[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005509083A - Countercurrent hydrotreatment - Google Patents

Countercurrent hydrotreatment Download PDF

Info

Publication number
JP2005509083A
JP2005509083A JP2003544153A JP2003544153A JP2005509083A JP 2005509083 A JP2005509083 A JP 2005509083A JP 2003544153 A JP2003544153 A JP 2003544153A JP 2003544153 A JP2003544153 A JP 2003544153A JP 2005509083 A JP2005509083 A JP 2005509083A
Authority
JP
Japan
Prior art keywords
liquid
hydrogen
catalyst bed
catalyst
bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003544153A
Other languages
Japanese (ja)
Other versions
JP2005509083A5 (en
Inventor
アントニアス・アドリアナス・マリア・ローヴェルス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of JP2005509083A publication Critical patent/JP2005509083A/en
Publication of JP2005509083A5 publication Critical patent/JP2005509083A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/002Apparatus for fixed bed hydrotreatment processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Cyclones (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

多孔質触媒粒子の固定床含有床(11)を有する反応帯(10)において、上向き流のガスと降下する液体とを確実に向流接触させるため、超大気処理条件下、高温で重質炭化水素供給原料を、下向き流で触媒床(11)上で主として液相に分配して触媒粒子と接触させると共に、反応帯(10)中の水素含有ガスを触媒床(11)の下に導入させる条件下で、供給原料を水素含有ガスと接触させ、触媒床(11)下の処理した液体を取り出すと共に触媒床(11)上の水素枯渇流体を取り出すことにより、重質炭化水素供給原料を水素化処理する方法であって、該触媒床(11)の空隙比率が0.5未満であり、かつ向流気液接触は、液体のペクレ数が0〜10の範囲になるような条件下で行われる該方法。  In the reaction zone (10) having a fixed bed containing porous catalyst particles (11), in order to ensure that the upward flow gas and the descending liquid are in countercurrent contact, heavy carbonization is performed at high temperature under super atmospheric treatment conditions. The hydrogen feed is distributed in a downward flow mainly on the catalyst bed (11) into the liquid phase and brought into contact with the catalyst particles, and the hydrogen-containing gas in the reaction zone (10) is introduced under the catalyst bed (11). Under conditions, the feedstock is brought into contact with the hydrogen-containing gas, the treated liquid under the catalyst bed (11) is removed and the hydrogen-depleted fluid on the catalyst bed (11) is removed to remove the heavy hydrocarbon feedstock to hydrogen. In which the void ratio of the catalyst bed (11) is less than 0.5 and the countercurrent gas-liquid contact is performed under such conditions that the Peclet number of the liquid is in the range of 0 to 10. The method performed.

Description

本発明は、製品、特に燃料及び/又は中間蒸留物を水素の消費が比較的少なくてもむしろ高収率で得られる、高温高圧での炭化水素質供給原料の水素化処理方法に関する。   The present invention relates to a process for hydrotreating hydrocarbonaceous feedstocks at high temperature and pressure, wherein products, in particular fuels and / or middle distillates, are obtained in high yields with relatively low consumption of hydrogen.

発明の背景
当該技術分野で水素化処理は周知であり、多年に亘って実施されてきたが、なお重要な製油所処理の一つである。長年、水素化処理用の各種の供給原料、触媒及び処理条件が説明され、その多くが実用に供されている。例えば水素化分解では、水素化分解すべき供給原料を水素含有ガスと一緒に、炭素−炭素結合を破壊する固有の能力を有する1種以上の金属化合物や、分解操作終了後に存在する断片を水素化する固有の能力を有する1種以上の金属化合物を有する粒子の固定配列含有触媒床に通すのは普通である。
BACKGROUND OF THE INVENTION Hydroprocessing is well known in the art and has been practiced for many years, but is still one of the important refinery processes. Over the years, various feedstocks, catalysts and processing conditions for hydroprocessing have been described, many of which are in practical use. For example, in hydrocracking, the feedstock to be hydrocracked together with a hydrogen-containing gas, one or more metal compounds with inherent ability to break carbon-carbon bonds, and fragments present after the end of the cracking operation are hydrogenated. It is common to pass through a fixed bed-containing catalyst bed of particles having one or more metal compounds with the inherent ability to be converted.

供給原料及び水素含有ガスを触媒床に通常、重力を利用して塔頂から塔底まで同じ方向に通す水素化分解法は、並流水素化処理として知られている。これは、最も古くから商業的に適用されている水素化分解方法である。70年代初期には水素化処理法をいわゆる“分裂流(split flow)”様式で操作することが提案された。このような方法では、特にUS 3,607,723、US 3,671,420及びUS 3,897,329には、供給原料を反応帯中の2つの触媒床間に一定に導入し、一方、触媒床の底部から水素を導入する。供給原料は、触媒床上で分配されて触媒床に下向きに通される。本質的には下流床(供給原料の導入点から見て)で行われる処理は、向流様式(供給原料は、上昇する水素と対面して下向きに移動する)で操作され、一方、触媒床(この上で供給原料が分配される)上の触媒床中で行われる処理は、並流様式(上昇する水素及び上昇水素によりストリッピングされた流体は、同じ方向に移動する)で行われる。このような“分裂流”処理では、好ましくは同じ処理条件下で操作される2つの反応帯を利用している。   A hydrocracking process in which feedstock and hydrogen-containing gas are typically passed through the catalyst bed in the same direction from the top to the bottom using gravity is known as cocurrent hydroprocessing. This is the hydrocracking method that has been applied commercially since the oldest. In the early 70's it was proposed to operate the hydrotreatment process in a so-called “split flow” manner. In such a process, in particular in US 3,607,723, US 3,671,420 and US 3,897,329, the feedstock is constantly introduced between the two catalyst beds in the reaction zone, Hydrogen is introduced from the bottom of the catalyst bed. The feedstock is distributed over the catalyst bed and passed downward through the catalyst bed. In essence, processing performed in the downstream bed (as viewed from the feedstock introduction point) is operated in a countercurrent manner (feedstock moves downward facing the rising hydrogen), while the catalyst bed The processing performed in the upper catalyst bed (on which the feedstock is distributed) is performed in a co-current manner (rising hydrogen and fluid stripped by rising hydrogen move in the same direction). Such a “split flow” process utilizes two reaction zones that are preferably operated under the same process conditions.

