JP2005533158A - Liquid hydrocarbon combustion method - Google Patents
Liquid hydrocarbon combustion method Download PDFInfo
- Publication number
- JP2005533158A JP2005533158A JP2004522512A JP2004522512A JP2005533158A JP 2005533158 A JP2005533158 A JP 2005533158A JP 2004522512 A JP2004522512 A JP 2004522512A JP 2004522512 A JP2004522512 A JP 2004522512A JP 2005533158 A JP2005533158 A JP 2005533158A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- fischer
- tropsch
- combustion
- flame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 27
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 14
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 14
- 239000004215 Carbon black (E152) Substances 0.000 title claims abstract description 9
- 238000009841 combustion method Methods 0.000 title claims description 10
- 239000000446 fuel Substances 0.000 claims abstract description 74
- 238000000034 method Methods 0.000 claims abstract description 32
- 239000000203 mixture Substances 0.000 claims abstract description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 14
- 239000001301 oxygen Substances 0.000 claims abstract description 14
- 238000001704 evaporation Methods 0.000 claims abstract description 10
- 239000008246 gaseous mixture Substances 0.000 claims abstract description 9
- 239000007792 gaseous phase Substances 0.000 claims abstract description 7
- 238000002485 combustion reaction Methods 0.000 claims description 22
- 239000011148 porous material Substances 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 239000007921 spray Substances 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 9
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000003546 flue gas Substances 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 6
- 239000011593 sulfur Substances 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 238000009835 boiling Methods 0.000 description 5
- 239000003350 kerosene Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- ANHQLUBMNSSPBV-UHFFFAOYSA-N 4h-pyrido[3,2-b][1,4]oxazin-3-one Chemical group C1=CN=C2NC(=O)COC2=C1 ANHQLUBMNSSPBV-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000000295 fuel oil Substances 0.000 description 3
- 238000009834 vaporization Methods 0.000 description 3
- 230000008016 vaporization Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- HRANPRDGABOKNQ-ORGXEYTDSA-N (1r,3r,3as,3br,7ar,8as,8bs,8cs,10as)-1-acetyl-5-chloro-3-hydroxy-8b,10a-dimethyl-7-oxo-1,2,3,3a,3b,7,7a,8,8a,8b,8c,9,10,10a-tetradecahydrocyclopenta[a]cyclopropa[g]phenanthren-1-yl acetate Chemical compound C1=C(Cl)C2=CC(=O)[C@@H]3C[C@@H]3[C@]2(C)[C@@H]2[C@@H]1[C@@H]1[C@H](O)C[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 HRANPRDGABOKNQ-ORGXEYTDSA-N 0.000 description 1
- TXNSZCSYBXHETP-UHFFFAOYSA-N 2-chloro-n-(hydroxymethyl)acetamide Chemical compound OCNC(=O)CCl TXNSZCSYBXHETP-UHFFFAOYSA-N 0.000 description 1
- AVBBHCMDRGQBNW-UHFFFAOYSA-N 2-ethyl-n-(2-ethylhexyl)-n-(1,2,4-triazol-1-ylmethyl)hexan-1-amine Chemical compound CCCCC(CC)CN(CC(CC)CCCC)CN1C=NC=N1 AVBBHCMDRGQBNW-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 239000002551 biofuel Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000009972 noncorrosive effect Effects 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229940016590 sarkosyl Drugs 0.000 description 1
- 108700004121 sarkosyl Proteins 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- KSAVQLQVUXSOCR-UHFFFAOYSA-M sodium lauroyl sarcosinate Chemical compound [Na+].CCCCCCCCCCCC(=O)N(C)CC([O-])=O KSAVQLQVUXSOCR-UHFFFAOYSA-M 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C99/00—Subject-matter not provided for in other groups of this subclass
- F23C99/006—Flameless combustion stabilised within a bed of porous heat-resistant material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/36—Details, e.g. burner cooling means, noise reduction means
- F23D11/44—Preheating devices; Vaporising devices
- F23D11/441—Vaporising devices incorporated with burners
- F23D11/446—Vaporising devices incorporated with burners heated by an auxiliary flame
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/02—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
- F23N5/12—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/34—Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Spray-Type Burners (AREA)
- Liquid Carbonaceous Fuels (AREA)
Abstract
(a)酸素含有ガス状相中にフィッシャー・トロプシュ誘導液体炭化水素の液滴混合物を得る工程、(b)該炭化水素液滴混合物を蒸発させて、酸素及び炭化水素を含むガス状混合物を得る工程、及び(c)工程(b)で得られたガス状混合物を全て燃焼させる工程を含むフィッシャー・トロプシュ誘導液体燃料の燃焼方法。(A) obtaining a Fischer-Tropsch derived liquid hydrocarbon droplet mixture in an oxygen-containing gaseous phase; (b) evaporating the hydrocarbon droplet mixture to obtain a gaseous mixture comprising oxygen and hydrocarbons. A method of burning Fischer-Tropsch derived liquid fuel comprising the steps of: (c) combusting all the gaseous mixture obtained in step (b).
Description
本発明は、
(a)酸素含有ガス状相中にフィッシャー・トロプシュ誘導液体炭化水素燃料の液滴混合物を得る工程、
(b)該炭化水素液滴混合物を、好ましくは300〜480℃の温度範囲の冷炎中で、蒸発させて、酸素及び炭化水素を含むガス状混合物を得る工程、及び
(c)工程(b)で得られたガス状混合物を全て燃焼させる工程、
を含むフィッシャー・トロプシュ誘導液体燃料の燃焼方法に向けたものである。
The present invention
(A) obtaining a droplet mixture of Fischer-Tropsch derived liquid hydrocarbon fuel in an oxygen-containing gaseous phase;
(B) evaporating the hydrocarbon droplet mixture in a cool flame, preferably in the temperature range of 300-480 ° C., to obtain a gaseous mixture comprising oxygen and hydrocarbons; and (c) step (b) ) Burning all the gaseous mixture obtained in
The present invention is directed to a method for burning Fischer-Tropsch derived liquid fuel including:
このような方法は、Modulation Burner for Liquid Fuels Based on Porous Media Combustion and Cool Flame Vaporization;D.Trimis,K.Wawrzinek,O.Harzfeld,K.Lucka,A.Rutsche,F.Haase,K.Kruger,C.Kuchen,Sixth International Conference on Technologies and Comusion for a Clean Environment(Clean Air VI),Vol.2,Paper 23.1,Porto,ポルトガル,2001年7月9〜12日に詳細に記載されている。この論文には、いわゆる多孔質バーナーが記載されている。多孔質バーナーは、空気と液体燃料とを混合する手段、液体燃料を冷炎中で蒸発させる空間、及び空気/蒸発燃料混合物を燃焼させる多孔質材料充填空間を備えたものである。この論文は、可能な液体燃料として、工業用ガス油を挙げている。例えば水浴中には、排気ガスの脱硫手段も存在する。この種のバーナーは、通常、2〜30kWの低出力用には、非常に好適である。このような低出力バーナーは、家庭での加熱又はボイラー用として非常に好適である。更に、この種のバーナーは、出力調節(modulation)比を1:10よりも高くできるという利点もある。出力調節比を高くすると、その都度、炭化水素及び一酸化炭素の一時的な多量放出を伴う始動/停止動作(events)を減少できる。 Such a method is described in Modulation Burner for Liquid Fuels Based on Porous Media Combination and Cool Frame Vaporization; Trimis, K.M. Wawrzinek, O .; Harzfeld, K.M. Lucka, A .; Rutsche, F.A. Haase, K .; Kruger, C.I. Kuchen, Sixth International Conference on Technologies and Consumption for a Clean Environment (Clean Air VI), Vol. 2, Paper 23.1, Porto, Portugal, July 9-12, 2001. This paper describes a so-called porous burner. The porous burner comprises means for mixing air and liquid fuel, a space for evaporating the liquid fuel in a cool flame, and a porous material filling space for burning the air / evaporated fuel mixture. This paper lists industrial gas oil as a possible liquid fuel. For example, exhaust gas desulfurization means also exists in a water bath. This type of burner is usually very suitable for low power of 2-30 kW. Such low power burners are very suitable for home heating or boiler use. Furthermore, this type of burner also has the advantage that the output modulation ratio can be higher than 1:10. Each time the power regulation ratio is increased, start / stop events with a temporary large release of hydrocarbons and carbon monoxide can be reduced.
