JP2005330469A - Dye and dye-sensitized solar cell - Google Patents
Dye and dye-sensitized solar cell Download PDFInfo
- Publication number
- JP2005330469A JP2005330469A JP2005115766A JP2005115766A JP2005330469A JP 2005330469 A JP2005330469 A JP 2005330469A JP 2005115766 A JP2005115766 A JP 2005115766A JP 2005115766 A JP2005115766 A JP 2005115766A JP 2005330469 A JP2005330469 A JP 2005330469A
- Authority
- JP
- Japan
- Prior art keywords
- dye
- group
- sensitized solar
- solar cell
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
Landscapes
- Pyridine Compounds (AREA)
- Photovoltaic Devices (AREA)
- Hybrid Cells (AREA)
Abstract
Description
本発明は、色素およびそれを用いた色素増感太陽電池に関する。 The present invention relates to a dye and a dye-sensitized solar cell using the same.
エネルギー問題に対する関心の高まりと共に光、特に太陽光を効率よく電気に変換できる太陽電池の研究が進められている。太陽電池としては、アモルファスシリコン又は多結晶シリコンを利用したシリコン系の太陽電池が普及し始めている。しかし、シリコン系太陽電池は、コストが高く、また、高純度シリコンの供給面での問題があり、一般に広く普及するには限界があるといわれている。 With increasing interest in energy problems, research on solar cells that can efficiently convert light, particularly sunlight, into electricity is underway. As solar cells, silicon-based solar cells using amorphous silicon or polycrystalline silicon have begun to spread. However, silicon-based solar cells are high in cost and have problems in terms of supplying high-purity silicon, and are generally said to be limited in widespread use.
近年、色素増感太陽電池が関心を集めている。色素増感太陽電池は、発電効率が高いこと、製造コストが比較的低いこと、酸化チタン等の安価な酸化物半導体を高純度に精製することなく原料として使用できること、製造に際して使用する設備が安価ですむこと等でシリコン系の太陽電池と比較して多くの利点を有するものとして期待されている(特許文献1および特許文献2参照)。
色素増感太陽電池において、発電効率や耐候性、耐熱性は、色素に大きく依存することが知られている。
従来知られている色素として、下記式(4)で表される「N719」と呼ばれる色素や、下記式(5)で表される「ブラック・ダイ」と呼ばれる色素が広く用いられている(非特許文献1および非特許文献2参照)。
In recent years, dye-sensitized solar cells have attracted attention. Dye-sensitized solar cells have high power generation efficiency, relatively low manufacturing costs, inexpensive oxide semiconductors such as titanium oxide can be used as raw materials without being purified to high purity, and equipment used for manufacturing is inexpensive Therefore, it is expected to have many advantages over silicon-based solar cells (see Patent Document 1 and Patent Document 2).
In dye-sensitized solar cells, it is known that power generation efficiency, weather resistance, and heat resistance greatly depend on the dye.
As a conventionally known dye, a dye called “N719” represented by the following formula (4) and a dye called “black dye” represented by the following formula (5) are widely used (non- (See Patent Document 1 and Non-Patent Document 2).
式(4)および(5)中、TBA+は、テトラブチルアンモニウムイオンを表す。
しかしこれらの色素は、量子収率には優れているが、太陽電池としての変換効率、耐候性、耐熱性等の面で十分ではなく、さらに優れた色素の開発が待たれている。
However, these dyes are excellent in quantum yield, but are not sufficient in terms of conversion efficiency, weather resistance, heat resistance and the like as solar cells, and development of further excellent dyes is awaited.
本発明は上記事情に鑑みなされたものであり、その目的は、色素増感太陽電池に使用した場合に、高い変換効率、優れた耐候性、耐熱性を示す新規な色素および該色素を使用した色素増感太陽電池を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to use a novel dye exhibiting high conversion efficiency, excellent weather resistance, and heat resistance when used in a dye-sensitized solar cell, and the dye. The object is to provide a dye-sensitized solar cell.
本発明のさらに他の目的および利点は以下の説明から明らかになろう。 Still other objects and advantages of the present invention will become apparent from the following description.
本発明によれば、本発明の上記目的および利点は、第1に、
下記式(1)で表される色素によって達成される。
ML1L2X1X2 ・・・・・(1)
ここで、Mは長周期律表上の8乃至10族の元素であり、L1およびL2は、互いに独立に、下記式(2)および(3)のそれぞれで表わされる二座配位子のいずれかであり、そしてX1およびX2は、互いに独立に、一価の原子団又は一座配位子である。
According to the present invention, the above objects and advantages of the present invention are as follows.
This is achieved by a dye represented by the following formula (1).
ML 1 L 2 X 1 X 2 (1)
Here, M is a group 8 to 10 element on the long periodic table, and L 1 and L 2 are each independently a bidentate ligand represented by the following formulas (2) and (3): And X 1 and X 2 are each independently a monovalent atomic group or a monodentate ligand.
式(2)において、A1はカルボキシル基、スルホン酸基若しくはリン酸基またはこれらの塩に相当する基であり、R、R1およびR2は互いに独立に一価の有機基であり、そしてm1およびm2は互いに独立に0乃至3の整数を表す。 In the formula (2), A 1 is a carboxyl group, a sulfonic acid group or a phosphoric acid group or a group corresponding to a salt thereof, R, R 1 and R 2 are each independently a monovalent organic group, and m1 and m2 each independently represent an integer of 0 to 3.
式(3)において、A2およびA3は、互いに独立に、カルボキシル基、スルホン酸基若しくはリン酸基またはこれらの塩に相当する基であり、R3およびR4は互いに独立に一価の有機基でありそしてm3およびm4は互いに独立に0乃至3の整数を表す。但し、L1、L2の両方が式(3)で表わされる二座配位子のときには、A2およびA3が共に、カルボキシル基またはその塩に相当する基であることはないものとする。 In the formula (3), A 2 and A 3 are each independently a group corresponding to a carboxyl group, a sulfonic acid group or a phosphoric acid group or a salt thereof, and R 3 and R 4 are each independently a monovalent group. An organic group and m3 and m4 each independently represents an integer of 0 to 3. However, when both L 1 and L 2 are bidentate ligands represented by the formula (3), A 2 and A 3 are not both a carboxyl group or a group corresponding to a salt thereof. .
本発明によれば、発明の上記目的および利点は、第2に、
上記の色素を使用した色素増感太陽電池によって達成される。
According to the present invention, the above objects and advantages of the invention are secondly,
This is achieved by a dye-sensitized solar cell using the above dye.
本発明色素は上記式(1)で表わされる。式(1)において、Mは長周期律表上の8乃至10族の元素であり、L1およびL2は、互いに独立に、上記式(2)および(3)のそれぞれで表わされる二座配位子のいずれかであり、そしてX1およびX2は、互いに独立に、一価の原子団又は一座配位子である。
また、式(2)において、A1はカルボキシル基、スルホン酸基若しくはリン酸基またはこれらの塩に相当する基であり、R、R1およびR2は互いに独立に一価の有機基であり、そしてm1およびm2は互いに独立に0乃至3の整数を表す。
さらに、式(3)において、A2およびA3は、互いに独立に、カルボキシル基、スルホン酸基若しくはリン酸基またはこれらの塩に相当する基であり、R3およびR4は互いに独立に一価の有機基でありそしてm3およびm4は互いに独立に0乃至3の整数を表す。
The coloring matter of the present invention is represented by the above formula (1). In the formula (1), M is an element of group 8 to 10 on the long periodic table, and L 1 and L 2 are each independently a bidentate represented by each of the above formulas (2) and (3) Any of the ligands, and X 1 and X 2 are, independently of one another, a monovalent atomic group or a monodentate ligand.
In the formula (2), A 1 is a carboxyl group, a sulfonic acid group or a phosphoric acid group or a group corresponding to a salt thereof, and R, R 1 and R 2 are independently a monovalent organic group. , And m1 and m2 each independently represents an integer of 0 to 3.
Further, in the formula (3), A 2 and A 3 are each independently a group corresponding to a carboxyl group, a sulfonic acid group or a phosphoric acid group or a salt thereof, and R 3 and R 4 are each independently one another. And m3 and m4 each independently represents an integer of 0 to 3.
Mとしては、8族の鉄、ルテニウム、オスミウム、9族のコバルト、ロジウム、イリジウムおよび10族のニッケル、パラジウム、白金が挙げられる。これらのうち、ルテニウムが特に好ましい。 Examples of M include group 8 iron, ruthenium, osmium, group 9 cobalt, rhodium, iridium, and group 10 nickel, palladium, and platinum. Of these, ruthenium is particularly preferred.