向流様式の操作では並流に存在する混合相の不十分な流れ分配が若干緩和できることが認められたが、やはり向流水素化処理に厳しい影響を与えるという大きな制約がある。
向流水素化処理における大きな制約は、従来の固定床では通常、“触媒床洪水”といわれる現象を受けやすい危険があることである。この触媒床洪水は、上昇する水素含有ガスの速度が、水素化処理される供給原料の触媒床通過中、該原料の重力による下向き流を妨げるような時に起こる。触媒床が洪水条件に近づくと、触媒接触は改善できるかも知れないが、圧力又は温度の変動、或いは流体の流速の変動に対して処理が攻撃を受け易くもなる(vulnerable)。洪水を開始できる撹乱が起これば、安定な操作に回復させるため、予定しない操業停止の程度までさえ、処理を分裂させる。
It has been observed that countercurrent flow operation can slightly mitigate the inadequate flow distribution of the mixed phase present in the cocurrent flow, but still has the major limitation of severely affecting the countercurrent hydrotreatment.
A major limitation in countercurrent hydroprocessing is that conventional fixed beds are usually susceptible to the phenomenon called “catalyst bed flooding”. This catalyst bed flood occurs when the rate of the rising hydrogen-containing gas prevents the feedstock to be hydrotreated from passing downwardly due to gravity of the feedstock through the catalyst bed. As the catalyst bed approaches flood conditions, catalyst contact may be improved, but the process becomes vulnerable to pressure or temperature fluctuations or fluid flow rate fluctuations. If there is a disturbance that can initiate a flood, the process will be disrupted, even to the extent of an unplanned shutdown, to restore stable operation.

向流様式で操作する反応器における洪水の発生を最小化するため、特に特許公開WO 99/00181では、自動調節性で、反応器の洪水点付近まで操作できるガスバイパス手段を備えた水素化処理反応器を提案している。しかし、追加の設備を設ける必要がある上、なお起こる洪水の恐れは、完全には取り除かれていない。   In order to minimize the occurrence of floods in reactors operating in countercurrent mode, in particular in patent publication WO 99/00181, hydroprocessing with gas bypass means that can be operated to the vicinity of the reactor flood point with self-regulation. A reactor is proposed. However, additional facilities need to be installed and the risk of flooding that has yet to be eliminated.

US 4,775,281は、向流様式の重質炭化水素を特殊な起泡制御により処理することに向けたもので、多孔質固体床触媒が適切に分配、造形されていれば、この固体床を通過する均一な垂直流が得られる。US 4,775,281が特に教示することは、(球状)固体を密に詰めた床(反応帯に低空隙比を保持させる)を使用すると、触媒濃度の点では有利であるが、特に2つの相の向流の流れを必要とする時、流体流による干渉も起こり得ることである。したがって、前記特許明細書では、使用する触媒床は、通常、触媒床の1/2よりも高い空隙率を有することを強く奨めている。緩く詰めた多葉(polylobal)形又は円筒形押出物を使用すると、空隙比(void fraction)は、0.5〜0.9にできる。これは、予定処理の収率に極めて影響を与える反応器の有効容積についての大きな犠牲を意味する。
特許公開WO 99/00181 US 4,775,281 Chemical Reactor Design and Operation,K.Westerterp等ISBN 0 471 90183 0 Advantages,Possibilities and Limitations of Small Scale Testing of Catalysts for Fixed−Bed Processes:S.T.Sie,210th National Meeting,American Chemical Society,Chicago,Ill.,August 20−25,1995,p463−472
US 4,775,281 is directed to treating countercurrent heavy hydrocarbons with special foam control, and if the porous solid bed catalyst is properly distributed and shaped, this solid A uniform vertical flow through the floor is obtained. US Pat. No. 4,775,281 specifically teaches that using a densely packed (spherical) solid (retaining a low void ratio in the reaction zone) is advantageous in terms of catalyst concentration, especially 2 When a two-phase countercurrent flow is required, fluid flow interference can also occur. Therefore, the patent specification strongly recommends that the catalyst bed used usually has a porosity higher than 1/2 of the catalyst bed. When using loosely packed polylobular or cylindrical extrudates, the void fraction can be between 0.5 and 0.9. This represents a significant sacrifice in the effective volume of the reactor that greatly affects the yield of the scheduled process.
Patent Publication WO 99/00181 US 4,775,281 Chemical Reactor Design and Operation, K.M. Westerp et al. ISBN 0 471 90183 0 Advantages, Possibilities and Limitations of Small Scale Testing of Catalysts for Fixed-Bed Processes: S. T.A. Sie, 210th National Meeting, American Chemical Society, Chicago, Ill. , August 20-25, 1995, p463-472.

今回、低空隙比の反応帯中で向流水素化処理が実施でき、しかも触媒床の洪水を防止する特別な手段を必要としないことが見い出された。本発明の向流水素化処理方法は、洪水条件下で行うことが好ましい。また、この向流方法は、並流水素化処理よりも高収率が得られる。本発明方法は、高沸点硫黄含有成分の硫黄除去において、高価な水素の消費が少なく、重質端末(ends)の転化率が高く、しかも選択率が高いことも見い出された。   It has now been found that countercurrent hydrogenation can be carried out in a reaction zone with a low porosity ratio and that no special means for preventing flooding of the catalyst bed are required. The countercurrent hydrotreatment method of the present invention is preferably performed under flood conditions. In addition, this counterflow method provides a higher yield than the cocurrent flow hydrogenation process. It has also been found that the method of the present invention consumes less expensive hydrogen, has a high conversion rate of heavy terminals (ends), and has a high selectivity in removing sulfur from components having a high boiling point.

