、そこから回収する方法が開発されている。このような浸出残渣では、金等の貴金属とともに、やはり意図的に酸化させずに残留させたイオウが多量に含有される。また、通常、金の含有量が高々、数十g/トンと低く、また銅の高浸出率を得るため高ORPで浸出が行われるので酸化性が強い状態になっている。 Therefore, a method has been developed in which gold is intentionally left in the leach residue and recovered therefrom. Such a leaching residue contains a large amount of sulfur that remains without being intentionally oxidized together with a noble metal such as gold. In addition, the gold content is usually as low as several tens of g / ton, and since leaching is performed at a high ORP in order to obtain a high leaching rate of copper, the oxidization is strong.
前記乾式溶錬法での澱物及び湿式精錬法での浸出残渣中の金の回収方法として、例えば、塩素浸出−活性炭吸着法においては、金を塩素ガスにより浸出し、この浸出精製液中の金を活性炭により吸着して回収する。この後、活性炭に吸着された金は、活性炭を焙焼する方法等によって金属状態で回収される。この方法では、湿式精錬法での浸出残渣中のイオウは酸化され、液中で硫酸を生成し、再利用できない不純物となってしまう他、活性炭は再使用できないので、活性炭コストが高くなるという問題がある。また、塩素ガスを使用するので、生産設備に耐食性材料を使用し、環境対策として除害設備を設置する等によって、設備費が高くなるという問題がある。 As a method for recovering gold in the starch in the dry smelting method and leaching residue in the wet smelting method, for example, in the chlorine leaching-activated carbon adsorption method, gold is leached with chlorine gas, Gold is adsorbed and recovered by activated carbon. Thereafter, the gold adsorbed on the activated carbon is recovered in a metallic state by a method of roasting activated carbon or the like. In this method, sulfur in the leaching residue in the hydrometallurgical process is oxidized, and sulfuric acid is generated in the liquid, resulting in impurities that cannot be reused, and activated carbon cannot be reused, resulting in high activated carbon costs. There is. In addition, since chlorine gas is used, there is a problem that the equipment cost increases due to the use of a corrosion-resistant material in the production equipment and the installation of an abatement equipment as an environmental measure.
また、シアン化合物で金を錯体として浸出するシアン浸出法が行われている。シアン浸出法は、珪酸鉱石からの金の浸出法として最も一般的に採用されており、この方法によれば、金の浸出率が比較的高いという特徴がある。しかしながら、毒性のあるシアン化合物を使用するので、その取り扱いやシアン含有廃液の処理には特別の注意がはらうなど、環境面への配慮が不可欠であるなど課題が多い。 Further, a cyan leaching method in which gold is leached as a complex with a cyanide compound is performed. The cyan leaching method is most commonly employed as a method for leaching gold from silicate ore, and this method is characterized by a relatively high gold leaching rate. However, since a toxic cyanide compound is used, there are many problems such as special considerations for handling and treatment of cyanate-containing waste liquid, and environmental considerations are indispensable.
さらに、他の方法として、チオ尿素法を用いる方法も提案されている。チオ尿素による金の浸出は、チオ尿素がイオン状態となった金と錯形成することに基づいている。チオ尿素法としては、金、銀を含有する鉱石をチオ尿素と鉄イオンを含有する水溶液で処理し、この水溶液から中和沈殿法で金を回収する方法(例えば、特許文献1参照。)、また、金めっき、金張り、金含有鉱石等の金含有物からチオ尿素化合物として金を浸出した水溶液に鉄等の金属還元剤を添加して金を回収する方法(例えば、特許文献2参照。)が提案されている。しかしながら、チオ尿素は、酸化剤の共存下では酸化され浸出能力を失うため、工業規模での適用は限られており、特に大量の、しかも鉱石等の金含有量が低い原料への適用はコスト上の問題がある。 As another method, a method using a thiourea method has also been proposed. The leaching of gold with thiourea is based on the complexation of thiourea with gold in an ionic state. As the thiourea method, a gold or silver-containing ore is treated with an aqueous solution containing thiourea and iron ions, and gold is recovered from this aqueous solution by a neutralization precipitation method (see, for example, Patent Document 1). Further, a method of recovering gold by adding a metal reducing agent such as iron to an aqueous solution obtained by leaching gold as a thiourea compound from a gold-containing material such as gold plating, gold-plated, or gold-containing ore (see, for example, Patent Document 2). ) Has been proposed. However, thiourea is oxidized in the presence of an oxidizing agent and loses its leaching capacity, so its application on an industrial scale is limited. Especially, application to a large amount of raw material with low gold content such as ore is costly. There is a problem above.