工業用ガス油を使用する欠点は、バーナーの蒸発器空間で燃料が容易には蒸発しないことである。液体燃料の蒸発が不完全であると、バーナーから出る煙道ガス中に放出物が多くなることである。また不完全な蒸発により、燃焼帯域や下流の熱交換器表面に沈着物が生じる恐れがある。その結果、熱交換器の効率低下、不完全て燃焼、又は制御不能の火炎発火が生じる恐れがある。
したがって本発明の目的は、このような欠点のない方法を提供することである。 The object of the present invention is therefore to provide a method which does not have such drawbacks.
この目的は、
(a)酸素含有ガス状相中にフィッシャー・トロプシュ誘導液体炭化水素燃料の液滴混合物を得る工程、
(b)該炭化水素液滴混合物を蒸発させて、酸素及び炭化水素を含むガス状混合物を得る工程、及び
(c)工程(b)で得られたガス状混合物を全て燃焼させる工程、
を含むフィッシャー・トロプシュ誘導液体燃料の燃焼方法により達成される。
This purpose is
(A) obtaining a droplet mixture of Fischer-Tropsch derived liquid hydrocarbon fuel in an oxygen-containing gaseous phase;
(B) evaporating the hydrocarbon droplet mixture to obtain a gaseous mixture containing oxygen and hydrocarbons; and (c) combusting all the gaseous mixture obtained in step (b);
This is achieved by a Fischer-Tropsch derived liquid fuel combustion method comprising:
出願人は、フィッシャー・トロプシュ誘導燃料を用いることにより、冷炎中で一層良好な蒸発が起こることを見い出した。その結果、一層良好に燃焼し、炎発火が向上すると共に、下流の熱交換器表面での汚染が少なくなる。更に、フィッシャー・トロプシュ誘導燃料は、殆ど硫黄を含有しないので、前記燃焼の煙道ガスを浄化したり、或いは特殊の非腐蝕性材料を塗布するため、特別な方法を採る必要がない。 Applicants have found that by using Fischer-Tropsch derived fuel, better evaporation occurs in the cold flame. As a result, it burns better, flame ignition is improved, and contamination on the downstream heat exchanger surface is reduced. Furthermore, since the Fischer-Tropsch derived fuel contains almost no sulfur, it is not necessary to take special measures to purify the combustion flue gas or to apply a special non-corrosive material.
工程(a)では、フィッシャー・トロプシュ誘導液体燃料の液滴混合物がガス状連続相中で製造される。このガス状相は、酸素又は他のいずれかの酸化剤を含有する。ガス状相は、好ましくは空気である。前記混合物の製造は、他の方法で行ってもよい。例えば空気と液体燃料との混合物を特定の差圧で小開口に通して、ガス状相に小液滴を生成させることにより、混合物が得られる。第二の方法は、例えばUS−A−US4264837に記載されるように、液体燃料を超音波振動により霧化させる方法である。好ましい方法は、まず液体燃料をスプレーノズルで霧化させ、次いで、例えば前記論文に記載されるように、空気と混合することである。 In step (a), a Fischer-Tropsch derived liquid fuel droplet mixture is produced in the gaseous continuous phase. This gaseous phase contains oxygen or any other oxidizing agent. The gaseous phase is preferably air. You may perform the manufacture of the said mixture by another method. For example, a mixture is obtained by passing a mixture of air and liquid fuel through a small opening at a specific differential pressure to produce small droplets in the gaseous phase. The second method is a method of atomizing liquid fuel by ultrasonic vibration as described in, for example, US-A-US4264837. A preferred method is to first atomize the liquid fuel with a spray nozzle and then mix it with air, for example as described in the article.
液滴の大きさは、選択した方法で測定される。ノズルの場合、ノズルの寸法、燃料の供給速度、燃料油の圧力、燃料の粘度(したがって、燃料の温度も)及び表面張力が、液滴の大きさに影響する。所定の供給ノズルについて、燃料供給速度が高く、及び/又は燃料油の圧力が高いと、液滴が一層小さく、したがって液体燃料の蒸発が一層良くなる。液滴の大きさは、できるだけ小さいことが好ましい。しかし、このような小液滴を得るのに必要な高圧は、経済的にも或いは技術的にも容易ではない。出願人は、フィッシャー・トロプシュ誘導燃料を用いると、燃焼に悪影響を与えることなく、大きな液滴が許容できることを見い出した。現在、燃料油は、低圧で利用できるので、大きな液滴が利用できることは、燃焼方法が技術的に一層簡単になり、かつエネルギー効率が一層向上する点で非常に有利である。 Droplet size is measured by a selected method. In the case of nozzles, nozzle size, fuel feed rate, fuel oil pressure, fuel viscosity (and therefore fuel temperature) and surface tension also affect droplet size. For a given supply nozzle, a higher fuel supply rate and / or higher fuel oil pressure results in smaller droplets and thus better evaporation of liquid fuel. The droplet size is preferably as small as possible. However, the high pressure necessary to obtain such small droplets is not economically or technically easy. Applicants have found that with Fischer-Tropsch derived fuels, large droplets can be tolerated without adversely affecting combustion. Currently, fuel oil is available at low pressure, and the availability of large droplets is very advantageous in that the combustion method is technically simpler and the energy efficiency is further improved.
