[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005336105A - Method for producing carboxylic acid - Google Patents

Method for producing carboxylic acid Download PDF

Info

Publication number
JP2005336105A
JP2005336105A JP2004157492A JP2004157492A JP2005336105A JP 2005336105 A JP2005336105 A JP 2005336105A JP 2004157492 A JP2004157492 A JP 2004157492A JP 2004157492 A JP2004157492 A JP 2004157492A JP 2005336105 A JP2005336105 A JP 2005336105A
Authority
JP
Japan
Prior art keywords
carboxylic acid
iodide
rhodium
producing
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004157492A
Other languages
Japanese (ja)
Other versions
JP4657632B2 (en
Inventor
Hidetaka Kojima
秀隆 小島
Keisuke Fujiwara
啓介 藤原
Ryuji Saito
隆二 斎藤
Yoshikazu Okaishi
義和 岡石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2004157492A priority Critical patent/JP4657632B2/en
Publication of JP2005336105A publication Critical patent/JP2005336105A/en
Application granted granted Critical
Publication of JP4657632B2 publication Critical patent/JP4657632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

【課題】 本発明は、アルコール及び/又はその反応性誘導体のカルボニル化によってカルボン酸を製造する際に、カルボン酸の高い生産性を維持しつつ、副生する副生物を低減させるかまたはロジウム触媒を安定化させる新規なカルボン酸の製造方法を提供することを課題とする。
【解決手段】 ロジウム触媒、ヨウ化リチウム、ハロゲン化アルキル、有限量の水の存在下(特に低水分下)、アルコール及び/又はその反応性誘導体を一酸化炭素と反応させてカルボン酸を製造する方法において、Zn、Sn、Ge、Pbから選ばれる少なくとも1つの元素あるいは元素を含む化合物の存在下に反応させることを特徴とするカルボン酸の製造方法。
【選択図】 なし
PROBLEM TO BE SOLVED: To reduce by-products generated as a by-product while maintaining high productivity of a carboxylic acid or to produce a rhodium catalyst in producing a carboxylic acid by carbonylation of an alcohol and / or a reactive derivative thereof. It is an object of the present invention to provide a novel method for producing a carboxylic acid that stabilizes water.
SOLUTION: A carboxylic acid is produced by reacting an alcohol and / or a reactive derivative thereof with carbon monoxide in the presence of a rhodium catalyst, lithium iodide, an alkyl halide, and a finite amount of water (particularly under low moisture). A method for producing a carboxylic acid, characterized by reacting in the presence of at least one element selected from Zn, Sn, Ge, and Pb or a compound containing the element.
[Selection figure] None

Description

本発明は、ロジウム触媒の存在下、アルコール及び/又はその反応性誘導体のカルボニル化によるカルボン酸の新規な製造方法に関する。詳しくは、カルボニル化によってカルボン酸を製造する際にカルボン酸の高い生産性を維持しつつ、副生する副生物を低減させるかまたはロジウム触媒を安定化させる新規なカルボン酸の製造方法に関するものである。   The present invention relates to a novel process for producing carboxylic acids by carbonylation of alcohols and / or reactive derivatives thereof in the presence of a rhodium catalyst. More specifically, the present invention relates to a novel method for producing a carboxylic acid that reduces the by-product by-product or stabilizes the rhodium catalyst while maintaining high productivity of the carboxylic acid when producing the carboxylic acid by carbonylation. is there.

ロジウム触媒の存在下におけるアルコール及び/又はその反応性誘導体からのカルボニル化方法は既に知られており、前記カルボン酸の製造方法は工業的に最も優れた方法であるが、近年、触媒系の改良や、反応条件の改善などが検討され、ヨウ化物塩等を添加し、従来の条件よりも低い反応液中の水分濃度条件下で反応させることによって、生産性が高く、かつ精製工程でのエネルギー消費の少ないカルボン酸の製造方法が開示されている(例えば特許文献1、特許文献2参照)。しかしながら、これらカルボニル化反応においてメタン、水素、二酸化炭素のような副生ガスが発生することが知られており(例えば特許文献2参照)、なかでも特許文献3や特許文献4などにおいて、反応液中には装置材質の腐食により鉄、クロム、モリブデン、ニッケルなどの腐食金属が混入しており、それらが副反応(水性ガスシフト反応、メタン、アセトアルデヒド、プロピオン酸などの副生)を促進していることが記載されている。特に、メタンの副生は本来、原料であるアルコール及び/又はその反応性誘導体、一酸化炭素の使用率を悪化させるばかりでなく、反応中の全圧を高める。そのため、反応器に必要以上の耐圧をもたせる必要性が生じたり、あるいは生産性を犠牲にして一酸化炭素分圧を下げるなどの対策が必要になる。更に、反応系内にある程度蓄積したメタンを反応系外へ排出するときには原料である一酸化炭素の一部を伴って排出されるため、一酸化炭素使用率を低下させる原因となり、メタンの副生はできるだけ抑制されることが望ましい。   A carbonylation method from an alcohol and / or a reactive derivative thereof in the presence of a rhodium catalyst is already known, and the production method of the carboxylic acid is the most industrially superior method. Improvement of reaction conditions, etc. has been studied, and by adding iodide salts, etc., and reacting under conditions of water concentration in the reaction solution lower than conventional conditions, productivity is high and energy in the purification process is increased. A method for producing carboxylic acid with low consumption is disclosed (for example, see Patent Document 1 and Patent Document 2). However, it is known that by-product gases such as methane, hydrogen, and carbon dioxide are generated in these carbonylation reactions (see, for example, Patent Document 2). Corrosion metals such as iron, chromium, molybdenum, and nickel are mixed in due to corrosion of the equipment materials, and these promote side reactions (water gas shift reaction, methane, acetaldehyde, propionic acid, etc.). It is described. In particular, the by-product of methane not only deteriorates the usage rate of alcohol and / or its reactive derivative, carbon monoxide, which is a raw material, but also increases the total pressure during the reaction. For this reason, it becomes necessary to give the reactor a pressure resistance higher than necessary, or measures such as lowering the carbon monoxide partial pressure at the expense of productivity are required. Furthermore, when methane that has accumulated to some extent in the reaction system is discharged out of the reaction system, it is discharged with a part of the raw material, carbon monoxide, which causes a reduction in the carbon monoxide usage rate, and is a by-product of methane. It is desirable to suppress as much as possible.

また、アセトアルデヒドは、酢酸中の極く微少な還元性不純物の存在量を調べる品質試験である過マンガン酸還元性物質試験(過マンガン酸タイム)を悪化させるカルボニル不純物(ブチルアルデヒド、クロトンアルデヒド、2−エチルクロトンアルデヒドなどのカルボニル化合物、これらのアルドール縮合物等)や、例えばエチレンと酢酸から酢酸ビニルを製造する工程において酢酸ビニル製造触媒を失活させるヨウ化アルキルなどの原因物質として知られ(例えば特許文献5参照)、反応液中のアセトアルデヒド濃度が低減されることが望まれている。   In addition, acetaldehyde is a carbonyl impurity (butyraldehyde, crotonaldehyde, 2) that deteriorates the permanganate-reducing substance test (permanganate time), which is a quality test for examining the abundance of very small reducing impurities in acetic acid. -Known as causative substances such as carbonyl compounds such as ethyl crotonaldehyde, and aldol condensates thereof) and alkyl iodides that deactivate the vinyl acetate production catalyst in the process of producing vinyl acetate from ethylene and acetic acid (for example, It is desired that the acetaldehyde concentration in the reaction solution be reduced.