したがって、本発明は、多孔質触媒粒子の固定配列含有床を有する反応帯において、上向き流のガスと降下する液体とを確実に向流接触させるため、超大気処理条件下、高温で重質炭化水素供給原料を、下向き流で触媒床上で主として液相に分配して触媒粒子と接触させると共に、反応帯中の水素含有ガスを触媒床の下に導入させる条件下で、供給原料を水素含有ガスと接触させ、触媒床下の処理した液体を取り出すと共に触媒床上の水素枯渇流体を取り出すことにより、重質炭化水素供給原料を水素化処理する方法であって、該触媒床の空隙比率が0.5未満であり、かつ向流気液接触は、液体のペクレ数が0〜10の範囲になるような条件下で行われる該方法に関する。   Accordingly, the present invention provides heavy carbonization at high temperatures under superatmospheric treatment conditions to ensure countercurrent contact between the upflowing gas and the descending liquid in a reaction zone having a fixed array of porous catalyst particles. The hydrogen feed is distributed in a downward flow mainly on the catalyst bed into the liquid phase and brought into contact with the catalyst particles, and the feedstock is supplied with the hydrogen-containing gas under the condition that the hydrogen-containing gas in the reaction zone is introduced under the catalyst bed. And removing the treated liquid under the catalyst bed and removing the hydrogen depleted fluid on the catalyst bed to hydrotreat the heavy hydrocarbon feedstock, wherein the catalyst bed has a void ratio of 0.5. And counter-current gas-liquid contact relates to the process performed under conditions such that the Peclet number of the liquid is in the range of 0-10.

特定の理論に束縛されたくないが、低ペクレ数の液体(即ち、特定量の液体の逆混合を許容する)により特徴付けられる気/液体制での操作は、比較的密に詰めた触媒粒子の使用を可能とし、したがって所望生成物の収率を実質的に向上する。換言すれば、静的液体の保持量を減少させ、これにより動的液体の保持量を増加させる処理条件を与えると、不要な反応は減少し、この処理条件のない場合よりも多くの中間蒸留物が作られる。触媒の低空隙比に、液相の静的保持量と動的保持量との減少比率を組合わせ使用すると、向流水素化処理の出来映えが向上する。   While not wishing to be bound by any particular theory, operation in a gas / liquid regime characterized by low Peclet number liquids (ie, allowing backmixing of specific amounts of liquids) is a relatively densely packed catalyst particle. And thus substantially improve the yield of the desired product. In other words, given processing conditions that reduce static liquid retention and thereby increase dynamic liquid retention, unwanted reactions are reduced and more intermediate distillations than without this processing condition. Things are made. When the low void ratio of the catalyst is used in combination with the reduction ratio of the static retention amount and the dynamic retention amount of the liquid phase, the performance of the countercurrent hydrogenation treatment is improved.

向流気/液接触を行う際、助けとなるパラメーターとしては、特にガスへの導入手段におけるガス速度(不要な静的保持量を減少させる増大ガス速度)、液体流及び制約の大きさが挙げられる。本発明の向流水素化処理方法において適切なペクレ数に到達させるため、これらのパラメーターの1つ以上を適用する方法は、当業者に公知である。   Parameters that help in countercurrent gas / liquid contact include gas velocities (increase gas velocities that reduce unnecessary static retention), liquid flow, and the size of the constraints, especially in the introduction to the gas. It is done. Methods of applying one or more of these parameters to reach the appropriate Peclet number in the countercurrent hydroprocessing method of the present invention are known to those skilled in the art.

本発明目的のため、触媒床の空隙比率は、「1−(反応帯の全容積に対する触媒粒子の占有容積の比(fraction))」と定義する。固体触媒の内部細孔容積は、この空隙比率の定義には含まれていない。なお、空隙比率は、触媒粒子間にある間隙と、適当な触媒粒子とこれら触媒粒子を含む反応帯の壁との間にある間隙とで構成される。   For the purposes of the present invention, the void ratio of the catalyst bed is defined as “1- (ratio of the occupied volume of catalyst particles to the total volume of the reaction zone)”. The internal pore volume of the solid catalyst is not included in this void ratio definition. The void ratio is constituted by a gap between the catalyst particles and a gap between appropriate catalyst particles and a reaction zone wall containing these catalyst particles.

本発明方法で使用できる触媒床の間隙比率は、好適には0.25を超える(かつ0.50未満)。好ましい値は、0.30〜0.48の範囲であり、特に好ましい値は、0.35〜0.47の範囲である。印象的な結果は、間隙比率が0.45(但し、液体のペクレ数が0〜10となる条件下で操作する)となるように詰めた触媒粒子を用いて得られた。   The pore ratio of the catalyst bed that can be used in the process according to the invention is preferably above 0.25 (and below 0.50). Preferable values are in the range of 0.30 to 0.48, and particularly preferable values are in the range of 0.35 to 0.47. Impressive results were obtained with catalyst particles packed so that the gap ratio was 0.45 (operating under conditions where the liquid Peclet number was 0-10).

液体及びガスが互いに接触し、一方、固体相が固定されるシステムでは、ペクレ数は、多孔質固体触媒粒子の固定配列を用いた水素化処理の場合と同様、Chemical Reactor Design and Operation,K.Westerterp等ISBN 0 471 90183 0の対流による輸送速度と分散による輸送速度との比として定義できる。全体が逆混合のシステム(通常、CSTR(連続撹拌式タンク反応器)条件下で操作する際に生じる)では、ペクレ数は、0と定義され、一方、定義上、逆混合が存在しない閉塞流(例えば従来の細流水素化分解)で操作するシステムのペクレ数は、不定(∞)として定義される。本発明方法で液体のペクレ数の好ましい範囲は、1〜8である。所定の状況での実ペクレ数を算出する方法は、当業者には明白である。前述のように、本発明の水素化処理方法の出来映えを向上できる低ペクレ数の液体を許容する条件下で低空隙比の触媒床を併用する。   In systems where the liquid and gas are in contact with each other while the solid phase is fixed, the Peclet number is the same as in the case of hydrotreating using a fixed array of porous solid catalyst particles, Chemical Reactor Design and Operation, K.M. Westerp et al. ISBN 0 471 90183 0 can be defined as the ratio of the transport rate by convection and the transport rate by dispersion. In a totally backmixed system (usually occurring when operating under CSTR (continuous stirred tank reactor) conditions), the Peclet number is defined as 0, while by definition, an occluded flow without backmixing. The Peclet number of a system operating in (eg conventional trickle hydrocracking) is defined as indefinite (∞). In the method of the present invention, the preferred range of the Peclet number of the liquid is 1-8. It will be clear to those skilled in the art how to calculate the actual Peclet number in a given situation. As described above, a catalyst bed with a low void ratio is used in combination under conditions that allow a low Peclet number liquid that can improve the performance of the hydrotreating method of the present invention.

本発明の水素化処理方法に使用される触媒は、当該技術分野で周知である。これらの触媒は、普通、元素の周期律表の第VI族の1種以上の金属及び/又は第VIII族の1種以上の非貴金属を含有する。これらの金属は、酸化物及び/又は硫化物として存在すると便利である。好適な第VI族元素は、モリブデン及びタングステンであり、好適な第VIII族金属は、ニッケル及びコバルトである。金属化合物の使用量は、広範囲に変化できる。好適な範囲は、第VI族金属化合物では、金属として表わして、2〜40重量%であり、第VIII族金属化合物は、金属として表わして、1〜10重量%である。   The catalysts used in the hydroprocessing method of the present invention are well known in the art. These catalysts usually contain one or more metals from Group VI of the Periodic Table of Elements and / or one or more non-noble metals from Group VIII. These metals are conveniently present as oxides and / or sulfides. Preferred Group VI elements are molybdenum and tungsten, and preferred Group VIII metals are nickel and cobalt. The amount of metal compound used can vary widely. The preferred range is 2 to 40% by weight, expressed as a metal, for a Group VI metal compound, and the Group VIII metal compound is 1-10% by weight, expressed as a metal.

普通、触媒粒子は、担体上に触媒活性金属を存在させたものである。好適な担体材料はアルミナ、シリカ、シリカ−アルミナ、マグネシア、チタニア、ジルコニア及びこれら材料の2種以上の混合物のような無機耐火性酸化物である。触媒粒子は、(更に)ゼオライト及び/又は非晶質シリカ−アルミナのような専用の分解性成分を含むのが有利かも知れない。好適な分解性成分の例は、当該技術分野で周知である。好適なゼオライトは、ゼオライトY及びゼオライトβを含むが、(シリコ)−アルミノホスフェートや関連化合物のような非ゼオライト系成分も使用できる。   Usually, the catalyst particles are those in which a catalytically active metal is present on a support. Suitable carrier materials are inorganic refractory oxides such as alumina, silica, silica-alumina, magnesia, titania, zirconia and mixtures of two or more of these materials. It may be advantageous that the catalyst particles comprise (further) a dedicated degradable component such as zeolite and / or amorphous silica-alumina. Examples of suitable degradable components are well known in the art. Suitable zeolites include zeolite Y and zeolite β, although non-zeolitic components such as (silico) -aluminophosphate and related compounds can also be used.

本発明の水素化処理方法では、球状粒子、円筒形粒子、及び三葉体(trilobe)や四葉体(qudrulobe)のような多葉形粒子等の広範な各種触媒形状が使用できる。良好な結果は、三葉形触媒粒子を用いて得られた。最大直径が0.5〜3.5mmの粒子が好ましく利用される。良好な結果は、直径1.6mmの三葉形触媒粒子を用いて得られた。   The hydrotreating method of the present invention can use a wide variety of catalyst shapes such as spherical particles, cylindrical particles, and multilobal particles such as trilobes and quadrulobes. Good results have been obtained with trilobal catalyst particles. Particles having a maximum diameter of 0.5 to 3.5 mm are preferably used. Good results have been obtained with 1.6 mm diameter trilobal catalyst particles.

本発明の水素化処理方法は、200〜475℃の範囲、好ましくは250〜425℃の範囲の温度、及び20〜250バール、好ましくは40〜160バールの圧力を用いて行うのが便利であり得る。この方法は、1〜20Nl 原料/触媒リットル/時間の範囲のLHSV、及び100〜2000 Nl/l、好ましくは250〜1500 Nl/lの範囲の水素/炭化水素原料比で行うことができる。処理条件の設定は、液体のペクレ数が0〜10の範囲になるように(反応帯における触媒床の空隙比率は、前述のように0.5未満である)、選ぶ必要があることは明らかであろう。   The hydrotreatment process of the present invention is conveniently carried out using a temperature in the range of 200 to 475 ° C, preferably in the range of 250 to 425 ° C and a pressure of 20 to 250 bar, preferably 40 to 160 bar. obtain. This process can be carried out with LHSV in the range of 1-20 Nl feed / liter of catalyst / hour and hydrogen / hydrocarbon feed ratio in the range of 100-2000 Nl / l, preferably 250-1500 Nl / l. It is clear that the processing conditions should be selected so that the Peclet number of the liquid is in the range of 0 to 10 (the void ratio of the catalyst bed in the reaction zone is less than 0.5 as described above). Will.

本発明方法で使用される重質炭化水素供給原料は、重質ガス油等の水素化分解において商業的に使用される通常の供給原料を含む。好適な供給原料は、初期沸点が200℃以上であり、一方、沸点が520℃を超える材料を実質量含む、例えばこの種の材料を40重量%以下含む供給原料も十分処理できる。   The heavy hydrocarbon feedstock used in the process of the present invention includes conventional feedstock used commercially in hydrocracking such as heavy gas oil. Suitable feedstocks can sufficiently process feedstocks having an initial boiling point of 200 ° C. or higher, while containing substantial amounts of materials with boiling points above 520 ° C., for example, 40% by weight or less of this type of material.

本発明方法では市販の水素が好適に使用できる。水素は、触媒活性に実質的に影響を与えない程度まで固有の不純物を含んでいてよい。本発明方法では、水素を50容量%以上、特に80容量%以上含む水素流が好ましい。通常の不純物は、軽質炭化水素及び窒素を含有する。   In the method of the present invention, commercially available hydrogen can be preferably used. Hydrogen may contain intrinsic impurities to the extent that they do not substantially affect the catalyst activity. In the method of the present invention, a hydrogen stream containing 50% by volume or more, particularly 80% by volume or more of hydrogen is preferable. Typical impurities contain light hydrocarbons and nitrogen.