酸素含有ガスは、通常、空気である。しかし、精製酸素のような他の酸素含有ガス供給源も使用できる。この説明の残り部分では、空気に言及したが、これにより、代替供給源を排除するものではない。本発明方法における過剰空気比は、1.1〜3の範囲である(過剰空気比とは、実際の空気供給量と、燃料の化学量論的燃焼に必要な空気量との比(ラムダ=1)として定義する)。液体燃料は、液滴の微細スプレーとして空気中に導入することが好ましい。 The oxygen-containing gas is usually air. However, other oxygen-containing gas sources such as purified oxygen can be used. The remainder of this description refers to air, but this does not exclude alternative sources. The excess air ratio in the method of the present invention is in the range of 1.1 to 3 (excess air ratio is the ratio of actual air supply to the amount of air required for stoichiometric combustion of the fuel (lambda = 1)). Liquid fuel is preferably introduced into the air as a fine spray of droplets.
工程(b)は、好ましくはいわゆる冷炎により行われる。時にはコールド炎ともいわれる冷炎は、300℃の温度で始まり、事実上、空気比に関係なく、480℃の温度及び1バールの条件で安定化する。冷炎は、特定の最低温度(300℃)の時に形成される。この温度が480℃未満に維持されていれば、これらの条件下では、必要とする活性化エネルギーが高すぎるため、自己発火は起こらない。この温度は、好適には、熱排気ガス又は燃焼帯域に対する間接熱交換により維持される。冷炎中では、液滴は蒸発し、これにより工程(c)で使用されるガス状混合物を形成する。本発明方法の工程(b)及び(c)は、物理的に分離される。工程(c)からの熱燃焼ガスが、冷炎が存在する領域に入るのを避ける方法を採ることが好ましい。このような方法の例は、例えば流れ加速度による(through flow acceleration)火炎トラップ又は工程(a)と工程(b)間の物理的界面に配置した金属グリッドである。冷炎の例は、前記論文や、EP−A−947769に記載されている。 Step (b) is preferably performed by a so-called cold flame. The cold flame, sometimes referred to as a cold flame, begins at a temperature of 300 ° C. and stabilizes at a temperature of 480 ° C. and 1 bar, virtually regardless of the air ratio. The cold flame is formed at a specific minimum temperature (300 ° C.). If this temperature is maintained below 480 ° C., under these conditions, the required activation energy is too high and self-ignition does not occur. This temperature is preferably maintained by indirect heat exchange to the hot exhaust gas or the combustion zone. In the cold flame, the droplets evaporate, thereby forming a gaseous mixture used in step (c). Steps (b) and (c) of the inventive method are physically separated. It is preferable to take a method in which the hot combustion gas from step (c) is prevented from entering the region where the cold flame exists. An example of such a method is, for example, a through-flow acceleration flame trap or a metal grid placed at the physical interface between steps (a) and (b). Examples of cold flames are described in the article and EP-A-947769.
或いは、工程(a)及び(b)は、まず燃料を蒸発させ、次いでこのガス状燃料を酸素含有混合物と混合するか、又はガス状燃料を不活性媒体中に蒸発させた後、酸素含有ガスと混合することにより、行ってもよい。
工程(c)の燃焼は、種々の方法で行ってよい。例えば火炎の空気力学的安定化を利用してよい。更に好ましくは、火炎は、多孔質表面によって配置し、混合物をこの表面の一端に供給すると共に、火炎を表面の丁度、下流に存在させる。このような表面バーナーは、EP−A−947769に記載されている。
Alternatively, steps (a) and (b) may be performed by first evaporating the fuel and then mixing the gaseous fuel with an oxygen-containing mixture or evaporating the gaseous fuel into an inert medium and then oxygen-containing gas. It may be done by mixing with.
The combustion in step (c) may be performed by various methods. For example, flame aerodynamic stabilization may be utilized. More preferably, the flame is arranged by a porous surface, the mixture is fed to one end of this surface, and the flame is just downstream of the surface. Such a surface burner is described in EP-A-9477769.
工程(c)の他の好ましい実施態様は、例えば前記論文に記載されるように、燃焼を多孔質材料中で行うものである。多孔質材料は、前記論文又はUS−A−5522723に記載されるものでよい。燃焼方法は、この多孔質構造内で行ってもよいことが見い出された。細孔が小さすぎると、火炎を急冷し、また大きすぎると、延焼を起こす。多孔質材料は、好ましくは延焼を抑える第一帯域、いわゆる予備加熱帯域と、延焼可能な第二帯域である実際の燃焼帯域とからなる。多孔質材料は、例えばアルミナ、酸化ジルコニウム又は炭化珪素から作製できる。 Another preferred embodiment of step (c) is that the combustion takes place in a porous material, for example as described in the article. The porous material may be that described in the article or US-A-5522723. It has been found that the combustion method may be carried out within this porous structure. If the pores are too small, the flame will be quenched, and if it is too large, it will spread. The porous material preferably comprises a first zone that suppresses the spread of fire, a so-called preheating zone, and an actual combustion zone that is a second zone capable of spreading. The porous material can be made from, for example, alumina, zirconium oxide or silicon carbide.
工程(c)では、火炎検出器を用いることが好ましい。好適な検出器は、紫外線センサー及び赤外線センサーである。更に好ましい検出器は、いわゆるイオン化センサーである。イオン化センサーは、連続操作は勿論、断続操作によるバーナーを監視するのに好適である。イオン化火炎監視器は、火炎の整流効果によるものである。火炎が存在すれば、バーナーとイオン化電極間に電流が流れる。このイオン化電流は、火炎監視器で評価され、火炎が存在するかどうかを決定する。幾つかの従来技術の用途では、イオン化センサーは、液体燃料と組合せて使用できなかった。これは、センサー中の沈着物が、センサーに間違い電流を誘引するからである。フィッシャー・トロプシュ誘導燃料、特に金属系燃焼改良剤を含有しない燃料組成物を使用すると、沈着物が少なくなるので、イオン化センサーを利用できる。金属系燃焼改良剤の例は、フェロセン系添加物及びメチルシクロペンタジエニルマンガン−トリカルボニル(MMT)である。イオン化センサーは、赤外線又は紫外線センサーよりも更に容易に入手できるという利点がある。 In step (c), it is preferable to use a flame detector. Suitable detectors are ultraviolet sensors and infrared sensors. Further preferred detectors are so-called ionization sensors. The ionization sensor is suitable for monitoring a burner by intermittent operation as well as continuous operation. The ionized flame monitor is due to the rectifying effect of the flame. If there is a flame, current flows between the burner and the ionization electrode. This ionization current is evaluated with a flame monitor to determine if a flame is present. In some prior art applications, ionization sensors could not be used in combination with liquid fuel. This is because deposits in the sensor attract a false current to the sensor. Use of a Fischer-Tropsch derived fuel, particularly a fuel composition that does not contain a metal-based combustion improver, can reduce the deposits and can utilize an ionization sensor. Examples of metal based combustion improvers are ferrocene based additives and methylcyclopentadienyl manganese-tricarbonyl (MMT). Ionization sensors have the advantage that they are more readily available than infrared or ultraviolet sensors.