式(2)中のA1および式(3)中のA2およびA3は、それぞれ独立に、カルボキシル基、スルホン酸基若しくはリン酸基又はこれらの塩に相当する基であるが、これらのうち、カルボキシル基又はその塩に相当する基であることが好ましい。 A 1 in formula (2) and A 2 and A 3 in formula (3) are each independently a group corresponding to a carboxyl group, a sulfonic acid group or a phosphoric acid group or a salt thereof. Of these, a group corresponding to a carboxyl group or a salt thereof is preferable.
A1、A2又はA3が塩に相当する基である場合、カウンターカチオンとしては、例えばアンモニウムイオン、ジメチルアンモニウムイオン、ジエチルアンモニウムイオン、テトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラプロピルアンモニウムイオン、テトラブチルアンモニウムイオン、ナトリウムイオン、カリウムイオン等を挙げることができる。
また、式(2)中のRの一価の有機基としては、例えば下記式(6)〜(9)で表される有機基を好ましいものとして挙げることができる。
When A 1 , A 2 or A 3 is a group corresponding to a salt, examples of the counter cation include ammonium ion, dimethyl ammonium ion, diethyl ammonium ion, tetramethyl ammonium ion, tetraethyl ammonium ion, tetrapropyl ammonium ion, tetra A butylammonium ion, a sodium ion, a potassium ion etc. can be mentioned.
Moreover, as a monovalent organic group of R in Formula (2), the organic group represented, for example by following formula (6)-(9) can be mentioned as a preferable thing.
上記式(6)〜(9)において、R5乃至R9は、互いに独立に、炭素数1〜50のアルキル基又は下記式(10) In the above formulas (6) to (9), R 5 to R 9 are each independently an alkyl group having 1 to 50 carbon atoms or the following formula (10)
ここで、R10は水素原子又は炭素数1〜20のアルキル基であり、m5は0〜20の整数であり、m6は1〜20の整数である、
で表される基である。R5乃至R9が炭素数1〜50のアルキル基であるときは、該アルキル基は直鎖状であっても、分岐状であってもよい。
上記式(7)で表わされる基としては、炭素数3〜50のアルキルアミノカルボニル基が好ましい。
また、上記式(2)中のR1、R2および上記式(3)中のR3およびR4の一価の有機基としては、例えば炭素数1〜4のアルキル基又はアルコキシル基を挙げることができる。
さらに、上記式(1)中のX1およびX2の一価の原子団又は一座配位子としては、例えば下記式(11)〜(17)で表される原子団又は配位子を挙げることができる。
Here, R 10 is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, m5 is an integer of 0 to 20, and m6 is an integer of 1 to 20.
It is group represented by these. When R 5 to R 9 are an alkyl group having 1 to 50 carbon atoms, the alkyl group may be linear or branched.
The group represented by the above formula (7) is preferably an alkylaminocarbonyl group having 3 to 50 carbon atoms.
As the monovalent organic group of R 3 and R 4 of R 1, R 2 and the formula in the formula (2) (3), for example, include an alkyl group or an alkoxyl group having 1 to 4 carbon atoms be able to.
Furthermore, examples of the monovalent atomic group or monodentate ligand of X 1 and X 2 in the above formula (1) include atomic groups or ligands represented by the following formulas (11) to (17). be able to.
上記式(12)において、R11は炭素数1〜6のアルキル基である。また、式(13)および(17)において、Arは、炭素数6〜12のアリール基を示す。
これらのうち、X1およびX2としては、上記式(11)で示されるイソチオシアナートが好ましい。
このような本発明の色素は、色素増感太陽電池に好適に使用することができる。
In the above formula (12), R 11 is an alkyl group having 1 to 6 carbon atoms. In the formulas (13) and (17), Ar represents an aryl group having 6 to 12 carbon atoms.
Of these, X 1 and X 2 are preferably isothiocyanates represented by the above formula (11).
Such a dye of the present invention can be suitably used for a dye-sensitized solar cell.
本発明の色素を使用した本発明の色素増感太陽電池は、少なくとも、陰極およびそれと対向する陽極並びに陰極と陽極との間に保持された電解質を有するものである。陰極は、透明導電性ガラス上に、本発明の色素を化学吸着した酸化物薄膜電極を有する。ここで、透明導電性ガラスとしては、例えば酸化スズ、インジウム−スズ酸化物(ITO)等を用いることができる。 The dye-sensitized solar cell of the present invention using the dye of the present invention has at least a cathode, an anode facing the cathode, and an electrolyte held between the cathode and the anode. The cathode has an oxide thin film electrode on which a dye of the present invention is chemisorbed on a transparent conductive glass. Here, as the transparent conductive glass, for example, tin oxide, indium-tin oxide (ITO), or the like can be used.
酸化物薄膜電極を構成する材料としては、例えば酸化チタン、酸化ニオブ、酸化亜鉛、酸化スズ、酸化タングステン、酸化インジウム等を挙げることができる。これらのうち、酸化チタン、酸化ニオブ、酸化スズが好ましく、とりわけ酸化チタンが特に好ましい。酸化物薄膜電極の形成方法は問わないが、例えば、酸化物薄膜電極となるべき酸化物の微粒子を形成し、これを適当な溶媒に懸濁させて透明導電性ガラス上に塗布し、溶媒を除去した後に、加熱する方法により有利に製造することができる。 Examples of the material constituting the oxide thin film electrode include titanium oxide, niobium oxide, zinc oxide, tin oxide, tungsten oxide, and indium oxide. Of these, titanium oxide, niobium oxide, and tin oxide are preferable, and titanium oxide is particularly preferable. There is no limitation on the method of forming the oxide thin film electrode. For example, oxide fine particles to be an oxide thin film electrode are formed, suspended in an appropriate solvent, applied onto transparent conductive glass, and the solvent is added. After removal, it can be advantageously produced by a heating method.
酸化物薄膜電極に本発明の色素を吸着させるには、適宜の方法を採用することができる。例えば、上記の如くして得た表面に酸化物薄膜電極を有する透明導電性ガラスを、本発明の色素を含有する溶液に浸漬して行うことができる。ここで使用できる溶媒としては、例えば、ジエチルエーテル、アセトニトリル、エタノール等を挙げることができる。色素溶液の濃度としては、0.1〜10mmol/Lとすることが好ましい。浸漬時間としては、0.5〜100時間が好ましく、2〜50時間が更に好ましい。浸漬の際の温度としては、0〜100℃であることが好ましく、10〜50℃であることがより好ましい。 In order to adsorb the dye of the present invention to the oxide thin film electrode, an appropriate method can be adopted. For example, the transparent conductive glass having an oxide thin film electrode on the surface obtained as described above can be immersed in a solution containing the dye of the present invention. Examples of the solvent that can be used here include diethyl ether, acetonitrile, ethanol, and the like. The concentration of the dye solution is preferably 0.1 to 10 mmol / L. As immersion time, 0.5 to 100 hours are preferable, and 2 to 50 hours are more preferable. As temperature at the time of immersion, it is preferable that it is 0-100 degreeC, and it is more preferable that it is 10-50 degreeC.
陽極は、導電性を有している限り特に制限はないが、例えば、透明導電性ガラス上に微量の白金又は導電性カーボンを付着させたものを好適に用いることができる。
電解質としては、例えばレドックス系を含有する溶液若しくは固体又はイオン性液体を使用することができる。その具体例としては、例えば、レドックス系としてヨウ素の下記反応
I3 −+2e−=3I−+I2
を利用する系を含有し、溶媒として例えばアセトニトリル、プロピオニトリル等を含有する電解質溶液を使用することができる。
上記のとおり、本発明によると、色素増感太陽電池に使用した場合に、高い変換効率、優れた耐候性、耐熱性を示す新規な色素が提供される。また、上記色素を使用した本発明の色素増感太陽電池は、変換効率が高く、耐候性および耐熱性に優れる。
Although there is no restriction | limiting in particular as long as it has electroconductivity, For example, what attached a trace amount platinum or electroconductive carbon on transparent conductive glass can be used suitably.
As the electrolyte, for example, a solution containing a redox system, a solid, or an ionic liquid can be used. Specific examples thereof include, for example, the following reaction of iodine as a redox system.
I 3 − + 2e − = 3I − + I 2
And an electrolyte solution containing, for example, acetonitrile, propionitrile, or the like as a solvent.
As described above, according to the present invention, when used in a dye-sensitized solar cell, a novel dye exhibiting high conversion efficiency, excellent weather resistance, and heat resistance is provided. Moreover, the dye-sensitized solar cell of the present invention using the above dye has high conversion efficiency and excellent weather resistance and heat resistance.