本発明方法において有利に使用できる処理用配置構成は多数ある。特に関心のある5つの装置配列(line−up)について以下に説明するが、当業者ならば同等の装置配列も使用できることを認識している。図1には、向流水素化処理用の基本的装置配列が記載されている。図2A及び2Bには、第一及び第二の好ましい装置配列が記載されている。図3には、第三の好ましい装置配列が記載され、また図4には第四の好ましい装置配列が記載されている。各図において、同じ部品には同じ番号を使用した。   There are a number of processing arrangements that can be advantageously used in the method of the present invention. Five device-ups of particular interest are described below, but those skilled in the art will recognize that equivalent device sequences can be used. FIG. 1 describes the basic equipment arrangement for countercurrent hydroprocessing. 2A and 2B describe first and second preferred device arrangements. FIG. 3 describes a third preferred device arrangement, and FIG. 4 describes a fourth preferred device arrangement. In each figure, the same numbers are used for the same parts.

図1(基本的装置配列)
液体供給原料は、ライン1から触媒床11を有する反応帯10の頂部に導入され、触媒床上に分配(手段は図示せず)され、一方、水素含有ガスはライン2から反応帯10の触媒床11の下に導入され、触媒床内を上昇する。処理された液体(処理液)は、ライン3経由で反応帯10から取り出され、そのまま使用するか、或いは更に処理/品質向上(図示せず)を行なうことができ、また水素の枯渇した流体は、内部に存在する液体を分離する(手段は図示せず)ため冷却できるライン4経由で反応帯10から取り出される。図1で説明した方法は、触媒床11内の液体を低ペクレ数にできるような条件下で行われる。
Fig. 1 (Basic equipment arrangement)
Liquid feed is introduced from line 1 to the top of reaction zone 10 having catalyst bed 11 and distributed (means not shown) on the catalyst bed, while hydrogen-containing gas is passed from line 2 to the catalyst bed in reaction zone 10. 11 and rises in the catalyst bed. The treated liquid (treatment liquid) is removed from the reaction zone 10 via line 3 and can be used as is or further processed / quality-enhanced (not shown). The liquid present inside is separated from the reaction zone 10 via a line 4 which can be cooled to separate the liquid (means not shown). The method described with reference to FIG. 1 is performed under conditions that allow the liquid in the catalyst bed 11 to have a low Peclet number.

図2A(処理液の更なる処理)
図1に記載した装置配列は、触媒床11の下流に、細流条件下(即ち、液体相に高ペクレ数を生じさせる条件下)で操作できる触媒床21を有する別の反応帯20を存在させることにより拡大される。反応帯10の底部から出た処理液は、反応帯20内の触媒床21を通過し、そこからライン5経由で取り出される。この処理液はそのまま使用するか、或いは更なる処理(図示せず)を行うことができる。この装置配列には、水素含有ガス用の別個の入口はない(所望ならば、存在してもよい)。
FIG. 2A (Further processing of processing solution)
The apparatus arrangement described in FIG. 1 has another reaction zone 20 having a catalyst bed 21 that can be operated downstream under the catalyst bed 11 under trickle conditions (i.e. conditions that produce a high Peclet number in the liquid phase). It is expanded by. The treatment liquid exiting from the bottom of the reaction zone 10 passes through the catalyst bed 21 in the reaction zone 20 and is taken out from there through line 5. This processing solution can be used as it is or further processing (not shown) can be performed. There is no separate inlet for the hydrogen-containing gas in this arrangement (which may be present if desired).

図2B(処理液及び水素枯渇流体の両者の更なる処理)
図2Bに記載の装置配列は、図2Aの装置配列において、触媒床11を有する反応帯10上に更に触媒床31を有する反応帯30を追加したものである。触媒床31は、細流様式(高ペクレ数の液体)で操作され、また水素枯渇流体は、内部に存在する液体を分離する(手段は図示せず)ため冷却できるライン7経由で取り出される。液体供給原料は、反応帯30内の触媒床31の頂部にあるライン8から任意に追加導入できる。
FIG. 2B (Further treatment of both treatment liquid and hydrogen depleted fluid)
The apparatus arrangement shown in FIG. 2B is obtained by adding a reaction zone 30 having a catalyst bed 31 to the reaction zone 10 having the catalyst bed 11 in the apparatus arrangement of FIG. 2A. The catalyst bed 31 is operated in a trickle mode (high Peclet number liquid) and the hydrogen depleted fluid is withdrawn via line 7 which can be cooled to separate the liquid present therein (means not shown). Liquid feedstock can optionally be additionally introduced from line 8 at the top of catalyst bed 31 in reaction zone 30.

図3(3つの触媒床を有し、その中の2つは向流で操作)
図2Bに記載の装置配列は、水素含有流体をライン2から導入せずに、触媒床21を有する反応帯20の底部にあるライン12から導入する程度まで変化される。この装置配列様式は、この方法を触媒床21、11では向流で行うことを可能にし、一方、触媒床31は細流様式で操作される。触媒床21及び/又は11を洪水条件下で操作することが可能である。
Figure 3 (Three catalyst beds, two of which are operated countercurrently)
The arrangement of the apparatus described in FIG. 2B is varied to the extent that hydrogen-containing fluid is not introduced from line 2 but from line 12 at the bottom of reaction zone 20 having catalyst bed 21. This arrangement of equipment allows the process to be carried out countercurrently in the catalyst beds 21, 11 while the catalyst bed 31 is operated in a trickle manner. It is possible to operate the catalyst beds 21 and / or 11 under flood conditions.

図4(更なる処理の組合わせ)
液体供給原料は、触媒床11を有する反応帯10の頂部にあるライン1から導入され、この触媒上に分配(手段は図示せず)され、一方、水素含有ガスは、反応帯10内の触媒床11の下にあるライン2から導入され、触媒床11内を上昇する。処理液は、反応帯10から取り出され、ライン3経由で(少なくとも一部)送られ、反応帯10からライン4経由で(少なくとも一部)取り出された水素枯渇流体と組み合わされる。勿論、ライン4経由で反応帯10を出る液体の一部を、気/液混合物がライン3の処理流体と組合わさって、ライン13経由で反応帯40に入る供給原料を形成するように、凝縮することは実際に可能であり、好ましい。混合物は、こうしてライン13経由で触媒床41を有する反応帯40に送られる。触媒床41は、細流様式(高ペクレ数の液体)で(水素化処理ユニットとして)操作される。この方法の該部分に必要な水素は、反応帯40の頂部にあるライン14から供給でき、これによりライン13経由で反応帯40に入る混合物を並流水素化処理するか、或いは反応帯40の底部にあるライン14経由で供給でき、これにより触媒床41を向流様式で操作させる。処理液は、ライン15から取り出され、また水素枯渇流体は、ライン16から取り出される。
本発明方法を以下の非限定的実施例により詳細に説明する。
Figure 4 (Combination of further processing)
The liquid feed is introduced from line 1 at the top of reaction zone 10 having catalyst bed 11 and distributed (means not shown) on this catalyst, while the hydrogen-containing gas passes through the catalyst in reaction zone 10. It is introduced from the line 2 under the bed 11 and rises in the catalyst bed 11. The treatment liquid is removed from the reaction zone 10, sent via line 3 (at least in part), and combined with the hydrogen depleted fluid removed from reaction zone 10 via line 4 (at least in part). Of course, a portion of the liquid exiting reaction zone 10 via line 4 is condensed so that the gas / liquid mixture combines with the process fluid in line 3 to form a feedstock entering reaction zone 40 via line 13. It is actually possible and preferred. The mixture is thus sent via line 13 to a reaction zone 40 having a catalyst bed 41. The catalyst bed 41 is operated in a trickle mode (high Peclet number liquid) (as a hydrotreating unit). The hydrogen required for this part of the process can be fed from line 14 at the top of reaction zone 40 so that the mixture entering reaction zone 40 via line 13 can be cocurrently hydrotreated or It can be fed via line 14 at the bottom, thereby operating the catalyst bed 41 in a countercurrent manner. Process liquid is removed from line 15 and hydrogen depleted fluid is removed from line 16.
The method of the present invention is illustrated in detail by the following non-limiting examples.

実施例1
長さ65cm、内径2cmで、1.6mmの三葉形触媒粒子(超安定ゼオライトY 20重量%と、水素化成分としてNi 4重量%及びW 17重量%を含有するアルミナ基シリカ−アルミナ80重量%とからなる)を有する円筒形反応器(概略は、図1に示すとおり)に、重質ガス油を触媒床内に下向きに導入し、また触媒床の底部から水素を重質ガス油に対し向流で導入した。触媒床は、空隙比が0.45になるように装填した。ガス油の初期沸点(IBP)は230℃、340℃を超える沸点のものは62%、最終沸点(FBP)は450℃である。ガス油は、硫黄を2.1重量%、窒素を317ppm含有していた。適用水素ガス速度だけを変えて2つの実験を行った。実験1、2の詳細を下記第I表に示す。
Example 1
Trilobal catalyst particles of 65 mm in length and 2 cm in inner diameter and 1.6 mm (alumina-based silica-alumina 80 wt. In a cylindrical reactor (generally as shown in FIG. 1) with heavy gas oil introduced downward into the catalyst bed and hydrogen from the bottom of the catalyst bed into heavy gas oil. It was introduced counter-currently. The catalyst bed was loaded so that the void ratio was 0.45. Gas oil has an initial boiling point (IBP) of 230 ° C. and a boiling point exceeding 340 ° C. of 62%, and a final boiling point (FBP) of 450 ° C. The gas oil contained 2.1 wt% sulfur and 317 ppm nitrogen. Two experiments were carried out, changing only the applicable hydrogen gas velocity. Details of Experiments 1 and 2 are shown in Table I below.

第I表

Figure 2005509083
Table I
Figure 2005509083

*)実験1に付随する条件下で本方法を、普通、“閉塞流”といわれる従来の細流様式で行った(Advantages,Possibilities and Limitations of Small Scale Testing of Catalysts for Fixed−Bed Processes:S.T.Sie,210th National Meeting,American Chemical Society,Chicago,Ill.,August 20−25,1995,p463−472参照)。液体のペクレ数16は、この機構(set−up)から生じる。 * ) The method was performed in the conventional trickle mode commonly referred to as “occlusive flow” under the conditions associated with Experiment 1 (Advantages, Possibilities and Limitations of Small Scales of Catalysts for Fixed-Beds: Sie, 210th National Meeting, American Chemical Society, Chicago, Ill., August 20-25, 1995, p463-472). The liquid Peclet number 16 arises from this set-up.

実験2に付属する条件は、ペクレ数6の液体(前述のWesterterp文献(reference)を用いて計算)を生成する洪水向流として説明できる。
低ペクレ数(本発明による)を可能とする条件下では供給原料の340℃+部分(即ち、原料の沸点340〜450℃のフラクション)の転化率が増大したばかりでなく(ほぼ50%)、同時に所望生成物への選択率も86.0%から92.1%に増大したことが判る。
The condition attached to Experiment 2 can be described as a flood countercurrent that produces a Peclet number 6 liquid (calculated using the above-mentioned Westerterp literature (reference)).
Not only did the conversion of the 340 ° C. + portion of the feed (ie, the fraction of the boiling point of the feed 340-450 ° C.) increase under conditions that allowed a low Peclet number (according to the invention) (approximately 50%), At the same time, it can be seen that the selectivity to the desired product also increased from 86.0% to 92.1%.

実施例2
実施例1で説明した実験を、空間速度を変えた他は同等の条件下で繰り返した。実験3、4の詳細を第II表に示す。
Example 2
The experiment described in Example 1 was repeated under the same conditions except that the space velocity was changed. Details of Experiments 3 and 4 are shown in Table II.

第II表

Figure 2005509083
*)第I表参照 Table II
Figure 2005509083
* ) See Table I

高い空間速度で操作した時も同様な傾向が見られることが判る。特に、なお所望生成物への選択率を増大させながら、転化率は倍増できることに注目すべきである。   It can be seen that a similar tendency is seen when operating at high space velocities. In particular, it should be noted that the conversion can be doubled while still increasing the selectivity to the desired product.

本発明方法による向流水素化処理用の基本的装置配列を示す。2 shows a basic equipment arrangement for countercurrent hydroprocessing according to the method of the present invention. 図2A及び図2Bは、本発明方法で使用される第一及び第二の好ましい装置配列を示す。2A and 2B show the first and second preferred device arrangements used in the method of the present invention. 本発明方法で使用される第三の好ましい装置配列を示す。Figure 3 shows a third preferred device arrangement for use in the method of the present invention. 本発明方法で使用される第四の好ましい装置配列を示す。Figure 4 shows a fourth preferred device arrangement for use in the method of the present invention.

符号の説明Explanation of symbols

1、8、13 液体供給原料ライン
2、12、14 水素含有ガスライン
3、5、15 処理液ライン
4、7、16 水素枯渇流体ライン
10、20、30、40 反応帯
11、21、31、41 触媒床

1, 8, 13 Liquid feed lines 2, 12, 14 Hydrogen-containing gas lines 3, 5, 15 Process liquid lines 4, 7, 16 Hydrogen depleted fluid lines 10, 20, 30, 40 Reaction zones 11, 21, 31, 41 catalyst bed

Claims (9)

多孔質触媒粒子の固定配列含有床を有する反応帯において、上向き流のガスと降下する液体とを確実に向流接触させるため、超大気処理条件下、高温で重質炭化水素供給原料を、下向き流で触媒床上で主として液相に分配して触媒粒子と接触させると共に、反応帯中の水素含有ガスを触媒床の下に導入させる条件下で、供給原料を水素含有ガスと接触させ、触媒床下の処理した液体を取り出すと共に触媒床上の水素枯渇流体を取り出すことにより、重質炭化水素供給原料を水素化処理する方法であって、該触媒床の空隙比率が0.5未満であり、かつ向流気液接触は、液体のペクレ数が0〜10の範囲になるような条件下で行われる該方法。   In a reaction zone with a bed containing a fixed array of porous catalyst particles, to ensure countercurrent contact between the upflowing gas and the descending liquid, the heavy hydrocarbon feedstock is directed downward at high temperatures under superatmospheric conditions. The feedstock is contacted with the hydrogen-containing gas under conditions that allow the hydrogen-containing gas in the reaction zone to be introduced under the catalyst bed while being mainly distributed in the liquid phase on the catalyst bed in a stream. Removing the treated liquid and removing the hydrogen depleted fluid on the catalyst bed to hydrotreat the heavy hydrocarbon feedstock, wherein the catalyst bed void ratio is less than 0.5, and The method in which the flowing liquid contact is performed under conditions such that the Peclet number of the liquid is in the range of 0 to 10. 前記触媒床の空隙比率が、0.25を超える請求項1に記載の方法。   The process of claim 1, wherein the void ratio of the catalyst bed exceeds 0.25. 前記触媒床の空隙比率が、0.30〜0.48、好ましくは0.35〜0.47である請求項2に記載の方法。   The process according to claim 2, wherein the catalyst bed has a void ratio of 0.30 to 0.48, preferably 0.35 to 0.47. 前記向流気液接触は、液体のペクレ数が1〜8の範囲になるような条件下で行われる請求項1〜3のいずれか1項に記載の方法。   The method according to any one of claims 1 to 3, wherein the countercurrent gas-liquid contact is performed under conditions such that the Peclet number of the liquid is in the range of 1 to 8. 該方法から取り出す前に更なる触媒粒子含有床を下向きに通過した処理液及び/又は該触媒床を上向きに通過した水素枯渇流体が、水素枯渇流体として該方法から取り出す前に蒸気相で上向きに更なる触媒粒子含有床に通される請求項1〜4のいずれか1項に記載の方法。   The treatment liquid that passed down the further catalyst particle-containing bed before removal from the process and / or the hydrogen-depleted fluid that passed upwards through the catalyst bed are directed upward in the vapor phase before being removed from the process as hydrogen-depleted fluid. The process according to any one of claims 1 to 4, which is passed through a bed containing further catalyst particles. 前記上向きに流れる水素含有ガスの少なくとも一部が、更なる触媒粒子含有床を有する反応帯の底部に導入され、該触媒床を通って処理液体が該方法から取り出される請求項5に記載の方法。   The process of claim 5, wherein at least a portion of the upwardly flowing hydrogen-containing gas is introduced into the bottom of a reaction zone having a further catalyst particle-containing bed, through which process liquid is removed from the process. . 前記処理液体の少なくとも一部及び水素枯渇流体の少なくとも一部が、組み合わされ、次いで並流又は向流で行われる第二水素化処理工程を受ける請求項1〜5のいずれか1項に記載の方法。   6. The process of claim 1, wherein at least a portion of the processing liquid and at least a portion of the hydrogen depleted fluid are combined and then subjected to a second hydroprocessing step performed in cocurrent or countercurrent. Method. 前記水素化処理が、200〜475℃の範囲の温度及び20〜250バールの圧力を含む水素化分解条件下で行われる請求項1〜7のいずれか1項に記載の方法。   The process according to any one of claims 1 to 7, wherein the hydrotreatment is carried out under hydrocracking conditions comprising a temperature in the range of 200 to 475 ° C and a pressure of 20 to 250 bar. 前記触媒粒子が、球形、円筒形又は多葉形で、かつ最大直径0.5〜3.5mmで使用される請求項8に記載の方法。

9. A process according to claim 8, wherein the catalyst particles are used in a spherical, cylindrical or multilobal shape with a maximum diameter of 0.5 to 3.5 mm.

JP2003544153A 2001-11-16 2002-11-15 Countercurrent hydrotreatment Pending JP2005509083A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP01309668 2001-11-16
PCT/EP2002/012856 WO2003042333A1 (en) 2001-11-16 2002-11-15 Countercurrent hydroprocessing

Publications (2)

Publication Number Publication Date
JP2005509083A true JP2005509083A (en) 2005-04-07
JP2005509083A5 JP2005509083A5 (en) 2006-01-05

Family

ID=8182463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003544153A Pending JP2005509083A (en) 2001-11-16 2002-11-15 Countercurrent hydrotreatment

Country Status (15)

Country Link
US (1) US20050000858A1 (en)
EP (1) EP1453937B1 (en)
JP (1) JP2005509083A (en)
KR (1) KR20050044435A (en)
CN (1) CN1309808C (en)
AT (1) ATE368718T1 (en)
AU (1) AU2002352037B2 (en)
BR (1) BR0214086A (en)
CA (1) CA2467094A1 (en)
DE (1) DE60221564T2 (en)
MX (1) MXPA04004652A (en)
NO (1) NO20042496L (en)
RU (1) RU2288253C2 (en)
WO (1) WO2003042333A1 (en)
ZA (1) ZA200403161B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7435336B2 (en) * 2002-10-10 2008-10-14 China Petroleum & Chenical Corporation Process for carrying out gas-liquid countercurrent processing
US7879223B2 (en) 2003-12-19 2011-02-01 Shell Oil Company Systems and methods of producing a crude product
US20050137694A1 (en) 2003-12-23 2005-06-23 Haug Ulrich R. Methods and apparatus for endovascularly replacing a patient's heart valve
EP1702247B8 (en) * 2003-12-23 2015-09-09 Boston Scientific Scimed, Inc. Repositionable heart valve
US7354507B2 (en) 2004-03-17 2008-04-08 Conocophillips Company Hydroprocessing methods and apparatus for use in the preparation of liquid hydrocarbons
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
US7422904B2 (en) 2005-02-04 2008-09-09 Exxonmobil Chemical Patents Inc. Method of operating a fixed bed reactor under predetermined hydraulic conditions
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
WO2011104269A1 (en) 2008-02-26 2011-09-01 Jenavalve Technology Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8313705B2 (en) * 2008-06-23 2012-11-20 Uop Llc System and process for reacting a petroleum fraction
AU2011257298B2 (en) 2010-05-25 2014-07-31 Jenavalve Technology Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
US9365781B2 (en) 2012-05-25 2016-06-14 E I Du Pont De Nemours And Company Process for direct hydrogen injection in liquid full hydroprocessing reactors
WO2015028209A1 (en) 2013-08-30 2015-03-05 Jenavalve Technology Gmbh Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
EP3730094B1 (en) 2015-03-20 2024-04-24 JenaValve Technology, Inc. Heart valve prosthesis delivery system
EP3288495B1 (en) 2015-05-01 2019-09-25 JenaValve Technology, Inc. Device with reduced pacemaker rate in heart valve replacement
WO2017195125A1 (en) 2016-05-13 2017-11-16 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
EP3573579B1 (en) 2017-01-27 2023-12-20 JenaValve Technology, Inc. Heart valve mimicry
CN113198624B (en) * 2021-05-08 2022-03-01 华东理工大学 Method and device for strong mass transfer countercurrent contact of two-phase fluid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0287234A1 (en) * 1987-04-14 1988-10-19 Mobil Oil Corporation Multi-phase countercurrent hydrodewaxing process
US5578197A (en) * 1989-05-09 1996-11-26 Alberta Oil Sands Technology & Research Authority Hydrocracking process involving colloidal catalyst formed in situ
RU2128681C1 (en) * 1993-10-08 1999-04-10 Акцо Нобель Н.В. Method of converting paraffin-containing hydrocarbon crude
US5985135A (en) * 1998-10-23 1999-11-16 Exxon Research And Engineering Co. Staged upflow and downflow hydroprocessing with noncatalytic removal of upflow stage vapor impurities
FR2806642B1 (en) * 2000-03-27 2002-08-23 Inst Francais Du Petrole PROCESS FOR CONVERTING HYDROCARBONS IN A THREE-PHASE REACTOR

Also Published As

Publication number Publication date
MXPA04004652A (en) 2004-08-13
EP1453937A1 (en) 2004-09-08
DE60221564D1 (en) 2007-09-13
BR0214086A (en) 2004-09-28
CN1309808C (en) 2007-04-11
ATE368718T1 (en) 2007-08-15
US20050000858A1 (en) 2005-01-06
NO20042496L (en) 2004-06-15
RU2004118073A (en) 2006-01-10
KR20050044435A (en) 2005-05-12
WO2003042333A1 (en) 2003-05-22
CA2467094A1 (en) 2003-05-22
AU2002352037B2 (en) 2007-05-17
RU2288253C2 (en) 2006-11-27
DE60221564T2 (en) 2008-04-17
EP1453937B1 (en) 2007-08-01
CN1589310A (en) 2005-03-02
ZA200403161B (en) 2005-01-14

Similar Documents

Publication Publication Date Title
JP4074667B2 (en) Multi-stage hydroprocessing method in a single reactor
JP2005509083A (en) Countercurrent hydrotreatment
KR101831446B1 (en) Process for the conversion of residue integrating moving-bed technology and ebullating-bed technology
JP4150432B2 (en) Counter-current reactor
JPH0753967A (en) Hydrotreatment of heavy oil
EP2782977B1 (en) Slurry bed hydroprocessing and system
JP2001507740A (en) Multi-stage hydroprocessing method with multi-stage stripping in a single stripper tank
CA2262449C (en) Hydroprocessing in a countercurrent reaction vessel
JP2002502909A (en) Hydroprocessing reactor and process with multiple reaction zones
JP2002531682A (en) Production of low sulfur / low aromatic distillate oil
AU2002352037A1 (en) Countercurrent hydroprocessing
WO2003013725A1 (en) Shaped trilobal particles
JP4206268B2 (en) Two-stage hydroprocessing and stripping in a single reactor
JP2004511623A (en) Two-stage hydrogenation and stripping of diesel fuel oil in a single reactor
JP5259047B2 (en) Countercurrent gas / liquid contact treatment method
JP2002322484A (en) Hydrogenating process
WO1993017082A1 (en) Process for hydrotreating heavy hydrocarbon oil
JP2980436B2 (en) Treatment method for heavy hydrocarbon oil
CN113214862A (en) Heavy oil supercritical/subcritical fluid enhanced hydrogenation method
JPH0288694A (en) Hydrocracking of hydrocarbon feedstock
JPH02153992A (en) Method for hydrocracking of hydrocarbon stock
US11084991B2 (en) Two-phase moving bed reactor utilizing hydrogen-enriched feed
US3457161A (en) Process for treatment of mineral oils
JPH0812978A (en) Hydrogenation of heavy oil
JP2001342467A (en) Fixed bed type reactor for hydrogenation and hydrogenation process for hydrocarbon oil using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090318