[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005535276A - Generator / motor system and method of operating the system - Google Patents

Generator / motor system and method of operating the system Download PDF

Info

Publication number
JP2005535276A
JP2005535276A JP2004525214A JP2004525214A JP2005535276A JP 2005535276 A JP2005535276 A JP 2005535276A JP 2004525214 A JP2004525214 A JP 2004525214A JP 2004525214 A JP2004525214 A JP 2004525214A JP 2005535276 A JP2005535276 A JP 2005535276A
Authority
JP
Japan
Prior art keywords
generator
pulse control
motor system
pwr2
pwr1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004525214A
Other languages
Japanese (ja)
Other versions
JP4122458B2 (en
Inventor
ローランド・ブルーメル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Publication of JP2005535276A publication Critical patent/JP2005535276A/en
Application granted granted Critical
Publication of JP4122458B2 publication Critical patent/JP4122458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0859Circuits or control means specially adapted for starting of engines specially adapted to the type of the starter motor or integrated into it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/13Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines using AC generators and AC motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1469Regulation of the charging current or voltage otherwise than by variation of field
    • H02J7/1484Regulation of the charging current or voltage otherwise than by variation of field by commutation of the output windings of the generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • H02P9/305Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices controlling voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/12Induction machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2072Bridge circuits, i.e. the load being placed in the diagonal of a bridge to be controlled in both directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2079Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements the circuit having several coils acting on the same anchor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0896Inverters for electric machines, e.g. starter-generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/10Control related aspects of engine starting characterised by the control output, i.e. means or parameters used as a control output or target
    • F02N2300/104Control of the starter motor torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本発明は、発電機/モータシステム、及び前記システムを操作するための方法に関する。このシステム及び方法によって、フィルター内の流れが低減される。発電機/モータシステムは、パルス制御コンバータ及びフィルターコンデンサ(C1、C2)に加えて、誘導モータ(DM)を備えている。パルス制御コンバータは、本発明の実施形態において、定格電力の半分を各々が有する2つの同一のパルス制御コンバータ(PWR1、PWR2)によって構成されている。操作中、このシステムは、必要とされる回転速度に従って、第1パルス制御整流装置のみが操作状態にある星形回路と、両方のパルス制御整流装置が操作状態にある単相回路との間で、整流する。パルス制御整流装置の1つのみが用いられる場合でも、先行技術におけるのと同程度のトルクを得るために、誘導モータは、固定子の巻数を略2倍にする。The present invention relates to a generator / motor system and a method for operating the system. This system and method reduces the flow in the filter. The generator / motor system includes an induction motor (DM) in addition to a pulse control converter and filter capacitors (C1, C2). In the embodiment of the present invention, the pulse control converter is constituted by two identical pulse control converters (PWR1, PWR2) each having half of the rated power. During operation, according to the required rotational speed, the system is connected between a star circuit in which only the first pulse controlled rectifier is in operation and a single phase circuit in which both pulse controlled rectifiers are in operation. Rectify. Even when only one of the pulse-controlled rectifiers is used, the induction motor approximately doubles the number of stator turns in order to obtain the same degree of torque as in the prior art.

Description

本発明は、特許請求項1の前文に記載される発電機/モータシステム、及びこの発電機/モータシステムを操作するための方法に関する。   The invention relates to a generator / motor system as described in the preamble of claim 1 and to a method for operating this generator / motor system.

現在、内燃機関を有する自動車において、スタータと発電機を組合せて、単一の電気機械を形成する試みがなされている。   At present, in an automobile having an internal combustion engine, an attempt is made to form a single electric machine by combining a starter and a generator.

しかし、これらの試み中において、一般的な設計段階においても、2つの完全に矛盾する必要条件を満足させねばならないという問題がある。   However, during these attempts, there is a problem that two completely contradictory requirements must be met even in the general design phase.

一方では、内燃機関を始動させ、加速させるために、極めて高い回転トルクを与える必要がある。このトルクは、エンジンの大きさ、あるいは、内燃機関のシリンダの数に依存し、240Nmよりも大きいこともある。さらに、電気モータは、内燃機関を始動速度まで加速するために、必要なトルクを有さねばならない。   On the other hand, in order to start and accelerate the internal combustion engine, it is necessary to give a very high rotational torque. This torque depends on the size of the engine or the number of cylinders of the internal combustion engine and may be greater than 240 Nm. Furthermore, the electric motor must have the necessary torque to accelerate the internal combustion engine to the starting speed.

他方では、内燃機関がうまく始動した後、スタータ/発電機として設計されている電気モータは、自動車の車載電力システム内に給電するために、主に発電機として、操作されるべきである。これに関連して、内燃機関によって予め定められた極めて広い回転速度の範囲、すなわち、600から6000回転/分(モータ)の範囲にわたって、できるだけ高い効率で、一定の電力の出力が維持される必要がある。   On the other hand, after the internal combustion engine has been successfully started, the electric motor, which is designed as a starter / generator, should be operated primarily as a generator in order to power the car's in-vehicle power system. In this connection, a constant power output must be maintained with as high an efficiency as possible over a very wide range of rotational speeds predetermined by the internal combustion engine, ie in the range of 600 to 6000 rpm. There is.

図3aに示されるような、三相回転磁場機械30と、フィルターコンデンサCを有する回転磁場ブリッジ回路内の電圧印加パルス制御インバータ(PRW)31とからなる標準的な駆動装置によって、両方の必要条件を経済的に満足させることは、実質的に不可能である。   Both requirements are met by a standard drive consisting of a three-phase rotating field machine 30 and a voltage application pulse control inverter (PRW) 31 in a rotating field bridge circuit with a filter capacitor C, as shown in FIG. Is economically impossible to satisfy.

これに関連して、克服する必要がある問題は、欠くことのできない電力用電子機器の小型化及び完全な一体化である。必要なフィルターコンデンサは、一体化に対する障害である。特に、比較的低い車載電力システムの電圧、すなわち、42Vの場合、必要とされる始動トルクを生成するために、非同期式の機械内における略1200Aの位相電流が、現在、検討されている。これに関連して、例えば、回転磁場機械30と、パルス制御インバータ31と、中間回路コンデンサCとを有する従来の駆動システムの設計を示す、図3aに示されるような中間回路コンデンサCは、かなりの寸法が見込まれ、これらの寸法は、一体化を妨げる。   In this context, a problem that needs to be overcome is the miniaturization and complete integration of power electronics that are indispensable. The required filter capacitor is an obstacle to integration. In particular, for a relatively low in-vehicle power system voltage, i.e. 42V, a phase current of approximately 1200 A in an asynchronous machine is currently under consideration to generate the required starting torque. In this connection, for example, an intermediate circuit capacitor C, as shown in FIG. 3a, which shows the design of a conventional drive system having a rotating field machine 30, a pulse control inverter 31, and an intermediate circuit capacitor C, Are expected, and these dimensions prevent integration.

また、吸収空間における測定をすると、すぐに、ここではいかなる妥協もできないことがわかる。自動車内での厳しいEMC要求を満足するために、フィルタリングは必要である。駆動装置の他の特性を同じように維持しながら、機械の電流、従って、フィルター電流を低減させることが必要である。   Also, measurements in the absorption space immediately reveal that no compromise can be made here. Filtering is necessary to meet stringent EMC requirements in automobiles. It is necessary to reduce the machine current, and thus the filter current, while maintaining other characteristics of the drive as well.

回転磁場機械とパルス制御インバータとを有する駆動システムの構成は、従来の通り、以下、図3Bを参照して、説明する通りである。   The configuration of a drive system having a rotating magnetic field machine and a pulse control inverter is as described below with reference to FIG.

図3bは、従来の回転速度/トルク特性を示している。図3bの実線は、回転磁場機械の具体的な構成によって何が達成可能であるか、及び関連するパルス制御インバータの電力を示している。   FIG. 3b shows the conventional rotational speed / torque characteristics. The solid line in FIG. 3b shows what can be achieved with the specific configuration of the rotating field machine and the power of the associated pulse-controlled inverter.

例えば、標準的なパルス制御インバータの形態、すなわち、6パルスブリッジ回路内における1つのパルス制御インバータをそのままにし、パルス制御インバータの(皮相)電力を維持しながら、始動トルクを増大させる場合、回転磁場機械の巻線をそれに応じて変化させねばならない。最も簡単な場合、ワイヤを細くし、巻数を多くする。その結果、図3bで破線によって示される特性曲線が得られる。この対策は、パルス制御インバータの電力を変化させずに、始動トルクを増大させることができるが、これは、比較的高い回転速度における発電機電力を犠牲にしてのみ達成され得ることが明らかである。形状構成点は、それに応じて降下する。比較的高い巻数によって、回転磁場機械が、速い段階で、その磁場の減退モード、すなわち、パルス制御インバータの変調限界に達し、その後、発電機モード中に、より少ない電力しか出力することができない。   For example, in the case of increasing the starting torque while maintaining the pulse power inverter's (apparent) power while maintaining the standard pulse control inverter form, ie one pulse control inverter in a 6 pulse bridge circuit, rotating magnetic field The machine windings must be changed accordingly. In the simplest case, thin the wire and increase the number of turns. As a result, the characteristic curve indicated by the broken line in FIG. 3b is obtained. This measure can increase the starting torque without changing the power of the pulse-controlled inverter, but it is clear that this can only be achieved at the expense of generator power at relatively high rotational speeds. . The shape point drops accordingly. Due to the relatively high number of turns, the rotating field machine can reach the depletion mode of its magnetic field, ie the modulation limit of the pulse-controlled inverter, at an early stage and then output less power during the generator mode.

特に、自動車用途、具体的には、スタータ/発電機装置において、パルス制御インバータのコストも決定的な役割を演じる。パルス制御インバータのコストは、今日では、そのパルス制御インバータが負担しなければならない電流強度によって主として判断されるよりも、むしろ、そのパルス制御インバータの形態において整流されねばならない電流強度によって判断される。この特性変数によって、車業界の特にEMCに敏感に反応する分野において特に用意しなければならないフィルターの費用が決定される。さらに、フィルターは、小型化を妨げると共に、特に高温における信頼性の問題もある。この理由から、特に、整流されるべき電流を低減させるために、駆動回路内の電力用電子機器を可能な限り効率的に構成する試みが必要である。   In particular, the cost of pulse controlled inverters also plays a decisive role in automotive applications, specifically in starter / generator devices. The cost of a pulse-controlled inverter is today determined primarily by the current intensity that must be rectified in the form of the pulse-controlled inverter, rather than mainly by the current intensity that the pulse-controlled inverter must bear. This characteristic variable determines the cost of the filter that must be specially prepared in the automotive industry, especially in the sensitive field of EMC. Furthermore, the filter hinders miniaturization and has a problem of reliability particularly at high temperatures. For this reason, in particular, an attempt to configure the power electronics in the drive circuit as efficiently as possible is necessary to reduce the current to be rectified.

非特許文献1は、切換可能な極と、2つの巻線システムと、2つの個別パルス制御インバータを有する回転磁場機械を記載している。しかし、これらの巻線システムの特定の組合せによって、最適の巻線因子は得られず、その結果、回転磁場機械は、所定の外形寸法のパルス制御インバータに対して可能な最大パルス制御インバータ電流を最適な形態でトルクに変換することができない。回転磁場機械が切り換えられたときの動的挙動は、対応するトルクの過渡的効果の発生なしでは起こり得ない。これは、駆動相において際立った問題を生じ、ユーザの快適さに悪影響を及ぼすことがある。長い間知られているダーランダ(Dahlander)回路も、同様の問題を有している。   Non-Patent Document 1 describes a rotating field machine having switchable poles, two winding systems and two individual pulse-controlled inverters. However, with certain combinations of these winding systems, the optimum winding factor cannot be obtained, and as a result, the rotating field machine can provide the maximum possible pulse controlled inverter current for a pulse controlled inverter of a given outer dimension. It cannot be converted into torque in an optimal form. Dynamic behavior when the rotating field machine is switched cannot occur without the occurrence of a corresponding torque transient effect. This creates significant problems in the drive phase and can adversely affect user comfort. The long-known Dahlander circuit has a similar problem.

特許文献1において、それ自体が周知である、いわゆるダイオードクランプ二重/三レベルコンバータは、新規なパルス方法によって、2つの巻線システムの並列/直列切換が生じるように、作動される。同時に、回転磁場機械の極数は、切換中に保持され得る。切換は、電圧ベクトルの異なる予設定によってなされるので、この切換は、殆ど騒音もなく、トルクの過渡的効果もなく、行なわれる。さらに、巻線システムは、それらの相内において「向きを変える(pivot)」ことができるので、フィルタリングされる中間回路電流をさらに著しく減少させることができる。このシステムは、最も技術的に進展しているが、極めて複雑で、かつコストが高い。   In US Pat. No. 6,057,049, a so-called diode-clamped dual / three-level converter, which is known per se, is operated in such a way that a parallel / series switching of two winding systems takes place by means of a novel pulse method. At the same time, the pole number of the rotating field machine can be maintained during switching. Since the switching is done by different presettings of the voltage vector, this switching takes place with little noise and no torque transient effects. Furthermore, the winding system can be “pivoted” within their phase, thus further reducing the filtered intermediate circuit current. While this system is the most technologically advanced, it is extremely complex and expensive.

この理由から、純正コンバータともいうべき、給電用電力コンバータと機械用電力コンバータを有するシステムが、高度の融通性を達成することができるので、最も好適であり得る。このような純正コンバータは、例えば、非特許文献2に記載されている。前記文献において、パルスパターンを同期化することによって、脈動電流の著しい減少を達成することができる。もし脈動電流を減少させることができれば、システムの効率も同時に増大させることができる。何故なら、給電用電力コンバータにおけるコンデンサの比較的大きな量のエネルギーは、従来、散逸エネルギーにも変換されているからである。   For this reason, a system having a power converter for power supply and a mechanical power converter, which can be called a genuine converter, can achieve a high degree of flexibility and can be most suitable. Such a genuine converter is described in Non-Patent Document 2, for example. In said document, a significant reduction in pulsating current can be achieved by synchronizing the pulse pattern. If the pulsating current can be reduced, the efficiency of the system can be increased at the same time. This is because the relatively large amount of energy in the capacitor in the power converter for power supply is conventionally converted to dissipated energy.

独国特許出願公開第199 31 010A1号明細書German Patent Application Publication No. 199 31 010A1 M.オサマ(M.Osama)、T.A.リポ(T.A.Lipo):「電子極の変化に基づく広速度範囲の誘導モータ駆動装置のモデリング及び分析(Modeling and analysis of a wide−speed−range induction motor drive based on electronic pole changing)」、IEEE トランザクションズ オン インダストリ アプリケーション(IEEE Transactions on Industry Application)、1997年9月/10月、第33巻、5号M.M. M. Osama, T. A. TA Lipo: “Modeling and analysis of a wide-range of speed-range induction motor based on electrical pole,” IEEE Transactions on Industry Application (September / October 1997, Vol. 33, No. 5) L.サック(L.Sack):「2段階自己整流コンバータの直流連結コンデンサにおける損失の低減(Reduction of losses in the DC−link capacitor of two−stage self−commutated converters)」、EPE1999年の予稿集、ローザンヌ、スイスL. L. Sack: “Reduction of loss in the DC-link capacitor of two-stage self-commutated converters”, Proceedings of EPE 1999, Rhone. Switzerland

この理由から、本発明の目的は、パルス制御インバータ内で整流されるべき電流を、簡単に、かつ高い費用効率で、著しく低減させることができる、発電機/モータシステム、及びこのモータ/発電機システムを操作するための方法を構成することにある。   For this reason, the object of the present invention is to provide a generator / motor system and a motor / generator which can significantly reduce the current to be rectified in a pulse-controlled inverter, simply and cost-effectively. It is to configure a method for operating the system.

この目的は、本発明によれば、特許請求項1の特徴を有する発電機/モータシステム、及び特許請求項8の特徴を有するこの発電機/モータシステムを操作するための方法によって、達成される。   This object is achieved according to the invention by a generator / motor system having the features of claim 1 and a method for operating this generator / motor system having the features of claim 8. .

パルス制御インバータを、定格電力の半分を各々が有する2つの同一のパルス制御インバータに分割することによって、発電機/モータシステムを星形回路と単相回路の両方で操作し、その結果として、フィルターの均一な電流負荷を広範囲にわたって得ることができるようにすると、特に有利である。その結果、星形回路において、従来の位相電流のほぼ半分しか整流する必要がないので、始動中のピーク電流、及びこのピーク負荷に合わせたフィルターの設定の両方が、回避される。   By dividing the pulse-controlled inverter into two identical pulse-controlled inverters each having half of the rated power, the generator / motor system is operated in both a star circuit and a single-phase circuit, resulting in a filter It is particularly advantageous to be able to obtain a uniform current load over a wide range. As a result, in the star circuit, only about half of the conventional phase current needs to be rectified, so both peak current during start-up and setting the filter to this peak load is avoided.

本発明のこの目的、及び他の目的、利点、及び特徴は、図面と併せて、好ましい例示的実施形態の以下の説明から、明らかになるであろう。   This and other objects, advantages and features of the present invention will become apparent from the following description of preferred exemplary embodiments, taken in conjunction with the drawings.

図1は、本発明による発電機/モータシステムの回路図を示している。本発明による発電機/モータシステムは、三相回転磁場機械DMを有し、この回転磁場機械DMの個々の発電機位相巻線又は機械位相a、b、及びcは、第1及び第2パルス制御インバータPWR1及びPWR2に接続されている。第1及び第2パルス制御インバータPWR1及びPWR2は、同一の設計で、同一の定格電力を有している。パルス制御インバータPWR1及びPWR2は、各々、6つの電子分岐スイッチS1〜S6であって、例えば、MOSトランジスタ又はIGBT(集積ゲートバイポーラトランジスタ)から形成され、対称的かつ直列に配置されて3つの分岐対になる電子分岐スイッチS1〜S6と、該パルス制御インバータと並列に接続されるフィルターコンデンサC1及びC2とからなる。第1及び第2パルス制御インバータPWR1及びPWR2に分割した結果、これらのフィルターコンデンサC1及びC2に著しく小さいコンデンサを選択することができ、これは、寸法の全体及び電力損に有利な影響を及ぼす。   FIG. 1 shows a circuit diagram of a generator / motor system according to the present invention. The generator / motor system according to the invention comprises a three-phase rotating field machine DM, the individual generator phase windings or machine phases a, b, and c of this rotating field machine DM having first and second pulses. The control inverters PWR1 and PWR2 are connected. The first and second pulse control inverters PWR1 and PWR2 have the same design and the same rated power. Each of the pulse control inverters PWR1 and PWR2 is six electronic branch switches S1 to S6, which are formed of, for example, MOS transistors or IGBTs (Integrated Gate Bipolar Transistors) and arranged symmetrically and in series to form three branch pairs. Electronic branch switches S1 to S6, and filter capacitors C1 and C2 connected in parallel with the pulse control inverter. As a result of the division into the first and second pulse control inverters PWR1 and PWR2, a significantly smaller capacitor can be selected for these filter capacitors C1 and C2, which has a favorable effect on the overall size and power loss.

2つのパルス制御インバータPWR1及びPWR2との間に、電子スイッチS7が機械位相a、b、及びcと並列に形成され、該電子スイッチS7を介して、第1パルス制御インバータPWR1の正バスバーが、第2パルス制御インバータPWR2の正バスバーに接続可能であり、及びそれから切断可能である。この電子スイッチS7は、必要ではないが、双方向性とすることができる。寄生逆バイアスダイオードを有するパワーMOSトランジスタが、非双方向スイッチとして、スイッチS7に用いられ得る。   Between the two pulse control inverters PWR1 and PWR2, an electronic switch S7 is formed in parallel with the mechanical phases a, b and c, and via this electronic switch S7, the positive bus bar of the first pulse control inverter PWR1 is It can be connected to the positive bus bar of the second pulse control inverter PWR2 and can then be disconnected. This electronic switch S7 is not required but can be bidirectional. A power MOS transistor having a parasitic reverse bias diode can be used for switch S7 as a non-bidirectional switch.

以下、図1を参照して、本発明による発電機/モータシステムを操作する方法を説明する。   Hereinafter, a method of operating a generator / motor system according to the present invention will be described with reference to FIG.

本発明による発電機/モータシステムは、2つの異なる操作モードが可能である。   The generator / motor system according to the present invention is capable of two different modes of operation.

1.星形回路での操作
星形回路では、分岐スイッチS1、S2、及びS3が閉成され、分岐スイッチS4、S5、及びS6、並びに電子スイッチS7が開成される。従って、パルス制御インバータPWR1は、図示される3つの機械位相a、b、及びcに対して、星形点を形成する。6パルスブリッジ回路内の電圧印加パルス制御インバータPWR1及びPWR2において、星形点の電位は、スイッチオンされた電圧ベクトルの関数として、中間回路の電圧の1/3から2/3の間に急激に下がる。これらのスイッチがMOSからなる場合、逆バイアスダイオードは、作動される必要がない。
1. Operation in a star circuit In the star circuit, branch switches S1, S2 and S3 are closed, branch switches S4, S5 and S6 and electronic switch S7 are opened. Thus, the pulse control inverter PWR1 forms a star point for the three machine phases a, b and c shown. In the voltage application pulse control inverters PWR1 and PWR2 in the 6-pulse bridge circuit, the potential of the star point is abrupt between 1/3 and 2/3 of the voltage of the intermediate circuit as a function of the switched-on voltage vector. Go down. If these switches are made of MOS, the reverse biased diode need not be activated.

先行技術と比較して、電流を導通させるのに、半分のパルス制御インバータ、具体的には、パルス制御インバータPWR1しか利用しないので、これの補償として、回転磁場機械DMは、巻数の多い固定子を備える。トルクを決定する磁束鎖交は、このようにして保持される。その結果、図2における特性曲線分岐1が得られる。同等の大きいトルクが導入されるが、エネルギーを変換するのに、半分の回路、具体的には、パルス制御インバータPWR1しか関与しないので、元の位相電流の略半分しか整流されないことにもなる。もし中間回路の電圧に関して、同一の脈動(ripple)が許容されるなら、フィルターの消費も略半分になる。   Compared to the prior art, only half of the pulse control inverter, specifically, the pulse control inverter PWR1, is used to conduct the current. As a compensation for this, the rotating field machine DM has a stator with a large number of turns. Is provided. The flux linkage that determines the torque is thus maintained. As a result, the characteristic curve branch 1 in FIG. 2 is obtained. An equivalently large torque is introduced, but only half of the circuit, specifically the pulse-controlled inverter PWR1, is involved in converting energy, so that only about half of the original phase current is rectified. If the same ripple is allowed with respect to the voltage of the intermediate circuit, the consumption of the filter will be almost halved.

2.単相回路(「V結線」)での操作
勿論、回転磁場機械DMの固定子の巻数が略2倍になっているので、パルス制御インバータPWR1の変調限界は、標準的な解決策と比較して、すでに回転速度の半分になっている。ここで、パルス制御インバータPWR1によって形成される星形点を排除し、発電機/モータシステムを単相回路で操作する。この目的のために、電子スイッチ7を閉成し、パルス制御インバータPWR1を、各位相がそれ自身のハーフブリッジを受けるように、すなわち、第1及び第2パルス制御インバータPWR1及びPWR2の分岐スイッチがすべて閉成される、ように作動させる。端末電圧を略半分に減少させることによって、本発明による発電機/モータシステムの変調限界は、高回転速度側にさらに移行される。同一の設計点が得られる。従って、本発明による発電機/モータの特性曲線の特性曲線分岐2は、1つの標準的な回路の特性曲線とほぼ重なる。
2. Operation with a single-phase circuit ("V-connection") Of course, the number of turns of the stator of the rotating field machine DM is almost doubled, so the modulation limit of the pulse control inverter PWR1 is compared with the standard solution Is already half the rotational speed. Here, the star point formed by the pulse control inverter PWR1 is eliminated and the generator / motor system is operated with a single phase circuit. For this purpose, the electronic switch 7 is closed and the pulse control inverter PWR1 is connected so that each phase receives its own half-bridge, ie the branch switches of the first and second pulse control inverters PWR1 and PWR2 are Operates as all closed. By reducing the terminal voltage by approximately half, the modulation limit of the generator / motor system according to the present invention is further shifted to the higher rotational speed side. The same design point is obtained. Thus, the characteristic curve branch 2 of the generator / motor characteristic curve according to the invention substantially overlaps the characteristic curve of one standard circuit.

その結果、本発明による切換可能な発電機/モータシステムを用いることによって、目的が達成される。モータ/発電機システムを切り換えることによって、フィルターの電流負荷は、広範囲にわたって、均一化される。従って、始動中のピーク電流及びこのピーク負荷に合わせたフィルターの設定が、回避される。   Consequently, the object is achieved by using the switchable generator / motor system according to the invention. By switching the motor / generator system, the current load of the filter is made uniform over a wide range. Accordingly, setting of the filter in accordance with the peak current during start-up and this peak load is avoided.

1つの操作モードから他の操作モードへの切換は、本発明によれば、効率に関して最適化されるように、行われる。最大の特性のみが、図2に示されている。部分負荷の場合、ソフトウエア・モジュールとして導入可能な制御ユニットによって、効率に関して最適化されるように、正確な特性図に依存する切換点が決められる。切換は、衝撃を生じることなく行なわれるので、可能な限り頻繁に切換を行なうことが、理論的に可能である。   Switching from one operating mode to another is performed according to the invention so as to be optimized with respect to efficiency. Only the maximum characteristics are shown in FIG. In the case of partial loads, the control unit, which can be implemented as a software module, determines the switching point depending on the exact characteristic diagram so that it is optimized for efficiency. Since the switching is performed without causing an impact, it is theoretically possible to perform the switching as frequently as possible.

さらに、本発明による回路を用いる利点は、コンデンサの零入力電流の一部が、スイッチS7を用いて、遮断され得ることにある。   Furthermore, an advantage of using the circuit according to the invention is that a part of the quiescent current of the capacitor can be cut off using the switch S7.

さらに、発電機/モータシステム内の電子スイッチに、故障(例えば、短絡又は断線)が生じていても、単相回路は、非同期式の機械と共に、操作、この場合、いくらか制限された操作を行なうことができるので、信頼性が増大する。その結果、回転磁場を形成することも常に可能である。これは、標準的な三相のブリッジ回路では、行なうことができない。   In addition, even if a fault (e.g., a short circuit or break) occurs in an electronic switch in the generator / motor system, the single phase circuit operates with an asynchronous machine, in this case somewhat limited operation. Can increase reliability. As a result, it is always possible to form a rotating magnetic field. This is not possible with a standard three-phase bridge circuit.

さらに、脈動電流が低下することによって、フィルターの全体が小さくなるだけではなく、フィルターの費消も低減されるので、効率が増大される。   Further, the reduction in pulsating current not only reduces the overall size of the filter, but also reduces the consumption of the filter, thus increasing efficiency.

本発明による発電機/モータシステムの回路図である。1 is a circuit diagram of a generator / motor system according to the present invention. FIG. 従来の発電機/モータシステムのトルク/回転速度特性と、本発明による発電機/モータシステムの相当するトルク/回転速度特性である。The torque / rotational speed characteristics of a conventional generator / motor system and the corresponding torque / rotational speed characteristics of the generator / motor system according to the present invention. 従来の駆動システムの構成を示す図。The figure which shows the structure of the conventional drive system. 従来の回転速度/トルク特性を示す図。The figure which shows the conventional rotational speed / torque characteristic.

Claims (9)

移動ユニット、自動車、船舶などに適用される、車載電力システム発電機及びスタータとしての電気的発電機/モータシステムにおいて、
発電機三相巻線(a、b、c)を有する回転磁場機械(DM)と、所定の最大電力を有し、前記回転磁場機械(DM)の前記発電三相巻線(a、b、c)に接続されるパルス制御インバータとを有する電気的発電機/モータシステムであって、
前記パルス制御インバータは、互いに同一で最大電力の半分を有する第1及び第2パルス制御インバータ(PWR1、PWR2)に分割され、前記第1及び第2パルス制御インバータ(PWR1、PWR2)は、各々、3つの分岐対(S1、S4;S2、S5;S3、S6)を有し、前記3つの分岐対(S1、S4;S2、S5;S3、S6)の各々は、前記3つの発電機位相巻線(a、b、c)の関連する巻線に接続され、同一方向において互いに直列に配置される少なくとも2つの対称的に配列される電子分岐スイッチ(S1〜S6)からなり、前記分岐対(S1、S4;S2、S5;S3、S6)は、前記分岐スイッチ(S1〜S6)を介して直流電圧源に接続され、前記発電機位相巻線(a、b、c)は、前記直流電圧源の極と前記関連する分岐対(S1、S4;S2、S5;S3、S6)の中心点との間に接続され、いずれの場合も、フィルターコンデンサ(C1、C2)が、前記第1及び第2パルス制御インバータ(PWR1、PWR2)の前記分岐対(S1、S4;S2、S5;S3、S6)に並列に接続され、電子スイッチ(S7)が、前記第1パルス制御インバータ(PWR1)と前記第2パルス制御インバータ(PWR2)とを前記直流電圧源の正極に接続する正バスバーによって形成され、該電子スイッチ(7)を介して、前記パルス制御インバータ(PWR1、PWR2)の前記正バスバーが互いに接続又は切断され得ることを特徴とする電気的発電機/モータシステム。
In an in-vehicle power system generator and an electric generator / motor system as a starter applied to mobile units, automobiles, ships, etc.
A rotating magnetic field machine (DM) having a generator three-phase winding (a, b, c), and a power generating three-phase winding (a, b, an electrical generator / motor system having a pulse controlled inverter connected to c),
The pulse control inverter is divided into first and second pulse control inverters (PWR1, PWR2) that are the same and have half the maximum power, and the first and second pulse control inverters (PWR1, PWR2) are respectively Each of the three branch pairs (S1, S4; S2, S5; S3, S6) has three branch pairs (S1, S4; S2, S5; S3, S6). Consisting of at least two symmetrically arranged electronic branch switches (S1 to S6) connected to the relevant windings of the line (a, b, c) and arranged in series in the same direction, said branch pair ( S1, S4; S2, S5; S3, S6) are connected to a DC voltage source via the branch switches (S1 to S6), and the generator phase windings (a, b, c) are connected to the DC voltage. Source pole and said Connected between the center points of the successive branch pairs (S1, S4; S2, S5; S3, S6), and in any case, the filter capacitors (C1, C2) are connected to the first and second pulse control inverters. (PWR1, PWR2) are connected in parallel to the branch pair (S1, S4; S2, S5; S3, S6), and an electronic switch (S7) includes the first pulse control inverter (PWR1) and the second pulse control. Formed by a positive bus bar that connects an inverter (PWR2) to the positive electrode of the DC voltage source, and via the electronic switch (7), the positive bus bars of the pulse control inverters (PWR1, PWR2) are connected to or disconnected from each other. An electrical generator / motor system characterized in that it is obtained.
前記電子スイッチ(S7)は、一方向性であることを特徴とする請求項1に記載の電気的発電機/モータシステム。   The electrical generator / motor system of claim 1, wherein the electronic switch (S7) is unidirectional. 前記電子スイッチ(S7)は、寄生逆バイアスダイオードを有するパワーMOSトランジスタであることを特徴とする請求項1に記載の電気的発電機/モータシステム。   2. The electrical generator / motor system according to claim 1, wherein the electronic switch (S7) is a power MOS transistor having a parasitic reverse bias diode. 前記電子スイッチ(S7)は、双方向スイッチであることを特徴とする請求項1に記載の電気的発電機/モータシステム。   2. The electric generator / motor system according to claim 1, wherein the electronic switch (S7) is a bidirectional switch. 前記分岐スイッチ(S1〜S6)は、寄生逆バイアスダイオードを有するパワーMOSトランジスタであることを特徴とする請求項1〜4のいずれか一項に記載の電気的発電機/モータシステム。   The electric generator / motor system according to any one of claims 1 to 4, wherein the branch switches (S1 to S6) are power MOS transistors having parasitic reverse bias diodes. 前記回転磁場機械(DM)は、1つのパルス制御インバータ(PWR2)のみが回路内に接続されるとき、前記パルス制御インバータのすべて、すなわち、前記第1及び第2パルス制御インバータ(PWR1、PWR2)が、固定子の巻数を増大させずに、前記回路内に接続されたときの、磁束鎖交に対応する磁束鎖交を生じさせることが可能であるように、ステータの巻数が増大されることを特徴とする請求項1〜5のいずれか一項に記載の電気的発電機/モータシステム。   When only one pulse control inverter (PWR2) is connected in the circuit, the rotating magnetic field machine (DM) has all of the pulse control inverters, that is, the first and second pulse control inverters (PWR1, PWR2). However, the number of turns of the stator is increased so that the flux linkage corresponding to the flux linkage when connected in the circuit can be generated without increasing the number of turns of the stator. The electric generator / motor system according to any one of claims 1 to 5. 制御ユニットがさらに設けられ、該制御ユニットは、部分的な負荷において、効率に関して最適化されるように、特性図に依存する切換点を星形回路操作モードから単相回路に移すことを特徴とする請求項1〜6のいずれか一項に記載の電気的発電機/モータシステム。   A control unit is further provided, characterized in that the control unit shifts the switching point depending on the characteristic diagram from the star circuit operation mode to a single-phase circuit so as to be optimized with respect to efficiency at partial loads. The electric generator / motor system according to any one of claims 1 to 6. 請求項1〜7のいずれか一項に記載の発電機/モータシステムを操作するための方法において、
前記第1パルス制御インバータ(PWR1)の、前記直流電圧源の正極の側に配置される前記分岐スイッチ(S1〜S3)を閉成して維持し、前記直流電圧源の負極の側に配置される前記分岐スイッチ(S4〜S6)と前記電子スイッチ(S7)の両方、並びに前記第2パルス制御インバータ(PWR2)の前記分岐スイッチのすべてを開成して維持することによって、前記発電機/モータシステムを星形回路で操作するステップと、
前記回転磁場機械(DM)の回転速度を検知し、特性図に依存する切換点を決定するステップと、
前記決定された切換点において、前記制御ユニットを用いて、前記電子スイッチS7を閉成し、前記第1パルス制御インバータを、各発電機位相巻線(a、b、c)がそれ自身のHブリッジを受けるように、すなわち、前記第1及び第2パルス制御インバータ(PWR1、PWR2)の前記分岐スイッチのすべてが閉成されるように、作動させることによって、前記発電機/モータシステムを前記単相回路における操作に切り換えるステップと
を含むことを特徴とする方法。
A method for operating a generator / motor system according to any one of the preceding claims,
The branch switch (S1 to S3) disposed on the positive electrode side of the DC voltage source of the first pulse control inverter (PWR1) is closed and maintained, and is disposed on the negative electrode side of the DC voltage source. The generator / motor system by opening and maintaining both the branch switches (S4 to S6) and the electronic switch (S7) and all the branch switches of the second pulse control inverter (PWR2). Operating with a star circuit,
Detecting a rotational speed of the rotating magnetic field machine (DM) and determining a switching point depending on a characteristic diagram;
At the determined switching point, the control unit is used to close the electronic switch S7, the first pulse control inverter, each generator phase winding (a, b, c) is its own H By operating the generator / motor system to receive a bridge, i.e., all of the branch switches of the first and second pulse control inverters (PWR1, PWR2) are closed. Switching to operation in a phase circuit.
前記切換点は、効率に関して最適になるように決定されることを特徴とする請求項8に記載の方法。
9. The method of claim 8, wherein the switch point is determined to be optimal with respect to efficiency.
JP2004525214A 2002-07-30 2003-07-16 Generator / motor system and method of operating the system Expired - Fee Related JP4122458B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10234594A DE10234594B4 (en) 2002-07-30 2002-07-30 Generator / engine system and method of operating this generator / engine system
PCT/EP2003/007698 WO2004013953A1 (en) 2002-07-30 2003-07-16 Generator/motor system and method for operating said system

Publications (2)

Publication Number Publication Date
JP2005535276A true JP2005535276A (en) 2005-11-17
JP4122458B2 JP4122458B2 (en) 2008-07-23

Family

ID=30469170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004525214A Expired - Fee Related JP4122458B2 (en) 2002-07-30 2003-07-16 Generator / motor system and method of operating the system

Country Status (3)

Country Link
JP (1) JP4122458B2 (en)
DE (1) DE10234594B4 (en)
WO (1) WO2004013953A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154450A (en) * 2006-12-15 2008-07-03 General Electric Co <Ge> Method and apparatus for generating electric power
JPWO2018056045A1 (en) * 2016-09-26 2019-07-11 日本電産株式会社 Power converter, motor drive unit and electric power steering apparatus
JP2020124018A (en) * 2019-01-29 2020-08-13 株式会社Soken Driving device for rotary electric machine
US11211889B2 (en) 2018-03-22 2021-12-28 Denso Corporation Motor system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005016177B4 (en) * 2005-04-08 2008-07-03 Semikron Elektronik Gmbh & Co. Kg Circuit arrangement and associated driving method for an electric or hybrid vehicle with two DC sources
FR2943737B1 (en) * 2009-03-24 2011-04-15 Valeo Equip Electr Moteur STARTING DEVICE FOR AN INTERNAL COMBUSTION ENGINE, IN PARTICULAR A MOTOR VEHICLE
DE102009033185B4 (en) * 2009-05-13 2014-12-31 Avl Software And Functions Gmbh Charging system and charging method for charging a battery of a vehicle and vehicle with such a charging system
DE102010051323B4 (en) * 2010-11-16 2016-07-28 Avl Software And Functions Gmbh Charging system for charging a battery of a vehicle with a two-way charge controller
CN102420560B (en) * 2011-12-09 2014-01-29 南京航空航天大学 Excitation structure and alternating-current and direct-current excitation control method for frequency-variable alternating-current starting power generation system
CN103887908B (en) * 2014-04-22 2016-08-31 哈尔滨工业大学 A kind of brushless harmonic exitation synchronous motor
CN107872176B (en) * 2016-09-28 2020-11-24 中国电力科学研究院有限公司 Control method of static frequency converter for starting synchronous unit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948081B1 (en) * 1970-04-21 1974-12-19
GB1342930A (en) * 1972-05-22 1974-01-10 Electrical Research Ass Pulse width modulation systems
JPS51140108A (en) * 1975-05-29 1976-12-02 Nippon Denso Co Ltd Generating set
JPS6055900A (en) * 1983-09-01 1985-04-01 Mitsubishi Electric Corp Dc generating apparatus
JP2915187B2 (en) * 1991-10-24 1999-07-05 株式会社日立製作所 Two-power generator
DE19931010A1 (en) * 1999-07-06 2000-11-23 Daimler Chrysler Ag Power changeover for three-phase generator involves driving switches connecting phase windings only on one side in both flow directions to perform circuit changeover

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154450A (en) * 2006-12-15 2008-07-03 General Electric Co <Ge> Method and apparatus for generating electric power
JPWO2018056045A1 (en) * 2016-09-26 2019-07-11 日本電産株式会社 Power converter, motor drive unit and electric power steering apparatus
JP7070420B2 (en) 2016-09-26 2022-05-18 日本電産株式会社 Power converter, motor drive unit and electric power steering device
US11211889B2 (en) 2018-03-22 2021-12-28 Denso Corporation Motor system
JP2020124018A (en) * 2019-01-29 2020-08-13 株式会社Soken Driving device for rotary electric machine
JP7104642B2 (en) 2019-01-29 2022-07-21 株式会社Soken Drive device for rotary electric machine

Also Published As

Publication number Publication date
JP4122458B2 (en) 2008-07-23
WO2004013953A1 (en) 2004-02-12
DE10234594A1 (en) 2004-02-19
DE10234594B4 (en) 2005-02-24

Similar Documents

Publication Publication Date Title
US7057361B2 (en) Inverter control device and electric vehicle thereof
Lacressonnière et al. Converter used as a battery charger and a motor speed controller in an industrial truck
US8928264B2 (en) Control device for rotating electrical machine
US7733038B2 (en) Switching device for linking various electrical voltage levels in a motor vehicle
US20020027789A1 (en) Control device for motor/generators
US7057371B2 (en) Inverter for electric and hybrid powered vehicles and associated system and method
CN102570967B (en) Low inductance, high efficiency induction machine and manufacture method thereof
JP2006149153A (en) Controller for motor
JP2009529308A (en) Diesel electric drive system with permanent magnet excitation synchronous generator
JP6253850B2 (en) AC rotating electrical machine control device
US8487559B2 (en) Diesel-electric drive system
JP6218906B1 (en) Power converter
JP4122458B2 (en) Generator / motor system and method of operating the system
Soong et al. Inverterless high-power interior permanent-magnet automotive alternator
US10903772B2 (en) Multigroup-multiphase rotating-electric-machine driving apparatus
Welchko et al. A comparative evaluation of motor drive topologies for low-voltage, high-power EV/HEV propulsion systems
US7202572B2 (en) Generator/motor system and method of operating said system
JP6289597B1 (en) VEHICLE POWER DEVICE AND CONTROL METHOD FOR VEHICLE POWER DEVICE
JP5082495B2 (en) Electric rotating machine power supply control device
JP4128645B2 (en) Inverter for rotating electrical machine
JP2012070502A (en) Power control unit to be mounted on vehicle
US20130182471A1 (en) Overvoltage protection circuit for at least one branch of a half-bridge, inverter, dc/dc voltage converter and circuit arrangement for operating an electrical machine
JP2020178394A (en) Converter circuit, power conversion system, and motor driving device
JP4153760B2 (en) Motor circuit and motor control method
JP3177085B2 (en) Power converter

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070710

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070720

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080402

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees