JP2005336545A - Steel sheet to be galvannealed - Google Patents
Steel sheet to be galvannealed Download PDFInfo
- Publication number
- JP2005336545A JP2005336545A JP2004156811A JP2004156811A JP2005336545A JP 2005336545 A JP2005336545 A JP 2005336545A JP 2004156811 A JP2004156811 A JP 2004156811A JP 2004156811 A JP2004156811 A JP 2004156811A JP 2005336545 A JP2005336545 A JP 2005336545A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- mass
- hot
- steel
- isi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 117
- 239000010959 steel Substances 0.000 title claims abstract description 117
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 21
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 21
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract description 21
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 21
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 21
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 15
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 14
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 238000005275 alloying Methods 0.000 claims description 30
- 229910001335 Galvanized steel Inorganic materials 0.000 claims description 24
- 239000008397 galvanized steel Substances 0.000 claims description 24
- 229910045601 alloy Inorganic materials 0.000 claims description 15
- 239000000956 alloy Substances 0.000 claims description 15
- 238000005246 galvanizing Methods 0.000 claims description 15
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 13
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 11
- 229910052758 niobium Inorganic materials 0.000 claims description 11
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 10
- 238000002441 X-ray diffraction Methods 0.000 claims description 10
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 238000005244 galvannealing Methods 0.000 claims description 4
- 229910021193 La 2 O 3 Inorganic materials 0.000 claims description 3
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 abstract description 5
- 229910052782 aluminium Inorganic materials 0.000 abstract description 4
- 229910052772 Samarium Inorganic materials 0.000 abstract description 3
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 3
- 229910052748 manganese Inorganic materials 0.000 abstract description 2
- 229910052710 silicon Inorganic materials 0.000 abstract description 2
- 238000007747 plating Methods 0.000 description 64
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 22
- 239000011701 zinc Substances 0.000 description 14
- 238000000137 annealing Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 229910052725 zinc Inorganic materials 0.000 description 12
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 230000007547 defect Effects 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 238000005260 corrosion Methods 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- 230000007797 corrosion Effects 0.000 description 7
- 238000000227 grinding Methods 0.000 description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 239000010960 cold rolled steel Substances 0.000 description 4
- 238000005097 cold rolling Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000005098 hot rolling Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000002390 adhesive tape Substances 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 229920000298 Cellophane Polymers 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000002301 combined effect Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000009991 scouring Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910018137 Al-Zn Inorganic materials 0.000 description 1
- 229910018573 Al—Zn Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 229910000905 alloy phase Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000037237 body shape Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007586 pull-out test Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は合金化溶融亜鉛めっき用鋼板に係り,さらに詳しくは深絞り性をはじめとする成形性,加工性に格段に優れると同時に優れためっき密着性を得ることができる鋼板に関する. The present invention relates to a steel sheet for alloying hot dip galvanizing, and more particularly to a steel sheet that has excellent formability and workability including deep drawability and at the same time excellent plating adhesion.
合金化溶融亜鉛めっき鋼板は,塗装密着性,塗装耐食性,溶接性などの点に優れることから,自動車用をはじめとして,家電,建材等に非常に多用されている.合金化溶融亜鉛めっき鋼板は鋼板表面に溶融亜鉛をめっきした後,直ちに亜鉛の融点以上の温度に加熱保持して,鋼板中からFeを亜鉛中に拡散させることで,Zn−Fe合金を形成させるものであるが,鋼板の組成や組織によって合金化速度が大きく異なるため,その制御はかなり高度な技術を要する.一方,自動車の外板や難成形部材に適用される鋼板には,非常に高い成形性が要求されるとともに,近年では自動車の防錆性能への要求が高まったことによって,合金化溶融亜鉛めっきが適用されるケースが増加している.この場合,鋼板は非常に高い加工度の成形が施されるので,鋼板には優れた加工性と高いめっき密着性とが同時に要求される. Alloyed hot-dip galvanized steel sheets are widely used in automobiles, home appliances, building materials, etc. because of their excellent paint adhesion, corrosion resistance, and weldability. An alloyed hot-dip galvanized steel sheet is formed by coating hot-dip zinc on the surface of the steel sheet and immediately holding it at a temperature above the melting point of zinc to diffuse Fe from the steel sheet into the zinc, thereby forming a Zn-Fe alloy. However, since the alloying speed varies greatly depending on the composition and structure of the steel sheet, its control requires a fairly advanced technique. On the other hand, steel sheets used for automobile outer plates and difficult-to-form parts are required to have extremely high formability, and in recent years the demand for rust prevention performance of automobiles has increased. The number of cases where is applied is increasing. In this case, since the steel sheet is formed with a very high degree of work, the steel sheet is required to have both excellent workability and high plating adhesion.
合金化溶融亜鉛めっき鋼板では,鋼板と亜鉛層とを合金化反応させた結果,めっき層はζ相,δ1相,Γ相とよばれるZn−Fe系金属間化合物に変化する.これらの合金相は塗装性,塗料密着性,溶接性を改善する一方で,合金層自身の硬度が高く,特にΓ相は脆弱であることから,プレス成形等の加工を受けるとめっきが粉状になって剥離する,いわゆるパウダリング現象を生じ易くなる.パウダリングはめっきの健全性を損なうことに加えて,剥離した粉状のめっきがプレス型に堆積してプレス品の外観を著しく劣化させる.近年は自動車車体の防錆性能強化を目的として,厚目付け合金化溶融亜鉛めっき鋼板が一般的になりつつあるが,上述のパウダリング現象はめっき付着量が多いほど発生しやすいため,耐パウダリング性の向上に対する要求は強い. In the alloyed hot-dip galvanized steel sheet, as a result of alloying reaction between the steel sheet and the zinc layer, the plated layer changes to Zn-Fe intermetallic compounds called ζ phase, δ1 phase and Γ phase. While these alloy phases improve paintability, paint adhesion, and weldability, the hardness of the alloy layer itself is high, and the Γ phase is particularly brittle. It becomes easy to cause the so-called powdering phenomenon. In addition to impairing the soundness of plating, powdering causes the powdered plating that has peeled off to accumulate on the press mold and significantly deteriorate the appearance of the pressed product. In recent years, thickened alloyed hot-dip galvanized steel sheets are becoming popular for the purpose of enhancing the anti-corrosion performance of automobile bodies. However, the above-mentioned powdering phenomenon is more likely to occur as the coating amount increases, so that it is resistant to powdering. There is a strong demand for improvement in performance.
一方,自動車車体形状が一段と複雑になるのに従って,鋼板の成形性に対する要求も一段と厳しくなっており,従来にもまして深絞り性等の成形性の優れた鋼板が,合金化溶融亜鉛めっき鋼板にも要求されている.かかる加工性を得るためには,鋼板の成分として,Cを極めて低いレベルにまで低減した上でTiを添加した鋼,あるいはTiとNbを複合添加した鋼が代表的である.しかし,これらの鋼は溶融亜鉛めっきの合金化における合金化速度が非常に速いために,合金化が進みすぎてΓ相が厚く成長し,パウダリング性能が低下しやすいという問題がある.かかる鋼に対しては,めっき浴温を低下させる,めっき浴中のAl濃度を増加させる,合金化温度を低くして加熱時間を増加させる,などの操業面からの対応が図られているが,こうした対応は合金化不足をおこし,表面の摺動性を低下させ易いという別の問題点があるため,操業面からの対応のみでは優れた加工性と高いめっき密着性とを両立させることは困難である.また,これらの操業条件の変更は生産ラインの停止を伴うために生産性を低下させ,コストを上昇させる. On the other hand, as the car body shape becomes more complicated, the demands on the formability of steel sheets have become more severe, and steel sheets with excellent formability such as deep drawability have been transformed into galvannealed steel sheets. Is also required. In order to obtain such workability, the steel is typically steel that has Ti added to it after reducing C to an extremely low level, or steel that has Ti and Nb added in combination. However, these steels have a problem that the alloying rate of hot dip galvanizing is so high that the alloying progresses too much and the Γ phase grows thick and the powdering performance tends to deteriorate. For such steels, measures from the operational aspect such as lowering the plating bath temperature, increasing the Al concentration in the plating bath, lowering the alloying temperature and increasing the heating time have been attempted. , Since such countermeasures cause another problem that the alloying is insufficient and the slidability of the surface is liable to be lowered, it is difficult to achieve both excellent workability and high plating adhesion only by handling from the operational aspect. Have difficulty. In addition, these changes in operating conditions are accompanied by production line stoppages, reducing productivity and raising costs.