以下、実施例により本発明を更に具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
実施例1
配位子の合成
40gの4,4’−ジメチル−2,2’−ビピリジンを、1Lの98重量%濃硫酸中に撹拌しながら少量ずつ添加し、溶解させた。次いでこの溶液に、溶液温度を65℃以下に保持しつつ、55gの重クロム酸カリウムを少量ずつ添加した。反応混合物を室温(23℃)まで放冷した後、12Lの氷水中に撹拌しながら投入した。撹拌を2時間継続した後、沈殿物を濾取し、水洗した。得られた固体をエーテルに再溶解し、シリカゲルカラムを通過させて精製し、溶媒を除去して3.8gの生成物を得た。この生成物を1H−NMRで分析したところ、4−カルボキシ−4’−メチル−2,2’−ビピリジンであることがわかった。
Example 1
Synthesis of Ligand 40 g of 4,4′-dimethyl-2,2′-bipyridine was added in small portions with stirring to 1 L of 98 wt% concentrated sulfuric acid and dissolved. Next, 55 g of potassium dichromate was added to this solution little by little while keeping the solution temperature at 65 ° C. or lower. The reaction mixture was allowed to cool to room temperature (23 ° C.) and then poured into 12 L of ice water with stirring. Stirring was continued for 2 hours, and then the precipitate was collected by filtration and washed with water. The resulting solid was redissolved in ether, purified by passing through a silica gel column, and the solvent was removed to give 3.8 g of product. This product was analyzed by 1 H-NMR and found to be 4-carboxy-4′-methyl-2,2′-bipyridine.
色素の合成
0.3gの二塩化(p−シメン)ルテニウム(II)二量体を150mLのN,N−ジメチルホルムアミドに溶解した溶液に、上記で合成した4−カルボキシ−4’−メチル−2,2’−ビピリジンを0.205g添加した。この混合物を窒素雰囲気下、60℃にて4時間撹拌した後、0.234gの4,4’−ジカルボニル−2,2’−ビピリジンを添加して、4時間還流した。その後、3.5gのイソチアン酸カリウムを添加し、更に4時間還流を継続した。
Synthesis of Dye 4-Carboxy-4′-methyl-2 synthesized above was dissolved in a solution of 0.3 g of (p-cymene) ruthenium (II) dichloride dimer in 150 mL of N, N-dimethylformamide. , 2'-bipyridine 0.205g was added. The mixture was stirred at 60 ° C. for 4 hours under a nitrogen atmosphere, 0.234 g of 4,4′-dicarbonyl-2,2′-bipyridine was added, and the mixture was refluxed for 4 hours. Thereafter, 3.5 g of potassium isothiocyanate was added, and the reflux was further continued for 4 hours.
反応混合物を室温(23℃)まで放冷後、減圧にてN,N−ジメチルホルムアミドを除去し、550mLの水を加えた。更に室温で撹拌しつつ、希硝酸を加えてpHを2.5に調整した後、沈殿を濾取した。この固体をメタノールに再溶解し、Sephadex LH−20カラム(市販品、Amersham Biosciences社製)を通過させて精製することにより、0.12gの生成物を得た。1H−NMRで分析したところ、この生成物は、下記式(18)で表されるものであることがわかった。この生成物を、「J1」という。 The reaction mixture was allowed to cool to room temperature (23 ° C.), N, N-dimethylformamide was removed under reduced pressure, and 550 mL of water was added. Further, while stirring at room temperature, dilute nitric acid was added to adjust the pH to 2.5, and then the precipitate was collected by filtration. This solid was redissolved in methanol and purified by passing through a Sephadex LH-20 column (commercially available, manufactured by Amersham Biosciences) to obtain 0.12 g of product. When analyzed by 1 H-NMR, it was found that this product was represented by the following formula (18). This product is referred to as “J1”.
色素増感太陽電池の製造
アセチルアセトン0.4mLとイオン交換水20mLの混合媒体中に、酸化チタン微粒子12gおよび分散剤Triton X−100(市販品、アルドリッチ社製)0.2gを添加し、分散液を調製した。この分散液を、厚さ1mmの導電性ガラス基板(酸化スズ製、抵抗値=10Ω/cm2)上に塗布し、空気中において500℃で1時間加熱し、表面に酸化チタン薄膜を有する導電性ガラス基板を得た。このガラス基板を、上記で合成した色素「J1」を濃度0.2mmol/Lで含有するエタノール溶液中に室温で24時間浸漬することにより、透明導電性ガラス上に本発明の色素を化学吸着した酸化物薄膜電極を有する陰極を製造した。
Manufacture of dye-sensitized solar cell In a mixed medium of 0.4 mL of acetylacetone and 20 mL of ion-exchanged water, 12 g of titanium oxide fine particles and 0.2 g of a dispersant Triton X-100 (commercial product, manufactured by Aldrich) are added, and the dispersion Was prepared. This dispersion is applied onto a 1 mm thick conductive glass substrate (made of tin oxide, resistance value = 10 Ω / cm 2 ), heated in air at 500 ° C. for 1 hour, and a conductive film having a titanium oxide thin film on the surface. Glass substrate was obtained. The glass substrate was immersed in an ethanol solution containing the dye “J1” synthesized above at a concentration of 0.2 mmol / L for 24 hours at room temperature to chemisorb the dye of the present invention onto the transparent conductive glass. A cathode having an oxide thin film electrode was produced.
一方、別の導電性ガラス基板(厚さ1mm、酸化スズ製、抵抗値=10Ω/cm2)上に白金を蒸着し、陽極を製造した。
更に、アセトニトリル中に0.1mol/Lのヨウ素および0.5mol/Lのヨウ化リチウムを含有する電解質溶液を調製した。
上記陰極と陽極を対向させ、その間に上記電解質溶液を挟持する構造の色素増感太陽電池セルを製造した。
On the other hand, platinum was vapor-deposited on another conductive glass substrate (thickness 1 mm, made of tin oxide, resistance value = 10 Ω / cm 2 ) to produce an anode.
Furthermore, an electrolyte solution containing 0.1 mol / L iodine and 0.5 mol / L lithium iodide in acetonitrile was prepared.
A dye-sensitized solar cell having a structure in which the cathode and the anode were opposed to each other and the electrolyte solution was sandwiched therebetween was manufactured.
色素増感太陽電池の評価
上記の如く製造した色素増感太陽電池について、ソーラーシミュレーター「WXS−50S−1.5」(WACOM社製)を用いて疑似太陽光を1,000W/m2の照度で照射し、初期光電変換効率を測定したところ、6.5%であった。その後引き続き疑似太陽光の照射を継続し、光電変換効率が初期値の二分の一になるまでの時間を半減時間として測定したところ、1,200時間であった。
Evaluation of Dye-Sensitized Solar Cell For the dye-sensitized solar cell manufactured as described above, pseudo-sunlight with an illuminance of 1,000 W / m 2 using a solar simulator “WXS-50S-1.5” (manufactured by WACOM) And the initial photoelectric conversion efficiency was measured and found to be 6.5%. Thereafter, irradiation with pseudo-sunlight was continued, and the time until the photoelectric conversion efficiency became one-half of the initial value was measured as a half-time, and was 1200 hours.
実施例2
配位子の合成
2mol/Lリチウムジイソプロピルアミドのテトラヒドロフラン溶液11mLにテトラヒドロフラン100mLを添加し、−70℃に冷却した。−70℃において溶液を撹拌しつつ、実施例1の「配位子の合成」工程で合成した4−カルボキシ−4’−メチル−2,2’−ビピリジンの粉末2.0gをゆっくりと添加した。その後−10℃で撹拌を1時間継続し、次いで−10℃において、5.5gの臭化ドデシルを含む100mLのテトラヒドロフラン溶液を滴下した。反応混合物を室温まで昇温し、更に一時間撹拌を継続した。
Example 2
Synthesis of Ligand 100 mL of tetrahydrofuran was added to 11 mL of a tetrahydrofuran solution of 2 mol / L lithium diisopropylamide and cooled to -70 ° C. While stirring the solution at −70 ° C., 2.0 g of 4-carboxy-4′-methyl-2,2′-bipyridine powder synthesized in the “ligand synthesis” step of Example 1 was slowly added. . Stirring was then continued for 1 hour at −10 ° C., and then 100 mL of a tetrahydrofuran solution containing 5.5 g of dodecyl bromide was added dropwise at −10 ° C. The reaction mixture was warmed to room temperature and stirred for another hour.
その後、氷水250mLを添加し、濃塩酸でpHを2.0に調整した。水層をエーテルで抽出し、濃縮、乾燥後、シリカゲルカラムを通過させて精製し、溶媒を除去して1.1gの生成物を得た。この生成物を1H−NMRで分析したところ、4−カルボキシ−4’−トリデシル−2,2’−ビピリジンであることがわかった。 Thereafter, 250 mL of ice water was added, and the pH was adjusted to 2.0 with concentrated hydrochloric acid. The aqueous layer was extracted with ether, concentrated and dried, then purified by passing through a silica gel column, and the solvent was removed to obtain 1.1 g of product. This product was analyzed by 1 H-NMR and found to be 4-carboxy-4′-tridecyl-2,2′-bipyridine.
色素の合成
実施例1の「色素の合成」において、0.205gの4−カルボキシ−4’−メチル−2,2’−ビピリジンの代わりに、上記で合成した4−カルボキシ−4’−トリデシル−2,2’−ビピリジンの0.38gを用いる他は、実施例1と略同様にして実施し、0.18gの生成物を得た。1H−NMRで分析したところ、この生成物は、下記式(19)で表されるものであることがわかった。この生成物を、「J2」という。
Dye Synthesis In Example 1, “Dye Synthesis”, instead of 0.205 g of 4-carboxy-4′-methyl-2,2′-bipyridine, 4-carboxy-4′-tridecyl-synthesized above was used. This was carried out in the same manner as in Example 1 except that 0.38 g of 2,2′-bipyridine was used, and 0.18 g of a product was obtained. Analysis by 1 H-NMR revealed that the product was represented by the following formula (19). This product is referred to as “J2”.
色素増感太陽電池の製造、評価
実施例1の「色素増感太陽電池の製造」において、色素「J1」の代わりに色素「J2」を使用した他は、実施例1と略同様にして、色素増感太陽電池を製造し、実施例1の「色素増感太陽電池の評価」と同様にして評価した。結果を表1に示す。
Production of dye-sensitized solar cell, evaluation In "Production of dye-sensitized solar cell" in Example 1, except that the dye "J2" was used instead of the dye "J1", the same as in Example 1, A dye-sensitized solar cell was produced and evaluated in the same manner as in “Evaluation of dye-sensitized solar cell” in Example 1. The results are shown in Table 1.
実施例3
配位子の合成
30gの4,4’−ジカルボキシ−2,2’−ビピリジンおよび500gの塩化チオニルを3時間還流した。未反応の塩化チオニルを除去した後、500mLの塩化メチレン、17gのジエチルアミンおよび1.5gの4−ジメチルアミノピリジンを添加し、室温で24時間撹拌を継続した。次いで、反応混合物を希塩酸で洗浄したのち、シリカゲルカラムにより精製し、溶媒を除去することにより、5.6gの生成物を得た。この生成物を1H−NMRで分析したところ、4−カルボキシ−4’−N,N−ジエチルアミノカルボニル−2,2’−ビピリジンであることがわかった。
Example 3
Synthesis of the ligand 30 g of 4,4′-dicarboxy-2,2′-bipyridine and 500 g of thionyl chloride were refluxed for 3 hours. After removing unreacted thionyl chloride, 500 mL of methylene chloride, 17 g of diethylamine and 1.5 g of 4-dimethylaminopyridine were added and stirring was continued at room temperature for 24 hours. The reaction mixture was then washed with dilute hydrochloric acid and purified by a silica gel column, and the solvent was removed to obtain 5.6 g of product. When this product was analyzed by 1 H-NMR, it was found to be 4-carboxy-4′-N, N-diethylaminocarbonyl-2,2′-bipyridine.
色素の合成
実施例1の「色素の合成」において、0.205gの4−カルボキシ−4’−メチル−2,2’−ビピリジンの代わりに、上記で合成した4−カルボキシ−4’−N,N−ジエチルアミノカルボニル−2,2’−ビピリジンの0.287gを用いる他は、実施例1と略同様にして実施し、0.15gの生成物を得た。1H−NMRで分析したところ、この生成物は、下記式(20)で表されるものであることがわかった。この生成物を、「J3」という。
Dye Synthesis In Example 1, “Dye Synthesis”, instead of 0.205 g of 4-carboxy-4′-methyl-2,2′-bipyridine, the 4-carboxy-4′-N, synthesized above was used. This was carried out in the same manner as in Example 1 except that 0.287 g of N-diethylaminocarbonyl-2,2′-bipyridine was used, and 0.15 g of a product was obtained. When analyzed by 1 H-NMR, it was found that this product was represented by the following formula (20). This product is referred to as “J3”.
色素増感太陽電池の製造、評価
実施例1の「色素増感太陽電池の製造」において、色素「J1」の代わりに色素「J3」を使用した他は、実施例1と略同様にして、色素増感太陽電池を製造し、実施例1の「色素増感太陽電池の評価」と同様にして評価した。結果を表1に示す。
Production of dye-sensitized solar cell, evaluation In "Production of dye-sensitized solar cell" in Example 1, except that the dye "J3" was used instead of the dye "J1", the same as in Example 1, A dye-sensitized solar cell was produced and evaluated in the same manner as in “Evaluation of dye-sensitized solar cell” in Example 1. The results are shown in Table 1.
実施例4
配位子の合成
実施例3の「配位子の合成」において、17gのジエチルアミンの代わりに、46gのN−メチル−N−ドデシルアミンを使用した他は、実施例3の「配位子の合成」と略同様に実施し、3.2gの生成物を得た。この生成物を1H−NMRで分析したところ、4−カルボキシ−4’−N−メチル−N−ドデシルアミノカルボニル−2,2’−ビピリジンであることがわかった。
Example 4
Synthesis of Ligand In Example 3 “Synthesis of Ligand”, 46 g of N-methyl-N-dodecylamine was used instead of 17 g of diethylamine. Performed substantially as in “Synthesis” to give 3.2 g of product. This product was analyzed by 1 H-NMR and found to be 4-carboxy-4′-N-methyl-N-dodecylaminocarbonyl-2,2′-bipyridine.
色素の合成
実施例1の「色素の合成」において、0.205gの4−カルボキシ−4’−メチル−2,2’−ビピリジンの代わりに、上記で合成した4−カルボキシ−4’−N−メチル−N−ドデシルアミノカルボニル−2,2’−ビピリジンの0.408gを用いる他は、実施例1と略同様にして実施し、0.21gの生成物を得た。1H−NMRで分析したところ、この生成物は、下記式(21)で表されるものであることがわかった。この生成物を、「J4」という。
Dye synthesis In Example 1, “Dye synthesis”, instead of 0.205 g of 4-carboxy-4′-methyl-2,2′-bipyridine, 4-carboxy-4′-N— synthesized above was used. The procedure of Example 1 was repeated except that 0.408 g of methyl-N-dodecylaminocarbonyl-2,2′-bipyridine was used, and 0.21 g of product was obtained. When analyzed by 1 H-NMR, it was found that this product was represented by the following formula (21). This product is referred to as “J4”.
色素増感太陽電池の製造、評価
実施例1の「色素増感太陽電池の製造」において、色素「J1」の代わりに色素「J4」を使用した他は、実施例1と略同様にして、色素増感太陽電池を製造し、実施例1の「色素増感太陽電池の評価」と同様にして評価した。結果を表1に示す。
比較例1
Production of dye-sensitized solar cell, evaluation In "Production of dye-sensitized solar cell" in Example 1, except that the dye "J4" was used instead of the dye "J1", the same as in Example 1, A dye-sensitized solar cell was produced and evaluated in the same manner as in “Evaluation of dye-sensitized solar cell” in Example 1. The results are shown in Table 1.
Comparative Example 1
色素増感太陽電池の製造、評価
実施例1の「色素増感太陽電池の製造」において、色素「J1」の代わりに市販の色素「N3」(Solaronix(株)製、前記式(4)で表される構造において、テトラブチルアンモニウムイオンを二つとも水素イオンで置換した構造を有する色素である。)を使用した他は、実施例1と略同様にして、色素増感太陽電池を製造し、実施例1の「色素増感太陽電池の評価」と同様にして評価した。結果を表1に示す。
Manufacture of dye-sensitized solar cell and evaluation "Manufacture of dye-sensitized solar cell" in Example 1 Commercially available dye "N3" (manufactured by Solaronix Co., Ltd., in the above formula (4) instead of dye "J1") In the structure shown, a dye-sensitized solar cell was manufactured in substantially the same manner as in Example 1 except that a dye having a structure in which both tetrabutylammonium ions were replaced with hydrogen ions. Evaluation was performed in the same manner as in “Evaluation of dye-sensitized solar cell” in Example 1. The results are shown in Table 1.
実施例5
配位子の合成
容器中に、4,4’−ジメチル−2,2’−ビピリジン6.39gと、二酸化セレン4.16gおよび1,4−ジオキサン375mL(386.4g)を仕込み、24時間還流した後、熱時ろ過を行った。ろ液を濃縮した後、これにエタノール225mLおよび硝酸銀水溶液(6.48g/50mL)を添加し、更に1.5mol/Lの水酸化ナトリウム水溶液100mLを添加した。この溶液を、室温で15時間攪拌した。次いで溶液をろ過し、エタノールを減圧にて除去した後のものを、クロロホルム150mLで洗浄した。洗浄後の溶液に酢酸と4N規定塩酸の体積比1:1の混合液を加え、pHを3.5としたところ、白色の固体が析出した。そのまま10℃で一昼夜静置し、固体をろ別して乾燥した。その固体をイソプロピルアルコールで固液抽出し、溶媒を減圧除去して2.26gの生成物を得た。これを1H−NMRで分析したところ、4−カルボキシ−4’−メチル−2,2’−ビピリジンであることがわかった。
1H−NMR(DMSO−d6,298K,270MHz,δ(ppm));δ=8.86(d,1H)、8.82(s,1H)、8.58(d,1H)、8.27(s,1H)、7.86(s,1H)、7.33(d,1H)、2.44(s,3H,Me)
Example 5
In a ligand synthesis vessel, 6.39 g of 4,4′-dimethyl-2,2′-bipyridine, 4.16 g of selenium dioxide and 375 mL of 1,4-dioxane (386.4 g) were charged and refluxed for 24 hours. Then, hot filtration was performed. After the filtrate was concentrated, 225 mL of ethanol and an aqueous silver nitrate solution (6.48 g / 50 mL) were added thereto, and 100 mL of a 1.5 mol / L aqueous sodium hydroxide solution was further added. The solution was stirred at room temperature for 15 hours. Next, the solution was filtered, and after ethanol was removed under reduced pressure, the solution was washed with 150 mL of chloroform. When a mixed solution of acetic acid and 4N normal hydrochloric acid in a volume ratio of 1: 1 was added to the washed solution to adjust the pH to 3.5, a white solid was precipitated. The mixture was allowed to stand at 10 ° C. for one day, and the solid was filtered off and dried. The solid was solid-liquid extracted with isopropyl alcohol, and the solvent was removed under reduced pressure to give 2.26 g of product. When this was analyzed by 1 H-NMR, it was found to be 4-carboxy-4′-methyl-2,2′-bipyridine.
1 H-NMR (DMSO-d6, 298K, 270 MHz, δ (ppm)); δ = 8.86 (d, 1H), 8.82 (s, 1H), 8.58 (d, 1H), 8. 27 (s, 1H), 7.86 (s, 1H), 7.33 (d, 1H), 2.44 (s, 3H, Me)
色素の合成
減圧脱気後窒素雰囲気下においた無水N,N−ジメチルホルムアルミド25mLに、二塩化(p−シメン)ルテニウム(II)50mgおよび減圧乾燥した4,4’−ジカルボキシ−2,2’−ビピリジン39.08mgを添加し、10分間窒素気流下においた。窒素雰囲気下、この溶液を60℃にて4時間撹拌後、減圧にて乾燥した4−カルボキシ−4’−メチル−2,2’−ビピリジン(上記で合成したもの)34.28mgを添加し、10分間窒素気流下においた。続いて窒素雰囲気下、この溶液を150℃にて4時間撹拌し、100℃まで放冷してから、イオン交換水2.5mLに溶解させたイソチオシアン酸カリウム155.49mgを添加し、更に150℃にて4時間撹拌した。反応混合物を室温まで放冷後、減圧にて溶媒を除去し、0.87重量%の炭酸ナトリウム水溶液を加えた。更に室温で撹拌しつつ、0.5N規定の硝酸を少しずつ滴下してpHを3.0にしたところ、析出物があった。これを一晩静置した後、遠心分離して、固体を回収した。回収した固体を、少量のイオン交換水で3回洗浄後、凍結乾燥した。この固体を少量のN,N−ジメチルホルムアミドに溶解し、Sephadex LH−20(市販品、Amersham Biosciences社製)を使用したカラムクロマト法により精製することにより、60mgの生成物を得た。これを1H−NMRで分析したところ、上記式(18)で表されるものであることがわかった。
1H−NMR(DMSO−d6,298K,270MHz,δ(ppm));δ=9.41(m)、[9.11−8.74(m)、8.33(m)、7.77−7.10(m);COH]、2.42(s,3H)
なお、Sephadex LH−20カラムを使用した精製は、下記の手順によって行った。
Synthesis of dye After degassing under reduced pressure, 25 mg of anhydrous N, N-dimethylformaluminide in a nitrogen atmosphere, 50 mg of ruthenium (II) dichloride (p-cymene) ruthenium (II) and 4,4′-dicarboxy-2,2 dried under reduced pressure 39.08 mg of '-bipyridine was added and placed under a nitrogen stream for 10 minutes. Under a nitrogen atmosphere, this solution was stirred at 60 ° C. for 4 hours, and then 34.28 mg of 4-carboxy-4′-methyl-2,2′-bipyridine (synthesized above) dried under reduced pressure was added, It was placed in a nitrogen stream for 10 minutes. Subsequently, this solution was stirred at 150 ° C. for 4 hours under a nitrogen atmosphere, allowed to cool to 100 ° C., and then added with 155.49 mg of potassium isothiocyanate dissolved in 2.5 mL of ion-exchanged water. For 4 hours. The reaction mixture was allowed to cool to room temperature, the solvent was removed under reduced pressure, and 0.87 wt% aqueous sodium carbonate solution was added. Further, while stirring at room temperature, 0.5N normal nitric acid was added dropwise little by little to adjust the pH to 3.0, and a precipitate was found. This was left to stand overnight, and then centrifuged to recover a solid. The collected solid was washed three times with a small amount of ion-exchanged water and then lyophilized. This solid was dissolved in a small amount of N, N-dimethylformamide and purified by column chromatography using Sephadex LH-20 (commercial product, manufactured by Amersham Biosciences) to obtain 60 mg of product. This was analyzed by 1 H-NMR and found to be represented by the above formula (18).
1 H-NMR (DMSO-d6, 298K, 270 MHz, δ (ppm)); δ = 9.41 (m), [9.11-8.74 (m), 8.33 (m), 7.77 -7.10 (m); COH], 2.42 (s, 3H)
The purification using a Sephadex LH-20 column was performed according to the following procedure.
市販のSephadex LH−20ゲルを一晩浸漬して膨張させた後、カラム(3×60cm)に充填した。このカラムに400mLのN,N−ジメチルホルムアミドを流した後、0.1重量%の塩化リチウムのN,N−ジメチルホルムアミド溶液300mLを流した。色素の粗生成物の全量を5mLのN,N−ジメチルホルムアミドに溶解してカラムにロードし、0.1重量%の塩化リチウムのN,N−ジメチルホルムアミド溶液で色素を溶出させた。溶出した色素を回収、減圧にて溶媒を除去した後、水洗で塩化リチウムを除去し、遠心分離にて色素を回収した後、減圧乾燥することにより、精製した色素を得た。 A commercially available Sephadex LH-20 gel was immersed overnight to swell and then packed into a column (3 × 60 cm). After 400 mL of N, N-dimethylformamide was passed through this column, 300 mL of a 0.1 wt% N, N-dimethylformamide solution of lithium chloride was passed. The entire amount of the crude dye product was dissolved in 5 mL of N, N-dimethylformamide and loaded onto the column, and the dye was eluted with 0.1% by weight of a solution of lithium chloride in N, N-dimethylformamide. The eluted dye was recovered, the solvent was removed under reduced pressure, lithium chloride was removed by washing with water, the dye was recovered by centrifugation, and then dried under reduced pressure to obtain a purified dye.
色素増感太陽電池の製造、評価
Solaronix社製酸化チタンペーストTi−Nanoxide D/SP(酸化チタンの平均粒径13nm)を、厚さ1.1mmの導電性ガラス基板(表面にITO(indium−tin−oxide)薄膜を有するガラス基板、抵抗率10Ω/cm2)上に塗布し、空気中で500℃にて30分間加熱した。この処理後のガラス基板を、上記で得られた色素を0.2mmol/Lの濃度で含有する水溶液に、室温で12時間浸漬した後、23℃で1時間静置して乾燥し、色素が吸着された酸化チタン層を有するガラス基板を得た。
Production and Evaluation of Dye-Sensitized Solar Cell Titanium oxide paste Ti-Nanoxide D / SP (average particle diameter of titanium oxide 13 nm) manufactured by Solaronix Co., Ltd. was applied to a 1.1 mm-thick conductive glass substrate (ITO (indium-tin on the surface). -Oxide) It was applied on a glass substrate having a thin film, resistivity 10 Ω / cm 2 ) and heated in air at 500 ° C. for 30 minutes. The glass substrate after this treatment was immersed in an aqueous solution containing the dye obtained above at a concentration of 0.2 mmol / L for 12 hours at room temperature, and then allowed to stand at 23 ° C. for 1 hour to dry. A glass substrate having an adsorbed titanium oxide layer was obtained.
これとは別に、導電性ガラス基板(抵抗率10Ω/cm2)上に白金をスパッタし、対向電極を準備した。
上記で製造した2種類のガラス基板を、それぞれ酸化チタン層および白金層を内側として距離100μmで対向し、その間に0.1mol/Lのヨウ素および1.5mol/Lのヨウ化リチウムを含有するアセトニトリル溶液を仕込み、色素増感太陽電池を製造した。
Separately, platinum was sputtered on a conductive glass substrate (resistivity 10 Ω / cm 2 ) to prepare a counter electrode.
Acetonitrile containing the two types of glass substrates produced above facing each other at a distance of 100 μm with the titanium oxide layer and the platinum layer inside, respectively, and 0.1 mol / L iodine and 1.5 mol / L lithium iodide in between. The solution was charged to produce a dye-sensitized solar cell.
この色素増感太陽電池に、酸化チタン層を有するガラス基板側から、人工太陽照明灯XC−100A(バイオット社製)を用いて疑似太陽光(1,000W/m2)を照射し、光電変換効率を測定したところ、変換効率は5.6%であった。その後、疑似太陽光の照射を継続し、起動開始直後からこの変換効率の値が初期の1/2となるまでの時間を半減時間として測定したところ、967時間であった。 This dye-sensitized solar cell is irradiated with pseudo-sunlight (1,000 W / m 2 ) from the side of the glass substrate having the titanium oxide layer by using an artificial solar illumination lamp XC-100A (manufactured by Biot), and photoelectric conversion is performed. When the efficiency was measured, the conversion efficiency was 5.6%. Thereafter, irradiation with pseudo-sunlight was continued, and the time from immediately after the start of startup until the value of this conversion efficiency was ½ of the initial value was measured as a half-time, which was 967 hours.
比較例2
実施例5において、色素としてN3色素を用いた他は実施例5と同様に色素増感太陽電池を製造、評価したところ、変化率は4.8%、半減時間は767時間であった。
Comparative Example 2
In Example 5, a dye-sensitized solar cell was produced and evaluated in the same manner as in Example 5 except that N3 dye was used as the dye. The change rate was 4.8% and the half-life was 767 hours.
実施例6
配位子の合成
40gの4,4’−ジメチル−2,2’−ビピリジンを、1Lの98重量%濃硫酸中に撹拌しながら少量ずつ添加し、溶解させた。次いでこの溶液に、溶液温度を65℃以下に保持しつつ、55gの重クロム酸カリウムを少量ずつ添加した。反応混合物を室温(23℃)まで放冷した後、12Lの氷水中に撹拌しながら投入した。撹拌を2時間継続した後、沈殿物を濾取し、水洗した。得られた固体をエーテルに再溶解し、シリカゲルカラムを通過させて精製し、溶媒を除去して3.8gの生成物を得た。この生成物を1H−NMRで分析したところ、4−カルボキシ−4’−メチル−2,2’−ビピリジンであることがわかった。
Example 6
Synthesis of Ligand 40 g of 4,4′-dimethyl-2,2′-bipyridine was added in small portions with stirring to 1 L of 98 wt% concentrated sulfuric acid and dissolved. Next, 55 g of potassium dichromate was added to this solution little by little while keeping the solution temperature at 65 ° C. or lower. The reaction mixture was allowed to cool to room temperature (23 ° C.) and then poured into 12 L of ice water with stirring. Stirring was continued for 2 hours, and then the precipitate was collected by filtration and washed with water. The resulting solid was redissolved in ether, purified by passing through a silica gel column, and the solvent was removed to give 3.8 g of product. This product was analyzed by 1 H-NMR and found to be 4-carboxy-4′-methyl-2,2′-bipyridine.
色素の合成
Ru(ジメチルスルホキシド)4Cl2の0.71mmolをN,N−ジメチルホルムアミド30mLに溶解した溶液に、上記で合成した4−カルボキシ−4’−メチル−2,2’−ビピリジンを1.42mmol添加した。混合物を4時間還流した後、2.8gのイソチアン酸カリウムを添加し、更に4時間還流を継続した。
Synthesis of Dye 4-carboxy-4′-methyl-2,2′-bipyridine synthesized above was added to a solution of 0.71 mmol of Ru (dimethyl sulfoxide) 4 Cl 2 dissolved in 30 mL of N, N-dimethylformamide. .42 mmol was added. After the mixture was refluxed for 4 hours, 2.8 g of potassium isothiocyanate was added and reflux was continued for an additional 4 hours.
反応混合物を室温(23℃)まで放冷後、減圧にてN,N−ジメチルホルムアミドを除去し、600mLの水を加えた。更に室温で撹拌しつつ、希硝酸を加えてpHを2.5に調整した後、沈殿を濾取した。この固体をメタノールに再溶解し、Sephadex LH−20カラム(市販品、Amersham Biosciences社製)を通過させて精製することにより、0.34gの生成物を得た。1H−NMRで分析したところ、この生成物は、下記式(22)で表されるものであることがわかった。この生成物を、「S1」という。 The reaction mixture was allowed to cool to room temperature (23 ° C.), N, N-dimethylformamide was removed under reduced pressure, and 600 mL of water was added. Further, while stirring at room temperature, dilute nitric acid was added to adjust the pH to 2.5, and then the precipitate was collected by filtration. This solid was redissolved in methanol and purified by passing through a Sephadex LH-20 column (commercially available, manufactured by Amersham Biosciences) to obtain 0.34 g of product. When analyzed by 1 H-NMR, it was found that this product was represented by the following formula (22). This product is referred to as “S1”.
色素増感太陽電池の製造
アセチルアセトン0.4mLとイオン交換水20mLの混合媒体中に、酸化チタン微粒子12gおよび分散剤Triton X−100(市販品、アルドリッチ社製)0.2gを添加し、分散液を調製した。この分散液を、厚さ1mmの導電性ガラス基板(酸化スズ製、抵抗値=10Ω/cm2)上に塗布し、空気中において500℃で1時間加熱し、表面に酸化チタン薄膜を有する導電性ガラス基板を得た。このガラス基板を、上記で合成した色素「S1」を濃度0.2mmol/Lで含有するエタノール溶液中に室温で24時間浸漬することにより、透明導電性ガラス上に本発明の色素を化学吸着した酸化物薄膜電極を有する陰極を製造した。
Manufacture of dye-sensitized solar cell In a mixed medium of 0.4 mL of acetylacetone and 20 mL of ion-exchanged water, 12 g of titanium oxide fine particles and 0.2 g of a dispersant Triton X-100 (commercial product, manufactured by Aldrich) are added, and the dispersion Was prepared. This dispersion is applied onto a 1 mm thick conductive glass substrate (made of tin oxide, resistance value = 10 Ω / cm 2 ), heated in air at 500 ° C. for 1 hour, and a conductive film having a titanium oxide thin film on the surface. Glass substrate was obtained. The glass substrate was immersed in an ethanol solution containing the dye “S1” synthesized above at a concentration of 0.2 mmol / L for 24 hours at room temperature to chemisorb the dye of the present invention onto the transparent conductive glass. A cathode having an oxide thin film electrode was produced.
一方、別の導電性ガラス基板(厚さ1mm、酸化スズ製、抵抗値=10Ω/cm2)上に白金を蒸着し、陽極を製造した。
更に、アセトニトリル中に0.1mol/Lのヨウ素および0.5mol/Lのヨウ化リチウムを含有する電解質溶液を調製した。
上記陰極と陽極を対向させ、その間に上記電解質溶液を挟持する構造の色素増感太陽電池セルを製造した。
On the other hand, platinum was vapor-deposited on another conductive glass substrate (thickness 1 mm, made of tin oxide, resistance value = 10 Ω / cm 2 ) to produce an anode.
Furthermore, an electrolyte solution containing 0.1 mol / L iodine and 0.5 mol / L lithium iodide in acetonitrile was prepared.
A dye-sensitized solar cell having a structure in which the cathode and the anode were opposed to each other and the electrolyte solution was sandwiched therebetween was manufactured.
色素増感太陽電池の評価
上記の如く製造した色素増感太陽電池について、ソーラーシミュレーター「WXS−50S−1.5」(WACOM社製)を用いて疑似太陽光を1,000W/m2の照度で照射し、初期光電変換効率を測定したところ、6.7%であった。その後引き続き疑似太陽光の照射を継続し、光電変換効率が初期値の二分の一になるまでの時間を半減時間として測定したところ、1,190時間であった。
Evaluation of Dye-Sensitized Solar Cell For the dye-sensitized solar cell manufactured as described above, pseudo-sunlight with an illuminance of 1,000 W / m 2 using a solar simulator “WXS-50S-1.5” (manufactured by WACOM) And the initial photoelectric conversion efficiency was measured and found to be 6.7%. Thereafter, irradiation with pseudo-sunlight was continued, and the time until the photoelectric conversion efficiency was reduced to one-half of the initial value was measured as a half-time, which was 1,190 hours.
実施例7
配位子の合成
2mol/Lリチウムジイソプロピルアミドのテトラヒドロフラン溶液11mLにテトラヒドロフラン100mLを添加し、−70℃に冷却した。−70℃において溶液を撹拌しつつ、実施例1の「配位子の合成」工程で合成した4−カルボキシ−4’−メチル−2,2’−ビピリジンの粉末2.0gをゆっくりと添加した。その後−10℃で撹拌を1時間継続し、次いで−10℃において、5.5gの臭化ドデシルを含む100mLのテトラヒドロフラン溶液を滴下した。反応混合物を室温まで昇温し、更に一時間撹拌を継続した。
Example 7
Synthesis of Ligand 100 mL of tetrahydrofuran was added to 11 mL of a tetrahydrofuran solution of 2 mol / L lithium diisopropylamide and cooled to -70 ° C. While stirring the solution at −70 ° C., 2.0 g of 4-carboxy-4′-methyl-2,2′-bipyridine powder synthesized in the “ligand synthesis” step of Example 1 was slowly added. . Stirring was then continued for 1 hour at −10 ° C., and then 100 mL of a tetrahydrofuran solution containing 5.5 g of dodecyl bromide was added dropwise at −10 ° C. The reaction mixture was warmed to room temperature and stirred for another hour.
その後、氷水250mLを添加し、濃塩酸でpHを2.0に調整した。水層をエーテルで抽出し、濃縮、乾燥後、シリカゲルカラムを通過させて精製し、溶媒を除去して1.1gの生成物を得た。この生成物を1H−NMRで分析したところ、4−カルボキシ−4’−トリデシル−2,2’−ビピリジンであることがわかった。 Thereafter, 250 mL of ice water was added, and the pH was adjusted to 2.0 with concentrated hydrochloric acid. The aqueous layer was extracted with ether, concentrated and dried, then purified by passing through a silica gel column, and the solvent was removed to obtain 1.1 g of product. This product was analyzed by 1 H-NMR and found to be 4-carboxy-4′-tridecyl-2,2′-bipyridine.
色素の合成
実施例6の「色素の合成」において、1.42mmolの4−カルボキシ−4’−メチル−2,2’−ビピリジンの代わりに、上記で合成した4−カルボキシ−4’−トリデシル−2,2’−ビピリジンの1.42mmolを用いた他は、実施例6と略同様にして実施し、0.42gの生成物を得た。1H−NMRで分析したところ、この生成物は、下記式(23)で表されるものであることがわかった。この生成物を、「S2」という。
Dye synthesis In Example 6, “Dye synthesis”, instead of 1.42 mmol of 4-carboxy-4′-methyl-2,2′-bipyridine, 4-carboxy-4′-tridecyl-synthesized above was used. The reaction was conducted in the same manner as in Example 6 except that 1.42 mmol of 2,2′-bipyridine was used, and 0.42 g of a product was obtained. When analyzed by 1 H-NMR, it was found that this product was represented by the following formula (23). This product is referred to as “S2”.
色素増感太陽電池の製造、評価
実施例6の「色素増感太陽電池の製造」において、色素「S1」の代わりに色素「S2」を使用した他は、実施例6と略同様にして、色素増感太陽電池を製造し、実施例6の「色素増感太陽電池の評価」と同様にして評価した。結果を表2に示す。
Production of dye-sensitized solar cell, evaluation In "Production of dye-sensitized solar cell" in Example 6, except that the dye "S2" was used instead of the dye "S1", the same as in Example 6, A dye-sensitized solar cell was produced and evaluated in the same manner as in “Evaluation of dye-sensitized solar cell” in Example 6. The results are shown in Table 2.
実施例8
配位子の合成
30gの4,4’−ジカルボキシ−2,2’−ビピリジンおよび500gの塩化チオニルを3時間還流した。未反応の塩化チオニルを除去した後、500mLの塩化メチレン、17gのジエチルアミンおよび1.5gの4−ジメチルアミノピリジンを添加し、室温で24時間撹拌を継続した。次いで、反応混合物を希塩酸で洗浄したのち、シリカゲルカラムにより精製し、溶媒を除去することにより、5.6gの生成物を得た。この生成物を1H−NMRで分析したところ、4−カルボキシ−4’−N,N−ジエチルアミノカルボニル−2,2’−ビピリジンであることがわかった。
Example 8
Synthesis of the ligand 30 g of 4,4′-dicarboxy-2,2′-bipyridine and 500 g of thionyl chloride were refluxed for 3 hours. After removing unreacted thionyl chloride, 500 mL of methylene chloride, 17 g of diethylamine and 1.5 g of 4-dimethylaminopyridine were added and stirring was continued at room temperature for 24 hours. The reaction mixture was then washed with dilute hydrochloric acid and purified by a silica gel column, and the solvent was removed to obtain 5.6 g of product. When this product was analyzed by 1 H-NMR, it was found to be 4-carboxy-4′-N, N-diethylaminocarbonyl-2,2′-bipyridine.
色素の合成
実施例6の「色素の合成」において、1.42mmolの4−カルボキシ−4’−メチル−2,2’−ビピリジンの代わりに、上記で合成した4−カルボキシ−4’−N,N−ジエチルアミノカルボニル−2,2’−ビピリジンの1.42mmolを用いた他は、実施例6と略同様にして実施し、0.31gの生成物を得た。1H−NMRで分析したところ、この生成物は、下記式(24)で表されるものであることがわかった。この生成物を、「S3」という。
Synthesis of Dye In “Synthesis of Dye” in Example 6, instead of 1.42 mmol of 4-carboxy-4′-methyl-2,2′-bipyridine, 4-carboxy-4′-N, synthesized above, The reaction was conducted in the same manner as in Example 6 except that 1.42 mmol of N-diethylaminocarbonyl-2,2′-bipyridine was used, and 0.31 g of a product was obtained. When analyzed by 1 H-NMR, it was found that this product was represented by the following formula (24). This product is referred to as “S3”.
色素増感太陽電池の製造、評価
実施例6の「色素増感太陽電池の製造」において、色素「S1」の代わりに色素「S3」を使用した他は、実施例6と略同様にして、色素増感太陽電池を製造し、実施例6の「色素増感太陽電池の評価」と同様にして評価した。結果を表2に示す。
Production of dye-sensitized solar cell, evaluation In "Production of dye-sensitized solar cell" in Example 6, except that the dye "S3" was used instead of the dye "S1", the same as in Example 6, A dye-sensitized solar cell was produced and evaluated in the same manner as in “Evaluation of dye-sensitized solar cell” in Example 6. The results are shown in Table 2.
実施例9
配位子の合成
実施例8の「配位子の合成」において、17gのジエチルアミンの代わりに、46gのN−メチルドデシルアミンを使用した他は、実施例8の「配位子の合成」と略同様に実施し、3.2gの生成物を得た。この生成物を1H−NMRで分析したところ、4−カルボキシ−4’−N−メチル−N−ドデシルアミノカルボニル−2,2’−ビピリジンであることがわかった。
Example 9
Synthesis of Ligand In Example 8, “Synthesis of Ligand”, except that 46 g of N-methyldodecylamine was used instead of 17 g of diethylamine, Carried out in substantially the same way, 3.2 g of product was obtained. This product was analyzed by 1 H-NMR and found to be 4-carboxy-4′-N-methyl-N-dodecylaminocarbonyl-2,2′-bipyridine.
色素の合成
実施例6の「色素の合成」において、1.42mmolの4−カルボキシ−4’−メチル−2,2’−ビピリジンの代わりに、上記で合成した4−カルボキシ−4’−N−メチル−N−ドデシルアミノカルボニル−2,2’−ビピリジンの1.42mmolを用いた他は、実施例5と略同様にして実施し、0.39gの生成物を得た。1H−NMRで分析したところ、この生成物は、下記式(25)で表されるものであることがわかった。この生成物を、「S4」という。
Dye Synthesis In “Synthesis of Dye” in Example 6, instead of 1.42 mmol of 4-carboxy-4′-methyl-2,2′-bipyridine, 4-carboxy-4′-N— synthesized above was used. This was carried out in the same manner as in Example 5 except that 1.42 mmol of methyl-N-dodecylaminocarbonyl-2,2′-bipyridine was used, and 0.39 g of a product was obtained. Analysis by 1 H-NMR revealed that this product was represented by the following formula (25). This product is referred to as “S4”.
色素増感太陽電池の製造、評価
実施例6の「色素増感太陽電池の製造」において、色素「S1」の代わりに色素「S4」を使用した他は、実施例6と略同様にして、色素増感太陽電池を製造し、実施例6の「色素増感太陽電池の評価」と同様にして評価した。結果を表2に示す。
Production of dye-sensitized solar cell, evaluation In "Production of dye-sensitized solar cell" in Example 6, except that the dye "S4" was used instead of the dye "S1", the same as in Example 6, A dye-sensitized solar cell was produced and evaluated in the same manner as in “Evaluation of dye-sensitized solar cell” in Example 6. The results are shown in Table 2.
実施例10
色素の合成
上記実施例5の「色素の合成」において、4,4’−ジカルボキシ−2,2’−ビピリジン39.08mgの代わりに、4−カルボキシ−4’−メチル−2,2’−ビピリジン(上記実施例5の「配位子の合成」で合成したもの)34.28mgを使用した他は、実施例5の「色素の合成」と同様にして実施し、57mgの生成物を得た。これを1H−NMRで分析したところ、上記式(22)で表されるものであることがわかった。
Example 10
Synthesis of Dye In “Synthesis of Dye” in Example 5 above, instead of 39.08 mg of 4,4′-dicarboxy-2,2′-bipyridine, 4-carboxy-4′-methyl-2,2′- Except for using 34.28 mg of bipyridine (synthesized in “Synthesis of Ligand” in Example 5 above), the same procedure as in “Synthesis of Dye” in Example 5 was carried out to obtain 57 mg of product. It was. This was analyzed by 1 H-NMR and found to be represented by the above formula (22).
1H−NMR(DMSO−d6,298K,270MHz,δ(ppm));δ=9.41(m,1H)、
9.06−8.70(m,5H)、8.27(m,1H,)7.82−7.12(m,5H)、2.68(s,3H)、2.42(s,3H)
1 H-NMR (DMSO-d6, 298K, 270 MHz, δ (ppm)); δ = 9.41 (m, 1H),
9.06-8.70 (m, 5H), 8.27 (m, 1H,) 7.82-7.12 (m, 5H), 2.68 (s, 3H), 2.42 (s, 3H)
色素増感太陽電池の製造、評価
色素として、上記で合成したものを使用した他は上記実施例5の「色素増感太陽電池の製造、評価」と同様にして実施したところ、変換効率は5.3%であり、半減時間は945時間であった。
Production and evaluation of dye-sensitized solar cell The same procedure as in “Manufacturing and evaluation of dye-sensitized solar cell” in Example 5 was performed except that the above synthesized dye was used. Conversion efficiency was 5 The half-life was 945 hours.
Claims (6)
ML1L2X1X2 ・・・・・(1)
ここで、Mは長周期律表上の8乃至10族の元素であり、L1およびL2は、互いに独立に、下記式(2)および(3)のそれぞれで表わされる二座配位子のいずれかであり、そしてX1およびX2は、互いに独立に、一価の原子団又は一座配位子である。
ML 1 L 2 X 1 X 2 (1)
Here, M is a group 8 to 10 element on the long periodic table, and L 1 and L 2 are each independently a bidentate ligand represented by the following formulas (2) and (3): And X 1 and X 2 are each independently a monovalent atomic group or a monodentate ligand.
The dye-sensitized solar cell using the pigment | dye as described in any one of Claims 1-4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005115766A JP2005330469A (en) | 2004-04-16 | 2005-04-13 | Dye and dye-sensitized solar cell |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004121963 | 2004-04-16 | ||
JP2004123619 | 2004-04-20 | ||
JP2005115766A JP2005330469A (en) | 2004-04-16 | 2005-04-13 | Dye and dye-sensitized solar cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005330469A true JP2005330469A (en) | 2005-12-02 |
Family
ID=35485347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005115766A Withdrawn JP2005330469A (en) | 2004-04-16 | 2005-04-13 | Dye and dye-sensitized solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005330469A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007302879A (en) * | 2006-05-11 | 2007-11-22 | National Central Univ | Photosensitizing dye |
JP2010153293A (en) * | 2008-12-26 | 2010-07-08 | Okayama Univ | Structure connecting dye to conductive substrate through peptide and photoelectric conversion element including the same |
JP2010159340A (en) * | 2009-01-07 | 2010-07-22 | Toyota Central R&D Labs Inc | Metal complex dye and dye-sensitized solar cell using the same |
US7964790B2 (en) * | 2006-11-15 | 2011-06-21 | Samsung Electronics Co., Ltd. | Dye for photoelectric device and photoelectric device comprising the dye |
US8618294B2 (en) | 2010-07-09 | 2013-12-31 | Samsung Sdi Co., Ltd. | Dye for dye-sensitized solar cells, method of preparing the same, and solar cell including the dye |
CN103617892A (en) * | 2013-12-13 | 2014-03-05 | 福州大学 | Flexible zinc-oxide quantum-dot solar battery adopting ruthenium-modified dye as sensitizer |
-
2005
- 2005-04-13 JP JP2005115766A patent/JP2005330469A/en not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007302879A (en) * | 2006-05-11 | 2007-11-22 | National Central Univ | Photosensitizing dye |
JP4676970B2 (en) * | 2006-05-11 | 2011-04-27 | 國立中央大學 | Photosensitizing dye |
US7964790B2 (en) * | 2006-11-15 | 2011-06-21 | Samsung Electronics Co., Ltd. | Dye for photoelectric device and photoelectric device comprising the dye |
KR101146668B1 (en) | 2006-11-15 | 2012-05-23 | 삼성에스디아이 주식회사 | Dye for Photoelectronic Device And Photoelectronic Device Comprising the Dye |
JP2010153293A (en) * | 2008-12-26 | 2010-07-08 | Okayama Univ | Structure connecting dye to conductive substrate through peptide and photoelectric conversion element including the same |
JP2010159340A (en) * | 2009-01-07 | 2010-07-22 | Toyota Central R&D Labs Inc | Metal complex dye and dye-sensitized solar cell using the same |
US8618294B2 (en) | 2010-07-09 | 2013-12-31 | Samsung Sdi Co., Ltd. | Dye for dye-sensitized solar cells, method of preparing the same, and solar cell including the dye |
CN103617892A (en) * | 2013-12-13 | 2014-03-05 | 福州大学 | Flexible zinc-oxide quantum-dot solar battery adopting ruthenium-modified dye as sensitizer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110183437B (en) | Double D-pi-A type column [5] arene dye and synthetic method and application thereof | |
JP2009067976A (en) | Dyestuff, dye-sensitized solar cell, and method for manufacturing the same | |
JP3985040B2 (en) | Ruthenium complex useful as sensitizer, oxide semiconductor electrode, and solar cell using the same | |
JP5761024B2 (en) | Photoelectric conversion element having binuclear ruthenium complex dye having substituted bipyridyl group, and photochemical battery | |
JP5099748B2 (en) | Dye and dye-sensitized solar cell using the same | |
JP5428312B2 (en) | Photoelectric conversion element and photochemical battery | |
JP2005330469A (en) | Dye and dye-sensitized solar cell | |
JPWO2008093742A1 (en) | Method for producing binuclear metal complex | |
US20070209695A1 (en) | Dye and Dye-Sensitized Solar Cell | |
JP5917011B2 (en) | Method for producing photoelectric conversion element and method for producing photoelectrochemical cell | |
Guo et al. | Extended visible photosensitivity of carboxyethyltin functionalized polyoxometalates with common organic dyes enabling enhanced photoelectric performance | |
WO2009119085A1 (en) | Novel photosensitizer and photovoltaic element | |
JP4721755B2 (en) | Complex, photoelectric conversion element and dye-sensitized solar cell | |
JP2003003083A (en) | Metal complex dye, photoelectrode and dye sensitizing solar battery | |
JP2012007084A (en) | New photosensitizer | |
JP5061626B2 (en) | Method for producing binuclear metal complex | |
JP5493857B2 (en) | Dinuclear ruthenium complex dye, dinuclear ruthenium complex dye acidic aqueous solution and method for producing the same | |
JP5838820B2 (en) | Binuclear ruthenium complex dye, photoelectric conversion element having the dye, and photochemical battery | |
JP2007059293A (en) | Dye-sensitized solar cell and manufacturing method of same | |
JP2005320429A (en) | Colorant and dye-sensitized solar battery | |
JP2014181305A (en) | Photosensitizer and photovoltaic device using the same | |
JP2009129652A (en) | Photoelectric conversion element and photochemical battery | |
JP2011057828A (en) | Novel photosensitizer and photoelectromotive force element | |
CN1965034A (en) | Dye and dye-sensitized solar cell | |
JP4292291B2 (en) | Ruthenium complexes useful as sensitizers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080701 |