また、湿式精錬法での浸出残渣中から金を濃縮する方法として含有される単体イオウを揮発除去させることが考えられるが、揮発させるためには多量のエネルギーが必要であり、高コストとなってしまう。
以上の状況から、銅精鉱の湿式精錬法により産出される浸出残渣を原料として、浸出剤及び排ガスによる環境面の負荷及び設備容量を小さくすることができる金濃縮物の回収方法が求められている。
In addition, it is conceivable to volatilize and remove elemental sulfur contained as a method of concentrating gold from the leach residue in the wet refining method, but a large amount of energy is required to volatilize, resulting in high cost. End up.
From the above situation, there is a need for a method for recovering gold concentrate that can reduce the environmental load and facility capacity due to leaching agent and exhaust gas, using leaching residue produced by wet refining of copper concentrate as a raw material. Yes.
本発明の目的は、上記の従来技術の問題点に鑑み、銅精鉱の湿式精錬法により産出される金と単体イオウを含有する浸出残渣から金と単体イオウを製品化する際に、得られた金濃縮物を用いて後工程の環境負荷性を改善しかつ経済性を向上させるとともに、高い金回収率で単体イオウとの分離を行なうことができる金濃縮物の回収方法を提供することにある。 The object of the present invention is obtained in the case of commercializing gold and simple sulfur from a leaching residue containing gold and simple sulfur produced by the copper concentrate wet refining method in view of the above-mentioned problems of the prior art. To improve the environmental impact of the post-process using the gold concentrate and improve the economic efficiency, and to provide a method for recovering the gold concentrate that can be separated from the elemental sulfur at a high gold recovery rate. is there.
本発明者らは、上記目的を達成するために、銅精鉱の湿式精錬法により産出される浸出残渣から金濃縮物を回収する方法について、鋭意研究を重ねた結果、該浸出残渣を特定の条件で遠心分離に付すことにより、該浸出残渣に含有される単体イオウを分離し、一方金を浸出残渣に濃縮して、高品位の金濃縮物が高回収率で得られることを見出し、本発明を完成した。 In order to achieve the above object, the present inventors have conducted extensive research on a method for recovering a gold concentrate from a leaching residue produced by a wet refining method of copper concentrate. By centrifuging under the conditions, the simple sulfur contained in the leaching residue is separated, while gold is concentrated to the leaching residue, and a high-grade gold concentrate is obtained with a high recovery rate. Completed the invention.
すなわち、本発明の第1の発明によれば、銅精鉱の湿式精錬法により産出される金と単体イオウを含有する浸出残渣から金濃縮物を回収する方法であって、
前記浸出残渣を単体イオウが熔融するに十分な程度に加熱しながら遠心分離に付し、金濃縮物と単体イオウを得ることを特徴とする銅精鉱浸出残渣から金濃縮物の回収方法が提供される。
That is, according to the first invention of the present invention, a method for recovering a gold concentrate from a leaching residue containing gold and simple sulfur produced by a wet refining method of copper concentrate,
A method for recovering a gold concentrate from a copper concentrate leaching residue is provided, wherein the leaching residue is subjected to centrifugation while heating to a degree sufficient to melt the elemental sulfur to obtain a gold concentrate and elemental sulfur. Is done.
また、本発明の第2の発明によれば、第1の発明において、加熱は、非酸化性雰囲気下で行われることを特徴とする銅精鉱浸出残渣から金濃縮物の回収方法が提供される。 According to a second aspect of the present invention, there is provided a method for recovering a gold concentrate from a copper concentrate leaching residue, characterized in that in the first aspect, the heating is performed in a non-oxidizing atmosphere. The
また、本発明の第3の発明によれば、第1又は2の発明において、加熱温度は、110〜150℃であることを特徴とする銅精鉱浸出残渣から金濃縮物の回収方法が提供される。 According to a third invention of the present invention, there is provided a method for recovering a gold concentrate from a copper concentrate leaching residue, wherein the heating temperature is 110 to 150 ° C. in the first or second invention. Is done.
また、本発明の第4の発明によれば、第1〜3いずれかの発明において、さらに、遠心分離に先だって、前記浸出残渣を浮遊選鉱に付すことを特徴とする銅精鉱浸出残渣から金濃縮物の回収方法が提供される。 According to a fourth invention of the present invention, in any one of the first to third inventions, the leaching residue is subjected to flotation prior to the centrifugation, and then the copper concentrate leaching residue is changed to gold. A method for recovering the concentrate is provided.
本発明の銅精鉱浸出残渣から金濃縮物の回収方法は、銅精鉱の湿式精錬法により産出される金と単体イオウを含有する浸出残渣から金と単体イオウを製品化する際に、得られた金濃縮物を用いて後工程の環境負荷性を改善しかつ経済性を向上させることができる。また、高い金回収率で単体イオウとの分離を行なうことができるので、その工業的価値は極めて大きい。 The method for recovering a gold concentrate from a copper concentrate leach residue according to the present invention is obtained when commercializing gold and simple sulfur from a leach residue containing gold and simple sulfur produced by a wet refining method of copper concentrate. By using the obtained gold concentrate, it is possible to improve the environmental impact of the post-process and improve the economic efficiency. Further, since it can be separated from simple sulfur with a high gold recovery rate, its industrial value is extremely large.
また、遠心分離において、加熱雰囲気と加熱温度を好ましく制御すれば、その効果を増加させることができるので、より有利である。さらに、遠心分離の原料として、湿式残渣の浮遊選鉱処理によって得られる浮遊物を用いれば、より高品位の金濃縮物が得られる。
また、遠心分離によって、不純物の少ない単体イオウが得られるので、製品化が容易である。
In the centrifugal separation, if the heating atmosphere and the heating temperature are preferably controlled, the effect can be increased, which is more advantageous. Furthermore, if a floating substance obtained by a flotation process of a wet residue is used as a raw material for centrifugation, a higher-grade gold concentrate can be obtained.
Moreover, since simple sulfur with few impurities can be obtained by centrifugation, it is easy to produce a product.
以下、本発明の銅精鉱浸出残渣から金濃縮物の回収方法を詳細に説明する。
本発明の銅精鉱浸出残渣から金濃縮物の回収方法は、銅精鉱の湿式精錬法により産出される金と単体イオウを含有する浸出残渣から金濃縮物を回収する方法であって、前記浸出残渣を単体イオウが熔融するに十分な程度に加熱しながら遠心分離に付し、金濃縮物と単体イオウを得ることを特徴とする。
Hereinafter, the method for recovering the gold concentrate from the copper concentrate leaching residue of the present invention will be described in detail.
A method for recovering a gold concentrate from a copper concentrate leaching residue according to the present invention is a method for recovering a gold concentrate from a leaching residue containing gold and simple sulfur produced by a wet refining method of copper concentrate, The leaching residue is subjected to centrifugal separation while heating to a degree sufficient for melting of simple sulfur, thereby obtaining a gold concentrate and simple sulfur.
本発明の回収方法において、銅精鉱浸出残渣を単体イオウが熔融するに十分な程度に加熱しながら遠心分離に付すことに重要な意義がある。これによって、金を製品化する際に、得られた金濃縮物を用いて後工程の環境負荷性を改善しかつ経済性を向上させるとともに、高い金回収率で単体イオウとの分離を行なうことができる。
すなわち、銅精鉱浸出残渣を加熱することによって単体イオウを熔融し、流動性のよい融体を形成する。一方、金その他の浸出残渣に含まれる成分は固形物の状態のままであるので、単体イオウの融体と固形物とを遠心分離法を用いてろ過分離することができる。
In the recovery method of the present invention, it is important to subject the copper concentrate leaching residue to centrifugation while heating the copper concentrate leaching residue to a degree sufficient to melt the elemental sulfur. As a result, when gold is commercialized, the resulting gold concentrate can be used to improve the environmental impact of the post-process and improve the economic efficiency, while separating it from single sulfur with a high gold recovery rate. Can do.
That is, by heating the copper concentrate leaching residue, the single sulfur is melted to form a melt with good fluidity. On the other hand, since the components contained in the leaching residue such as gold remain in a solid state, the melt of the simple sulfur and the solid can be separated by filtration using a centrifugal separation method.
上記銅精鉱の湿式精錬法としては、特に限定されるものではなく、硫酸又は塩酸を含む酸性水溶液を用いて、第2鉄イオン、第2銅イオン、酸素、塩素等の酸化剤の共存下で硫化銅鉱物を酸化浸出する際に、金の浸出を抑制する条件で行われる方法が好ましい。特に、塩素ガスを酸化剤として用いる塩素浸出法において、ORPを適切に制御することによって前記条件が好適に行われる。これによって、浸出残渣中に金を残留させることができる。 The method for wet refining of copper concentrate is not particularly limited, and an acidic aqueous solution containing sulfuric acid or hydrochloric acid is used in the coexistence of an oxidizing agent such as ferric ion, cupric ion, oxygen or chlorine. When the copper sulfide mineral is oxidatively leached, the method is preferably performed under the condition that suppresses gold leaching. In particular, in the chlorine leaching method using chlorine gas as the oxidizing agent, the above conditions are suitably performed by appropriately controlling the ORP. This allows gold to remain in the leaching residue.
上記回収方法で用いる銅精鉱浸出残渣は、特に限定されるものではなく、銅精鉱の湿式精錬法により産出される金と単体イオウを含有する浸出残渣が用いられる。特に、単体イオウを多量に含有する残渣を用いることができる。
上記浸出残渣の組成及び成分は、原料である銅精鉱の組成及び成分、湿式精錬法の種類等により異なる。例えば、硫酸浸出法により生成された残渣は、一般に、金等の貴金属と単体イオウの他、未溶解の鉄硫化鉱物、石英等の脈石鉱物及び鉄の水酸化物又は酸化物を含む。また、塩素浸出法による残渣は、一般に、金等の貴金属と単体イオウの他、未溶解の硫化鉄鉱物、及び石英等の脈石鉱物及びを含む。ここで、金の大部分は金粒子及び金合金粒子として存在している。
The copper concentrate leaching residue used in the recovery method is not particularly limited, and a leaching residue containing gold and simple sulfur produced by a copper smelting method is used. In particular, a residue containing a large amount of simple sulfur can be used.
The composition and components of the leaching residue vary depending on the composition and components of the copper concentrate as a raw material, the type of wet refining method, and the like. For example, the residue produced by the sulfuric acid leaching method generally contains undissolved iron sulfide minerals, gangue minerals such as quartz, and iron hydroxides or oxides in addition to noble metals such as gold and elemental sulfur. Moreover, the residue by the chlorine leaching method generally contains undissolved iron sulfide minerals and gangue minerals such as quartz in addition to noble metals such as gold and simple sulfur. Here, most of gold exists as gold particles and gold alloy particles.
上記回収方法の実施の態様としては、特に限定されるものではないが、例えば、上記浸出残渣は、遠心分離機に装入され加熱される。また、装入に先だって、事前に浸出残渣を加熱しておいてもよい。ここで、単体イオウが加熱により熔融され、所望の流動性のよい融体が形成された状態で、遠心分離操作が行なわれる。 The embodiment of the recovery method is not particularly limited. For example, the leaching residue is charged into a centrifuge and heated. Prior to charging, the leaching residue may be heated in advance. Here, the centrifugal separation operation is performed in a state where the single sulfur is melted by heating and a desired melt having good fluidity is formed.
上記回収方法で用いる加熱としては、特に限定されるものではなく、単体イオウの酸化が起り難い非酸化性雰囲気下で行なわれることが好ましい。なお、上記加熱雰囲気は、浸出残渣の加熱から遠心分離操作まで一貫して維持されることが好ましい。また、前記非酸化性の雰囲気は、例えば、遠心分離機の中に、低酸素濃度燃焼ガス、窒素ガス、不活性ガス等の低酸素濃度の加熱用ガスを流入することによって形成することができる。 The heating used in the above recovery method is not particularly limited, and it is preferably performed in a non-oxidizing atmosphere in which the oxidation of simple sulfur hardly occurs. In addition, it is preferable that the said heating atmosphere is maintained consistently from heating of a leaching residue to centrifugation operation. The non-oxidizing atmosphere can be formed, for example, by flowing a low oxygen concentration heating gas such as a low oxygen concentration combustion gas, nitrogen gas or inert gas into a centrifuge. .
上記回収方法で用いる加熱温度は、特に限定されるものではなく、イオウの融点を超える温度が用いられるが、100〜300℃が好ましく、イオウの蒸発抑制と酸化抑制の両面から110〜150℃がより好ましい。すなわち、110〜150℃の温度範囲では、イオウ融体の粘度が最も低い状態に維持でき分離性が向上する。一方、300℃を超えると、イオウの蒸発が激しくなる。なお、上記加熱温度は、浸出残渣の加熱から遠心分離操作まで一貫して維持されることが好ましい。 The heating temperature used in the above recovery method is not particularly limited, and a temperature exceeding the melting point of sulfur is used, but it is preferably 100 to 300 ° C., and 110 to 150 ° C. from both sides of sulfur evaporation suppression and oxidation suppression. More preferred. That is, in the temperature range of 110 to 150 ° C., the viscosity of the sulfur melt can be maintained at the lowest state and the separability is improved. On the other hand, when the temperature exceeds 300 ° C., the evaporation of sulfur becomes intense. In addition, it is preferable that the said heating temperature is maintained consistently from heating of a leaching residue to centrifugation operation.
上記加熱雰囲気と加熱温度の条件下で、遠心分離操作を行なうことによって、高い金濃縮率を得ることができるとともに、イオウの揮発及び酸化を抑えることができる。 By performing the centrifugal separation operation under the above heating atmosphere and heating temperature, a high gold concentration ratio can be obtained, and sulfur volatilization and oxidation can be suppressed.
上記回収方法で用いる遠心分離としては、特に限定されるものではなく、固形物からイオウ融体をろ過分離する手段が用いられ、市販の遠心分離機を用いて行なうことができる。ただし、市販の遠心分離機では、運転時に風力によって冷却されることがあり、導入不活性ガスを加熱する装置を付帯したもの、もしくは、遠心分離機のバスケットを保温するため外周に加熱装置を保有するものが好ましい。 Centrifugation used in the above recovery method is not particularly limited, and means for filtering and separating the sulfur melt from the solid can be used, and can be carried out using a commercially available centrifuge. However, commercially available centrifuges may be cooled by wind power during operation, and are equipped with a device for heating the introduced inert gas, or have a heating device on the outer periphery to keep the centrifuge basket warm. Those that do are preferred.
上記回収方法において、必要に応じて、遠心分離に先だって、前記浸出残渣を浮遊選鉱に付し、得られた浮遊物を遠心分離に付すことができる。これによって、より高品位の金濃縮物が得られる。すなわち、浸出残渣の浮遊選鉱処理によって、金及び金合金粒子と単体イオウは浮遊物となり、硫化鉄鉱物及び脈石鉱物等の大部分は沈降物として分配されるので、金と硫化鉄鉱物及び脈石鉱物との分離が行なわれる。 In the above recovery method, if necessary, prior to centrifugation, the leach residue can be subjected to flotation, and the resulting suspended matter can be subjected to centrifugation. This gives a higher quality gold concentrate. In other words, gold and gold alloy particles and elemental sulfur are floated by the flotation treatment of the leach residue, and most of the iron sulfide minerals and gangue minerals are distributed as sediments. Separation from stone minerals takes place.
上記浮遊選鉱の条件としては、特に限定されるものでなく、単体イオウと金及び金合金粒子が浮遊物として分離される条件が選ばれるが、例えば、上記浸出残渣のスラリーを所定のpHに調整して行なわれる。 The conditions for the flotation beneficiation are not particularly limited, and conditions are selected in which the elemental sulfur, gold and gold alloy particles are separated as floating substances. For example, the leaching residue slurry is adjusted to a predetermined pH. It is done.
上記回収方法で得られた金濃縮物は、金の回収のため、既存の各種の分離精製方法によって処理することができる。例えば、金濃縮物を既存の乾式熔錬法を利用して、その転炉工程等に投入すれば、現行の銅アノードの電解精製工程での澱物として金を回収することができる。このとき、直接的に浸出残渣を乾式製錬工程で処理する場合に比べて亜硫酸ガスの発生量は少なく、環境負荷の面で有利である。 The gold concentrate obtained by the above recovery method can be processed by various existing separation and purification methods for gold recovery. For example, if gold concentrate is put into the converter process etc. using the existing dry smelting method, gold can be recovered as a starch in the current copper anode electrolytic purification process. At this time, the amount of sulfurous acid gas generated is small compared to the case where the leaching residue is directly processed in the dry smelting process, which is advantageous in terms of environmental load.
また、金濃縮物を原料として、塩素浸出法、シアン浸出法、チオ尿素法等の湿式法で処理することができる。その際、浸出残渣中からイオウが除去され物量が減少していること、イオウの除去によって残渣の親水性が向上し浸出剤が浸透しやすいこと等によって、浸出残渣をそのまま処理する場合と比較して、湿式法の処理能力等の経済性を向上させることができる。 Moreover, it can process by wet methods, such as a chlorine leaching method, a cyan leaching method, and a thiourea method, using gold concentrate as a raw material. At that time, sulfur is removed from the leaching residue and the amount is reduced, and the removal of sulfur improves the hydrophilicity of the residue and allows the leaching agent to permeate easily. Thus, the economics such as the processing capacity of the wet method can be improved.
以下に、本発明の実施例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例で用いた金属の分析方法は、ICP発光分析法で行なった。 EXAMPLES The present invention will be described in more detail below with reference to examples of the present invention, but the present invention is not limited to these examples. In addition, the analysis method of the metal used in the Example was performed by ICP emission spectrometry.
(実施例1)
銅精鉱浸出残渣として、Cu:0.6重量%、Fe:9.5重量%、S:49.3重量%及びAu:61g/tの組成からなる塩素浸出法により得られた浸出残渣を使用した。
まず、前記浸出残渣10kgを遠心分離機(ろ布:ポリプロピレン製)に装入した。次に、遠心分離機内部に140℃に加熱した窒素ガスを流入して、浸出残渣に含有されるイオウを熔融状態とした。
次いで、遠心分離機を起動し、約1000Gの遠心力を5分間かけて、溶融したイオウと残渣(金濃縮物)とに分離した。続いて、金濃縮物を遠心分離機より取り出した。その後、得られた金濃縮物と単体イオウを分析した。なお、得られた金濃縮物と単体イオウの重量は、それぞれ、5.0kg、4.9kgであった。
Example 1
As a copper concentrate leaching residue, a leaching residue obtained by a chlorine leaching method comprising a composition of Cu: 0.6% by weight, Fe: 9.5% by weight, S: 49.3% by weight, and Au: 61 g / t. used.
First, 10 kg of the leaching residue was charged into a centrifuge (filter cloth: made of polypropylene). Next, nitrogen gas heated to 140 ° C. was introduced into the centrifuge, and the sulfur contained in the leaching residue was brought into a molten state.
The centrifuge was then started and a centrifugal force of about 1000 G was separated over 5 minutes into molten sulfur and residue (gold concentrate). Subsequently, the gold concentrate was removed from the centrifuge. Thereafter, the obtained gold concentrate and elemental sulfur were analyzed. In addition, the weight of the obtained gold concentrate and simple substance sulfur was 5.0 kg and 4.9 kg, respectively.
その結果、金濃縮物の品位としては、Cu:1.2重量%、Fe:19重量%、Au:120g/tであり、金が2倍に濃縮していることが分った。また、分離された単体イオウ中ではCu、Fe、Auいずれもが検出下限以下であることが分った。
以上から明らかなように、実施例1では、単体イオウの分離が本発明の方法にしたがって行なわれたので、高い金回収率で高品位の金濃縮物が得られることが分かる。また、製品化が容易な純度の単体イオウが得られた。
As a result, the quality of the gold concentrate was Cu: 1.2 wt%, Fe: 19 wt%, and Au: 120 g / t, and it was found that gold was concentrated twice. Further, it was found that Cu, Fe, and Au were all below the lower limit of detection in the separated simple sulfur.
As is apparent from the above, in Example 1, since the separation of elemental sulfur was performed according to the method of the present invention, it can be seen that a high-quality gold concentrate can be obtained with a high gold recovery rate. In addition, simple sulfur having a purity that is easy to produce was obtained.
(実施例2)
銅精鉱浸出残渣として、Cu:0.53重量%、Fe:8.3重量%、S:52重量%及びAu:54g/tの組成の塩素浸出残渣を使用した。
まず、前記浸出残渣20kgを水でスラリーとし、スラリーのpHを11に調整した。次に、浮選機を用いて、pHを調整したスラリーを浮遊選鉱した。なお、浮遊選鉱に際しては、撹拌式浮遊選鉱機を用いて、起泡剤として、パインオイル7番(日本香料薬品株式会社製)を用いて実施し、浮遊物と沈降物を得て、組成を分析した。なお、浮遊物と沈降物の重量はほぼ同量であった。その結果、得られた沈降物は、主に黄鉄鉱と脈石鉱物からなり、Au品位は11g/tと低いものであった。また、得られた浮遊物は、主に単体イオウの濃縮物であり、Cu:0.91重量%、Fe:6.2重量%、S:84重量%、Au:80g/tの組成であった。
(Example 2)
As the copper concentrate leaching residue, a chlorine leaching residue having a composition of Cu: 0.53% by weight, Fe: 8.3% by weight, S: 52% by weight and Au: 54 g / t was used.
First, 20 kg of the leaching residue was made into a slurry with water, and the pH of the slurry was adjusted to 11. Next, the slurry whose pH was adjusted was subjected to flotation using a flotation machine. In addition, in the case of flotation, a stirrer type flotation machine is used and, as a foaming agent, Pine Oil No. 7 (manufactured by Nippon Fragrance Chemicals Co., Ltd.) is used to obtain a suspended matter and a sediment. analyzed. The weight of suspended matter and sediment was almost the same. As a result, the obtained sediment was mainly composed of pyrite and gangue minerals, and the Au quality was as low as 11 g / t. The obtained suspended matter is mainly a concentrate of simple sulfur, and has a composition of Cu: 0.91% by weight, Fe: 6.2% by weight, S: 84% by weight, and Au: 80 g / t. It was.
次いで、浮遊物10kgを遠心分離機(ろ布:ポリプロピレン製)に装入した。次に、遠心分離機内部に140℃に加熱した窒素ガスを流入して、浮遊物に含有されるイオウを熔融状態とした。
続いて、遠心分離機を起動し、約1000Gの遠心力を5分間かけて、溶融したイオウと残渣(金濃縮物)とに分離した。続いて、金濃縮物を遠心分離機より取り出した。その後、得られた金濃縮物と単体イオウを分析した。なお、得られた金濃縮物と単体イオウの重量は、それぞれ2.6kg、7.3kgであった。
Next, 10 kg of the suspended matter was placed in a centrifuge (filter cloth: made of polypropylene). Next, nitrogen gas heated to 140 ° C. was introduced into the centrifuge, and the sulfur contained in the suspended matter was brought into a molten state.
Subsequently, the centrifuge was started and a centrifugal force of about 1000 G was separated into molten sulfur and residue (gold concentrate) over 5 minutes. Subsequently, the gold concentrate was removed from the centrifuge. Thereafter, the obtained gold concentrate and elemental sulfur were analyzed. In addition, the weights of the obtained gold concentrate and simple substance sulfur were 2.6 kg and 7.3 kg, respectively.
その結果、金濃縮物の品位としては、Fe:20重量%、Au:310g/tであり、金が3.9倍に濃縮していることが分った。また、分離された単体イオウ中ではCu、Fe、Auいずれもが検出下限以下であることが分った。
以上から明らかなように、実施例2では、脈石鉱物等及び単体イオウの分離が本発明の方法にしたがって行なわれたので、高い金回収率で高品位の金濃縮物が得られることが分かる。また、製品化が容易な純度の単体イオウが得られた。
As a result, the quality of the gold concentrate was Fe: 20% by weight, Au: 310 g / t, and it was found that gold was concentrated 3.9 times. Further, it was found that Cu, Fe, and Au were all below the lower limit of detection in the separated simple sulfur.
As is apparent from the above, in Example 2, since the separation of gangue minerals and elemental sulfur was performed according to the method of the present invention, it can be seen that a high-quality gold concentrate can be obtained with a high gold recovery rate. . In addition, simple sulfur having a purity that is easy to produce was obtained.
以上より明らかなように、本発明の銅精鉱浸出残渣から金濃縮物の回収方法は、銅精鉱を塩素ガスや硫酸で浸出して銅を回収する銅湿式精錬分野で、浸出残渣から金と単体イオウとを分離し、金濃縮物を高回収率で得る方法として好適である。 As is clear from the above, the method for recovering a gold concentrate from a copper concentrate leaching residue according to the present invention is a copper hydrometallurgical field in which copper concentrate is leached with chlorine gas or sulfuric acid to recover copper. It is suitable as a method for separating the elemental sulfur and obtaining a gold concentrate with a high recovery rate.
Claims (4)
前記浸出残渣を単体イオウが熔融するに十分な程度に加熱しながら遠心分離に付し、金濃縮物と単体イオウを得ることを特徴とする銅精鉱浸出残渣から金濃縮物の回収方法。 A method for recovering a gold concentrate from a leaching residue containing gold and elemental sulfur produced by a wet refining method of copper concentrate,
A method for recovering a gold concentrate from a copper concentrate leaching residue, wherein the leaching residue is subjected to centrifugation while heating to a degree sufficient for melting the simple sulfur to obtain a gold concentrate and simple sulfur.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004239716A JP4274079B2 (en) | 2004-08-19 | 2004-08-19 | Method for recovering gold concentrate from copper concentrate leach residue |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004239716A JP4274079B2 (en) | 2004-08-19 | 2004-08-19 | Method for recovering gold concentrate from copper concentrate leach residue |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006057133A true JP2006057133A (en) | 2006-03-02 |
JP4274079B2 JP4274079B2 (en) | 2009-06-03 |
Family
ID=36104857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004239716A Expired - Lifetime JP4274079B2 (en) | 2004-08-19 | 2004-08-19 | Method for recovering gold concentrate from copper concentrate leach residue |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4274079B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010180450A (en) * | 2009-02-05 | 2010-08-19 | Sumitomo Metal Mining Co Ltd | Method for concentrating gold from copper-sulfide ore |
JP2010235999A (en) * | 2009-03-31 | 2010-10-21 | Sumitomo Metal Mining Co Ltd | Method for concentrating gold from copper sulfide mineral |
JP2011058018A (en) * | 2009-09-07 | 2011-03-24 | Sumitomo Metal Mining Co Ltd | Method for recovering gold concentrate from leach residue of copper sulfide minerals |
CN102274978A (en) * | 2011-08-26 | 2011-12-14 | 山东黄金矿业(莱州)有限公司三山岛金矿 | Method for quickly wet-process refining non-standard coarse gold powder |
JP2012077373A (en) * | 2010-09-30 | 2012-04-19 | Jx Nippon Mining & Metals Corp | Method of recovering gold from leached residue of copper sulfide mineral |
JP2013209718A (en) * | 2012-03-30 | 2013-10-10 | Jx Nippon Mining & Metals Corp | Method for treating copper concentrate |
US9045811B2 (en) | 2011-05-30 | 2015-06-02 | Jx Nippon Mining & Metals Corporation | Process of leaching gold |
CN111392696A (en) * | 2020-04-26 | 2020-07-10 | 中国恩菲工程技术有限公司 | Device and method for recovering elemental sulfur in sulfur-containing hydrometallurgy slag |
US11319613B2 (en) | 2020-08-18 | 2022-05-03 | Enviro Metals, LLC | Metal refinement |
-
2004
- 2004-08-19 JP JP2004239716A patent/JP4274079B2/en not_active Expired - Lifetime
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010180450A (en) * | 2009-02-05 | 2010-08-19 | Sumitomo Metal Mining Co Ltd | Method for concentrating gold from copper-sulfide ore |
JP2010235999A (en) * | 2009-03-31 | 2010-10-21 | Sumitomo Metal Mining Co Ltd | Method for concentrating gold from copper sulfide mineral |
JP2011058018A (en) * | 2009-09-07 | 2011-03-24 | Sumitomo Metal Mining Co Ltd | Method for recovering gold concentrate from leach residue of copper sulfide minerals |
JP2012077373A (en) * | 2010-09-30 | 2012-04-19 | Jx Nippon Mining & Metals Corp | Method of recovering gold from leached residue of copper sulfide mineral |
US9045811B2 (en) | 2011-05-30 | 2015-06-02 | Jx Nippon Mining & Metals Corporation | Process of leaching gold |
US9593394B2 (en) | 2011-05-30 | 2017-03-14 | Jx Nippon Mining & Metals Corporation | Process of leaching gold |
CN102274978A (en) * | 2011-08-26 | 2011-12-14 | 山东黄金矿业(莱州)有限公司三山岛金矿 | Method for quickly wet-process refining non-standard coarse gold powder |
CN102274978B (en) * | 2011-08-26 | 2013-09-11 | 山东黄金矿业(莱州)有限公司三山岛金矿 | Method for quickly wet-process refining non-standard coarse gold powder |
JP2013209718A (en) * | 2012-03-30 | 2013-10-10 | Jx Nippon Mining & Metals Corp | Method for treating copper concentrate |
CN111392696A (en) * | 2020-04-26 | 2020-07-10 | 中国恩菲工程技术有限公司 | Device and method for recovering elemental sulfur in sulfur-containing hydrometallurgy slag |
US11319613B2 (en) | 2020-08-18 | 2022-05-03 | Enviro Metals, LLC | Metal refinement |
US11578386B2 (en) | 2020-08-18 | 2023-02-14 | Enviro Metals, LLC | Metal refinement |
Also Published As
Publication number | Publication date |
---|---|
JP4274079B2 (en) | 2009-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8052774B2 (en) | Method for concentration of gold in copper sulfide minerals | |
JP5663129B2 (en) | Copper-containing raw material processing method | |
JP4085908B2 (en) | Method for concentrating noble metals contained in leaching residue of wet copper refining process | |
JP2005060813A (en) | Method for refining copper raw material containing copper sulfide mineral | |
JP5467133B2 (en) | Gold collection method | |
JP5439997B2 (en) | Method for recovering copper from copper-containing iron | |
JP4274079B2 (en) | Method for recovering gold concentrate from copper concentrate leach residue | |
JP2010180450A (en) | Method for concentrating gold from copper-sulfide ore | |
JP2010235999A (en) | Method for concentrating gold from copper sulfide mineral | |
JP2008115429A (en) | Method for recovering silver in hydrometallurgical copper refining process | |
JP2008208441A (en) | Solvent extraction method for chloride aqueous solution | |
JP5774374B2 (en) | Method for separating arsenic mineral from copper-containing material containing arsenic mineral | |
TWI849921B (en) | Method for processing by-product of zinc hydrometallurgical process with reduced carbon emission | |
JP2011074406A (en) | Method for recovering valuables from noble metal-containing metal sulfide | |
AU2003264661A1 (en) | Method for the recovery of metals using chloride leaching and extraction | |
JP2008127627A (en) | Method for electrowinning copper | |
CA1092360A (en) | Process for recovery of selected metal values from waste waters | |
JP2011058018A (en) | Method for recovering gold concentrate from leach residue of copper sulfide minerals | |
JP5181684B2 (en) | Solvent extraction method for aqueous chloride solution | |
JP4506660B2 (en) | Silver recovery method in wet copper smelting process | |
JP4228972B2 (en) | Method for recovering gold from copper concentrate leach residue | |
CA2530355C (en) | Method for processing sulfide ores containing precious metals | |
RU2763710C1 (en) | Method for extracting gold from gold-containing flotation concentrate | |
CN1052264C (en) | Metallurgical technology of sulfuric acid treatment of concentrated gold ore powder | |
JPH11124636A (en) | Treatment of zinc leaching residue |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061114 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090210 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090223 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4274079 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120313 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130313 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130313 Year of fee payment: 4 |