フィッシャー・トロプシュ誘導燃料は、フィッシャー・トロプシュ生成物を含有する。フィッシャー・トロプシュ生成物は、(水素化処理した)フィッシャー・トロプシュ合成生成物から単離可能な中間蒸留物燃料範囲のいずれのフラクションであってもよい。通常のフラクションは、ナフサ、ケロシン又はガス油の沸点範囲の沸点を有する。ケロシン又はガス油の沸点範囲の沸点を有するフィッシャー・トロプシュ生成物は、例えば家庭環境内で取扱い易いので、このようなフィッシャー・トロプシュ生成物を使用することが好ましい。このようなフィッシャー・トロプシュ生成物は、好適には、160〜400℃、好ましくは約370℃以下、の沸点範囲のものが90重量%より多いフラクションを含有する。フィッシャー・トロプシュ誘導ケロシン及びガス油の例は、EP−A−583836、WO−A−9714768、WO−A−9714769、WO−A−011116、WO−A−011117、WO−A−0183406、WO−A−0183648、WO−A−0183647、WO−A−0183641、WO−A−0020535、WO−A−0020534、EP−A−1101813、US−A−5766274、US−A−5378348、US−A−5888376及びUS−A−6204426に記載されている。 Fischer-Tropsch derived fuel contains Fischer-Tropsch products. The Fischer-Tropsch product can be any fraction of the middle distillate fuel range that can be isolated from the (hydrotreated) Fischer-Tropsch synthesis product. Common fractions have boiling points in the boiling range of naphtha, kerosene or gas oil. Since Fischer-Tropsch products having a boiling point in the boiling range of kerosene or gas oil are easy to handle, for example in a domestic environment, it is preferred to use such Fischer-Tropsch products. Such Fischer-Tropsch products suitably contain a fraction having a boiling range of 160-400 ° C., preferably about 370 ° C. or less, greater than 90% by weight. Examples of Fischer-Tropsch derived kerosene and gas oils are EP-A-58383, WO-A-9714768, WO-A-9714769, WO-A-011116, WO-A-011117, WO-A-0183406, WO-A. A-0183648, WO-A-0183647, WO-A-01833641, WO-A-0020535, WO-A-0020534, EP-A-1101813, US-A-5766274, US-A-5378348, US-A- 5888376 and US-A-6204426.
フィッシャー・トロプシュ生成物は、イソ−及びノーマルパラフィンを好適には80重量%より多く、更に好適には95重量%より多く、また芳香族を1重量%未満含有する。残部は、ナフテン系化合物である。硫黄及び窒素の含有量は、非常に少なく、普通、これら化合物についての検出限界未満である。これら元素の含有量が少ないのは、フィッシャー・トロプシュ反応を行う特定の方法によるからである。したがって、硫黄含有量は、5ppm未満、窒素含有量は、1ppm未満である。芳香族系及びナフテン系化合物の含有量が少ないことから、フィッシャー・トロプシュと生成物の密度は、従来の鉱物誘導燃料よりも低く、0.65〜0.8g/cm3の範囲である。 The Fischer-Tropsch product preferably contains more than 80% by weight of iso- and normal paraffins, more preferably more than 95% by weight and less than 1% by weight of aromatics. The balance is a naphthenic compound. The sulfur and nitrogen content is very low, usually below the detection limit for these compounds. The low content of these elements is due to the specific method of performing the Fischer-Tropsch reaction. Therefore, the sulfur content is less than 5 ppm and the nitrogen content is less than 1 ppm. Due to the low content of aromatic and naphthenic compounds, the Fischer-Tropsch and product density is lower than conventional mineral derived fuels and is in the range of 0.65-0.8 g / cm 3 .
本発明方法で使用される燃料は、フィッシャー・トロプシュ生成物以外の燃料フラクションを含有してもよい。このようなフラクションの例は、原油原料を有用な生成物の品質に向上する通常の製油方法で得られるケロシン又はガス油フラクションであってよい。好ましい非フィッシャー・トロプシュ燃料成分は、現在、市販されている、硫黄含有量が極めて少ない(例えば硫黄50ppm未満)ケロシン又はディーゼルフラクションである。燃料組成物には、任意にバイオ燃料のような非鉱油系燃料も存在してよい。燃料中のフィッシャー・トロプシュ生成物の含有量は、好ましくは40重量%より多く、更に好ましくは60重量%より多く、最も好ましくは80重量%より多い。このような現在、入手し難いフィッシャー・トロプシュ生成物の含有量は最適化され、燃料全体の価格が本発明の利点と均衡することを理解すべきである。数種の添加物を任意に加えたフィッシャー・トロプシュ生成物を主成分とする燃料は、幾つかの用途に有利に使用できる。 The fuel used in the method of the present invention may contain fuel fractions other than the Fischer-Tropsch product. An example of such a fraction may be a kerosene or gas oil fraction obtained by conventional oil production processes that improve the quality of the crude feed to useful product quality. Preferred non-Fischer-Tropsch fuel components are kerosene or diesel fractions that are currently commercially available with very low sulfur content (eg, less than 50 ppm sulfur). The fuel composition may optionally include a non-mineral oil-based fuel such as a biofuel. The content of Fischer-Tropsch product in the fuel is preferably more than 40% by weight, more preferably more than 60% by weight and most preferably more than 80% by weight. It should be understood that the content of such currently unavailable Fischer-Tropsch products is optimized and the overall fuel price is balanced with the advantages of the present invention. Fuels based on Fischer-Tropsch products with optional addition of several additives can be used advantageously in several applications.