また、ZnおよびSn化合物を用いたアルコールのカルボニル化方法として、特許文献2が挙げられる。特許文献2には、種々のヨウ化物塩を用いた場合の酢酸の生成速度が比較され、ヨウ化物塩としてZnI2やSnI2が使用されているが、多量用いているにもかかわらず酢酸の生成速度は非常に低く、十分に工業的に適用できるものではない。
特公平4−69136号公報 特公平7−023337号公報 特公平8−011199号公報 特開平7−002722号公報 特開平8−067650号公報
Further, Patent Literature 2 is cited as a method for carbonylation of alcohol using Zn and Sn compounds. Patent Document 2, the production rate of acetic acid in the case of using a variety of iodide salt are compared, although ZnI 2 or SnI 2 is used as an iodide salt, despite acetate is used a large amount The production rate is very low and is not sufficiently industrially applicable.
Japanese Examined Patent Publication No. 4-69136 Japanese Patent Publication No. 7-023337 Japanese Patent Publication No. 8-011199 JP-A-7-002722 Japanese Patent Application Laid-Open No. 8-067650

本発明は、アルコール及び/又はその反応性誘導体の、特に低水分下におけるカルボニル化によってカルボン酸を製造する際に、カルボン酸の高い生産性を維持しつつ、副生する副生物を低減させるかまたはロジウム触媒を安定化させる新規なカルボン酸の製造方法を提供することを課題とする。   The present invention reduces by-products produced as a by-product while maintaining high productivity of carboxylic acids when producing carboxylic acids by carbonylation of alcohols and / or reactive derivatives thereof, particularly under low moisture conditions. Another object is to provide a novel method for producing a carboxylic acid that stabilizes a rhodium catalyst.

本発明者らは、アルコール及び/又はその反応性誘導体のカルボニル化による効率的なカルボン酸の製造法に関して鋭意研究を行なった結果、本発明を完成したものである。   The inventors of the present invention have completed the present invention as a result of intensive studies on an efficient method for producing a carboxylic acid by carbonylation of an alcohol and / or a reactive derivative thereof.

即ち、本発明は、ロジウム触媒、ヨウ化リチウム、ハロゲン化アルキル、有限量の水の存在下(特に低水分下)、アルコール及び/又はその反応性誘導体を一酸化炭素と反応させてカルボン酸を製造する方法において、Zn、Sn、Ge、Pbから選ばれる少なくとも1つの元素あるいは元素を含む化合物の存在下に反応させることを特徴とするカルボン酸の製造方法を提供するものである。   That is, the present invention comprises reacting an alcohol and / or a reactive derivative thereof with carbon monoxide in the presence of a rhodium catalyst, lithium iodide, an alkyl halide, a finite amount of water (especially under low moisture) to produce a carboxylic acid. The present invention provides a method for producing a carboxylic acid characterized by reacting in the presence of at least one element selected from Zn, Sn, Ge, and Pb or a compound containing the element.

本発明によれば、アルコール及び/又はその反応性誘導体を一酸化炭素と反応させてカルボン酸を製造する際に、Zn元素あるいはZn元素を含む化合物の存在下に反応させることによって、カルボン酸の高い生産性を維持しつつ、副生物、特にメタン、アセトアルデヒドの副生を効率よく抑制することができる。また、反応液中に腐食金属が存在する場合は、特に効率よく副生物の生成を抑制することができる。そのため、原料のアルコール及び/又はその反応性誘導体、一酸化炭素の使用率を向上させることが可能となり、また、副生したメタンを反応系外へ除去するために、メタンに同伴して反応系外へロスしていた一酸化炭素の量を低減させることが可能となった。   According to the present invention, when an alcohol and / or a reactive derivative thereof is reacted with carbon monoxide to produce a carboxylic acid, the reaction is carried out in the presence of Zn element or a compound containing Zn element. By-products such as methane and acetaldehyde can be effectively suppressed while maintaining high productivity. In addition, when a corrosive metal is present in the reaction solution, the production of by-products can be suppressed particularly efficiently. Therefore, it becomes possible to improve the usage rate of the raw material alcohol and / or its reactive derivative and carbon monoxide, and in order to remove by-produced methane out of the reaction system, the reaction system is accompanied by methane. It became possible to reduce the amount of carbon monoxide that had been lost to the outside.

また本発明は、Sn、Ge、Pbから選ばれる少なくとも1つの元素あるいは元素を含む化合物の存在下に反応させることによって、カルボン酸の高い生産性を維持しつつ、ロジウム触媒を安定化してカルボン酸を製造することができる。   Further, the present invention stabilizes the rhodium catalyst by maintaining the high productivity of the carboxylic acid by reacting in the presence of at least one element selected from Sn, Ge, and Pb or a compound containing the element. Can be manufactured.

適当なアルコールとしては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ペンタノール、ヘキサノールなどのC1-10アルキルアルコール、シクロヘキサノール、シクロオクタノールなどのC3-10シクロアルキルアルコール、フェノールなどのフェノール類、ベンジルアルコール、フェネチルアルコールなどのアラルキルアルコールなどが挙げられ、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノールなどのC1-10アルキルアルコールが好ましく、特にメタノールが好ましい。 Suitable alcohols include, for example, C 1-10 alkyl alcohols such as methanol, ethanol, propanol, isopropanol, butanol, pentanol, hexanol, C 3-10 cycloalkyl alcohols such as cyclohexanol, cyclooctanol, and phenols such as phenol. , Aralkyl alcohols such as benzyl alcohol and phenethyl alcohol, etc., and C 1-10 alkyl alcohols such as methanol, ethanol, propanol, butanol, pentanol and hexanol are preferred, and methanol is particularly preferred.

アルコールの反応性誘導体としては、酢酸メチル、酢酸エチルなどのC2-6アルキルカルボン酸−C1-6アルキルエステルなどのエステル類、ヨウ化メチル、ヨウ化エチル、ヨウ化プロピルなどのヨウ化C1-10アルキル、これらヨウ化アルキルに対応する臭化物(臭化メチル、臭化プロピルなど)や塩化物(塩化メチルなど)などのハロゲン化物、ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテルなどのジC1-6アルキルエーテルなどのエーテル類が挙げられる。 Examples of reactive derivatives of alcohol include esters such as C 2-6 alkylcarboxylic acid-C 1-6 alkyl ester such as methyl acetate and ethyl acetate, and iodide C such as methyl iodide, ethyl iodide and propyl iodide. 1-10 alkyls, halides such as bromides (such as methyl bromide and propyl bromide) and chlorides (such as methyl chloride) corresponding to these alkyl iodides, di-C such as dimethyl ether, diethyl ether, diisopropyl ether and dibutyl ether And ethers such as 1-6 alkyl ethers.

ロジウム触媒としては、反応液に可溶である任意のロジウム化合物を使用することができる。また、反応液に対する溶解性が低いものであっても反応条件下で容易に可溶性の化合物を生成するものであれば使用可能である。使用可能なロジウム化合物としては、例えば、[Rh(CO)2Cl]2、Li[Rh(CO)2I2]、[Rh(CO)2I]2、[Rh(COD)Cl]2(CODとは、シクロオクタジエンを意味する。)、RhCl3、RhCl3・3H2O、RhBr3、RhI3、酢酸ロジウム(II)、ジカルボニルアセチルアセトナトロジウム、RhCl(CO)(PPh3)2などが挙げられるが、この限りではない。 As the rhodium catalyst, any rhodium compound that is soluble in the reaction solution can be used. Moreover, even if it is a thing with low solubility with respect to a reaction liquid, if it can produce | generate a soluble compound easily on reaction conditions, it can be used. Examples of usable rhodium compounds include [Rh (CO) 2 Cl] 2 , Li [Rh (CO) 2 I 2 ], [Rh (CO) 2 I] 2 , [Rh (COD) Cl] 2 ( COD means cyclooctadiene.), RhCl 3 , RhCl 3 · 3H 2 O, RhBr 3 , RhI 3 , rhodium (II) acetate, dicarbonylacetylacetonatodium, RhCl (CO) (PPh 3 ) 2 etc., but not limited to this.

反応液中のロジウム化合物の濃度はロジウム濃度で、50〜5000ppm、好ましくは100〜1500ppmの範囲である。   The concentration of the rhodium compound in the reaction solution is rhodium concentration, which is in the range of 50 to 5000 ppm, preferably 100 to 1500 ppm.

ヨウ化リチウムの量は反応液中に溶解し得る量であれば特に問題はなく、例えば0.1〜30wt%、好ましくは2〜20wt%、さらに好ましくは、5〜20wt%である。   The amount of lithium iodide is not particularly limited as long as it can be dissolved in the reaction solution, and is, for example, 0.1 to 30 wt%, preferably 2 to 20 wt%, and more preferably 5 to 20 wt%.

ハロゲン化アルキルとしては、C1-10、好ましくはC1-6、より好ましくはC1-4のアルキルのハロゲン化物であり、好適にはそれらアルキルのヨウ化物、臭化物が用いられる。より好適にはヨウ化物であり、ヨウ化メチルが最も好ましい。反応液中のハロゲン化アルキルの濃度は、1〜20wt%、好ましくは2〜16wt%、より好ましくは5〜16wt%である。 The alkyl halide is a C 1-10 , preferably C 1-6 , more preferably a C 1-4 alkyl halide, and an alkyl iodide or bromide is preferably used. More preferred is iodide, and methyl iodide is most preferred. The concentration of the alkyl halide in the reaction solution is 1 to 20 wt%, preferably 2 to 16 wt%, more preferably 5 to 16 wt%.

反応液中に存在させるZn(亜鉛)は、任意の亜鉛化合物から選択することができる。具体的には、金属亜鉛(亜鉛末)、酢酸亜鉛、酢酸亜鉛2水和物、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、亜鉛アセチルアセトナートなどが例示される。反応液中に存在させる亜鉛の量は、金属亜鉛に換算して10〜5000ppm、好ましくは50〜3000ppm、さらに好ましくは100〜1500ppmである。   Zn (zinc) to be present in the reaction solution can be selected from any zinc compound. Specific examples include zinc metal (zinc powder), zinc acetate, zinc acetate dihydrate, zinc chloride, zinc bromide, zinc iodide, zinc acetylacetonate, and the like. The amount of zinc present in the reaction solution is 10 to 5000 ppm, preferably 50 to 3000 ppm, more preferably 100 to 1500 ppm in terms of metallic zinc.

通常、カルボン酸の製造プロセス中においては腐食金属が存在しており、腐食金属はメタン、アセトアルデヒド等の副生物の生成を促進することが分かっており、この場合、特に亜鉛の副生物生成抑制効果がある。   Normally, corrosive metals are present during the carboxylic acid production process, and it has been found that corrosive metals promote the formation of by-products such as methane and acetaldehyde. There is.

反応液中に腐食金属が存在する場合は、反応液中に存在させる亜鉛の量は、亜鉛/腐食金属全量比(重量比)で、10〜0.01が好ましく、さらには5〜0.1が好ましい。   When corrosive metals are present in the reaction solution, the amount of zinc present in the reaction solution is preferably 10 to 0.01, more preferably 5 to 0.1, in terms of the total amount ratio (weight ratio) of zinc / corrosion metal. Is preferred.

前記腐食金属とは、触媒として添加しているロジウム触媒、ヨウ化リチウム、Zn、Sn、Ge、Pbを除き、カルボン酸を製造しようとするものが意図せずに反応液中に混入している金属種であって、主としてカルボン酸製造プロセスに使用される機器の材質から溶出してくる金属種を指す。具体的には、周期律表のIVA〜VIIA族及び鉄、コバルト、ニッケルが挙げられ、なかでも特に鉄、ニッケル、クロム、モリブデン、タングステン、マンガンが例示される。これらの反応液中への混入量は通常、数十〜数千ppmの範囲である。   The corrosive metal is unintentionally mixed in the reaction solution except for the rhodium catalyst added as a catalyst, lithium iodide, Zn, Sn, Ge, Pb, and the one that is intended to produce carboxylic acid. This refers to a metal species that is eluted from the material of equipment used mainly in the carboxylic acid production process. Specific examples include groups IVA to VIIA of the periodic table and iron, cobalt, and nickel, and iron, nickel, chromium, molybdenum, tungsten, and manganese are particularly exemplified. The mixing amount in these reaction solutions is usually in the range of several tens to several thousand ppm.

反応液中に存在させるSn、Ge、Pbは、元素、酸化物、水酸化物、ハロゲン化物、炭酸塩、カルボン酸塩などが挙げられるが、反応および反応装置に悪影響をおよぼさないものであればどのような形でも構わない。なかでも、Sn存在下に反応させることが好ましく、例えば錫金属、塩化錫(II)、塩化錫(IV)、酸化錫(II)、酸化錫(IV)、ヨウ化錫(II)、ヨウ化錫(IV)、酢酸錫(II)、酢酸錫(IV)などが挙げられるが特に、ヨウ化錫(II)が好ましい。   Sn, Ge, and Pb present in the reaction liquid include elements, oxides, hydroxides, halides, carbonates, carboxylates, etc., but they do not adversely affect the reaction and the reaction apparatus. Any shape is acceptable. Among them, it is preferable to react in the presence of Sn, for example, tin metal, tin (II) chloride, tin (IV) chloride, tin (II) oxide, tin (IV) oxide, tin (II) iodide, iodide. Tin (IV), tin acetate (II), tin acetate (IV) and the like can be mentioned, and tin iodide (II) is particularly preferable.

反応液中に存在させるSn、Ge、Pbから選ばれる少なくとも1つの元素あるいは元素を含む化合物の量は、金属換算で10〜20000ppm、好ましくは10〜10000ppm、さらに好ましくは10〜5000ppmである。   The amount of at least one element selected from Sn, Ge, and Pb present in the reaction solution or the compound containing the element is 10 to 20000 ppm, preferably 10 to 10000 ppm, more preferably 10 to 5000 ppm in terms of metal.

反応液中にZn、Sn、Ge、Pbから選ばれる少なくとも1つの元素あるいは元素を含む化合物を存在させる方法としては、反応器に直接添加してもよいし、反応器に循環させる触媒循環液中に添加してもよく、また、そのまま添加しても、あらかじめメタノール等の溶剤に溶解させて添加してもよいが、あらかじめ溶剤に溶解させて反応器に直接添加するのが好ましい。   As a method for causing the reaction solution to contain at least one element selected from Zn, Sn, Ge, and Pb or a compound containing the element, the reaction solution may be added directly to the reactor, or in the catalyst circulation liquid to be circulated to the reactor. In addition, it may be added as it is, or may be added after dissolving in a solvent such as methanol in advance, but it is preferable to add it to a reactor after dissolving it in a solvent in advance.

反応液中の水分濃度は、有限量の濃度、すなわち、15重量%以下、好ましくは10重量%以下、更に好ましくは1〜5重量%であるが、本発明の方法は、特に1〜5重量%の低水分下の場合に好ましく適用される。   The water concentration in the reaction solution is a finite amount, that is, 15% by weight or less, preferably 10% by weight or less, more preferably 1 to 5% by weight. % Is preferably applied in the case of low moisture.

一酸化炭素は純粋なものを使用してもよく、二酸化炭素、窒素、アルゴン又は低級炭化水素などで希釈されていてもよい。反応中の一酸化炭素分圧は通常5MPa-G以下、好ましくは2.5MPa-G以下、さらに好ましくは1.5MPa-G以下である。反応中に系内に存在する水と一酸化炭素の反応(水性ガスシフト反応)によって、二酸化炭素と水素が発生することが知られており、そのために水素が反応系内に存在する。水素分圧はあまりに高くなりすぎるとメタンなどの低級炭化水素等の副生物を生成するため、0.2MPa-G以下、好ましくは0.1MPa-G以下に制御することが好適である。   Carbon monoxide may be used pure or may be diluted with carbon dioxide, nitrogen, argon or lower hydrocarbons. The carbon monoxide partial pressure during the reaction is usually 5 MPa-G or less, preferably 2.5 MPa-G or less, more preferably 1.5 MPa-G or less. It is known that carbon dioxide and hydrogen are generated by the reaction of water and carbon monoxide (water gas shift reaction) existing in the system during the reaction, and therefore hydrogen is present in the reaction system. If the hydrogen partial pressure becomes too high, by-products such as lower hydrocarbons such as methane are produced, and therefore it is preferable to control the hydrogen partial pressure to 0.2 MPa-G or less, preferably 0.1 MPa-G or less.

カルボニル化反応の全圧は1〜20MPa-G、好ましくは1〜10MPa-G、さらに好ましくは1.5〜5MPa-Gである。   The total pressure of the carbonylation reaction is 1 to 20 MPa-G, preferably 1 to 10 MPa-G, more preferably 1.5 to 5 MPa-G.

カルボニル化反応の温度は100〜300℃、好ましくは150〜250℃、さらに好ましくは150〜200℃である。   The temperature of carbonylation reaction is 100-300 degreeC, Preferably it is 150-250 degreeC, More preferably, it is 150-200 degreeC.

本発明はバッチ法、または連続法で実施でき、連続法が好適である。   The present invention can be carried out by a batch method or a continuous method, and a continuous method is preferred.

一般的に、カルボニル化反応器において原料であるアルコール及び/又はその反応性誘導体と一酸化炭素が反応することによりカルボン酸が生成する。カルボン酸及びそのエステル、ハロゲン化アルキル、ロジウム触媒、ヨウ化リチウム、亜鉛等からなる反応液体組成物がカルボニル化反応器から引き出され、フラッシャーに導入される。フラッシャーにおいて主にカルボン酸及びそのエステル、ハロゲン化アルキル、水からなる揮発性成分がフラッシャー上部から取り出され、また、主に触媒成分からなる非揮発性成分がフラッシャー下部から取り出され、反応器に循環される。   Generally, carboxylic acid is produced by the reaction of carbon monoxide with an alcohol and / or reactive derivative thereof as a raw material in a carbonylation reactor. A reaction liquid composition comprising carboxylic acid and its ester, alkyl halide, rhodium catalyst, lithium iodide, zinc and the like is withdrawn from the carbonylation reactor and introduced into the flasher. In the flasher, volatile components mainly consisting of carboxylic acid and its ester, alkyl halide and water are taken out from the upper part of the flasher, and non-volatile components mainly consisting of catalyst components are taken out from the lower part of the flasher and circulated to the reactor. Is done.

フラッシャー上部から取り出された揮発性成分は脱低沸、必要に応じて脱水、脱高沸の処理を得て製品カルボン酸(酢酸)を得ることができる。   The volatile component taken out from the upper part of the flasher can be subjected to de-low boiling, dehydration and de-high boiling treatment as necessary to obtain a product carboxylic acid (acetic acid).

本発明を以下実施例によって詳細に説明するが、本発明はこれら実施例に限定されるものではない。

以下、実施例1〜5及び比較例1〜5にZn存在下における副生物低減効果を示す。尚、GCの分析条件は以下の通りである。
ガス分析条件(H 2 、CO、CO 2 、CH 4
カラム条件 ;カラム SHINCARBON−T(信和工業(株)製)
メッシュ 60/80
長さ 5m
GC 条件 ;カラム温度 50℃(8min)→10℃/min→260℃(1min)
INJ 200℃
DET 200℃
キャリア Ar
流量 20ml/min
検出器 TCD
Current 50mA
Temp. 200℃
サンプル調整方法;注入量 通常50〜100ml
サンプル管容量 0.5ml
定量計算方法 絶対検量線法
サンプル調整 オフガスをそのまま

アルデヒド分析条件
カラム条件 ;カラム DB−1
長さ 30m
GC 条件 ;カラム温度 40℃(10min)→5℃/min→70℃(0min)
→15℃/min→280℃(10min)
INJ 200℃
DET 200℃
キャリア He
流量 1.5ml/min
スプリット比 1/110
検出器 FID
2 50kPa-G
Air 50kPa-G
サンプル調整方法;注入量 1μl
内部標準(IS) メシチレン
Spl/IS 4/0.02(wt/wt)
<実施例1>
酢酸メチル10g、ヨウ化メチル30g、水4g、無水ヨウ化リチウム40g、ヨウ化鉄(II)1.11g、ヨウ化ニッケル(II)1.06g、酢酸クロム(III)0.88g、塩化モリブデン(V)0.57gを混合し、全体量が200gになるように酢酸を加えた。ハステロイB−2(登録商標)製の内容積500mlのオートクレーブに、上記混合物100gを仕込み、ヨウ化亜鉛(II)を0.49g、触媒としてヨウ化ロジウム(III)を0.23g添加し、水素1MPa-Gで3回オートクレーブ内を置換後、水素を絶対圧で1気圧導入した。その後、さらに一酸化炭素を1MPa-G仕込んだ。一酸化炭素を仕込んだ後にあらかじめ187℃に加熱したオイルバスにオートクレーブを浸し、1000rpmで撹拌を行い、オートクレーブ内が187℃に保たれるようにコントロールした。1時間所定温度で加熱した後に、オートクレーブを氷水で1時間冷却した。冷却後の圧力は0.6MPa-Gであった。オートクレーブ内に残っていたガスをガスクロマトグラフィー(以後GCと略す)で分析したところ、メタンが350μmol、アセトアルデヒドが230μmol検出された。なお、この実験において添加された各種金属濃度は鉄、ニッケル、クロム、モリブデン、亜鉛共に各1000ppmであった。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.

Hereinafter, Examples 1 to 5 and Comparative Examples 1 to 5 show the byproduct reduction effect in the presence of Zn. The GC analysis conditions are as follows.
Gas analysis conditions (H 2, CO, CO 2 , CH 4)
Column conditions: Column SHINCARBON-T (manufactured by Shinwa Kogyo Co., Ltd.)
Mesh 60/80
Length 5m
GC condition: column temperature 50 ° C. (8 min) → 10 ° C./min→260° C. (1 min)
INJ 200 ℃
DET 200 ℃
Carrier Ar
Flow rate 20ml / min
Detector TCD
Current 50mA
Temp. 200 ℃
Sample preparation method; injection volume: usually 50-100ml
Sample tube capacity 0.5ml
Quantitative calculation method Absolute calibration method
Sample adjustment Off gas

Aldehyde analysis conditions Column conditions; Column DB-1
Length 30m
GC condition: Column temperature 40 ° C (10 min) → 5 ° C / min → 70 ° C (0 min)
→ 15 ℃ / min → 280 ℃ (10min)
INJ 200 ℃
DET 200 ℃
Carrier He
Flow rate 1.5ml / min
Split ratio 1/110
Detector FID
H 2 50kPa-G
Air 50kPa-G
Sample preparation method; injection volume 1 μl
Internal standard (IS) mesitylene
Spl / IS 4 / 0.02 (wt / wt)
<Example 1>
10 g of methyl acetate, 30 g of methyl iodide, 4 g of water, 40 g of anhydrous lithium iodide, 1.11 g of iron (II) iodide, 1.06 g of nickel (II) iodide, 0.88 g of chromium (III) acetate, molybdenum chloride ( V) 0.57 g was mixed and acetic acid was added so that the total amount was 200 g. In an autoclave made of Hastelloy B-2 (registered trademark) with an internal volume of 500 ml, 100 g of the above mixture was charged, 0.49 g of zinc (II) iodide and 0.23 g of rhodium (III) iodide as a catalyst were added, and hydrogen After substituting the inside of the autoclave with 1 MPa-G three times, hydrogen was introduced at an atmospheric pressure of 1 atm. Thereafter, 1 MPa-G of carbon monoxide was further charged. After charging carbon monoxide, the autoclave was immersed in an oil bath heated to 187 ° C. in advance and stirred at 1000 rpm to control the autoclave to be kept at 187 ° C. After heating at a predetermined temperature for 1 hour, the autoclave was cooled with ice water for 1 hour. The pressure after cooling was 0.6 MPa-G. When the gas remaining in the autoclave was analyzed by gas chromatography (hereinafter abbreviated as GC), 350 μmol of methane and 230 μmol of acetaldehyde were detected. The concentration of various metals added in this experiment was 1000 ppm for all of iron, nickel, chromium, molybdenum, and zinc.

<比較例1>
実施例1で調合した混合物100g、ヨウ化ロジウム(III)0.23gを実施例1で使用したオートクレーブに仕込み、ヨウ化亜鉛(II)のみ添加せずに実施例1と同様にして反応を行った。冷却後の圧力は0.58MPa-Gであった。オートクレーブ内に残っていたガスをGCで分析したところ、メタンが860μmol、アセトアルデヒドが1,020μmol検出された。
<Comparative Example 1>
100 g of the mixture prepared in Example 1 and 0.23 g of rhodium (III) iodide were charged into the autoclave used in Example 1 and reacted in the same manner as in Example 1 without adding only zinc (II) iodide. It was. The pressure after cooling was 0.58 MPa-G. When the gas remaining in the autoclave was analyzed by GC, 860 μmol of methane and 1,020 μmol of acetaldehyde were detected.

<実施例2>
メタノール8g、ヨウ化メチル28g、水4g、無水ヨウ化リチウム40g、ヨウ化鉄(II)1.11g、ヨウ化ニッケル(II)1.06g、酢酸クロム(III)0.88g、塩化モリブデン(V)0.57gを混合し、全体量が200gになるように酢酸を仕込んだ。上記混合物100gを実施例1で使用したオートクレーブに仕込み、ヨウ化亜鉛(II)を0.49g、触媒としてヨウ化ロジウム(III)を0.23g添加した。以後の操作は実施例1と同様にして反応を行った。冷却後、内圧は0.35MPa-Gであり、オートクレーブ内に残っていたガスをGCで分析したところ、メタンが3,500μmol検出された。
<Example 2>
8 g of methanol, 28 g of methyl iodide, 4 g of water, 40 g of anhydrous lithium iodide, 1.11 g of iron (II) iodide, 1.06 g of nickel (II) iodide, 0.88 g of chromium (III) acetate, molybdenum chloride (V ) 0.57 g was mixed, and acetic acid was charged so that the total amount was 200 g. 100 g of the above mixture was charged into the autoclave used in Example 1, 0.49 g of zinc (II) iodide and 0.23 g of rhodium (III) iodide as a catalyst were added. Subsequent operations were carried out in the same manner as in Example 1. After cooling, the internal pressure was 0.35 MPa-G, and the gas remaining in the autoclave was analyzed by GC. As a result, 3,500 μmol of methane was detected.

<比較例2>
実施例2で調合した混合物100g、ヨウ化ロジウム(III)0.23gを実施例1で使用したオートクレーブに仕込み、ヨウ化亜鉛(II)のみ添加せずに実施例1と同様にして反応を行った。冷却後の圧力は0.35MPa-Gであった。オートクレーブ内に残っていたガスをGCで分析したところ、メタンが8,200μmol検出された。
<Comparative example 2>
100 g of the mixture prepared in Example 2 and 0.23 g of rhodium (III) iodide were charged into the autoclave used in Example 1 and reacted in the same manner as in Example 1 without adding only zinc (II) iodide. It was. The pressure after cooling was 0.35 MPa-G. When the gas remaining in the autoclave was analyzed by GC, 8,200 μmol of methane was detected.

<実施例3>
メタノール4g、ヨウ化メチル14g、水2g、無水ヨウ化リチウム20g、酢酸60g、ヨウ化亜鉛(II)を0.49g、触媒としてヨウ化ロジウム(III)を0.23g添加した。以後の操作は実施例1と同様にして反応を行った。冷却後、内圧は0.35MPa-Gであり、オートクレーブ内に残っていたガスをGCで分析したところ、メタンが800μmol検出された。
<Example 3>
4 g of methanol, 14 g of methyl iodide, 2 g of water, 20 g of anhydrous lithium iodide, 60 g of acetic acid, 0.49 g of zinc (II) iodide, and 0.23 g of rhodium (III) iodide as a catalyst were added. Subsequent operations were carried out in the same manner as in Example 1. After cooling, the internal pressure was 0.35 MPa-G, and the gas remaining in the autoclave was analyzed by GC. As a result, 800 μmol of methane was detected.

<比較例3>
ヨウ化亜鉛(II)を添加しない以外、実施例3と同じ条件で反応を行った。冷却後、内圧は0.35MPa-Gであり、オートクレーブ内に残っていたガスをGCで分析したところ、メタンが1,400μmol検出された。
<Comparative Example 3>
The reaction was performed under the same conditions as in Example 3 except that zinc (II) iodide was not added. After cooling, the internal pressure was 0.35 MPa-G, and the gas remaining in the autoclave was analyzed by GC. As a result, 1,400 μmol of methane was detected.

<実施例4>
メタノール8g、ヨウ化メチル28g、水16g、無水ヨウ化リチウム9g、ヨウ化鉄(II)1.11g、ヨウ化ニッケル(II)1.06g、酢酸クロム(III)0.88g、塩化モリブデン(V)0.57gを混合し、全体量が200gになるように酢酸を加えた。上記混合物100gを実施例1で使用したオートクレーブに仕込み、ヨウ化亜鉛(II)を0.49g、触媒としてヨウ化ロジウム(III)を0.23g添加した。以後の操作は実施例1と同様にして反応を行った。冷却後、内圧は0.35MPa-Gであり、オートクレーブ内に残っていたガスをGCで分析したところ、メタンが1,700μmol検出された。
<Example 4>
8 g of methanol, 28 g of methyl iodide, 16 g of water, 9 g of anhydrous lithium iodide, 1.11 g of iron (II) iodide, 1.06 g of nickel (II) iodide, 0.88 g of chromium (III) acetate, molybdenum chloride (V ) 0.57 g was mixed and acetic acid was added so that the total amount was 200 g. 100 g of the above mixture was charged into the autoclave used in Example 1, 0.49 g of zinc (II) iodide and 0.23 g of rhodium (III) iodide as a catalyst were added. Subsequent operations were carried out in the same manner as in Example 1. After cooling, the internal pressure was 0.35 MPa-G, and when the gas remaining in the autoclave was analyzed by GC, 1,700 μmol of methane was detected.

<比較例4>
ヨウ化亜鉛(II)は加えずに、実施例4で調合した混合物100gと、触媒としてヨウ化ロジウム(III)0.23gを実施例1で使用したオートクレーブに仕込み、実施例1と同様に反応を行った。冷却後、内圧は0.36MPa-Gであり、オートクレーブ内に残っていたガスをGCで分析したところ、メタンが4,200μmol検出された。
<Comparative example 4>
Without adding zinc iodide (II), 100 g of the mixture prepared in Example 4 and 0.23 g of rhodium (III) iodide as a catalyst were charged into the autoclave used in Example 1 and reacted in the same manner as in Example 1. Went. After cooling, the internal pressure was 0.36 MPa-G, and when the gas remaining in the autoclave was analyzed by GC, 4,200 μmol of methane was detected.

<実施例5>
メタノール4g、ヨウ化メチル14g、水8g、無水ヨウ化リチウム4.5g、酢酸59.5g、ヨウ化亜鉛(II)を0.49g、触媒としてヨウ化ロジウム(III)を0.23g添加した。以後の操作は実施例1と同様にして反応を行った。冷却後、内圧は0.35MPa-Gであり、オートクレーブ内に残っていたガスをGCで分析したところ、メタンが600μmol検出された。
<Example 5>
4 g of methanol, 14 g of methyl iodide, 8 g of water, 4.5 g of anhydrous lithium iodide, 59.5 g of acetic acid, 0.49 g of zinc (II) iodide and 0.23 g of rhodium (III) iodide as a catalyst were added. Subsequent operations were carried out in the same manner as in Example 1. After cooling, the internal pressure was 0.35 MPa-G, and the gas remaining in the autoclave was analyzed by GC. As a result, 600 μmol of methane was detected.

<比較例5>
ヨウ化亜鉛(II)を加えずに実施例5と同じ条件で反応を行った。冷却後、内圧は0.34MPa-Gであり、オートクレーブ内に残っていたガスをGCで分析したところ、メタンが1,100μmolであった。

以下、実施例6〜8、比較例6にSnの存在下におけるロジウム触媒への沈降抑制効果を示す。
<Comparative Example 5>
The reaction was carried out under the same conditions as in Example 5 without adding zinc (II) iodide. After cooling, the internal pressure was 0.34 MPa-G, and the gas remaining in the autoclave was analyzed by GC. As a result, methane was 1,100 μmol.

Hereinafter, Examples 6 to 8 and Comparative Example 6 show the effect of suppressing precipitation to a rhodium catalyst in the presence of Sn.

<実施例6>
水5.0wt%、ヨウ化メチル1.7wt%、酢酸メチル0.9wt%、酢酸88.1wt%、LiI7.1wt%、ロジウム940ppm(RhI3をCO/H2で溶解処理して使用した)、SnI20.68wt%(SnI2をロジウムの2倍モル添加/金属Sn換算で約2000ppm)の液組成となるよう調整した液300mlを500mlオートクレーブに仕込み、窒素3.1MPa-Gを張り込み、液温140℃における液中ロジウム濃度の経時変化を観察したところ、1時間後、3時間後、さらに5時間後のロジウム濃度に変化は見られなかった。即ち、ロジウム触媒の沈降は観察されなかった。
<Example 6>
Water 5.0 wt%, methyl iodide 1.7 wt%, methyl acetate 0.9 wt%, acetic acid 88.1wt%, LiI7.1wt%, rhodium 940 ppm (the RhI 3 was used by dissolving treatment with CO / H2), It charged SnI 2 0.68wt% solution 300ml adjusted so that the liquid composition (about 2000ppm of SnI 2 with 2 moles added / metal Sn conversion rhodium) in 500ml autoclave, were pasted nitrogen 3.1 MPa-G, a liquid When the time-dependent change in the rhodium concentration in the liquid at a temperature of 140 ° C. was observed, no change was observed in the rhodium concentration after 1 hour, 3 hours, and 5 hours later. That is, no precipitation of rhodium catalyst was observed.

<実施例7>
液温を180℃にした以外は実施例6と同様の実験を行った結果、1時間後、3時間後、さらに5時間後のロジウム濃度に変化は見られなかった。即ち、ロジウム触媒の沈降は観察されなかった。
<Example 7>
As a result of conducting the same experiment as in Example 6 except that the liquid temperature was changed to 180 ° C., no change was observed in the rhodium concentration after 1 hour, 3 hours and further 5 hours. That is, no precipitation of rhodium catalyst was observed.

<実施例8>
液温を200℃にした以外は実施例6と同様の実験を行った結果、1時間後、3時間後、さらに5時間後のロジウム濃度に変化は見られなかった。即ち、ロジウム触媒の沈降は観察されなかった。
<Example 8>
As a result of conducting the same experiment as in Example 6 except that the liquid temperature was changed to 200 ° C., no change was observed in the rhodium concentration after 1 hour, 3 hours and further 5 hours. That is, no precipitation of rhodium catalyst was observed.

<比較例6>
水5.0wt%、ヨウ化メチル1.7wt%、酢酸メチル0.9wt%、酢酸88.1wt%、LiI7.1wt%、ロジウム940ppm(RhI3をCO/H2で溶解処理して使用した)の液組成となるよう調整した液300mlを500mlオートクレーブに仕込み、窒素3.1MPa-Gを張り込み、液温140℃における液中ロジウム濃度の経時変化を観察したところ、1時間後820ppm、3時間後590ppm、5時間後400ppmのロジウム濃度であった。即ち、SnI2がロジウムの2モル倍存在する実施例6に比べて、ロジウム触媒がかなり沈降している。


以下、比較例7、実施例9にSn存在有無における酢酸生成速度について示す。尚、GCの分析条件は以下の通りである。
反応液分析条件(酢酸メチル、メタノール、ヨウ化メチル、酢酸)
カラム条件 ;カラム RESTEK STABILWAX-DA(RESTEK社製)
内径 0.32mm
長さ 30m
GC 条件 ;カラム温度 50℃(7min)→15℃/min→220℃(20min)
INJ 200℃
DET 220℃
SPLIT 50:1
キャリア He
流量 1.8ml/min
検出器 FID
サンプル調整方法;注入量 1μL
定量計算方法 内標法
内部標準液 シクロヘキサノン
内標液調整 シクロヘキサノン600mgをプロピオニトリル 100g中に注入し、その液を内部標準液とする
サンプル液 反応液200mgをプロピオニトリル8.8g中 に注入して希釈した後、内部標準液1gを加えてサン プル液とする

<比較例7>
水2g、酢酸60g、ヨウ化リチウム20g、ヨウ化メチル14g、メタノール4g、ヨウ化ロジウム0.235g(CO1MPa-G、H2100kPa-G(30℃)を張り込み、187℃で60分の活性化処理をした後に使用した;Rh濃度は500ppm/batch)を仕込み、反応温度187℃、全圧2.5MPa-G、CO分圧1.5MPa-G、H2分圧0.1MPa-Gで反応を行った。10分後の反応液組成をGC分析で測定した結果、原料メタノールの残量(酢酸メチル分はメタノールに換算しなおした)は47mmolであり、反応開始時よりも78mmolのメタノール消費量であった。
<Comparative Example 6>
Water 5.0 wt%, methyl iodide 1.7 wt%, methyl acetate 0.9 wt%, acetic acid 88.1wt%, LiI7.1wt%, rhodium 940 ppm (the RhI 3 was used by dissolving treatment with CO / H 2) 300 ml of the liquid adjusted to the liquid composition was charged into a 500 ml autoclave, nitrogen 3.1 MPa-G was added, and the change over time in the rhodium concentration in the liquid at a liquid temperature of 140 ° C. was observed. The rhodium concentration was 590 ppm and 400 ppm after 5 hours. That is, the rhodium catalyst is considerably settled as compared with Example 6 in which SnI 2 is present at 2 mole times rhodium.


Hereinafter, the acetic acid production rate in the presence or absence of Sn is shown in Comparative Example 7 and Example 9. The GC analysis conditions are as follows.
Reaction solution analysis conditions (methyl acetate, methanol, methyl iodide, acetic acid)
Column conditions: Column RESTEK STABILWAX-DA (made by RESTEK)
Inner diameter 0.32mm
Length 30m
GC condition: column temperature 50 ° C. (7 min) → 15 ° C./min→220° C. (20 min)
INJ 200 ℃
DET 220 ° C
SPLIT 50: 1
Carrier He
Flow rate 1.8ml / min
Detector FID
Sample preparation method; injection volume 1 μL
Quantitative calculation method Internal method
Internal standard solution Cyclohexanone
Preparation of internal standard solution Inject 100 mg of cyclohexanone into 100 g of propionitrile, and use that solution as an internal standard solution.
Sample solution After injecting 200 mg of reaction solution into 8.8 g of propionitrile for dilution, add 1 g of internal standard solution to make a sample solution.

<Comparative Example 7>
2 g of water, 60 g of acetic acid, 20 g of lithium iodide, 14 g of methyl iodide, 4 g of methanol, 0.235 g of rhodium iodide (CO1 MPa-G, H 2 100 kPa-G (30 ° C.) are added, and activation is performed at 187 ° C. for 60 minutes. Used after treatment; Rh concentration is 500 ppm / batch), reaction at 187 ° C, total pressure 2.5 MPa-G, CO partial pressure 1.5 MPa-G, H 2 partial pressure 0.1 MPa-G Went. As a result of measuring the reaction solution composition after 10 minutes by GC analysis, the residual amount of raw material methanol (methyl acetate was converted back to methanol) was 47 mmol, which was 78 mmol of methanol consumption from the start of the reaction. .

<実施例9>
さらにロジウム濃度の2倍モル量のSnI2(金属Sn換算で約1500ppm)を仕込んだ以外は比較例7と同様に反応を行った。
10分後の反応液組成をGC分析で測定した結果、原料メタノールの残量(酢酸メチル分はメタノールに換算しなおした)は40mmolであり、反応開始時よりも85mmolのメタノール消費量であり、比較例7と比較し、反応速度はアップしていた。
<Example 9>
Furthermore, the reaction was performed in the same manner as in Comparative Example 7 except that SnI 2 (about 1500 ppm in terms of metal Sn) having a molar amount twice the rhodium concentration was charged.
As a result of measuring the reaction solution composition after 10 minutes by GC analysis, the residual amount of raw material methanol (methyl acetate was converted back to methanol) was 40 mmol, which was 85 mmol methanol consumption from the start of the reaction, Compared with Comparative Example 7, the reaction rate was increased.

Claims (3)

ロジウム触媒、ヨウ化リチウム、ハロゲン化アルキル、有限量の水の存在下、アルコール及び/又はその反応性誘導体を一酸化炭素と反応させてカルボン酸を製造する方法において、Zn、Sn、Ge、Pbから選ばれる少なくとも1つの元素あるいは元素を含む化合物の存在下に反応させることを特徴とするカルボン酸の製造方法。 In a method for producing a carboxylic acid by reacting an alcohol and / or a reactive derivative thereof with carbon monoxide in the presence of a rhodium catalyst, lithium iodide, an alkyl halide, and a finite amount of water, Zn, Sn, Ge, Pb A process for producing a carboxylic acid, comprising reacting in the presence of at least one element selected from the group consisting of: 反応液中のZn元素あるいはZn元素を含む化合物の濃度が10〜5000ppm(金属Zn換算)である請求項1記載のカルボン酸の製造方法。 The method for producing a carboxylic acid according to claim 1, wherein the concentration of Zn element or the compound containing Zn element in the reaction solution is 10 to 5000 ppm (in terms of metallic Zn). 反応液中、Sn、Ge、Pbから選ばれる少なくとも1つの元素あるいは元素を含む化合物の濃度が10〜20000ppm(金属換算)である請求項1記載のカルボン酸の製造方法。 The method for producing a carboxylic acid according to claim 1, wherein the concentration of at least one element selected from Sn, Ge, and Pb or a compound containing the element in the reaction solution is 10 to 20000 ppm (in metal conversion).
JP2004157492A 2004-05-27 2004-05-27 Method for producing carboxylic acid Expired - Fee Related JP4657632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004157492A JP4657632B2 (en) 2004-05-27 2004-05-27 Method for producing carboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004157492A JP4657632B2 (en) 2004-05-27 2004-05-27 Method for producing carboxylic acid

Publications (2)

Publication Number Publication Date
JP2005336105A true JP2005336105A (en) 2005-12-08
JP4657632B2 JP4657632B2 (en) 2011-03-23

Family

ID=35490063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004157492A Expired - Fee Related JP4657632B2 (en) 2004-05-27 2004-05-27 Method for producing carboxylic acid

Country Status (1)

Country Link
JP (1) JP4657632B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006091397A1 (en) * 2005-02-24 2006-08-31 Celanese International Corporation Acetic acid production methods incorporating at least one metal salt as a catalyst stabilizer
WO2008153708A3 (en) * 2007-05-21 2009-02-05 Celanese Int Corp Reaction product of rhodium-catalyzed methanol carbonylation
US8785684B2 (en) 2010-06-14 2014-07-22 Celanese International Corporation Methanol carbonylation process with rhodium catalyst, an iodide salt and a metallic co-catalyst selected from transition metals, indium, strontium, barium, zinc, tin and heteropoly acids
US8835681B2 (en) 2010-06-14 2014-09-16 Celanese International Corporation Methanol carbonylation process with rhodium catalyst and a lanthanide metal co-catalyst
US9024061B2 (en) 2010-06-14 2015-05-05 Celanese International Corporation Methanol carbonylation process with rhodium catalyst and a metallic co-catalyst selected from transition metals, zinc, beryllium, indium, tin, strontium and barium

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4849713A (en) * 1971-10-26 1973-07-13
JPS57134436A (en) * 1980-12-29 1982-08-19 Monsanto Co Stabilization of carbonylation catalyst
JPS60214756A (en) * 1984-04-05 1985-10-28 Daicel Chem Ind Ltd Production of acetic acid
JPH072722A (en) * 1993-03-22 1995-01-06 Bp Chem Internatl Ltd Method for removing corrosive metal contaminants from liquid compositions
JPH0723337B2 (en) * 1984-05-03 1995-03-15 ダイセル化学工業株式会社 Methanol carbonylation method
JPH0811199B2 (en) * 1986-10-14 1996-02-07 ダイセル化学工業株式会社 Regeneration method for removal of corrosive metals in carbonylation reaction catalyst solution
JPH0867650A (en) * 1994-06-15 1996-03-12 Daicel Chem Ind Ltd Production of high-purity acetic acid
JPH11315046A (en) * 1998-01-31 1999-11-16 Bp Chem Internatl Ltd Anhydrous carbonylation for production of acetic acid
JP2002528429A (en) * 1998-10-23 2002-09-03 セラニーズ・インターナショナル・コーポレーション Carbonylation of methanol in the presence of a rhodium / iridium / iodide ion catalyst system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4849713A (en) * 1971-10-26 1973-07-13
JPS57134436A (en) * 1980-12-29 1982-08-19 Monsanto Co Stabilization of carbonylation catalyst
JPS60214756A (en) * 1984-04-05 1985-10-28 Daicel Chem Ind Ltd Production of acetic acid
JPH0723337B2 (en) * 1984-05-03 1995-03-15 ダイセル化学工業株式会社 Methanol carbonylation method
JPH0811199B2 (en) * 1986-10-14 1996-02-07 ダイセル化学工業株式会社 Regeneration method for removal of corrosive metals in carbonylation reaction catalyst solution
JPH072722A (en) * 1993-03-22 1995-01-06 Bp Chem Internatl Ltd Method for removing corrosive metal contaminants from liquid compositions
JPH0867650A (en) * 1994-06-15 1996-03-12 Daicel Chem Ind Ltd Production of high-purity acetic acid
JPH11315046A (en) * 1998-01-31 1999-11-16 Bp Chem Internatl Ltd Anhydrous carbonylation for production of acetic acid
JP2002528429A (en) * 1998-10-23 2002-09-03 セラニーズ・インターナショナル・コーポレーション Carbonylation of methanol in the presence of a rhodium / iridium / iodide ion catalyst system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006091397A1 (en) * 2005-02-24 2006-08-31 Celanese International Corporation Acetic acid production methods incorporating at least one metal salt as a catalyst stabilizer
JP2008536801A (en) * 2005-02-24 2008-09-11 セラニーズ・インターナショナル・コーポレーション Process for the production of acetic acid incorporating at least one metal salt as catalyst stabilizer
RU2414450C2 (en) * 2005-02-24 2011-03-20 Селаниз Интернэшнл Корпорейшн Methods of producing acetic acid, involving use of at least one metal salt as catalyst stabiliser
WO2008153708A3 (en) * 2007-05-21 2009-02-05 Celanese Int Corp Reaction product of rhodium-catalyzed methanol carbonylation
US8785684B2 (en) 2010-06-14 2014-07-22 Celanese International Corporation Methanol carbonylation process with rhodium catalyst, an iodide salt and a metallic co-catalyst selected from transition metals, indium, strontium, barium, zinc, tin and heteropoly acids
US8835681B2 (en) 2010-06-14 2014-09-16 Celanese International Corporation Methanol carbonylation process with rhodium catalyst and a lanthanide metal co-catalyst
US9024061B2 (en) 2010-06-14 2015-05-05 Celanese International Corporation Methanol carbonylation process with rhodium catalyst and a metallic co-catalyst selected from transition metals, zinc, beryllium, indium, tin, strontium and barium

Also Published As

Publication number Publication date
JP4657632B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP3944355B2 (en) Carbonylation of methanol in the presence of rhodium / iridium / iodide ion catalyst system
JP4588458B2 (en) Low water content methanol carbonylation process for efficient production of acetic acid and control of water balance
RU2118310C1 (en) Method for production of carboxylic acids or appropriate esters thereof
KR100674393B1 (en) Process for the production of acetic acid by carbonylation of dimethyl ether
WO2007052492A1 (en) Process for producing 3,3,3-trifluoropropionic acid
JP4657632B2 (en) Method for producing carboxylic acid
CA2637465C (en) Process for the production of acetic acid
US4482497A (en) Preparation of carboxylic acids
JP4863592B2 (en) Method for improving catalyst stability and / or preventing inactivation during production of acetic acid and / or methyl acetate
JPH0343257B2 (en)
CN103041859B (en) Catalyst suitable for carbonylation between C1-C4 alcohol and derivant of C1-C4 alcohol
US6395927B1 (en) Method for preparing acetic acid and/or methyl acetate by isomerization and carbonylation
Giordano et al. Electron-transfer processes: new synthesis of. gamma.-lactones by peroxydisulfate oxidation of aliphatic carboxylic acids in the presence of olefins
Fontaine et al. Rhodium–Iodide Catalyzed Carbonylation of Methyl Formate into Acetaldehyde or Methyl Acetate: Mechanistic Aspects
CN104447317B (en) Synthetic method by methyl acetate synthesis ethylidene diacetate
JP2548590B2 (en) Method for selective oxidative carbonylation of conjugated dienes
EP1979302B1 (en) Process for the production of acetic acid
EP1979304B1 (en) Process for the production of acetic acid
US6087533A (en) Rhodium catalyzed carbonylation of an allylic butenol or butenyl ester to beta-gamma unsaturated anhydrides
JPS645012B2 (en)
JPWO2019021993A1 (en) Process for producing bisacyloxylated exomethylene compound
TW201323395A (en) Rhodium-catalyzed low water methanol carbonylation process with lanthanide metal co-catalyst stabilization and reduced inorganic iodide levels
WO2000037411A1 (en) Process for the preparation of beta-gamma unsaturated esters
GB2393437A (en) Production of acetic acid by iridium-catalysed carbonylation using one or more metal iodides or iodide-generating salts or complexes
TW201323394A (en) Rhodium-catalyzed low water methanol carbonylation process with metallic co-catalyst stabilization and reduced inorganic iodide levels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4657632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees