[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006052917A - Pulverized coal burner and boiler - Google Patents

Pulverized coal burner and boiler Download PDF

Info

Publication number
JP2006052917A
JP2006052917A JP2004236524A JP2004236524A JP2006052917A JP 2006052917 A JP2006052917 A JP 2006052917A JP 2004236524 A JP2004236524 A JP 2004236524A JP 2004236524 A JP2004236524 A JP 2004236524A JP 2006052917 A JP2006052917 A JP 2006052917A
Authority
JP
Japan
Prior art keywords
pulverized coal
air
passage
coal mixture
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004236524A
Other languages
Japanese (ja)
Inventor
Ryuhei Takashima
竜平 高島
Akiyasu Okamoto
章泰 岡元
Takeshi Ariga
健 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004236524A priority Critical patent/JP2006052917A/en
Publication of JP2006052917A publication Critical patent/JP2006052917A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pulverized coal burner capable of reducing abrasion of a pulverized coal mixed air flow passage wall and a pulverized coal nozzle, by further realizing ignition stability and low NOx. <P>SOLUTION: This pulverized coal burner 19 has a pulverized coal mixed air passage 35 for introducing a pulverized coal mixed air of pulverized coal and carrier air, a core 49 arranged in a substantially central part in a cross section of the pulverized coal mixed air passage 35, forming a through-part 55 penetrating in the flowing direction of the pulverized coal mixed air in its central part and forming an accelerating part 57 gradually reducing toward the downstream side in an interval with a pulverized coal supply pipe 37 on the upstream side of its outer peripheral part, and a secondary air passage 39 arranged on the outer peripheral side of the pulverized coal mixed air passage 35 and introducing secondary air heated by an air preheater 33; and is characterized in that the core 49 has an air input nozzle 53 arranged in the through-part 55 and blowing the secondary air taken in from the secondary air passage 39 in the through-part 55. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発電用あるいは工業用等のために蒸気発生を行う微粉炭焚きボイラに適用して好適な微粉炭バーナおよびこれを用いたボイラに関するものである。   The present invention relates to a pulverized coal burner suitable for use in a pulverized coal burning boiler that generates steam for power generation or industrial use, and a boiler using the pulverized coal burner.

これら微粉炭バーナでは、着火の安定性および低NOx化が求められている。これを解決するものとして、例えば、特許文献1に示されるものがある。
これは、微粉炭と搬送空気とで構成される微粉炭混合気が通る微粉炭混合気通路内に、微粉炭濃度調整のために中子を設けている。中子は、その中央部に混合気通路が開口され、その外形は、上流側が小さく、下流側に行く程大きく、略々真中程以降は変化しないように形成されている。
微粉炭混合気は、中子と微粉炭混合気通路内壁との間を通過する際に、微粉炭混合気通路内壁側へ偏流される。これにより、慣性力によって微粉炭が微粉炭混合気通路内壁側へ集中されるので、中子通過後には、微粉炭混合気は外周側が高微粉炭濃度に、内部側が低微粉炭濃度となる。この状態で、微粉炭混合気は微粉炭ノズルから火炉内へ吹き込まれる。
このように、火炉内へ吹込まれた微粉炭混合気は、常時、その外周側の微粉炭濃度が高くなるので火炉内からの輻射熱を受けて微粉炭中の揮発分発生が大となって着火しやすくなり着火安定性に優れ安定した微粉炭火炎の形成が可能となる。
また、表面側と内部側とで微粉炭濃度に濃淡があるので、いわゆる濃淡燃焼となるので、NOxの発生を低減できる。
These pulverized coal burners are required to have stable ignition and low NOx. As what solves this, there exists a thing shown by patent document 1, for example.
This is provided with a core for adjusting the pulverized coal concentration in the pulverized coal mixture passage through which the pulverized coal mixture composed of pulverized coal and carrier air passes. An air-fuel mixture passage is opened at the center of the core, and the outer shape of the core is small on the upstream side and large toward the downstream side, and is formed so as not to change substantially after the middle.
When the pulverized coal mixture passes between the core and the inner wall of the pulverized coal mixture passage, the pulverized coal mixture is drifted to the inner wall side of the pulverized coal mixture passage. As a result, the pulverized coal is concentrated on the inner wall side of the pulverized coal mixture passage by the inertial force, so that after passing through the core, the pulverized coal mixture has a high pulverized coal concentration on the outer peripheral side and a low pulverized coal concentration on the inner side. In this state, the pulverized coal mixture is blown into the furnace from the pulverized coal nozzle.
In this way, the pulverized coal mixture blown into the furnace is always ignited because the pulverized coal concentration on the outer peripheral side becomes high, so the generation of volatile matter in the pulverized coal is increased by receiving radiant heat from the furnace. This makes it easy to form a pulverized coal flame with excellent ignition stability.
In addition, since the pulverized coal concentration varies between the front side and the inner side, so-called light and dark combustion occurs, so that the generation of NOx can be reduced.

特開平10−332110号公報(段落[0028]〜[0048],及び図1〜図2)Japanese Patent Laid-Open No. 10-332110 (paragraphs [0028] to [0048] and FIGS. 1 to 2)

ところで、近年より一層の着火安定性および低NOx化が求められてきたが、特許文献1に記載のものでは機能的にその要求に十分に答えられないという問題があった。
また、中子外周部を通過し、微粉炭ノズルへ吹き込まれる時、微粉炭混合気は高微粉炭濃度でかつ、高流速であるため微粉炭混合気通路の壁面および微粉炭ノズルの磨耗が激しいという問題があった。
By the way, although further ignition stability and NOx reduction have been demanded in recent years, the one described in Patent Document 1 has a problem that it cannot functionally meet the requirements functionally.
In addition, when passing through the outer periphery of the core and being blown into the pulverized coal nozzle, the pulverized coal mixture has a high pulverized coal concentration and a high flow rate, so the wall of the pulverized coal mixture passage and the pulverized coal nozzle are heavily worn. There was a problem.

本発明は、上記問題点に鑑み、より一層の着火安定性および低NOx化を実現でき、微粉炭混合気流路壁および微粉炭ノズルの磨耗を低減させることができる微粉炭バーナおよびこれを用いたボイラを提供することを目的とする。   In view of the above problems, the present invention uses a pulverized coal burner that can realize further ignition stability and NOx reduction and can reduce wear of a pulverized coal mixture channel wall and a pulverized coal nozzle. The purpose is to provide a boiler.

上記課題を解決するために、本発明は以下の手段を採用する。
すなわち、本発明にかかる微粉炭バーナは、微粉炭と搬送空気との微粉炭混合気を導く微粉炭混合気通路と、該微粉炭混合気通路の横断面における略中央部分に設けられ、その中心部には前記微粉炭混合気の流れ方向に貫通した貫通部が形成され、その外周部上流側には前記微粉炭混合気通路の壁面との間の間隔が下流側に向けて漸減する加速部が形成された中子と、前記微粉炭混合気通路の外周側に設けられ、空気予熱器により加温された燃焼用空気を導く燃焼空気通路と、を有する微粉炭バーナにおいて、前記中子には、前記貫通部に設けられ、前記燃焼空気通路から取り込んだ燃焼用空気を前記貫通部に吹き込む空気投入部材が備えられていることを特徴とする。
In order to solve the above problems, the present invention employs the following means.
That is, the pulverized coal burner according to the present invention is provided in the pulverized coal mixture passage for guiding the pulverized coal mixture of the pulverized coal and the carrier air, and at the substantially central portion in the cross section of the pulverized coal mixture passage, An accelerating portion in which a through portion penetrating in the flow direction of the pulverized coal mixture is formed in the portion, and an interval between the outer wall and the wall surface of the pulverized coal mixture passage gradually decreases toward the downstream side. In a pulverized coal burner having a core formed with a combustion air passage that is provided on an outer peripheral side of the pulverized coal mixture passage and guides combustion air heated by an air preheater, Is provided with an air input member that is provided in the penetrating portion and blows combustion air taken in from the combustion air passage into the penetrating portion.

このように、中子には、貫通部に設けられ、燃焼空気通路から取り込んだ燃焼用空気を貫通部に吹き込む空気投入部材が備えられているので、空気投入部材によって高温の燃焼用空気が中子の貫通部に吹き込まれ、貫通部を通過する微粉炭混合気が昇温される。貫通部を通過する昇温された微粉炭混合気の高温雰囲気が、中子の外周を通る微粉炭混合気に伝播されるので、微粉炭バーナから火炉内へ噴射される微粉炭混合気は高温となる。したがって、外周側に高濃度の微粉炭が存在し、かつ高温の微粉炭混合気が火炉内に噴射されると微粉炭中の揮発分発生が一層多くなるので、着火安定性を一層向上させることができる。   Thus, since the core is provided with the air input member that is provided in the through portion and blows the combustion air taken in from the combustion air passage into the through portion, the high temperature combustion air is contained in the core by the air input member. The pulverized coal mixture that is blown into the penetrating part of the child and passes through the penetrating part is heated. Since the high temperature atmosphere of the heated pulverized coal mixture passing through the penetration part is propagated to the pulverized coal mixture passing through the outer periphery of the core, the pulverized coal mixture injected from the pulverized coal burner into the furnace is hot. It becomes. Therefore, when high-concentration pulverized coal exists on the outer peripheral side and high-temperature pulverized coal mixture is injected into the furnace, volatile matter generation in the pulverized coal is further increased, so that ignition stability is further improved. Can do.

また、燃焼用空気が貫通部を通過する微粉炭混合気に吹き込まれるので、微粉炭混合気通路の横断面における略中央部分を流れる微粉炭混合気の微粉炭濃度が一層低下する。これにより、微粉炭バーナから火炉内へ噴射される微粉炭混合気は、外周部と中心部とで微粉炭濃度の差が拡大するので、NOxの発生を低減することができる。
さらに、中子の出口部分より下流側において微粉炭混合気は高温となるので、微粉炭混合気の密度すなわち質量流量が低下する。微粉炭混合気の質量流量が低下すると、微粉炭混合気流路の断面積が一定であるので、微粉炭混合気の流速が低下する。このため、微粉炭混合気流路壁および微粉炭ノズルの磨耗を低減させることができる。
なお、燃焼用空気としては、二次空気を取り込むのが近接して処理し易いので好適であるが、場合によっては、三次空気を取り込むようにしてもよい。
Further, since the combustion air is blown into the pulverized coal mixture that passes through the penetrating portion, the pulverized coal concentration of the pulverized coal mixture that flows through the substantially central portion in the cross section of the pulverized coal mixture passage further decreases. Thereby, the pulverized coal mixture injected from the pulverized coal burner into the furnace expands the difference in the pulverized coal concentration between the outer peripheral portion and the central portion, so that the generation of NOx can be reduced.
Furthermore, since the pulverized coal mixture becomes high temperature on the downstream side of the outlet portion of the core, the density of the pulverized coal mixture, that is, the mass flow rate decreases. When the mass flow rate of the pulverized coal mixture decreases, the flow area of the pulverized coal mixture decreases because the cross-sectional area of the pulverized coal mixture flow path is constant. For this reason, wear of the pulverized coal mixture channel wall and the pulverized coal nozzle can be reduced.
As the combustion air, it is preferable to take in secondary air because it is easy to process in close proximity, but in some cases, tertiary air may be taken in.

また、本発明にかかる微粉炭バーナでは、前記空気投入部材の燃焼用空気取込部には、逆流防止構造が設けられていることを特徴とする。   The pulverized coal burner according to the present invention is characterized in that a backflow prevention structure is provided in the combustion air intake portion of the air input member.

このように、空気投入部材の燃焼用空気取込部には、逆流防止構造が設けられているので、例えば、火炉内の圧力が増加した場合でも、微粉炭混合気が燃焼空気通路へ逆流することを防止できる。このため、燃焼空気通路内に微粉炭が堆積しないので、燃焼空気通路内での微粉炭発火や逆火を防止できる。これにより、空気流速が低下する部分負荷時にも安定した燃料供給を行うことができる。   Thus, the combustion air intake part of the air input member is provided with a backflow prevention structure, so that, for example, even when the pressure in the furnace increases, the pulverized coal mixture flows back to the combustion air passage. Can be prevented. For this reason, since pulverized coal does not accumulate in a combustion air passage, pulverized coal ignition and backfire in a combustion air passage can be prevented. Thereby, stable fuel supply can be performed even at the time of partial load in which the air flow rate is reduced.

さらに、本発明にかかる微粉炭バーナでは、前記空気投入部材は、前記貫通部を通過する微粉炭混合気の流れに対して直交する方向に前記燃焼用空気を吹き出すことを特徴とする。   Furthermore, in the pulverized coal burner according to the present invention, the air input member blows out the combustion air in a direction orthogonal to the flow of the pulverized coal mixture passing through the through portion.

このように、空気投入部材は、貫通部を通過する微粉炭混合気の流れに対して直交する方向に燃焼用空気を吹き出すので、燃料用空気は微粉炭混合気とすばやく混合して、微粉炭混合気の温度を昇温することができる。   In this way, the air input member blows out combustion air in a direction orthogonal to the flow of the pulverized coal mixture passing through the penetration portion, so that the fuel air is quickly mixed with the pulverized coal mixture, The temperature of the mixture can be raised.

本発明にかかるボイラは、請求項1ないし請求項3のいずれかに記載された微粉炭バーナを備えたことを特徴とする。   A boiler according to the present invention includes the pulverized coal burner according to any one of claims 1 to 3.

着火安定性が向上し、NOx発生量を低減した微粉炭バーナを採用しているので、ボイラとして運転安定性の向上および低NOx化がはかれる。   Since a pulverized coal burner with improved ignition stability and reduced NOx generation is employed, the boiler can be improved in operational stability and reduced in NOx.

本発明にかかる微粉炭バーナでは、中子には、貫通部に設けられ、燃焼空気通路から取り込んだ燃焼用空気を貫通部に吹き込む空気投入部材が備えられているので、着火安定性および低NOx化を一層向上させることができる。さらに、微粉炭混合気流路壁および微粉炭ノズルの磨耗を低減させることができる。
また、本発明にかかるボイラでは、運転安定性の向上および低NOx化がはかれる。
In the pulverized coal burner according to the present invention, the core is provided with an air input member that is provided in the penetrating portion and blows combustion air taken in from the combustion air passage into the penetrating portion, so that ignition stability and low NOx are provided. Can be further improved. Further, the wear of the pulverized coal mixture channel wall and the pulverized coal nozzle can be reduced.
In the boiler according to the present invention, the operational stability is improved and NOx is reduced.

以下に、本発明にかかる一実施形態について、図1〜図4を参照して説明する。
図1は、本実施形態にかかるボイラ1の全体概略構成を示すブロック図である。
ボイラ1には、鉛直方向に設置された火炉3と、火炉3の火炉壁5の下部に設置された燃焼装置7と、火炉3の出口に連結された煙道9と、火炉3の上部から煙道9にかけて設けられた過熱器11、再熱器13および節炭器15と、火炉3の上部に設けられた蒸気ドラム17とが備えられている。
An embodiment according to the present invention will be described below with reference to FIGS.
FIG. 1 is a block diagram showing an overall schematic configuration of a boiler 1 according to the present embodiment.
The boiler 1 includes a furnace 3 installed in a vertical direction, a combustion device 7 installed in a lower part of the furnace wall 5 of the furnace 3, a flue 9 connected to an outlet of the furnace 3, and an upper part of the furnace 3. A superheater 11, a reheater 13 and a economizer 15 provided over the flue 9, and a steam drum 17 provided at the upper part of the furnace 3 are provided.

火炉壁5の内側には、多数の水管(図示せず)がそれぞれ上下方向に延設されている。各水管は、上下各端部が蒸気ドラム17に接続されている。
燃焼装置7には、火炉壁5に取り付けられた複数の微粉炭バーナ19(図2参照)と、微粉炭バーナ19に微粉炭を供給する微粉炭供給手段21と、微粉炭バーナ19に燃焼用空気として二次空気を供給する空気供給手段23と、が備えられている。
A large number of water pipes (not shown) extend in the vertical direction inside the furnace wall 5. Each water pipe is connected to the steam drum 17 at upper and lower ends.
The combustion device 7 includes a plurality of pulverized coal burners 19 (see FIG. 2) attached to the furnace wall 5, pulverized coal supply means 21 for supplying pulverized coal to the pulverized coal burner 19, and combustion for the pulverized coal burner 19. And air supply means 23 for supplying secondary air as air.

微粉炭供給手段21には、図示しない給炭機および計量器を経て供給された石炭を燃焼に適した大きさ(例えば、数μm〜数百μm)まで粉砕する微粉炭機25と、微粉炭機25で生成された微粉炭を図示しない空気源から供給される加圧された搬送空気によって微粉炭混合気として微粉炭バーナ19へ気流搬送する給炭管27とが備えられている。
搬送空気は微粉炭機25の安全面から微粉炭機25の出口温度が約80℃になるように設定されている。
The pulverized coal supply means 21 includes a pulverized coal machine 25 for pulverizing coal supplied via a coal feeder and a meter (not shown) to a size suitable for combustion (for example, several μm to several hundred μm), and pulverized coal. The pulverized coal produced by the machine 25 is provided with a coal supply pipe 27 that carries the air current to the pulverized coal burner 19 as pulverized coal mixture by pressurized carrier air supplied from an air source (not shown).
The carrier air is set so that the outlet temperature of the pulverized coal machine 25 is about 80 ° C. from the safety aspect of the pulverized coal machine 25.

空気供給手段23には、空気を加圧して供給する図示しない押込通風機と、火炉3外壁に設けられた風箱29と、押込通風機と風箱29とを接続する空気管31とが備えられている。
空気管31を通過する二次空気は、回転再生式熱交換器33により煙道9を通過する例えば約360℃の燃焼排ガスと熱交換され、300〜350℃まで加温されて風箱29に供給される。
The air supply means 23 includes a not-shown push ventilator that pressurizes and supplies air, a wind box 29 provided on the outer wall of the furnace 3, and an air pipe 31 that connects the push ventilator and the wind box 29. It has been.
The secondary air passing through the air pipe 31 is heat-exchanged with, for example, about 360 ° C. combustion exhaust gas passing through the flue 9 by the rotary regenerative heat exchanger 33 and heated to 300 to 350 ° C. Supplied.

微粉炭バーナ19について、図2〜図4により説明する。図2は、微粉炭バーナ19の火炉3側部分を示す縦断面図、図3は図2のX−X断面図、図4は図2のY−Y断面図である。
微粉炭バーナ19には、微粉炭混合気通路35を形成する微粉炭供給管37と、微粉炭供給管37の外側に間隔を空けてそれを覆うように設けられた二次空気供給管41と、微粉炭供給管37の先端部に取り付けられた微粉炭ノズル43と、微粉炭ノズル43の外側に間隔を空けてそれを覆うように設けられた二次空気ノズル45と、微粉炭ノズル43の先端に取り付けられた保炎板47と、微粉炭混合気通路35の横断面における略中央部分に設けられた中子49とが備えられている。
The pulverized coal burner 19 will be described with reference to FIGS. 2 is a longitudinal sectional view showing the furnace 3 side portion of the pulverized coal burner 19, FIG. 3 is an XX sectional view of FIG. 2, and FIG. 4 is a YY sectional view of FIG.
The pulverized coal burner 19 includes a pulverized coal supply pipe 37 that forms a pulverized coal mixture passage 35, and a secondary air supply pipe 41 that is provided outside the pulverized coal supply pipe 37 so as to cover it with a space therebetween. The pulverized coal nozzle 43 attached to the tip of the pulverized coal supply pipe 37, the secondary air nozzle 45 provided to cover the outer side of the pulverized coal nozzle 43 with a space therebetween, and the pulverized coal nozzle 43 A flame holding plate 47 attached to the tip and a core 49 provided at a substantially central portion in the cross section of the pulverized coal mixture passage 35 are provided.

二次空気供給管41は、横断面形状が略長方形で、火炉壁5の厚さ方向に延在するように設けられている。二次空気供給管41は、火炉壁5に貫通して形成された孔に固定されている。
微粉炭供給管37は、横断面形状が略長方形で、火炉壁5の厚さ方向に延在するように火炉壁5に取り付けられている。
微粉炭供給管37と二次空気供給管41との間の空間は、風箱29と連通して二次空気通路39を構成している。
微粉炭混合気通路35は、給炭管27と連通するように構成されている。
The secondary air supply pipe 41 has a substantially rectangular cross section and is provided so as to extend in the thickness direction of the furnace wall 5. The secondary air supply pipe 41 is fixed to a hole formed through the furnace wall 5.
The pulverized coal supply pipe 37 has a substantially rectangular cross-sectional shape, and is attached to the furnace wall 5 so as to extend in the thickness direction of the furnace wall 5.
A space between the pulverized coal supply pipe 37 and the secondary air supply pipe 41 communicates with the wind box 29 to form a secondary air passage 39.
The pulverized coal mixture passage 35 is configured to communicate with the coal supply pipe 27.

微粉炭ノズル43および二次空気ノズル45は、先端に行くほど小面積となる略四角錐台形状をしている。
保炎板47は、先端に行くほど拡大する略四角錐台形状をしている。
なお、本実施形態では、微粉炭供給管37、二次空気供給管41、微粉炭ノズル43、二次空気ノズル45および保炎板47は、横断面形状が略長方形状をしているが、これは例えば、略円形状、略楕円形状あるいは任意の多角形状としてもよい。
The pulverized coal nozzle 43 and the secondary air nozzle 45 have a substantially quadrangular pyramid shape with a smaller area toward the tip.
The flame holding plate 47 has a substantially quadrangular pyramid shape that expands toward the tip.
In the present embodiment, the pulverized coal supply pipe 37, the secondary air supply pipe 41, the pulverized coal nozzle 43, the secondary air nozzle 45, and the flame holding plate 47 have a substantially rectangular cross-sectional shape. This may be, for example, a substantially circular shape, a substantially elliptical shape, or an arbitrary polygonal shape.

中子49は、中子本体51と、空気投入ノズル(空気投入部材)53とから構成されている。
中子本体51は、中空の略四角柱形状をしており、中空部が微粉炭混合気の流れ方向50に貫通するように配置されている。この中空部が貫通部55を構成している。中子本体51の流れ方向50上流側には、流れ方向50上流側に向けて厚みが漸減する、すなわち中子本体51の上流端から下流側に向かって中子本体51と微粉炭供給管37との距離が漸減する加速部57が形成されている。
中子本体51は、支持部材52(図4参照)によって微粉炭供給管37に取り付けられている。
The core 49 includes a core body 51 and an air injection nozzle (air input member) 53.
The core body 51 has a hollow, substantially quadrangular prism shape, and is arranged so that the hollow portion penetrates in the flow direction 50 of the pulverized coal mixture. This hollow portion constitutes the through portion 55. On the upstream side in the flow direction 50 of the core body 51, the thickness gradually decreases toward the upstream side in the flow direction 50, that is, the core body 51 and the pulverized coal supply pipe 37 from the upstream end of the core body 51 toward the downstream side. An acceleration portion 57 is formed in which the distance between and gradually decreases.
The core body 51 is attached to the pulverized coal supply pipe 37 by a support member 52 (see FIG. 4).

空気投入ノズル53は、略直方体形状をし、貫通部55の上下方向60における略中央部に、長手方向が幅方向70に延在して設けられている。空気投入ノズル53の流れ方向50上流側端部は上流側に向かい厚さが漸減し、その下流側端部は下流側に向かい厚さが漸減している。そのため、上下方向にそった断面形状は長細い六角形状(図2参照)をしている。これにより、貫通部55を流れる微粉炭混合気を滑らかに下流へ流すことができる。
空気投入ノズル53の内部には、二次空気が導入される空間である空気導入部59が形成されている。空気導入部の流れ方向50下流部に、それぞれ上下方向に空気投入ノズル53表面まで貫通したノズル61が、幅方向70に3個設けられている。なお、ノズル61の個数は必要に応じて適宜設定すればよい。
The air injection nozzle 53 has a substantially rectangular parallelepiped shape, and is provided at a substantially central portion in the vertical direction 60 of the penetrating portion 55 with the longitudinal direction extending in the width direction 70. The upstream end portion in the flow direction 50 of the air injection nozzle 53 gradually decreases in thickness toward the upstream side, and the downstream end portion gradually decreases in thickness toward the downstream side. Therefore, the cross-sectional shape along the vertical direction has a long and narrow hexagonal shape (see FIG. 2). Thereby, the pulverized coal mixture flowing through the penetrating portion 55 can flow smoothly downstream.
An air introduction part 59 that is a space into which secondary air is introduced is formed inside the air injection nozzle 53. Three nozzles 61 extending in the vertical direction to the surface of the air injection nozzle 53 are provided in the width direction 70 at the downstream portion in the flow direction 50 of the air introduction portion. In addition, what is necessary is just to set the number of the nozzles 61 suitably as needed.

空気投入ノズル53の幅方向70に対して両側には、それぞれ鉤形をした管状の空気取込部材63が取り付けられている。各空気取込部材63の短辺は、二次空気通路39に位置し、端部の開口が流れ方向50の上流側を向くように配置されている。
空気投入ノズル53は、空気取込部材63が中子本体51および微粉炭供給管37に固定して取り付けられることにより固定されている。
空気取込部材63と空気導入部59との連通部には、湾曲した板が互い違いに取り付けられ、ジグザグな流路を形成する逆流防止構造65が設けられている。逆流防止構造65を構成する板は空気導入部59側に位置する方が長くなるように構成されている。
On both sides with respect to the width direction 70 of the air injection nozzle 53, tubular air intake members 63 each having a bowl shape are attached. The short side of each air intake member 63 is located in the secondary air passage 39 and is arranged such that the opening at the end faces the upstream side in the flow direction 50.
The air injection nozzle 53 is fixed by the air intake member 63 being fixedly attached to the core body 51 and the pulverized coal supply pipe 37.
The communication part between the air intake member 63 and the air introduction part 59 is provided with a backflow prevention structure 65 in which curved plates are alternately attached to form a zigzag flow path. The plate constituting the backflow prevention structure 65 is configured to be longer when it is located on the air introduction part 59 side.

以上、説明した本実施形態にかかるボイラ1の運転について説明する。
微粉炭機25で生成された微粉炭は、加圧された搬送空気と混合されて微粉炭混合気を形成され、給炭管27を通って微粉炭バーナ19の微粉炭混合気通路35へ送られる。一方、図示しない押込通風機で加圧されて供給される二次空気は、回転再生式熱交換器33によって燃焼排ガスから熱量を供給され、300〜350℃に昇温されて空気管31を経て風箱29へ供給される。二次空気は風箱29から微粉炭バーナ19の二次空気通路39へ送られる。
微粉炭バーナ19から火炉3内へ微粉炭混合気と二次空気とが供給され、着火されると火炉内に火炎が生じる。
The operation of the boiler 1 according to this embodiment described above will be described.
The pulverized coal generated by the pulverized coal machine 25 is mixed with the pressurized carrier air to form a pulverized coal mixture, and is sent to the pulverized coal mixture passage 35 of the pulverized coal burner 19 through the coal supply pipe 27. It is done. On the other hand, the secondary air pressurized and supplied by a not-shown forced air fan is supplied with heat from the combustion exhaust gas by the rotary regenerative heat exchanger 33, heated to 300 to 350 ° C. and passed through the air pipe 31. It is supplied to the wind box 29. The secondary air is sent from the wind box 29 to the secondary air passage 39 of the pulverized coal burner 19.
A pulverized coal mixture and secondary air are supplied from the pulverized coal burner 19 into the furnace 3, and when ignited, a flame is generated in the furnace.

このようにして火炉3内の下部に火炎を生じさせると、燃焼ガスが火炉3内を下から上に流れ、煙道9に排出される。この時、図示しない給水ポンプから供給された水は、節炭器15によって予熱された後、蒸気ドラム17に供給される。蒸気ドラム17から火炉壁5の各水管(図示せず)に供給された水は、水管を下から上に流れる間に加熱されて飽和蒸気となり、蒸気ドラム17に送り込まれる。さらに、蒸気ドラム17の飽和蒸気は過熱器11に導入され、燃焼ガスによって過熱される。過熱器11で生成された過熱蒸気は所定のプラント(例えば、タービン等)に供給される。   When a flame is generated in the lower part of the furnace 3 in this way, the combustion gas flows from the bottom to the top in the furnace 3 and is discharged to the flue 9. At this time, water supplied from a water supply pump (not shown) is preheated by the economizer 15 and then supplied to the steam drum 17. The water supplied from the steam drum 17 to each water pipe (not shown) of the furnace wall 5 is heated to flow into the steam drum 17 while flowing through the water pipe from the bottom to the saturated steam. Further, the saturated steam of the steam drum 17 is introduced into the superheater 11 and is heated by the combustion gas. The superheated steam generated by the superheater 11 is supplied to a predetermined plant (for example, a turbine or the like).

なお、タービンでの膨張過程の中途で取り出した蒸気を再熱器5に導入し、再度過熱しタービンに戻すことも行われる。
節炭器15を通過した燃焼排ガスは、回転再生式熱交換器33にて空気管31を通過する二次空気に熱量を供給し、脱硫、脱硝、除塵等の処理を施されて、煙突から大気中に排出される。
In addition, the steam taken out in the middle of the expansion process in the turbine is introduced into the reheater 5 and reheated and returned to the turbine.
The combustion exhaust gas that has passed through the economizer 15 is supplied with heat to the secondary air that passes through the air pipe 31 in the rotary regenerative heat exchanger 33, and is subjected to processing such as desulfurization, denitration, and dust removal, and then from the chimney. Released into the atmosphere.

次に、微粉炭バーナ19の動作について説明する。
微粉炭供給管37内を供給される微粉炭混合気は、中子よって、中子本体51の外周を通る微粉炭混合気Aと、貫通部55を通る微粉炭混合気Bとに分流される。
微粉炭混合気Aは、加速部57によって徐々に流路面積が狭められるので、微粉炭供給管37側、すなわち微粉炭混合気通路35の外周側に寄せられ、流速が速められて中子49を通過する。中子49を通過した微粉炭混合気Aは流路が拡大されるので流速が低減される。これにより、慣性力の小さい空気は微粉炭混合気通路35の中央方向に回帰するが、微粉炭は慣性力が大きいので微粉炭供給管37側に沿って進行する。したがって、微粉炭混合気通路35の外周側に微粉炭濃度の濃い部分が形成される。
Next, the operation of the pulverized coal burner 19 will be described.
The pulverized coal mixture supplied in the pulverized coal supply pipe 37 is split by the core into the pulverized coal mixture A passing through the outer periphery of the core body 51 and the pulverized coal mixture B passing through the through portion 55. .
Since the flow channel area of the pulverized coal mixture A is gradually narrowed by the accelerating unit 57, the pulverized coal mixture A is brought closer to the pulverized coal supply pipe 37 side, that is, the outer peripheral side of the pulverized coal mixture passage 35, and the flow velocity is increased to increase the core 49. Pass through. Since the flow path of the pulverized coal mixture A that has passed through the core 49 is enlarged, the flow velocity is reduced. Thereby, air with a small inertia force returns to the center direction of the pulverized coal mixture passage 35, but the pulverized coal advances along the pulverized coal supply pipe 37 side because the inertia force is large. Therefore, a portion having a high pulverized coal concentration is formed on the outer peripheral side of the pulverized coal mixture passage 35.

一方、微粉炭混合気Bは、空気投入ノズル53の表面に沿って流れる。その間に、空気取込部材63から取り込まれた高温(300〜350℃)の二次空気が、空気導入部59を経てノズル61から放出されるので、微粉炭混合気Bはこの二次空気と混合されて昇温される。
同時に、微粉炭混合気Bには二次空気が混合されるので、微粉炭混合気Bの微粉炭濃度は希釈されることになる。
このように、微粉炭混合気Bは貫通部55を通過すると、昇温され、微粉炭濃度が希釈された微粉炭混合気Cとなる。
On the other hand, the pulverized coal mixture B flows along the surface of the air injection nozzle 53. In the meantime, the high-temperature (300 to 350 ° C.) secondary air taken in from the air taking-in member 63 is discharged from the nozzle 61 through the air introducing portion 59, so that the pulverized coal mixture B is mixed with this secondary air. The mixture is heated up.
At the same time, since the secondary air is mixed with the pulverized coal mixture B, the pulverized coal concentration of the pulverized coal mixture B is diluted.
As described above, when the pulverized coal mixture B passes through the through portion 55, the temperature is increased and the pulverized coal mixture C is diluted with the pulverized coal concentration.

この時、ノズル61からの二次空気は、中子本体51の上下を通過する微粉炭混合気Bの流れ方向50に対して直交する上下方向60に吹き出されているので、二次空気は微粉炭混合気Bとすばやく混合されて、微粉炭混合気Bの温度を短時間に昇温することができる。
なお、二次空気のノズル61からの噴出方向は、上下方向に限定されるものではなく、下流側に向かって斜め方向あるいは水平方向であってもよい。このようにすると、二次空気と微粉炭混合気Bとの混合速度は若干遅くなるが、例えば火炉3内の圧力変動により、微粉炭混合気Bが空気導入部59へ逆流する可能性は一層低減されることになる。
At this time, since the secondary air from the nozzle 61 is blown in the vertical direction 60 perpendicular to the flow direction 50 of the pulverized coal mixture B passing through the upper and lower sides of the core body 51, the secondary air is finely divided. It is quickly mixed with the coal mixture B, and the temperature of the pulverized coal mixture B can be raised in a short time.
The direction in which the secondary air is ejected from the nozzle 61 is not limited to the vertical direction, and may be an oblique direction or a horizontal direction toward the downstream side. In this case, the mixing speed of the secondary air and the pulverized coal mixture B is slightly slowed down, but the possibility that the pulverized coal mixture B will flow back to the air introduction unit 59 due to, for example, pressure fluctuation in the furnace 3 is further increased. Will be reduced.

空気導入部59と空気取込部材63との接続部には、逆流防止構造65が設けられているので、例えば、火炉内の圧力が増加した場合でも、微粉炭混合気が燃焼空気通路へ逆流することを防止できる。このため、燃焼空気通路内に微粉炭が堆積しないので、燃焼空気通路内での微粉炭発火や逆火を防止できる。これにより、空気流速が低下する部分負荷時にも安定した燃料供給を行うことができる。
なお、本実施形態では逆流防止構造65として、2枚の湾曲板によってジグザグ通路を形成しているが、逆流防止構造としては、これに限定されるものではなく、逆流防止弁としてもよいし、その他適宜構造を用いてもよい。
Since the connection part between the air introduction part 59 and the air intake member 63 is provided with a backflow prevention structure 65, for example, even when the pressure in the furnace increases, the pulverized coal mixture flows back into the combustion air passage. Can be prevented. For this reason, since pulverized coal does not accumulate in a combustion air passage, pulverized coal ignition and backfire in a combustion air passage can be prevented. Thereby, stable fuel supply can be performed even at the time of partial load in which the air flow rate is reduced.
In this embodiment, the zigzag passage is formed by two curved plates as the backflow prevention structure 65, but the backflow prevention structure is not limited to this, and may be a backflow prevention valve. Other structures may be used as appropriate.

そして、微粉炭混合気Cの高温は、微粉炭混合気Aへも伝播され、微粉炭ノズル43に送られる微粉炭混合気は、全体として高温になり微粉炭が揮発しやすい雰囲気となる。微粉炭混合気はこの状態で微粉炭ノズル43から火炉3内へ供給される。
このように、外周側に高濃度の微粉炭が存在し、かつ高温の微粉炭混合気が火炉3内に噴射されると、火炉3内からの輻射熱を受けて微粉炭中の揮発分発生が一層多くなるので、着火しやすくなる。したがって、着火安定性を一層向上させることができ、安定した微粉炭火炎を形成することができる。
The high temperature of the pulverized coal mixture C is also propagated to the pulverized coal mixture A, and the pulverized coal mixture sent to the pulverized coal nozzle 43 becomes a high temperature as a whole, and the pulverized coal is easily volatilized. In this state, the pulverized coal mixture is supplied from the pulverized coal nozzle 43 into the furnace 3.
Thus, when a high concentration of pulverized coal is present on the outer peripheral side and a high-temperature pulverized coal mixture is injected into the furnace 3, volatile matter is generated in the pulverized coal by receiving radiant heat from the furnace 3. Since it becomes more, it becomes easier to ignite. Therefore, ignition stability can be further improved and a stable pulverized coal flame can be formed.

また、微粉炭混合気通路35の横断面における略中央部分を流れる貫通部55を通過した微粉炭混合気Cは、二次空気によって希釈され、微粉炭濃度が一層低下しているので、微粉炭ノズル43から火炉3内へ噴射される微粉炭混合気は、外周部と中心部とで微粉炭濃度の差が一層拡大している。したがって、表面側と内部側とで微粉炭濃度に一層大きな濃淡差ができるので、いわゆる濃淡燃焼の効果が大きくなり、NOxの発生を一層低減することができる。   Further, the pulverized coal mixture C that has passed through the through portion 55 that flows through the substantially central portion in the cross section of the pulverized coal mixture passage 35 is diluted with secondary air, and the pulverized coal concentration is further reduced. In the pulverized coal mixture injected from the nozzle 43 into the furnace 3, the difference in the pulverized coal concentration between the outer peripheral portion and the central portion is further enlarged. Therefore, since a greater difference in pulverized coal concentration can be produced between the surface side and the inner side, the effect of so-called concentration combustion is increased, and the generation of NOx can be further reduced.

さらに、中子49の出口部分より下流側において微粉炭混合気は高温となるので、微粉炭混合気の密度すなわち質量流量が低下する。微粉炭混合気の質量流量が低下すると、微粉炭混合気流路35の断面積が一定であるので、微粉炭混合気の流速が低下する。このため、微粉炭の流速も低下するので微粉炭混合気通路37壁および微粉炭ノズル43の磨耗を低減させることができる。   Furthermore, since the pulverized coal mixture becomes high temperature downstream from the outlet portion of the core 49, the density of the pulverized coal mixture, that is, the mass flow rate decreases. When the mass flow rate of the pulverized coal mixture decreases, the flow area of the pulverized coal mixture decreases because the sectional area of the pulverized coal mixture channel 35 is constant. For this reason, since the flow rate of pulverized coal also falls, the wear of the pulverized coal mixture passage 37 wall and the pulverized coal nozzle 43 can be reduced.

本発明の一実施形態にかかるボイラの全体概略構成を示すブロック図である。1 is a block diagram showing an overall schematic configuration of a boiler according to an embodiment of the present invention. 本発明の一実施形態にかかる微粉炭バーナの先端部分を示す縦断面図である。It is a longitudinal cross-sectional view which shows the front-end | tip part of the pulverized coal burner concerning one Embodiment of this invention. 図2のX−X断面図である。It is XX sectional drawing of FIG. 図2のY−Y断面図である。It is YY sectional drawing of FIG.

符号の説明Explanation of symbols

1 ボイラ
33 空気予熱器
35 微粉炭混合気通路
39 二次空気通路
49 中子
53 空気投入ノズル
55 貫通部
57 加速部
1 Boiler 33 Air Preheater 35 Pulverized Coal Mixture Passage 39 Secondary Air Passage 49 Core 53 Air Input Nozzle 55 Through Portion 57 Acceleration Portion

Claims (4)

微粉炭と搬送空気との微粉炭混合気を導く微粉炭混合気通路と、
該微粉炭混合気通路の横断面における略中央部分に設けられ、その中心部には前記微粉炭混合気の流れ方向に貫通した貫通部が形成され、その外周部上流側には前記微粉炭混合気通路の壁面との間の間隔が下流側に向けて漸減する加速部が形成された中子と、
前記微粉炭混合気通路の外周側に設けられ、空気予熱器により加温された燃焼用空気を導く燃焼空気通路と、
を有する微粉炭バーナにおいて、
前記中子には、前記貫通部に設けられ、前記燃焼空気通路から取り込んだ燃焼用空気を前記貫通部に吹き込む空気投入部材が備えられていることを特徴とする微粉炭バーナ。
A pulverized coal mixture passage for guiding a pulverized coal mixture of pulverized coal and carrier air;
The pulverized coal mixture passage is provided at a substantially central portion in the cross section of the pulverized coal mixture passage, and a through portion is formed in the center of the pulverized coal mixture passage in the flow direction. A core formed with an accelerating portion in which the space between the wall surface of the air passage gradually decreases toward the downstream side;
A combustion air passage which is provided on the outer peripheral side of the pulverized coal mixture passage and guides combustion air heated by an air preheater;
In a pulverized coal burner having
The pulverized coal burner is characterized in that the core is provided with an air input member that is provided in the through portion and blows combustion air taken in from the combustion air passage into the through portion.
前記空気投入部材の燃焼用空気取込部には、逆流防止構造が設けられていることを特徴とする請求項1に記載された液体燃料バーナ。 The liquid fuel burner according to claim 1, wherein a backflow prevention structure is provided in a combustion air intake portion of the air input member. 前記空気投入部材は、前記貫通部を通過する微粉炭混合気の流れに対して直交する方向に前記燃焼用空気を吹き出すことを特徴とする請求項1または請求項2に記載された微粉炭バーナ。 3. The pulverized coal burner according to claim 1, wherein the air input member blows out the combustion air in a direction orthogonal to a flow of the pulverized coal mixture passing through the through portion. . 請求項1ないし請求項3のいずれかに記載された微粉炭バーナを備えたことを特徴とするボイラ。
A boiler comprising the pulverized coal burner according to any one of claims 1 to 3.
JP2004236524A 2004-08-16 2004-08-16 Pulverized coal burner and boiler Withdrawn JP2006052917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004236524A JP2006052917A (en) 2004-08-16 2004-08-16 Pulverized coal burner and boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004236524A JP2006052917A (en) 2004-08-16 2004-08-16 Pulverized coal burner and boiler

Publications (1)

Publication Number Publication Date
JP2006052917A true JP2006052917A (en) 2006-02-23

Family

ID=36030511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004236524A Withdrawn JP2006052917A (en) 2004-08-16 2004-08-16 Pulverized coal burner and boiler

Country Status (1)

Country Link
JP (1) JP2006052917A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139181A (en) * 2008-12-12 2010-06-24 Mitsubishi Heavy Ind Ltd Swirl combustion boiler
CN104100970A (en) * 2013-04-12 2014-10-15 气体产品与化学公司 Oxy-solid Fuel Burner
JP2016156529A (en) * 2015-02-23 2016-09-01 三菱日立パワーシステムズ株式会社 Combustion burner, boiler, combustion method of fuel gas
CN109114545A (en) * 2017-06-23 2019-01-01 赛科有限责任公司 Burning process and multistage burner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139181A (en) * 2008-12-12 2010-06-24 Mitsubishi Heavy Ind Ltd Swirl combustion boiler
CN104100970A (en) * 2013-04-12 2014-10-15 气体产品与化学公司 Oxy-solid Fuel Burner
JP2016156529A (en) * 2015-02-23 2016-09-01 三菱日立パワーシステムズ株式会社 Combustion burner, boiler, combustion method of fuel gas
CN109114545A (en) * 2017-06-23 2019-01-01 赛科有限责任公司 Burning process and multistage burner

Similar Documents

Publication Publication Date Title
CN107429911B (en) Burner and boiler
JP2012122653A (en) Combustion burner
TW201716727A (en) Boiler
JP5901737B2 (en) Burning burner
JP5670804B2 (en) Burning burner
JP6049503B2 (en) Combustion burner and boiler
JP5960022B2 (en) boiler
JP6408135B2 (en) Combustion burner and boiler equipped with the same
JP5854620B2 (en) Boiler and boiler operation method
JP2006052917A (en) Pulverized coal burner and boiler
TWI850917B (en) Burner, boiler equipped with the same, and burner operation method
JP6258160B2 (en) Combustion burner and boiler
JP2016156530A (en) Combustion burner, boiler, and combustion method of fuel gas
JP6879771B2 (en) Combustion burner and boiler equipped with it
JP6246709B2 (en) Combustion burner and boiler
JP6513422B2 (en) Combustion burner, boiler, and method of burning fuel gas
JP6640592B2 (en) Combustion burner, combustion device and boiler
JP6804318B2 (en) Combustion burner and boiler equipped with it
CN110226067B (en) Burner, boiler provided with same, and combustion method
JP6087796B2 (en) boiler
JP6640591B2 (en) Combustion burner, combustion device and boiler
JP2021126619A (en) Denitration device and boiler
JP6284345B2 (en) boiler
JP5881584B2 (en) boiler
WO2023188589A1 (en) Burner and boiler

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106