燃料は、以下の添加物の1種以上を含有してよい。洗剤、例えばOctel OYから得られるOMA 350;安定剤、例えばBASF社から得られるKeropon ES 3500、Octel OYから得られるFOA 528A;金属失活剤、例えばIRGAMET 30(Specialty Chemicals Inc.から得られる);分散剤(灰分を含有しない)、例えばOctel OYから得られるFOA 528A包装品に含まれるような分散剤;酸化防止剤として、Specialty Chemicals Inc.から得られるIRGANOX L06又はIRGANOX L57;常温流れ改良剤、例えばBASF社から得られるKeroflux 3283、Infineum UK Ltd.から得られるR433又はR474;腐蝕防止剤として、Rhein Chemie GmbHから得られるAdditin RC 4801、BASFから得られるKerocorr 3232、Cibaから得られるSARKOSYL 0;付香剤、例えばHaarmann & Reimerから得られるCompensol;殺生剤(biociode)、例えばShuelke & Mayrから得られるGROTA MAR 71;潤滑強化剤、例えばOctelから得られるOLI 9000;霞み防止剤、例えばPtroliteから得られるT−9318;帯電防止剤、例えばOctelから得られるStadis 450;及び泡低下剤、例えばGoldschmidtから得られるTEGO 2079。フィッシャー・トロプシュと誘導燃料は、例えばフェロセン又はMMTのような燃焼改良剤を必ずしも含有する必要のないことが見い出された。 The fuel may contain one or more of the following additives. Detergents such as OMA 350 obtained from Octel OY; stabilizers such as Keropon ES 3500 obtained from BASF, FOA 528A obtained from Octel OY; metal deactivators such as IRGAMET 30 (obtained from Specialty Chemicals Inc.); Dispersants (not containing ash), such as those included in FOA 528A packaging obtained from Octel OY; as antioxidants, Specialty Chemicals Inc. IRGANOX L06 or IRGANOX L57 obtained from the company, cold flow improvers such as Keroflux 3283, Infineum UK Ltd. obtained from BASF. R433 or R474 obtained from: Addintin RC 4801 obtained from Rhein Chemie GmbH, Kerocorr 3232 obtained from BASF, SARKOSYL 0 obtained from Ciba; Biocide, eg GROTA MAR 71 obtained from Shelke &Mayr; lubrication enhancer, eg OLI 9000 obtained from Octel; anti-stagnation agent, eg T-9318 obtained from Ptrolite; antistatic agent eg obtained from Octel Stadis 450; and foam reducing agents such as TEGO 2079 obtained from Goldschmidt. It has been found that Fischer-Tropsch and derived fuels do not necessarily contain a combustion modifier such as ferrocene or MMT.
フィッシャー・トロプシュ生成物は、無色、無臭である。フィッシャー・トロプシュ誘導燃料には、安全性の理由から、例えば家庭消費用天然ガスに利用されるような付臭剤が存在してもよい。このフィッシャー・トロプシュ誘導燃料と他の非フィッシャー・トロプシュ誘導燃料とを識別するため、着色剤も存在してよい。
添加物の合計含有量は、好適には0〜1重量%の範囲、好ましくは0.5重量%未満であってよい。
フィッシャー・トロプシュ燃料を用いる燃焼方法は、家庭での加熱に利用することが好ましく、この場合、燃焼熱は、いわゆるボイラー中で間接熱交換により水を加熱するのに使用される。この方法は、出力調節範囲が2〜30kWであるため、家庭用として特に好適である。加熱した水は、家の暖房に使用したり、或いは例えばシャワー等に消費できる。
The Fischer-Tropsch product is colorless and odorless. Fischer-Tropsch derived fuels may contain odorants, such as those used for natural gas for household consumption, for safety reasons. Colorants may also be present to distinguish this Fischer-Tropsch derived fuel from other non-Fischer-Tropsch derived fuels.
The total content of additives may suitably be in the range 0-1% by weight, preferably less than 0.5% by weight.
The combustion method using Fischer-Tropsch fuel is preferably used for heating at home, in which case the heat of combustion is used to heat water by indirect heat exchange in a so-called boiler. This method is particularly suitable for home use because the output adjustment range is 2 to 30 kW. The heated water can be used to heat the house or can be consumed, for example, in a shower.
このようなフィッシャー・トロプシュ燃料を用いる燃焼方法は、大空間の直接加熱に使用すると更に有利であるかも知れない。このような用途は、煙道ガスを大空間に直接供給して、この空間を昇温することを特徴とする。テントやホールのような空間は、このような装置で昇温させることが多い。この用途には、随伴する煙道ガスが大空間に安全に供給できることから、例えば天然ガス、LPG等の通常ガス状の燃料が使用される。しかし、ガス状燃料を使用する欠点は、加圧ガス容器及び燃焼器具等の装置を安全に操作するには、これら装置の取扱いにプロの熟練を必要とすることである。フィッシャー・トロプシュ誘導燃料を用いることにより、この燃焼方法では、ガス状燃料を用いた場合と同等の煙道ガスが得られる。こうして、空間の直接加熱に液体燃料を利用できる方法が提供される。フィッシャー・トロプシュ誘導液体燃料を使用すると、直接加熱用装置を更に非常に簡単かつ安全に利用できる。 Such a combustion method using Fischer-Tropsch fuel may be more advantageous when used for direct heating of large spaces. Such an application is characterized by supplying flue gas directly to a large space and raising the temperature of the space. Spaces such as tents and halls are often heated with such devices. For this purpose, since the accompanying flue gas can be safely supplied to a large space, a normal gaseous fuel such as natural gas or LPG is used. However, the disadvantage of using gaseous fuel is that it requires professional skills to handle these devices in order to safely operate such devices as pressurized gas containers and combustion appliances. By using Fischer-Tropsch derived fuel, this combustion method provides flue gas equivalent to the case of using gaseous fuel. Thus, a method is provided in which liquid fuel can be used for direct heating of the space. The use of a Fischer-Tropsch derived liquid fuel makes the direct heating device much easier and safer to use.
空間の直接加熱は、いわゆるふく射ヒーターで行うことが好ましい。工程(c)は、このような装置の穿孔板の表面又は内部で行うことが好ましい。穿孔板は、好ましくはセラミック板である。穿孔板では、燃焼は、板を横断する短い溝中で起こる。燃焼熱により、ふく射エネルギーを発生して、周囲の空気を昇温する赤熱発光板が得られる。通常、このようなふく射ヒーター用の燃料は、ガス状燃料である。これは、周囲の空気中に煙道ガスが放出されるからである。出願人は、フィッシャー・トロプシュ燃料が、液体燃料としての欠点を生じることなく、有利に利用できることを見い出した。普通はガス状燃料で操作するが、現在、液体燃料で操作できるふく射ヒーターの例は、US−A−5139415、EP−A−0949452又はEP−A−0037046に記載されている。 The direct heating of the space is preferably performed with a so-called radiation heater. Step (c) is preferably carried out on the surface or inside the perforated plate of such a device. The perforated plate is preferably a ceramic plate. In a perforated plate, combustion occurs in a short groove across the plate. A red light emitting plate that generates radiation energy by the combustion heat and raises the temperature of the surrounding air is obtained. Usually, the fuel for such a radiation heater is a gaseous fuel. This is because flue gas is released into the surrounding air. Applicants have found that Fischer-Tropsch fuel can be advantageously used without the disadvantages of liquid fuel. Examples of radiation heaters that normally operate with gaseous fuels but can now be operated with liquid fuels are described in US-A-5139415, EP-A-0949452 or EP-A-0037046.
フィッシャー・トロプシュ燃料を用いる燃焼方法は、家庭での加熱に利用することが好ましく、この場合、燃焼熱は、いわゆるボイラー中で間接熱交換により水を加熱するのに使用される。この方法は、出力調節範囲が2〜30kWであるため、家庭用として特に好適である。加熱した水は、家の暖房に使用したり、或いは例えばシャワー等に消費できる。 The combustion method using Fischer-Tropsch fuel is preferably used for heating at home, in which case the heat of combustion is used to heat water by indirect heat exchange in a so-called boiler. This method is particularly suitable for home use because the output adjustment range is 2 to 30 kW. The heated water can be used to heat the house or can be consumed, for example, in a shower.
このようなフィッシャー・トロプシュ燃料を用いる燃焼方法は、大空間の直接加熱に使用すると更に有利であるかも知れない。このような用途は、煙道ガスを大空間に直接供給して、この空間を昇温することを特徴とする。この用途には、工程(c)は、多孔質表面を用いて行うことが好ましい。このようなヒーターの表面で発展したふく射熱は、ヒーターを配置した環境を加熱する。 Such a combustion method using Fischer-Tropsch fuel may be more advantageous when used for direct heating of large spaces. Such an application is characterized by supplying flue gas directly to a large space and raising the temperature of the space. For this application, step (c) is preferably performed using a porous surface. Radiant heat developed on the surface of such a heater heats the environment in which the heater is placed.
この方法は、水蒸気の発生方法にも有利に利用できる。特に工程(c)を例えばUS−A−5522723に記載されるような多孔質材料中で行う場合、特に有利である。このような方法で発生した燃焼熱は、水蒸気の発生に使用でき、発生した水蒸気は、加熱のような種々の目的に使用してよい。好ましい用途は、US−A−2002194848及びWO−A−03036072に記載され、発生した水蒸気は、まず過熱し、次いでピストンエンジン又は膨張エンジンに供給している。この用途は、時にはEnginion AGのSteamCell(商標)ともいわれている。このエンジンは、例えば自動車の動力となる機械的動力、又は電気を提供できる。この種のエンジンに要求される利点は、従来の燃焼エンジンの状態に比べてNox放出量が少ないことである。フィッシャー・トロプシュ誘導燃料を用いることにより、このような用途ではNox放出量が更に減少するかも知れない。フィッシャー・トロプシュ誘導燃料は、事実上、硫黄を含有しないという利点もある。これにより、バーナーの設計を更に簡素化し、またこの種のエンジンの複雑性を低減することができる。 This method can also be advantageously used as a method for generating water vapor. It is particularly advantageous when step (c) is carried out in a porous material, for example as described in US-A-5522723. The combustion heat generated by such a method can be used for generation of water vapor, and the generated water vapor may be used for various purposes such as heating. Preferred applications are described in US-A-2002194848 and WO-A-03036072, where the generated steam is first superheated and then fed to a piston engine or expansion engine. This application is sometimes referred to as Engineering AG's SteamCell ™. This engine can provide, for example, mechanical power, which is the power of an automobile, or electricity. The advantage required for this type of engine is that the amount of NOx emissions is small compared to the state of conventional combustion engines. Using Fischer-Tropsch derived fuel may further reduce No x emissions in such applications. Fischer-Tropsch derived fuels also have the advantage that they contain virtually no sulfur. This further simplifies the burner design and reduces the complexity of this type of engine.
Claims (11)
(b)該炭化水素液滴混合物を蒸発させて、酸素及び炭化水素を含むガス状混合物を得る工程、及び
(c)工程(b)で得られたガス状混合物を全て燃焼させる工程、
を含むフィッシャー・トロプシュ誘導液体燃料の燃焼方法。 (A) obtaining a droplet mixture of Fischer-Tropsch derived liquid hydrocarbon fuel in an oxygen-containing gaseous phase;
(B) evaporating the hydrocarbon droplet mixture to obtain a gaseous mixture containing oxygen and hydrocarbons; and (c) combusting all the gaseous mixture obtained in step (b);
A Fischer-Tropsch derived liquid fuel combustion method comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02016090 | 2002-07-19 | ||
PCT/EP2003/007863 WO2004010050A1 (en) | 2002-07-19 | 2003-07-18 | Process for combustion of a liquid hydrocarbon |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005533158A true JP2005533158A (en) | 2005-11-04 |
Family
ID=30470232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004522512A Pending JP2005533158A (en) | 2002-07-19 | 2003-07-18 | Liquid hydrocarbon combustion method |
Country Status (7)
Country | Link |
---|---|
US (1) | US20050244764A1 (en) |
EP (1) | EP1534996A1 (en) |
JP (1) | JP2005533158A (en) |
AU (1) | AU2003250994A1 (en) |
CA (1) | CA2493912A1 (en) |
NO (1) | NO20050879L (en) |
WO (1) | WO2004010050A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2115360A4 (en) * | 2007-03-02 | 2010-09-15 | Air Prod & Chem | Method and apparatus for oxy-fuel combustion |
ATE547602T1 (en) * | 2007-08-30 | 2012-03-15 | Cool Flame Technologies As | ENGINE SYSTEM AND METHOD FOR SUBSTANTIALLY NOX-FREE COMBUSTION OF A FUEL IN A COMPRESSION IGNITION ENGINE |
US8375900B2 (en) * | 2009-04-15 | 2013-02-19 | John Berkyto | External combustion engine and method of converting internal combustion engine thereto |
GB2510171B (en) | 2013-01-28 | 2015-01-28 | Cool Flame Technologies As | Method and cleaning apparatus for removal of SOx and NOx from exhaust gas |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5139415A (en) * | 1990-05-25 | 1992-08-18 | Schwank Gmbh | Radiation heater |
Family Cites Families (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1636616A (en) * | 1926-09-25 | 1927-07-19 | Scheuermann Charles | Burner cone |
US1944175A (en) * | 1929-10-07 | 1934-01-23 | Phillips Petroleum Co | Process of odorizing liquefied petroleum gases |
US2702590A (en) * | 1949-09-08 | 1955-02-22 | Eloise B Stillman | Liquid fuel circulating system for mechanically atomizing liquid fuel burner and method of controlling the output of said burner |
DE1085634B (en) * | 1954-11-16 | 1960-07-21 | Combustion Eng | Process for indirect heating of a medium guided through a pipe |
US3399022A (en) * | 1967-01-23 | 1968-08-27 | Operation Oil Heat Associates | Annular burner apparatus providing blue-flame combustion of domestic fuel oil |
US3545902A (en) * | 1968-09-23 | 1970-12-08 | Frank W Bailey | Blue-flame gun burner process and apparatus for liquid hydrocarbon fuel |
US3652194A (en) * | 1969-09-24 | 1972-03-28 | Frank W Bailey | Blue-flame liquid-fuel burner process, apparatus and utilization systems |
BE757232A (en) * | 1969-10-08 | 1971-04-08 | Int Industries Ltd | BURNERS |
US3810732A (en) * | 1971-07-01 | 1974-05-14 | Siemens Ag | Method and apparatus for flameless combustion of gaseous or vaporous fuel-air mixtures |
NL7200207A (en) * | 1972-01-06 | 1973-07-10 | ||
BE795261A (en) * | 1972-02-10 | 1973-05-29 | Bailey Frank W | BLUE FLAME RETENTION CANNON BURNERS AND HEAT EXCHANGER SYSTEMS |
US3811817A (en) * | 1973-02-20 | 1974-05-21 | Bell Co Inc | Lamp for producing colored flame |
DE2457468A1 (en) * | 1973-12-07 | 1975-07-17 | Rio Tinto Rhodesia Ltd | PROCESS FOR THE PRODUCTION OF HYDROCARBON HEATING OIL FROM COAL |
US4054407A (en) * | 1975-12-29 | 1977-10-18 | Engelhard Minerals & Chemicals Corporation | Method of combusting nitrogen-containing fuels |
US4033802A (en) * | 1976-02-11 | 1977-07-05 | Culpepper & Associates, Inc. | Siding panel backerboard and method of manufacturing same |
US4118171A (en) * | 1976-12-22 | 1978-10-03 | Engelhard Minerals & Chemicals Corporation | Method for effecting sustained combustion of carbonaceous fuel |
US4378205A (en) * | 1980-04-10 | 1983-03-29 | Union Carbide Corporation | Oxygen aspirator burner and process for firing a furnace |
US4412808A (en) * | 1980-06-19 | 1983-11-01 | Trw Inc. | Dual fueled burner gun |
US4445843A (en) * | 1982-05-17 | 1984-05-01 | Process Combustion Corporation | Low NOx burners |
US5023276A (en) * | 1982-09-30 | 1991-06-11 | Engelhard Corporation | Preparation of normally liquid hydrocarbons and a synthesis gas to make the same, from a normally gaseous hydrocarbon feed |
US4500417A (en) * | 1982-12-28 | 1985-02-19 | Mobil Oil Corporation | Conversion of Fischer-Tropsch products |
US4629413A (en) * | 1984-09-10 | 1986-12-16 | Exxon Research & Engineering Co. | Low NOx premix burner |
US4969302A (en) * | 1985-01-15 | 1990-11-13 | Abitibi-Price Corporation | Siding panels |
US5621155A (en) * | 1986-05-08 | 1997-04-15 | Rentech, Inc. | Process for the production of hydrocarbons |
US4864788A (en) * | 1986-09-30 | 1989-09-12 | Tippmann Eugene R | Building construction element and the machine and method for its manufacture |
US4764266A (en) * | 1987-02-26 | 1988-08-16 | Mobil Oil Corporation | Integrated hydroprocessing scheme for production of premium quality distillates and lubricants |
US4788808A (en) * | 1987-03-30 | 1988-12-06 | Slocum Donald H | Building panel and method of fabrication |
US4976882A (en) * | 1987-10-08 | 1990-12-11 | Exxon Chemical Patents, Inc. | Alkyl phenol-sulfur condensates as fuel and lubricating oil additives |
US4833170A (en) * | 1988-02-05 | 1989-05-23 | Gtg, Inc. | Process and apparatus for the production of heavier hydrocarbons from gaseous light hydrocarbons |
CA1303477C (en) * | 1988-06-06 | 1992-06-16 | Yoichiro Ohkubo | Catalytic combustion device |
EP0558455B1 (en) * | 1992-02-28 | 1996-09-04 | Füllemann Patent Ag | Burner, particularly oil burner or combined oil/gas-burner |
US5295818A (en) * | 1992-04-06 | 1994-03-22 | Itr Holdings Ltd. | Control unit for burner assembly |
JPH0626620A (en) * | 1992-07-09 | 1994-02-04 | Nippon Oil Co Ltd | Catalyst combustion unit system |
US5395235A (en) * | 1993-04-01 | 1995-03-07 | General Electric Company | Catalytic preburner |
DE4322109C2 (en) * | 1993-07-02 | 2001-02-22 | Franz Durst | Burner for a gas / air mixture |
US5378348A (en) * | 1993-07-22 | 1995-01-03 | Exxon Research And Engineering Company | Distillate fuel production from Fischer-Tropsch wax |
US5542222A (en) * | 1994-12-14 | 1996-08-06 | Abco, Inc. | Corner post support member |
DE19517537C2 (en) * | 1995-05-12 | 1997-03-27 | Ppv Verwaltungs Ag | Control arrangement for a device for producing a fuel mixture |
US5560855A (en) * | 1995-06-30 | 1996-10-01 | Morton International, Inc. | Method of tagging and subsequently indentifying refrigerant lubricants |
US6201029B1 (en) * | 1996-02-13 | 2001-03-13 | Marathon Oil Company | Staged combustion of a low heating value fuel gas for driving a gas turbine |
US5952539A (en) * | 1996-02-23 | 1999-09-14 | Exxon Chemical Patents Inc. | Dual process for obtaining olefins |
US5766274A (en) * | 1997-02-07 | 1998-06-16 | Exxon Research And Engineering Company | Synthetic jet fuel and process for its production |
GB9714828D0 (en) * | 1997-07-15 | 1997-09-17 | Exxon Chemical Patents Inc | Improved fuel oil compositions |
WO1999021943A1 (en) * | 1997-10-28 | 1999-05-06 | University Of Kansas Center For Research, Inc. | Blended compression-ignition fuel containing light synthetic crude and blending stock |
DE19814768A1 (en) * | 1998-04-02 | 1999-10-07 | Viessmann Werke Kg | Blue burner |
DE19815785A1 (en) * | 1998-04-08 | 1999-10-14 | Schwank Gmbh | Radiant burner |
US6162956A (en) * | 1998-08-18 | 2000-12-19 | Exxon Research And Engineering Co | Stability Fischer-Tropsch diesel fuel and a process for its production |
US6261441B1 (en) * | 1998-09-24 | 2001-07-17 | Mobil Oil Corporation | Integrated hydroprocessing scheme with segregated recycle |
US6102687A (en) * | 1998-09-28 | 2000-08-15 | U.S. Department Of Energy | Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle |
AU762733B2 (en) * | 1999-03-30 | 2003-07-03 | Syntroleum Corporation | System and method for converting light hydrocarbons into heavier hydrocarbons with a plurality of synthesis gas subsystems |
US6971211B1 (en) * | 1999-05-22 | 2005-12-06 | Crane Plastics Company Llc | Cellulosic/polymer composite material |
US6190623B1 (en) * | 1999-06-18 | 2001-02-20 | Uop Llc | Apparatus for providing a pure hydrogen stream for use with fuel cells |
CN2391882Y (en) * | 1999-08-21 | 2000-08-16 | 方毅红 | Color flame birthday candle |
US6606856B1 (en) * | 2000-03-03 | 2003-08-19 | The Lubrizol Corporation | Process for reducing pollutants from the exhaust of a diesel engine |
AU2001249695A1 (en) * | 2000-04-03 | 2001-10-15 | Chevron U.S.A. Inc. | Improved conversion of syngas to distillate fuels |
WO2001083647A2 (en) * | 2000-05-02 | 2001-11-08 | Exxonmobil Research And Engineering Company | Wide cut fischer-tropsch diesel fuels |
US20020112987A1 (en) * | 2000-12-15 | 2002-08-22 | Zhiguo Hou | Slurry hydroprocessing for heavy oil upgrading using supported slurry catalysts |
US6488726B1 (en) * | 2001-02-20 | 2002-12-03 | Jinman Lim | Lamp fuel composition for colored flames and manufacturing method thereof |
US6392108B1 (en) * | 2001-06-15 | 2002-05-21 | Chevron U.S.A. Inc. | Inhibiting oxidation of a fischer-tropsch product using temporary antioxidants |
DE20110553U1 (en) * | 2001-06-26 | 2001-10-25 | ENGINION AG, 13503 Berlin | Steam engine |
AU2002323697B2 (en) * | 2001-07-02 | 2008-05-01 | Sasol Technology (Pty) Ltd | Biodiesel-fischer-tropsch hydrocarbon blend |
US6976362B2 (en) * | 2001-09-25 | 2005-12-20 | Rentech, Inc. | Integrated Fischer-Tropsch and power production plant with low CO2 emissions |
US6596780B2 (en) * | 2001-10-23 | 2003-07-22 | Texaco Inc. | Making fischer-tropsch liquids and power |
US20050006280A1 (en) * | 2001-10-25 | 2005-01-13 | Chevron U.S.A. Inc. | Hydroprocessing in multiple beds with intermediate flash zones |
US6787025B2 (en) * | 2001-12-17 | 2004-09-07 | Chevron U.S.A. Inc. | Process for the production of high quality middle distillates from mild hydrocrackers and vacuum gas oil hydrotreaters in combination with external feeds in the middle distillate boiling range |
MY140297A (en) * | 2002-10-18 | 2009-12-31 | Shell Int Research | A fuel composition comprising a base fuel, a fischer-tropsch derived gas oil and an oxygenate |
US7658051B2 (en) * | 2004-08-04 | 2010-02-09 | Georgia Foam, Inc. | Reinforced sidings |
US7698866B2 (en) * | 2004-08-04 | 2010-04-20 | Georgia Foam, Inc. | Reinforced sidings |
-
2003
- 2003-07-18 JP JP2004522512A patent/JP2005533158A/en active Pending
- 2003-07-18 US US10/521,378 patent/US20050244764A1/en not_active Abandoned
- 2003-07-18 WO PCT/EP2003/007863 patent/WO2004010050A1/en active Application Filing
- 2003-07-18 CA CA002493912A patent/CA2493912A1/en not_active Abandoned
- 2003-07-18 AU AU2003250994A patent/AU2003250994A1/en not_active Abandoned
- 2003-07-18 EP EP03765051A patent/EP1534996A1/en not_active Withdrawn
-
2005
- 2005-02-18 NO NO20050879A patent/NO20050879L/en not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5139415A (en) * | 1990-05-25 | 1992-08-18 | Schwank Gmbh | Radiation heater |
Also Published As
Publication number | Publication date |
---|---|
EP1534996A1 (en) | 2005-06-01 |
US20050244764A1 (en) | 2005-11-03 |
AU2003250994A1 (en) | 2004-02-09 |
NO20050879L (en) | 2005-02-18 |
WO2004010050A1 (en) | 2004-01-29 |
CA2493912A1 (en) | 2004-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100696091B1 (en) | Apparatus and method for preparing and delivering fuel | |
ES2260452T3 (en) | METHOD AND DEVICE FOR LITTLE NON-CATALYTIC CONTAMINANT COMBUSTION OF A LIQUID FUEL. | |
Jugjai et al. | The combustion of liquid fuels using a porous medium | |
US8215949B2 (en) | Combustion stabilization systems | |
EP0611433A1 (en) | LOW NO x? COMBUSTION PILOTED BY LOW NO x? PILOTS. | |
Lapirattanakun et al. | Developement of porous media burner operating on waste vegetable oil | |
JPH11166705A (en) | Method and apparatus for combusting emulsion of water/ fossil fuel mixture | |
Sharma et al. | Effect of burner configuration and operating parameters on the performance of kerosene pressure stove with submerged porous medium combustion | |
JP2005533158A (en) | Liquid hydrocarbon combustion method | |
RU193788U1 (en) | Boiler installation | |
Xie et al. | Flow field, flame structure and emissions quantifications of oxygenated glycerol in a swirl flame combustor | |
KR100839458B1 (en) | The burning system of heavy oil and emulsion oil and emulsion of heavy oil | |
Striūgas et al. | Processing of the glycerol fraction from biodiesel production plants to provide new fuels for heat generation. | |
JP2005533234A (en) | Using a blue flame burner | |
Hsu et al. | Reduction of energy consumption and pollution emissions for industrial furnace using hydrogen-rich tail gas | |
JP2005533235A (en) | Use of yellow flame burner | |
RU2499959C1 (en) | Method of air heating, device for its realisation and method to control air heating | |
RU2828703C1 (en) | Burner device for combustion of liquid off-grade hydrocarbon fuel by steam gasification | |
RU2013694C1 (en) | Method and device for burning fuel oil | |
RU2824910C1 (en) | Self-contained burner | |
Kaushik et al. | Experimental analysis of a porous radiant pressurized cook stove by using a blend of waste cooking oil (WCO) and kerosene | |
TW201441360A (en) | Low carbon liquid fuel composition | |
WO2004009744A1 (en) | Process to generate heat | |
Wang et al. | Reuse of recovered waste tail-gas in a full-scale furnace | |
JPS62213605A (en) | Kerosene heater having double wick structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060613 |
|
RD13 | Notification of appointment of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7433 Effective date: 20090608 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090626 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20090723 |
|
RD14 | Notification of resignation of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7434 Effective date: 20090723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100629 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100730 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100825 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111018 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120217 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20140320 |