耐パウダリング性の優れた合金化溶融亜鉛めっき鋼板の製造方法としては,合金化熱処理条件,冷却条件とともに合金化後の均熱処理条件を規定する技術が提案されているが(例えば、特許文献1,2参照),長時間の均熱処理を要するため,めっきラインの生産性が低下し,経済的ではない.また,深絞り性とめっき密着性の優れた合金化溶融亜鉛めっき鋼板の製造方法としては,鋼板の組成,熱延条件および冷却条件,冷延後の焼鈍条件に加えて,鋼板のPおよびTi含有量とめっき浴中の有効Al濃度との関係式を限定する技術が提案されており(例えば、特許文献3参照),鋼板の組成,熱延条件,冷延後の焼鈍条件に加えて,鋼板のPおよびTi含有量とめっき浴中の有効Al濃度との関係式を限定する技術が提案されている(例えば、特許文献4参照).しかし,これらの方法においては,Al濃度を制御することによるめっきラインの操業条件の変更や調整のために,めっきラインの生産性が低下し,コストが上昇する.
本発明は上記の現状に鑑みて,優れた加工性・成形性と高いめっき密着性を同時に達成できる,合金化溶融亜鉛めっき用鋼板を提供することを目的としている. An object of the present invention is to provide a steel sheet for galvannealing that can simultaneously achieve excellent workability / formability and high plating adhesion.
本発明者は鋼板の加工性および溶融亜鉛めっきラインの生産性を低下させずにめっき密着性を向上させる手段を種々検討した結果,C,P,N等を低減した被めっき鋼板にCe,La,Nd,Pr,Smの一種または二種以上を添加することによって,鋼板の加工性とめっき密着性を両立できることを見出して本発明に至った.
すなわち,本発明の趣旨とするところは,以下のとおりである.
As a result of various studies on means for improving the plating adhesion without degrading the workability of the steel sheet and the productivity of the hot dip galvanizing line, the present inventor has obtained Ce, La, etc. By adding one or more of Nd, Pr, and Sm, it was found that the workability of the steel sheet and the plating adhesion can be compatible, leading to the present invention.
That is, the gist of the present invention is as follows.
(1) 質量%で,
C: 0.0001〜0.004%,
Si:0.001〜0.10%,
Mn:0.01〜0.50%,
P: 0.001〜0.015%,
S: 0.015%以下,
Al:0.008%以下,
Ti:0.002〜0.10%,
N: 0.0005〜0.004%,
を含有し,さらに,Ce,La,Nd,Pr,Smの一種または二種以上を合計で0.0001〜0.01%含有し,残部Feおよび不可避不純物からなることを特徴とする合金化溶融亜鉛めっき用鋼板.
(1) In mass%,
C: 0.0001 to 0.004%,
Si: 0.001 to 0.10%,
Mn: 0.01 to 0.50%,
P: 0.001 to 0.015%,
S: 0.015% or less,
Al: 0.008% or less,
Ti: 0.002 to 0.10%,
N: 0.0005 to 0.004%,
Alloying melt, characterized in that it contains 0.0001 to 0.01% in total of one or more of Ce, La, Nd, Pr, and Sm, and the balance is Fe and inevitable impurities. Galvanized steel sheet.
(2) 鋼板が付加成分としてさらに,質量%で,Nb:0.002〜0.10%を含有することを特徴とする前記(1)に記載の合金化溶融亜鉛めっき用鋼板. (2) The steel sheet for galvannealing according to (1) above, wherein the steel sheet further contains Nb: 0.002 to 0.10% by mass as an additional component.
(3) 鋼中Ti含有量が,下記(1)式([ %X] は,質量%で表わした合金元素Xの含有量)で与えられる条件を満足することを特徴とする前記(1)に記載の合金化溶融亜鉛めっき用鋼板.
[ %Ti] ≧4[ %C] +3.4[ %N] +1.5[ %S] …(1)
(3) The Ti content in the steel satisfies the condition given by the following formula (1) (where [% X] is the content of alloy element X expressed in mass%): Steel sheet for alloying hot dip galvanization described in 1.
[% Ti] ≧ 4 [% C] +3.4 [% N] +1.5 [% S] (1)
(4) 鋼中TiおよびNbの含有量が,下記(2)〜(3)式([ %X]は,質量%で表わした合金元素Xの含有量)で与えられる条件を満足することを特徴とする前記(2)に記載の合金化溶融亜鉛めっき用鋼板.
([ %Ti] +0.52[ %Nb] )≧4[ %C] +3.4[ %N] +1.5[ %S] … (2)
[ %Ti] ≧0.009% … (3)
(4) The content of Ti and Nb in the steel satisfies the conditions given by the following formulas (2) to (3) ([% X] is the content of alloy element X expressed in mass%). The steel sheet for alloying hot dip galvanizing as described in (2) above.
([% Ti] +0.52 [% Nb]) ≧ 4 [% C] +3.4 [% N] +1.5 [% S] (2)
[% Ti] ≧ 0.009% (3)
(5) 鋼板が付加成分としてさらに,質量%で,B:0.0002〜0.003%を含有することを特徴とする前記(1)〜(4)のいずれかに記載の合金化溶融亜鉛めっき用鋼板. (5) The alloyed molten zinc according to any one of (1) to (4) above, wherein the steel sheet further contains B: 0.0002 to 0.003% by mass% as an additional component. Steel plate for plating.
(6) 顕微鏡で観察される円相当径10μm以上の非金属介在物の70%以上が,下式の組成範囲内であることを特徴とする前記(1)〜(5)のいずれかに記載の合金化溶融亜鉛めっき用鋼板.
30%≦TiO2/(TiO2+Al2O3+REM酸化物)≦50%・・・(4)
0≦Al2O3≦20% ・・・(5)
50%≦REM酸化物≦70% ・・・(6)
TiO2:鋼板の非金属介在物中のTi酸化物の濃度.Ti酸化物としてはTi2O3,
Ti3O5の形態のものも存在するが,TiO2として換算したTi酸化物濃度.
Al2O3:鋼板の非金属介在物中のAl酸化物の濃度.
REM酸化物:鋼板の非金属介在物中のCe,La,Nd,Pr,Sm酸化物の総和の
濃度.Ce2O3,La2O3,Nd2O3,Pr2O3,Sm2O3として換算
した酸化物量.
(6) 70% or more of non-metallic inclusions having an equivalent circle diameter of 10 μm or more observed with a microscope are within the composition range of the following formula, (1) to (5) Steel sheet for alloying hot dip galvanizing.
30% ≦ TiO 2 / (TiO 2 + Al 2 O 3 + REM oxide) ≦ 50% (4)
0 ≦ Al 2 O 3 ≦ 20% (5)
50% ≦ REM oxide ≦ 70% (6)
TiO 2 : concentration of Ti oxide in non-metallic inclusions on the steel sheet. Ti oxides include Ti 2 O 3 ,
There is a Ti 3 O 5 form, but the Ti oxide concentration converted as TiO 2 .
Al 2 O 3 : Concentration of Al oxide in non-metallic inclusions in the steel plate.
REM oxide: The total concentration of Ce, La, Nd, Pr, and Sm oxides in the nonmetallic inclusions in the steel sheet. Oxide amount converted as Ce 2 O 3 , La 2 O 3 , Nd 2 O 3 , Pr 2 O 3 , Sm 2 O 3 .
(7) 前記(1)〜(6)のいずれかに記載の合金化溶融亜鉛めっき用鋼板にAl:0.05〜0.5質量%,Fe:7〜15質量%,残部がZnおよび不可避的不純物からなる合金化溶融亜鉛めっき層を形成させた合金化溶融亜鉛めっき鋼板. (7) Al: 0.05 to 0.5% by mass, Fe: 7 to 15% by mass, balance of Zn and inevitable in the steel sheet for galvannealing according to any one of (1) to (6) Alloyed galvanized steel sheet with an alloyed galvanized layer composed of mechanical impurities.
(8) 前記(7)に記載の合金化溶融亜鉛めっき用鋼板のめっきのd=1.26,d=1.222のX線回折強度Iζ,IΓとSi標準板のd=3.13のX線回折強度ISiとの比Iζ/ISi,IΓ/ISiが,Iζ/ISi≦0.004,IΓ/ISi≦0.004であることを特徴とする合金化溶融亜鉛めっき鋼板. (8) d = 1.26 and d = 1.222 X-ray diffraction intensities Iζ and IΓ of the steel plate for alloying hot dip galvanizing described in the above (7) and d = 3.13 of the Si standard plate An alloyed hot-dip galvanized steel sheet characterized in that the ratios Iζ / ISi and IΓ / ISi with the X-ray diffraction intensity ISi are Iζ / ISi ≦ 0.004 and IΓ / ISi ≦ 0.004.
本発明は加工性,成形性とめっき密着性のいずれにも優れる合金化溶融亜鉛めっき鋼板を製造できる被めっき鋼板を提供することを可能としたものであり,産業の発展に貢献するところが極めて大である. The present invention makes it possible to provide a steel sheet to be plated that can produce an alloyed hot-dip galvanized steel sheet that is excellent in all of workability, formability, and plating adhesion, and contributes greatly to industrial development. It is.
以下,本発明を詳細に説明する.まず,本発明において各成分の範囲を限定した理由を述べる.なお,本発明において%は,特に明記しない限り,質量%を意味する. The present invention is described in detail below. First, the reason for limiting the range of each component in the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.
C:Cは鋼の強度を高める元素であって0.0001%以上を含有させることが有効であるが,過剰に含有すると強度が上昇しすぎて加工性が低下するので上限含有量は0.004%とする.特に高い加工性を必要とする場合には,C含有量は0.003%以下とすることが好ましく,0.002%以下とするとさらに好ましい. C: C is an element that increases the strength of the steel, and it is effective to contain 0.0001% or more. However, if it is excessively contained, the strength is excessively increased and the workability is lowered, so the upper limit content is 0.8. 004%. In particular, when high workability is required, the C content is preferably 0.003% or less, and more preferably 0.002% or less.
Si:Siも鋼の強度を向上させる元素であって0.001%以上を含有させるが,過剰に含有すると加工性および溶融亜鉛めっき性を損なうので,上限は0.10%とする.特に高い加工性を必要とする場合には,Si含有量は0.05%以下とする. Si: Si is also an element that improves the strength of steel and contains 0.001% or more. However, if excessively contained, workability and hot dip galvanizing properties are impaired, so the upper limit is made 0.10%. In particular, when high workability is required, the Si content should be 0.05% or less.
Mn: Mnも鋼の強度を高める一方で加工性を低下させる元素であるので,上限含有量は0.50%とする.Mnが少ないほど加工性は良好であるが,0.01%以下とするためには精練コストが多大となるので下限含有量は0.01%とする. Mn: Since Mn is an element that increases the strength of the steel while decreasing the workability, the upper limit content is 0.50%. The lower the Mn, the better the workability. However, in order to make it 0.01% or less, the scouring cost becomes large, so the lower limit content is 0.01%.
P:Pも鋼の強度を高める一方で加工性を低下させる元素であるので,上限含有量は0.015%とする.Pが少ないほど加工性は良好であり,0.010%以下とするとより好ましい,一方,P含有量を0.001%未満に低減するためには精練コストが多大となるので,下限含有量は0.001%とする.強度,加工性とコストのバランスからはP含有量は0.003〜0.010%とすることがより好ましい. P: P is an element that increases the strength of the steel while decreasing the workability, so the upper limit content is 0.015%. The smaller the P, the better the workability and the more preferable it is 0.010% or less. On the other hand, in order to reduce the P content to less than 0.001%, the scouring cost becomes large, so the lower limit content is 0.001%. From the balance of strength, workability and cost, the P content is more preferably 0.003 to 0.010%.
S:Sは鋼の熱間加工性,耐食性を低下させる元素であるから少ないほど好ましく,上限含有量は0.015%とし,より好ましくは0.010%以下とする.但し,本願発明のような極低炭素鋼のS量を低減するためにはコストがかかるので,加工性およびめっき密着性の観点からはSを過度に低減する必要はなく,熱間加工性,耐食性等から必要なレベルにまでSを低減すれば良い. S: Since S is an element that lowers the hot workability and corrosion resistance of steel, it is preferably as small as possible. The upper limit is 0.015%, more preferably 0.010% or less. However, since it takes cost to reduce the amount of S of the ultra-low carbon steel as in the present invention, it is not necessary to excessively reduce S from the viewpoint of workability and plating adhesion, S should be reduced to the required level due to corrosion resistance.
Al:Alは一般に鋼の脱酸元素として添加される.しかし,Alは脱酸によりアルミナ系介在物を生成し,これが凝集合体して粗大なアルミナクラスターとなる.特に,炭素濃度が低く,精錬後の溶存酸素濃度が高い低炭素鋼では,アルミナクラスターの量が非常に多く,Al添加量0.008%を超えると表面疵の発生率が極めて高くなるため,Alの添加量は0.008%以下とする. Al: Al is generally added as a deoxidizing element for steel. However, Al produces alumina inclusions by deoxidation, which aggregate and coalesce into coarse alumina clusters. In particular, in low carbon steel with low carbon concentration and high dissolved oxygen concentration after refining, the amount of alumina clusters is very large, and when the Al content exceeds 0.008%, the incidence of surface defects becomes extremely high. The amount of Al added should be 0.008% or less.
Ti:鋼中のCおよびNを炭化物,窒化物として固定するために,0.002%以上の添加が必要であり,0.010%以上含有させるとより好ましい.一方,0.10%を超えて添加してももはやその効果は飽和しているのに対して,いたずらに合金添加コストが上昇するだけであるので,上限含有量は0.10%とする.過剰な固溶Tiは鋼板の加工性および表面品質を損なう場合があるので,0.050%以下とするとより好ましい. Ti: In order to fix C and N in steel as carbides and nitrides, 0.002% or more of addition is necessary, and it is more preferable to contain 0.010% or more. On the other hand, even if added over 0.10%, the effect is no longer saturated, but the alloy addition cost only increases unnecessarily, so the upper limit content is 0.10%. Since excessive solute Ti may impair the workability and surface quality of the steel sheet, it is more preferable to make it 0.050% or less.
N:Nは鋼の強度を上昇させる一方で加工性を低下させるので上限は0.004%とし,特に高い加工性を必要とする場合には0.003%以下とすることがより好ましく,0.002%以下とするとさらに好ましい.Nはより少ないほど好ましいが,0.0005%未満に低減することは過剰なコストを要するので,下限含有量は0.0005%とする. N: N increases the strength of the steel while lowering the workability, so the upper limit is made 0.004%, and when high workability is particularly required, it is more preferably 0.003% or less. More preferably, it is 0.002% or less. N is preferably as little as possible, but reducing it to less than 0.0005% requires excessive cost, so the lower limit content is 0.0005%.
Ce,La,Nd,Pr,Sm:Ce,La,Nd,Pr,Smの一種または二種以上を合計で0.0001〜0.01%添加することにより,溶融亜鉛めっき層と鋼板の合金化反応を制御し,良好な特性を有する合金化溶融亜鉛めっき鋼板を得ることが可能となる.Ce,La,Nd,Pr,Smの一種または二種以上を添加した場合,鋼板の強度をほとんど上昇させずに合金化速度を遅くすることが可能となるため,鋼板の加工性とめっき密着性を満足することができる.ここで,鉄/めっき界面においてΓ相に代表される脆い金属間化合物の生成を抑制し,めっき密着性を改善する目的からCe,La,Nd,Pr,Smの一種または二種以上の添加量は0.0001%以上必要である.また,Alの添加量を0.008%以下にして鋼の脱酸を行うためにもCe,La,Nd,Pr,Smの一種または二種以上の添加量は0.0001%以上必要である.ただし,0.01%を超えるとコスト高となるばかりか,これらの金属の酸化物が鋼板中の介在物となり,プレス加工後の表面欠陥の原因となりやすくなるため添加量は合計で0.01%以下とする. Ce, La, Nd, Pr, Sm: Alloying of hot-dip galvanized layer and steel sheet by adding 0.0001 to 0.01% of one or more of Ce, La, Nd, Pr, Sm in total It is possible to obtain an alloyed hot-dip galvanized steel sheet with good properties by controlling the reaction. When one or more of Ce, La, Nd, Pr, and Sm are added, the alloying rate can be reduced without substantially increasing the strength of the steel sheet, so the workability and plating adhesion of the steel sheet. Can be satisfied. Here, for the purpose of suppressing the formation of brittle intermetallic compounds typified by the Γ phase at the iron / plating interface and improving the plating adhesion, the addition amount of one or more of Ce, La, Nd, Pr, and Sm Is required to be 0.0001% or more. Further, in order to deoxidize steel with an Al addition amount of 0.008% or less, the addition amount of one or more of Ce, La, Nd, Pr, and Sm needs to be 0.0001% or more. . However, if it exceeds 0.01%, not only will the cost increase, but the oxides of these metals will become inclusions in the steel sheet, which will likely cause surface defects after press working, so the total amount added will be 0.01%. % Or less.
Ce,La,Nd,Pr,Smの一種または二種以上を添加することにより合金化速度を遅くすることが可能となる理由は,これらの元素が結晶粒内や結晶粒界に存在することによりFeの拡散を遅らせる効果があるためであると考えられる. The reason why the alloying speed can be reduced by adding one or more of Ce, La, Nd, Pr, and Sm is that these elements exist in the crystal grains and in the grain boundaries. This is thought to be due to the effect of delaying the diffusion of Fe.
めっき密着性とコストのバランスからはCe,La,Nd,Pr,Smの一種または二種以上の添加量は0.001〜0.01%とすることがより好ましい. From the balance of plating adhesion and cost, the addition amount of one or more of Ce, La, Nd, Pr, and Sm is more preferably 0.001 to 0.01%.
Ce,La,Nd,Pr,Smの添加は,単体金属で行うことも可能であるが,ミッシュメタル等のCe,La,Nd,Pr,Smを含む合金で添加することも可能である. Ce, La, Nd, Pr, and Sm can be added with a single metal, but it can also be added with an alloy containing Ce, La, Nd, Pr, and Sm such as misch metal.
また,Ti酸化物の量に対し,Ce,La,Nd,Pr,Smの添加量が少ないと,介在物組成はTiO2−Al2O3系介在物が主となり,これが凝集合体して粗大なクラスターとなる.逆に,Ti酸化物の量に対しCe,La,Nd,Pr,Smの添加量が多すぎると,介在物はREM酸化物濃度が90%以上の酸化物が主体となり,これが凝集合体して粗大なクラスターとなる.このようなクラスターが存在するとプレス加工後の表面欠陥の原因となるため,鋼板を顕微鏡観察で調査し,円相当径10μm以上の非金属介在物の70%以上が,下式の組成範囲内とすることがより好ましい.
30%≦TiO2/(TiO2+Al2O3+REM酸化物)≦50%・・・(4)
0≦Al2O3≦20% ・・・(5)
50%≦REM酸化物≦70% ・・・(6)
TiO2:鋼板の非金属介在物中のTi酸化物の濃度.Ti酸化物としてはTi2O3,
Ti3O5の形態のものも存在するが,TiO2として換算したTi酸化物濃度.
Al2O3:鋼板の非金属介在物中のAl酸化物の濃度.
REM酸化物:鋼板の非金属介在物中のCe,La,Nd,Pr,Sm酸化物の総和の
濃度.Ce2O3,La2O3,Nd2O3,Pr2O3,Sm2O3として換算
した酸化物量.
Further, when the addition amount of Ce, La, Nd, Pr, and Sm is small with respect to the amount of Ti oxide, the inclusion composition is mainly TiO 2 -Al 2 O 3 inclusions, which are agglomerated and coarsened. Cluster. Conversely, if the amount of Ce, La, Nd, Pr, and Sm added is too large relative to the amount of Ti oxide, the inclusions are mainly oxides with a REM oxide concentration of 90% or more, which aggregate and coalesce. It becomes a coarse cluster. The presence of such clusters causes surface defects after press working. Therefore, the steel sheet is examined under a microscope, and 70% or more of non-metallic inclusions having an equivalent circle diameter of 10 μm or more are within the composition range of the following formula. More preferably.
30% ≦ TiO 2 / (TiO 2 + Al 2 O 3 + REM oxide) ≦ 50% (4)
0 ≦ Al 2 O 3 ≦ 20% (5)
50% ≦ REM oxide ≦ 70% (6)
TiO 2 : concentration of Ti oxide in non-metallic inclusions on the steel sheet. Ti oxides include Ti 2 O 3 ,
There is a Ti 3 O 5 form, but the Ti oxide concentration converted as TiO 2 .
Al 2 O 3 : Concentration of Al oxide in non-metallic inclusions in the steel plate.
REM oxide: The total concentration of Ce, La, Nd, Pr, and Sm oxides in the nonmetallic inclusions in the steel sheet. Oxide amount converted as Ce 2 O 3 , La 2 O 3 , Nd 2 O 3 , Pr 2 O 3 , Sm 2 O 3 .
ここで、「顕微鏡で観察される円相当」とは、鋼板中の非金属介在物のサイズを示す指標であり、以下のように定義される。つまり、「顕微鏡で観察される円相当」とは、鋼板の任意の断面を鏡面研磨したサンプルにおいて、光学顕微鏡にて200倍〜1000倍の倍率で鋼板中の介在物を観測し、圧延方向の長さ(L)と幅(D)を測定し、該非金属介在物の面積を矩形(LxD)と仮定して面積を求め、矩形の面積と同じ面積をもつ円の直径として定義している。なお、観察される非金属介在物が円に近い形態の場合は、その直径をもって円相当径とした。 Here, “equivalent to a circle observed with a microscope” is an index indicating the size of non-metallic inclusions in a steel sheet and is defined as follows. In other words, “equivalent to a circle observed with a microscope” means that in a sample obtained by mirror polishing an arbitrary cross section of a steel plate, the inclusions in the steel plate are observed with an optical microscope at a magnification of 200 to 1000 times. The length (L) and width (D) are measured, the area of the nonmetallic inclusion is assumed to be a rectangle (LxD), and the area is obtained and defined as the diameter of a circle having the same area as the rectangular area. In addition, when the observed nonmetallic inclusions were in a form close to a circle, the diameter was taken as the equivalent circle diameter.
本願発明では上記に加えて,さらに付加成分として,鋼中のCおよびNを炭化物,窒化物として固定するために,前記のTi添加のもとでNbを添加することができるが,Nb添加によるC,N固定効果を充分発揮させるためには0.002%以上の添加が必要であり,0.005%以上とするとより好ましい.Nbを,0.10%を超えて添加しても,もはやその効果は飽和している一方,いたずらにコストが上昇するだけであるので,上限含有量は0.10%とする.過剰なNb添加は鋼板の再結晶温度を上昇させ,溶融亜鉛めっきラインの生産性を低下させるので,0.050%以下とするとより好ましい. In the present invention, in addition to the above, as an additional component, Nb can be added under the Ti addition to fix C and N in the steel as carbides and nitrides. In order to fully exhibit the C and N fixing effect, 0.002% or more must be added, and more preferably 0.005% or more. Even if Nb is added in excess of 0.10%, the effect is no longer saturated, but the cost only increases unnecessarily, so the upper limit content is 0.10%. Excessive Nb addition raises the recrystallization temperature of the steel sheet and lowers the productivity of the hot dip galvanizing line.
本願発明においては,さらに鋼板の成形性,加工性を一段と高くする場合には,Tiの含有量を下記(1)式を満足する範囲とする.
[ %Ti] ≧4[ %C] +3.4[ %N] +1.5[ %S] … (1)
これは,Ti含有量を上記の範囲とすると,加工性を阻害する元素であるCおよびNをTiで有効に固定し,鋼板の加工性を高めることができるからである.あるいは,TiおよびNbの含有量を下記(2)式および(3)式を満足する範囲とする.
([ %Ti] +0.52[ %Nb] )≧4[ %C] +3.4[ %N] +1.
5[ %S] … (2)
[%Ti] ≧0.009% … (3)
これは,TiおよびNbの含有量を上記の範囲とすると,加工性を阻害する元素であるCおよびNをTiとNbの複合効果で有効に固定し,鋼板の加工性を高めることができるからであるが,Nb単独の添加ではかかる加工性向上効果は充分ではなく,Ti含有量が0.009%以上である場合にTiとNbの複合添加効果が顕著となり,この場合においてTiおよびNbの含有量が(2)式を満足すると,CおよびNをTiとNbとで有効に固定することができる.
In the present invention, in order to further increase the formability and workability of the steel sheet, the Ti content is set to a range that satisfies the following formula (1).
[% Ti] ≧ 4 [% C] +3.4 [% N] +1.5 [% S] (1)
This is because when the Ti content is in the above range, C and N, which are elements that hinder workability, can be effectively fixed with Ti, and the workability of the steel sheet can be improved. Or let content of Ti and Nb be the range which satisfies the following (2) Formula and (3) Formula.
([% Ti] +0.52 [% Nb]) ≧ 4 [% C] +3.4 [% N] +1.
5 [% S] (2)
[% Ti] ≧ 0.009% (3)
This is because, if the contents of Ti and Nb are in the above ranges, C and N, which are elements that hinder workability, can be effectively fixed by the combined effect of Ti and Nb, and the workability of the steel sheet can be improved. However, when Nb alone is added, the effect of improving the workability is not sufficient, and when Ti content is 0.009% or more, the combined effect of Ti and Nb becomes remarkable. If the content satisfies the formula (2), C and N can be effectively fixed with Ti and Nb.
本願発明においてはさらに,鋼板に付加成分として,Bを0.0002〜0.003%含有させることができるが,これは2次加工性の改善を目的としている.Bの含有量が0.0002%未満では2次加工性改善効果が充分ではなく,0.003%を超えて添加してももはやその効果は飽和しているのに加えて,成形性が低下するので,Bを添加する場合にはその範囲は0.0002〜0.003%とする.特に高い深絞り性を必要とする場合には,Bの添加量は0.0015%以下とするとより好ましい. In the present invention, the steel sheet can further contain 0.0002 to 0.003% of B as an additional component, which is intended to improve secondary workability. If the B content is less than 0.0002%, the secondary workability improvement effect is not sufficient, and even if added over 0.003%, the effect is no longer saturated and the formability is reduced. Therefore, when B is added, the range is 0.0002 to 0.003%. In particular, when high deep drawability is required, it is more preferable that the amount of B added is 0.0015% or less.
本発明において合金化溶融亜鉛めっき層のAl組成を0.05〜0.5質量%に限定した理由は,0.05質量%未満では合金化処理時においてZn―Fe合金化が進みすぎ,地鉄界面に脆い合金層が発達しすぎてめっき密着性が劣化するためであり,0.5質量%を超えるとFe-Al-Zn系バリア層が厚く形成され過ぎ合金化処理時において合金化が進まないため目的とする鉄含有量のめっきが得られないためである.望ましくは0.1〜0.3質量%である. In the present invention, the reason why the Al composition of the galvannealed layer is limited to 0.05 to 0.5% by mass is that if it is less than 0.05% by mass, Zn-Fe alloying proceeds too much during the alloying process. This is because a brittle alloy layer develops too much at the iron interface and the plating adhesion deteriorates. If it exceeds 0.5 mass%, the Fe-Al-Zn-based barrier layer is formed too thick and alloying occurs during the alloying process. This is because the desired iron content cannot be obtained because it does not progress. Desirably, it is 0.1-0.3 mass%.
また,Fe組成を7〜15質量%に限定した理由は,7質量%未満だとめっき表面に柔らかいZn−Fe合金が形成されプレス成形性を劣化させるためであり,15質量%を超えると地鉄界面に脆い合金層が発達し過ぎてめっき密着性が劣化するためである.望ましくは9〜12質量%である. The reason why the Fe composition is limited to 7 to 15% by mass is that if it is less than 7% by mass, a soft Zn—Fe alloy is formed on the plating surface and press formability is deteriorated. This is because a brittle alloy layer develops too much at the iron interface and the plating adhesion deteriorates. Desirably, it is 9-12 mass%.
次に,合金化溶融亜鉛めっき層について述べる.本発明において,合金化溶融亜鉛めっき層とは,合金化反応によってZnめっき中に鋼中のFeが拡散しできたFe−Zn合金を主体としためっき層のことである.このめっき層はFeの含有率の違いにより,ζ相,δ1相,Γ相と呼ばれる合金層が形成される.この内,ζ相はめっきが軟らかくプレス金型と凝着しやすいため摩擦係数が高く,厳しいプレスを行った時に板破断を起こす原因となりやすい.また,Γ相は硬くて脆いため,加工時にパウダリングと呼ばれるめっき剥離を起こしやすい.従って,ζ相,Γ相を限りなく少なくし,めっき層をδ1相とすることにより,プレス加工性とめっき密着性を向上させることができる.ここで,めっき層中にはΓ1相と呼ばれる硬くて脆い相も存在することが知られているが,X線回折強度からはΓ相とΓ1相を区別することができないため,Γ相とΓ1相を合わせてΓ相として取り扱う. Next, the alloyed hot-dip galvanized layer is described. In the present invention, the alloyed hot-dip galvanized layer refers to a plated layer mainly composed of an Fe-Zn alloy in which Fe in steel is diffused during Zn plating by an alloying reaction. This plating layer forms alloy layers called ζ phase, δ 1 phase, and Γ phase due to the difference in Fe content. Of these, the ζ phase has a high coefficient of friction due to its soft plating and easy adhesion to the press die, and is likely to cause plate breakage when severe pressing is performed. In addition, the Γ phase is hard and brittle, so it tends to cause plating peeling called powdering during processing. Therefore, press workability and plating adhesion can be improved by reducing the ζ phase and Γ phase as much as possible and making the plating layer δ 1 phase. Here, it is known that a hard and brittle phase called Γ 1 phase is also present in the plating layer. However, since the Γ phase and Γ 1 phase cannot be distinguished from the X-ray diffraction intensity, the Γ phase And Γ 1 phase are combined and treated as Γ phase.
具体的には,ζ相,Γ相を示すd=1.26,d=1.222のX線回折強度Iζ,IΓとSi標準板のd=3.13のX線回折強度ISiとの比Iζ/ISi,IΓ/ISiを,Iζ/ISi≦0.004,IΓ/ISi≦0.004とする. Specifically, the ratio between the X-ray diffraction intensity Iζ and IΓ of d = 1.26 and d = 1.222 indicating the ζ phase and the Γ phase and the X-ray diffraction intensity ISi of d = 3.13 of the Si standard plate. Let Iζ / ISi and IΓ / ISi be Iζ / ISi ≦ 0.004 and IΓ / ISi ≦ 0.004.
Iζ/ISiを0.004以下に限定した理由は,Iζ/ISiが0.004以下ではζ相は極微量であり,プレス加工性の低下が見られないためである. The reason why Iζ / ISi is limited to 0.004 or less is that when Iζ / ISi is 0.004 or less, the ζ phase is very small, and the press workability is not deteriorated.
また,IΓ/ISiを0.004以下に限定した理由は,IΓ/ISiが0.004以下ではΓ相は極微量であり,めっき密着性の低下が見られないためである.
本発明鋼板の製造工程としては,通常の熱延鋼板(ホットストリップ),あるいは冷延鋼板(コールドストリップ)の製造工程を適用して製造すればよい.
The reason why IΓ / ISi is limited to 0.004 or less is that when IΓ / ISi is 0.004 or less, the Γ phase is insignificant and no decrease in plating adhesion is observed.
As a manufacturing process of the steel sheet of the present invention, a manufacturing process of a normal hot-rolled steel sheet (hot strip) or a cold-rolled steel sheet (cold strip) may be applied.
本願発明では鋼板中のOは特に限定しないが,Oは酸化物系介在物を生成して鋼の加工性や耐食性を損なうので,0.007%以下とすることが望ましく,少ないほど好ましい. In the present invention, O in the steel sheet is not particularly limited. However, since O generates oxide inclusions and impairs the workability and corrosion resistance of the steel, the content is desirably 0.007% or less, and the smaller the better.
本願発明の鋼板には上記の成分の他に,鋼板自体の耐食性や熱間加工性を一段と改善する目的で,あるいはスクラップ等副原料からの不可避不純物として,他の合金元素を含有することも可能であり,他の合金元素を含有したとしても本願発明の範囲を逸脱するものではない.かかる合金元素として,Cu,Ni,Cr,Mo,W,Co,Ca,Y,V,Zr,Ta,Hf,Pb,Sn,Zn,Mg,Ta,As,Sb,Biが挙げられる. In addition to the above components, the steel sheet of the present invention may contain other alloying elements for the purpose of further improving the corrosion resistance and hot workability of the steel sheet itself, or as an inevitable impurity from secondary materials such as scrap. Even if other alloy elements are contained, it does not depart from the scope of the present invention. Examples of such alloy elements include Cu, Ni, Cr, Mo, W, Co, Ca, Y, V, Zr, Ta, Hf, Pb, Sn, Zn, Mg, Ta, As, Sb, and Bi.
本発明鋼板は,通常の溶融亜鉛めっき鋼板製造ラインに適用して,加工性・成形性とめっき密着性の優れた合金化溶融亜鉛めっき鋼板を得ることができるので,製造プロセスに対する制約は特に無い.コスト,生産性を考慮して,適宜プロセスを選択すれば良い. The steel sheet of the present invention can be applied to a normal hot-dip galvanized steel sheet production line to obtain an alloyed hot-dip galvanized steel sheet with excellent workability, formability and plating adhesion, and there is no particular restriction on the manufacturing process. . The process should be selected appropriately in consideration of cost and productivity.
本発明鋼板は,溶融亜鉛めっき浴中あるいは亜鉛めっき中にPb,Sb,Si,Sn,Mg,Mn,Ni,Cr,Co,Ca,Cu,Li,Ti,Be,Bi,希土類元素の1種または2種以上を含有,あるいは混入してあっても本発明の効果を損なわず,その量によっては耐食性が改善される等好ましい場合もある.合金化溶融亜鉛めっきの付着量については特に制約は設けないが,耐食性の観点から20g/m2以上,経済性の観点から150g/m2以下で有ることが望ましい. The steel sheet of the present invention is one of Pb, Sb, Si, Sn, Mg, Mn, Ni, Cr, Co, Ca, Cu, Li, Ti, Be, Bi, and rare earth elements during hot dip galvanizing bath or galvanizing. Alternatively, even if two or more kinds are contained or mixed in, the effects of the present invention are not impaired, and depending on the amount, the corrosion resistance may be improved. There are no particular restrictions on the amount of alloyed hot-dip galvanized coating, but it is preferably 20 g / m 2 or more from the viewpoint of corrosion resistance and 150 g / m 2 or less from the viewpoint of economy.
本発明において,めっき鋼板の製造方法については特に限定するところはなく,通常の無酸化炉方式の溶融めっき法が適用できる.合金化処理条件については特に定めないが,処理温度460〜550℃,処理時間10〜40秒の範囲が実際の操業上適切である. In the present invention, the method for producing the plated steel sheet is not particularly limited, and a normal non-oxidizing furnace type hot dipping method can be applied. The alloying treatment conditions are not particularly defined, but a treatment temperature of 460 to 550 ° C. and a treatment time of 10 to 40 seconds are appropriate for actual operation.
また,本願発明において鋼板の板厚は本願発明に何ら制約をもたらすものではなく,通常用いられている板厚であれば本願発明を適用することが可能である.さらに,本発明鋼板は通常のプロセスで製造される冷延鋼板,熱延鋼板のいずれであってもその効果は充分に発揮されるものであり,鋼板の履歴によって効果が大きく変化するものではない.また,熱間圧延条件,冷間圧延条件,焼鈍条件等は鋼板の寸法,必要とする強度に応じて所定の条件を選択すれば良く,熱間圧延条件,冷間圧延条件,焼鈍条件等によって本発明鋼板の効果が損なわれるものではない. In the present invention, the thickness of the steel sheet does not impose any restrictions on the present invention, and the present invention can be applied to any sheet thickness that is normally used. Furthermore, the effect of the steel sheet of the present invention is sufficiently exerted regardless of whether it is a cold-rolled steel sheet or a hot-rolled steel sheet manufactured by a normal process, and the effect does not change greatly depending on the history of the steel sheet. . In addition, the hot rolling conditions, cold rolling conditions, annealing conditions, etc. may be selected according to the steel sheet dimensions and required strength, depending on the hot rolling conditions, cold rolling conditions, annealing conditions, etc. The effect of the steel sheet of the present invention is not impaired.
当然のことながら,本発明鋼板を使用して得られた合金化溶融亜鉛めっき鋼板上に,塗装性,溶接性を改善する目的で,各種の上層めっき,特に電気めっき,を施すことも勿論可能であり,本願発明を逸脱するものではない.また,本発明の方法で得られた合金化溶融亜鉛めっき鋼板上に,各種の処理を付加して施すことも勿論可能であり,例えば,クロメート処理,りん酸塩処理,りん酸塩処理性を向上させるための処理,潤滑性向上処理,溶接性向上処理,樹脂塗布処理,等を施したとしても,本願発明の範囲を逸脱するものではなく,付加して必要とする特性に応じて,各種の処理を施すことができる. Naturally, it is of course possible to apply various types of upper plating, especially electroplating, on the galvannealed steel sheet obtained by using the steel sheet of the present invention, in order to improve the paintability and weldability. It does not depart from the present invention. In addition, it is of course possible to add various treatments to the alloyed hot-dip galvanized steel sheet obtained by the method of the present invention. Even if a treatment for improving, a lubricity improving treatment, a weldability improving treatment, a resin coating treatment, etc. are performed, it does not depart from the scope of the invention of the present application. Can be processed.
本発明鋼板の強度としては,引張強度が300N/mm2 未満の普通鋼あるいは超深絞り用鋼板から,300N/mm2 以上の高強度鋼(300,340,400,440N/mm2 級)などの広範囲にわたるものである. As the strength of the steel sheet of the present invention, high-strength steel (300, 340, 400, 440 N / mm 2 grade) of 300 N / mm 2 or more from ordinary steel having a tensile strength of less than 300 N / mm 2 or ultra deep drawing steel Is a wide range of
以下,実施例により本発明を具体的に説明する. Hereinafter, the present invention will be specifically described by way of examples.
まず,表1に示す供試材を用意し,ライン内焼鈍方式の連続溶融亜鉛めっき設備を用いて,合金化溶融亜鉛めっき鋼板を製造した.表1には、供試材すなわちめっき前鋼板の化学成分値および鋼板中の非金属介在物の化学成分値を示した。ここで、非金属介在物の化学成分値は以下のようにして求めた。鋼板の縦断面(圧延方向と平行な断面)が検鏡観察面になるように、供試サンプルを樹脂に埋め込んで鏡面研磨し、検鏡観察により円相当径10μm以上の非金属介在物を任意に20個識別して、EPMAにより組成の決定を行った。表1には、20個の非金属介在物の化学組成の平均値を示している。 First, the test materials shown in Table 1 were prepared, and an alloyed hot-dip galvanized steel sheet was manufactured using an in-line annealing method of continuous hot-dip galvanizing equipment. Table 1 shows the chemical component values of the test material, that is, the steel plate before plating, and the chemical component values of the nonmetallic inclusions in the steel plate. Here, the chemical component value of the nonmetallic inclusion was determined as follows. Specimen sample is embedded in resin so that the longitudinal section (cross section parallel to the rolling direction) of the steel sheet becomes the spectroscopic observation surface, and mirror polishing is performed, and non-metallic inclusions with a circle equivalent diameter of 10 μm or more are arbitrarily selected 20 were identified, and the composition was determined by EPMA. Table 1 shows the average chemical composition of 20 non-metallic inclusions.
めっきに際しては,焼鈍雰囲気は5%水素+95%窒素混合ガスとし,焼鈍温度は800〜840℃,焼鈍時間は90秒とした.溶融亜鉛浴はAlを0.12%含有する溶融亜鉛とし,ガスワイパーで亜鉛の目付量を50g/m2 に調整した.合金化の加熱は誘導加熱方式の加熱設備を使用し,合金化溶融亜鉛めっき中のFe含有量が10.5〜11.5%となるようにした.但し,熱延鋼板では焼鈍,冷却に代えて500℃に予熱(90秒)した.このようにして得られた合金化溶融亜鉛めっき鋼板のめっき中のAl含有量は0.15〜0.25%であった. During plating, the annealing atmosphere was 5% hydrogen + 95% nitrogen mixed gas, the annealing temperature was 800 to 840 ° C, and the annealing time was 90 seconds. The molten zinc bath was molten zinc containing 0.12% Al, and the basis weight of zinc was adjusted to 50 g / m 2 with a gas wiper. The alloying was heated by induction heating equipment so that the Fe content in the galvannealed alloy was 10.5 to 11.5%. However, hot-rolled steel sheets were preheated to 90 ° C (90 seconds) instead of annealing and cooling. The Al content in the galvannealed steel sheet thus obtained was 0.15 to 0.25%.
各鋼板からサンプルを採取し,V曲げ方式でめっき密着性を評価した.即ち,あらかじめ圧縮側に密着テープ(セロハンテープ)を貼った試験片を曲げ角度が60゜となるようにV字状に試験片を曲げ,曲げ戻し後に密着テープをはがして,めっきの剥離の程度を目視で観察して,以下の分類でめっき密着性を評価した.
◎:めっき層がまったく剥離しないもの
○:めっきの剥離が軽微であるもの
△:めっきが相当程度剥離したもの
×:めっきがほとんど剥離したもの
Samples were taken from each steel plate and the plating adhesion was evaluated by the V-bending method. That is, a test piece with adhesive tape (cellophane tape) applied to the compression side in advance is bent in a V shape so that the bending angle is 60 °. The plating adhesion was evaluated according to the following classification.
◎: Plating layer does not peel at all ○: Peeling of plating is slight △: Plating is peeled off to some extent ×: Plating is almost peeled off
また,加工性の指標としては,各合金化溶融亜鉛めっき用鋼板の引張試験を行なって,伸びおよびランクフォード値(r値;0゜,45゜,90゜の平均r値,但し冷延鋼板のみ) を測定し,冷延板は伸び50%以上,r値1.5以上を合格,熱延鋼板は伸び45%以上を合格とした. In addition, as an index of workability, a tensile test was performed on each alloyed hot-dip galvanized steel sheet, and the elongation and the Rankford value (r values; average r values of 0 °, 45 °, 90 °, however, cold-rolled steel plates) Only), the cold-rolled sheet passed 50% or more elongation and the r value 1.5 or more passed, and the hot-rolled steel sheet passed 45% or more elongation.
プレス加工後の表面欠陥は,球頭張り出し試験を行い評価した.試験条件を以下に示す.
・サンプル引き抜き巾:200×200mm
・金型:半径60mmの球頭のポンチ,ビード付きダイス
・押しつけ荷重:60t
・張り出し速度:30mm/min
・塗油:防錆油塗布
Surface defects after press working were evaluated by a ball head overhang test. The test conditions are shown below.
・ Sample drawing width: 200 × 200mm
・ Mold: Ball head punch with radius 60mm, Dies with beads
・ Pressing load: 60t
-Overhang speed: 30 mm / min
・ Oiling: Antirust oil applied
表面欠陥の評価は,球頭張り出し試験を1000枚行い,以下の分類で評価し,○を合格とした.
○:非金属介在物起因の割れ発生率が0.5%未満のもの
△:非金属介在物起因の割れ発生率が0.5%以上,3%未満のもの
×:非金属介在物起因の割れ発生率が3%以上のもの
The surface defects were evaluated by performing 1,000 sphere head overhang tests and evaluating them according to the following classifications, with ○ being a pass.
○: Crack occurrence rate due to non-metallic inclusions is less than 0.5% △: Crack occurrence rate due to non-metallic inclusions is 0.5% or more and less than 3% ×: Caused by non-metallic inclusions Crack occurrence rate is 3% or more
結果を表1に示す.番号22はCe,La,Nd,Pr,Smの添加量が本発明の範囲外であるため,REM酸化物がクラスターとなりプレス加工後の表面欠陥が不合格となった.番号23,24,25,28はAl,Ce,La,Nd,Pr,Smの添加量が本発明の範囲外であるため,アルミナクラスターが増加しプレス加工後の表面欠陥が不合格となると共に,めっき密着性も不合格となった.番号26はAlの添加量が本発明の範囲外であるため,アルミナクラスターが増加しプレス加工後の表面欠陥が不合格となった.番号27はAl,Ce,La,Nd,Pr,Smの添加量が本発明の範囲外であるため,アルミナクラスターが増加しプレス加工後の表面欠陥が不合格となると共に,鋼板の加工性が不充分であった.
これら以外の本発明品は,めっき密着性が優れためっき鋼板であった.
The results are shown in Table 1. In No. 22, since the addition amount of Ce, La, Nd, Pr, and Sm was outside the range of the present invention, the REM oxide became a cluster and the surface defect after press working was rejected. Nos. 23, 24, 25, and 28 have Al, Ce, La, Nd, Pr, and Sm addition amounts outside the scope of the present invention, so that alumina clusters increase and surface defects after press working are rejected. The plating adhesion was also rejected. In No. 26, since the amount of Al added was outside the range of the present invention, alumina clusters increased and surface defects after press working were rejected. In No. 27, since the addition amount of Al, Ce, La, Nd, Pr, and Sm is outside the range of the present invention, the alumina cluster increases, the surface defect after press working becomes rejected, and the workability of the steel sheet is reduced. It was insufficient.
The products of the present invention other than these were plated steel sheets with excellent plating adhesion.
まず,表2に示す供試材を用意し,CGLの熱サイクル及び雰囲気のシミュレートが可能な縦型溶融めっき装置を用いて,合金化溶融亜鉛めっき鋼板を製造した.めっきに際しては,焼鈍雰囲気は5%水素+95%窒素混合ガスとし,焼鈍温度は800〜840℃,焼鈍時間は90秒とした.溶融亜鉛浴はAlを含有する溶融亜鉛とし,ガスワイピングにより亜鉛の目付量を50g/m2 に調整した.合金化の加熱は誘導加熱方式の加熱設備を使用し,合金化溶融亜鉛めっき中のFe含有量が表3に示す値となるようにした.めっき浴中のAl濃度は種々変化させ,合金化溶融亜鉛めっき中のAl含有量が表3に示す値となるようにした. First, the test materials shown in Table 2 were prepared, and an alloyed hot-dip galvanized steel sheet was manufactured using a vertical hot-dip plating machine capable of simulating the thermal cycle and atmosphere of CGL. During plating, the annealing atmosphere was 5% hydrogen + 95% nitrogen mixed gas, the annealing temperature was 800 to 840 ° C, and the annealing time was 90 seconds. The molten zinc bath was made of molten zinc containing Al, and the basis weight of zinc was adjusted to 50 g / m @ 2 by gas wiping. The alloying was heated using an induction heating system so that the Fe content in the alloyed hot dip galvanizing was as shown in Table 3. Various changes were made to the Al concentration in the plating bath so that the Al content in the galvannealed alloy was the value shown in Table 3.
伸びおよびランクフォード値(r値;0゜,45゜,90゜の平均r値,但し冷延鋼板のみ)は,各合金化溶融亜鉛めっき鋼板の引張試験を行なって測定し,伸び50%以上,r値1.5以上であることを確認した. Elongation and Rankford values (r values; average r values of 0 °, 45 °, 90 °, but only for cold-rolled steel sheets) are measured by performing a tensile test on each alloyed hot-dip galvanized steel sheet, and the elongation is 50% or more. The r value was confirmed to be 1.5 or more.
めっきのFe含有量,Al含有量は,被膜をインヒビター入りの塩酸で溶解し,ICPにより測定した. The Fe content and Al content of the plating were measured by ICP after dissolving the coating with hydrochloric acid containing an inhibitor.
X線回折は,ζ相,Γ相を示すd=1.26,d=1.222のX線回折強度Iζ,IΓとSi標準板のd=3.13のX線回折強度ISiとの比Iζ/ISi,IΓ/ISiを測定した. X-ray diffraction is the ratio of the X-ray diffraction intensities Iζ and IΓ of d = 1.26 and d = 1.222 indicating the ζ phase and the Γ phase to the X-ray diffraction intensity ISi of d = 3.13 of the Si standard plate. Iζ / ISi and IΓ / ISi were measured.
得られためっき鋼板はプレス成形性とめっき密着性を調査した. The obtained plated steel sheets were examined for press formability and plating adhesion.
プレス成形性は,プレス加工におけるめっきの摺動性を調べるため,ビード引き抜き試験を行った.試験条件を以下に示す.
・サンプル引き抜き巾:30mm
・金型:片側が肩R1mmRの角ビード(凸部は4×4mm)凸型、反対側が肩R1mmRの凹型
・押しつけ荷重:800,1000kg
・引き抜き速度:200mm/min
・塗油:防錆油塗布
For the press formability, a bead pull-out test was conducted to investigate the slidability of plating during press working. The test conditions are shown below.
・ Sample drawing width: 30mm
・ Die: Square bead with one side shoulder R1mmR (convex part is 4 × 4mm) convex, the other side is concave shape with shoulder R1mmR ・ Pressing load: 800,1000kg
・ Pullout speed: 200mm / min
・ Oiling: Antirust oil applied
プレス成形性の評価は以下の分類で評価し,◎と○を合格とした.
◎:押しつけ荷重1000kgで引き抜けたもの
○:押しつけ荷重800kgで引き抜けたが,荷重1000kgでは破断したもの
×:押しつけ荷重800kgで破断したもの
The press formability was evaluated according to the following classification, and ◎ and ○ were accepted.
◎: Pulled out with a pressing load of 1000 kg ○: Pulled out with a pressing load of 800 kg, but broken with a load of 1000 kg ×: Broken with a pressing load of 800 kg
めっき密着性は,あらかじめ圧縮側に密着テープ(セロハンテープ)を貼った試験片を曲げ角度が60゜となるようにV字状に試験片を曲げ,曲げ戻し後に密着テープをはがして,めっきの剥離の程度を目視で観察して,以下の分類で評価し,◎と○を合格とした.
◎:めっき層がまったく剥離しないもの
○:めっきの剥離が軽微であるもの
△:めっきが相当程度剥離したもの
×:めっきがほとんど剥離したもの
For plating adhesion, the test piece with adhesive tape (cellophane tape) on the compression side is bent in a V shape so that the bending angle is 60 °, and after bending back, the adhesive tape is peeled off. The degree of peeling was visually observed and evaluated according to the following classifications, and ◎ and ○ were accepted.
◎: Plating layer does not peel at all ○: Peeling of plating is slight △: Plating is peeled off to some extent ×: Plating is almost peeled off
評価結果は表3に示す通りである.番号1,26はめっき中のFe%,Iζ/ISiが本発明の範囲外であるため,プレス成形性が不合格となった.番号5,30はめっき中のFe%,IΓ/ISiが本発明の範囲外であるため,めっき密着性が不合格となった.番号6,31はめっき中のAl%,IΓ/ISiが本発明の範囲外であるため,めっき密着性が不合格となった.
これら以外の本発明品は,めっき密着性が優れためっき鋼板であった.
The evaluation results are shown in Table 3. Nos. 1 and 26 failed in press formability because Fe% and Iζ / ISi in the plating were outside the scope of the present invention. Nos. 5 and 30 failed in plating adhesion because Fe% and IΓ / ISi in the plating were outside the scope of the present invention. In Nos. 6 and 31, Al% in plating and IΓ / ISi were out of the scope of the present invention, so the plating adhesion was unacceptable.
The products of the present invention other than these were plated steel sheets with excellent plating adhesion.
以上述べてきたように,本発明は加工性,成形性とめっき密着性のいずれにも優れる合金化溶融亜鉛めっき鋼板を製造できる被めっき鋼板を提供することを可能としたものであり,産業の発展に貢献するところが極めて大である. As described above, the present invention makes it possible to provide a steel sheet to be plated that can produce an alloyed hot-dip galvanized steel sheet that is excellent in all of workability, formability, and plating adhesion. The place that contributes to development is extremely large.
Claims (8)
C: 0.0001〜0.004%,
Si:0.001〜0.10%,
Mn:0.01〜0.50%,
P: 0.001〜0.015%,
S: 0.015%以下,
Al:0.008%以下,
Ti:0.002〜0.10%,
N: 0.0005〜0.004%,
を含有し,さらに,Ce,La,Nd,Pr,Smの一種または二種以上を合計で0.0001〜0.01%含有し,残部Feおよび不可避不純物からなることを特徴とする合金化溶融亜鉛めっき用鋼板. % By mass
C: 0.0001 to 0.004%,
Si: 0.001 to 0.10%,
Mn: 0.01 to 0.50%,
P: 0.001 to 0.015%,
S: 0.015% or less,
Al: 0.008% or less,
Ti: 0.002 to 0.10%,
N: 0.0005 to 0.004%,
Alloying melt, characterized in that it contains 0.0001 to 0.01% in total of one or more of Ce, La, Nd, Pr, and Sm, and the balance is Fe and inevitable impurities. Galvanized steel sheet.
[ %Ti] ≧4[ %C] +3.4[ %N] +1.5[ %S ・ ・ ・(1) 2. The alloy according to claim 1, wherein the Ti content in the steel satisfies a condition given by the following formula (1) (where [% X] is the content of alloy element X expressed in mass%): Steel plate for hot dip galvanizing.
[% Ti] ≧ 4 [% C] +3.4 [% N] +1.5 [% S (1)
([%Ti]+0.52[%Nb])≧4[%C]+3.4[%N]+1.5[%S]・・・(2)
[ %Ti] ≧0.009% ・ ・ ・(3) The content of Ti and Nb in the steel satisfies the conditions given by the following formulas (2) to (3) (where [% X] is the content of alloying element X expressed in mass%): The steel sheet for galvannealing according to claim 2.
([% Ti] +0.52 [% Nb]) ≧ 4 [% C] +3.4 [% N] +1.5 [% S] (2)
[% Ti] ≧ 0.009% ・ ・ ・ (3)
30%≦TiO2/(TiO2+Al2O3+REM酸化物)≦50%・・・(4)
0≦Al2O3≦20% ・・・(5)
50%≦REM酸化物≦70% ・・・(6)
TiO2:鋼板の非金属介在物中のTi酸化物の濃度.Ti酸化物としてはTi2O3,
Ti3O5の形態のものも存在するが,TiO2として換算したTi酸化物濃度.
Al2O3:鋼板の非金属介在物中のAl酸化物の濃度.
REM酸化物:鋼板の非金属介在物中のCe,La,Nd,Pr,Sm酸化物の総和の
濃度.Ce2O3,La2O3,Nd2O3,Pr2O3,Sm2O3として換算
した酸化物量. The alloyed hot-dip galvanized steel according to any one of claims 1 to 5, wherein 70% or more of non-metallic inclusions having an equivalent circle diameter of 10 µm or more observed with a microscope are within the composition range of the following formula: Steel plate.
30% ≦ TiO 2 / (TiO 2 + Al 2 O 3 + REM oxide) ≦ 50% (4)
0 ≦ Al 2 O 3 ≦ 20% (5)
50% ≦ REM oxide ≦ 70% (6)
TiO 2 : concentration of Ti oxide in non-metallic inclusions in the steel sheet. Ti oxides include Ti 2 O 3 ,
Would also be present in the form of Ti 3 O 5 but, Ti oxide concentrations calculated as TiO 2.
Al 2 O 3 : Concentration of Al oxide in non-metallic inclusions in the steel sheet.
REM oxide: The total concentration of Ce, La, Nd, Pr, and Sm oxides in the nonmetallic inclusions in the steel sheet. Oxide amount converted as Ce 2 O 3 , La 2 O 3 , Nd 2 O 3 , Pr 2 O 3 , Sm 2 O 3 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004156811A JP4452126B2 (en) | 2004-05-26 | 2004-05-26 | Steel plate for galvannealed alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004156811A JP4452126B2 (en) | 2004-05-26 | 2004-05-26 | Steel plate for galvannealed alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005336545A true JP2005336545A (en) | 2005-12-08 |
JP4452126B2 JP4452126B2 (en) | 2010-04-21 |
Family
ID=35490433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004156811A Expired - Fee Related JP4452126B2 (en) | 2004-05-26 | 2004-05-26 | Steel plate for galvannealed alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4452126B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009079277A (en) * | 2007-09-27 | 2009-04-16 | Nippon Steel Corp | Hot dip galvannealed steel sheet having excellent deep drawability, and method for producing hot dip galvannealed steel sheet |
JP2010053428A (en) * | 2008-08-29 | 2010-03-11 | Jfe Steel Corp | Surface-treated steel sheet, and housing for electronic equipment |
JP2010265525A (en) * | 2009-05-15 | 2010-11-25 | Nippon Steel Corp | Method of producing galvannealed steel sheet excellent in appearance and press formability |
CN105466129A (en) * | 2015-12-19 | 2016-04-06 | 丹阳市宸兴环保设备有限公司 | Steel plate for refrigerator rear panel |
CN115029632A (en) * | 2022-05-27 | 2022-09-09 | 河钢股份有限公司 | High-corrosion-resistance galvanized hot-formed hardened steel, parts and components thereof and preparation method |
-
2004
- 2004-05-26 JP JP2004156811A patent/JP4452126B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009079277A (en) * | 2007-09-27 | 2009-04-16 | Nippon Steel Corp | Hot dip galvannealed steel sheet having excellent deep drawability, and method for producing hot dip galvannealed steel sheet |
JP2010053428A (en) * | 2008-08-29 | 2010-03-11 | Jfe Steel Corp | Surface-treated steel sheet, and housing for electronic equipment |
JP2010265525A (en) * | 2009-05-15 | 2010-11-25 | Nippon Steel Corp | Method of producing galvannealed steel sheet excellent in appearance and press formability |
CN105466129A (en) * | 2015-12-19 | 2016-04-06 | 丹阳市宸兴环保设备有限公司 | Steel plate for refrigerator rear panel |
CN115029632A (en) * | 2022-05-27 | 2022-09-09 | 河钢股份有限公司 | High-corrosion-resistance galvanized hot-formed hardened steel, parts and components thereof and preparation method |
WO2023226813A1 (en) * | 2022-05-27 | 2023-11-30 | 河钢股份有限公司 | Highly corrosion-resistant galvanised hot-formed hardened steel, parts of same, and preparation method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP4452126B2 (en) | 2010-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5146607B2 (en) | Alloyed hot-dip galvanized steel sheet and manufacturing method thereof | |
KR101692175B1 (en) | Alloyed hot-dip galvanized steel plate and manufacturing method therefor | |
CN111936650B (en) | High-strength galvanized steel sheet, high-strength member, and method for producing same | |
CN113557318A (en) | Coated steel sheet | |
JP4837604B2 (en) | Alloy hot-dip galvanized steel sheet | |
US20120100391A1 (en) | Hot-dip galvanized steel sheet having excellent plating qualities, plating adhesion and spot weldability and manufacturing method thereof | |
EP2631319A1 (en) | Galvanized steel sheet having excellent coatability, coating adhesion, and spot weldability, and method for manufacturing same | |
JP5014940B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method of alloyed hot-dip galvanized steel sheet | |
JP5168417B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in formability and peel resistance after adhesion and method for producing the same | |
KR20220142518A (en) | hot stamped body | |
JP6124499B2 (en) | High-strength galvannealed steel sheet with excellent plating adhesion and manufacturing method thereof | |
JP5589269B2 (en) | Alloyed hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet | |
JP3912014B2 (en) | Alloyed hot-dip galvanized steel sheet and method for producing the same | |
JP5176484B2 (en) | Alloyed hot-dip galvanized steel sheet with excellent appearance | |
JP4555738B2 (en) | Alloy hot-dip galvanized steel sheet | |
JP4940813B2 (en) | Method for producing hot-dip galvanized steel sheet having a value of TS × El of 21000 MPa ·% or more | |
JP4452126B2 (en) | Steel plate for galvannealed alloy | |
JP4377784B2 (en) | Alloy hot-dip galvanized steel sheet | |
JP5245376B2 (en) | Alloyed hot dip galvanized steel sheet using steel sheet for galvannealed alloy with excellent bake hardenability | |
JP4846550B2 (en) | Steel plate for galvannealed alloy and galvannealed steel plate | |
JP5206114B2 (en) | Alloyed hot-dip galvanized steel sheet with excellent workability, plating adhesion, corrosion resistance, and appearance quality | |
JP5092858B2 (en) | Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet | |
JP5728827B2 (en) | Alloyed hot-dip galvanized steel sheet and method for producing the same | |
JP3643333B2 (en) | Steel sheet for galvannealed alloy and galvannealed steel sheet | |
JPH10280093A (en) | Steel sheet for galvannealing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090309 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091020 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100126 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100129 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4452126 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130205 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130205 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140205 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |