[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005323288A - Digital microphone - Google Patents

Digital microphone Download PDF

Info

Publication number
JP2005323288A
JP2005323288A JP2004141403A JP2004141403A JP2005323288A JP 2005323288 A JP2005323288 A JP 2005323288A JP 2004141403 A JP2004141403 A JP 2004141403A JP 2004141403 A JP2004141403 A JP 2004141403A JP 2005323288 A JP2005323288 A JP 2005323288A
Authority
JP
Japan
Prior art keywords
conductor pattern
digital
acoustic
signal
detection signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004141403A
Other languages
Japanese (ja)
Inventor
Shinichi Saeki
真一 佐伯
Tomohito Maekawa
智史 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosiden Corp
Original Assignee
Hosiden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosiden Corp filed Critical Hosiden Corp
Priority to JP2004141403A priority Critical patent/JP2005323288A/en
Publication of JP2005323288A publication Critical patent/JP2005323288A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a digital microphone, in which the noise is reduced from acoustic signals having been digital-modulated, that affects the acoustic detection signal of capacity detection type. <P>SOLUTION: The digital microphone comprises an acoustic detector which consists of a diaphragm 13, functioning as an electrode and a fixed electrode 15 arranged to face the diaphragm 13 at a prescribed interval and outputs changes of electrostatic capacity between the diaphragm 13 and the fixed electrode 15 as acoustic detection signal, a modulation circuit part 7 which digital-modulates the acoustic detection signal and outputs it as digital acoustic signal, and a substrate 1 which has conductor patterns on both surfaces and connects the acoustic detection part to the modulation circuit part 7 by the conductor pattern. A conductor pattern 2 of acoustic detection signal provided on one surface of the substrate 1 is formed so as not to overlap in the direction vertical to the surfaces of the substrate 1, with a conductor pattern 3 of digital acoustic signal being provided on the other surface. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電極として機能する振動膜と、この振動膜に所定の間隔をもって対向配置した固定電極とを備え、前記振動膜と前記固定電極との間の静電容量の変化を音響検出信号として出力する音響検出部と、前記音響検出信号をデジタル変調してデジタル音響信号として出力する変調回路部と、両面に導体パターンを有し、前記音響検出部と前記変調回路部とを前記導体パターンによって接続する基板とを備えるデジタルマイクロホンに関する。   The present invention includes a vibrating membrane that functions as an electrode, and a fixed electrode that is disposed opposite to the vibrating membrane at a predetermined interval, and a change in capacitance between the vibrating membrane and the fixed electrode is used as an acoustic detection signal. An acoustic detection unit for outputting, a modulation circuit unit for digitally modulating the acoustic detection signal and outputting it as a digital acoustic signal, a conductor pattern on both sides, and the acoustic detection unit and the modulation circuit unit being formed by the conductor pattern The present invention relates to a digital microphone including a substrate to be connected.

電極にエレクトレット材を用いてコンデンサを形成し、電極の振動によって生じるこのコンデンサの静電容量の変化によって音響信号を電気信号に変換する原理を用いたマイクロホン(エレクトレットコンデンサマイクロホン、以下「ECM」と称す。)は、小型化が容易であることから、携帯電話機や音声記録機能付きのデジタルスチルカメラなどに、広く用いられている。ECMでは、音響信号を電気信号に変換するコンデンサ部分の出力が容量性であることから、その出力回路がハイインピーダンス回路となっている。これは小さな電力で出力を伝達するには優れているが、外来ノイズなど他の影響を受け易い状態でもある。   A microphone using the principle of converting an acoustic signal into an electric signal by changing the capacitance of the capacitor formed by the electret material of the electrode and changing the capacitance of the capacitor caused by the vibration of the electrode (hereinafter referred to as “ECM”). .) Is widely used in mobile phones and digital still cameras with a voice recording function because it can be easily downsized. In the ECM, since the output of the capacitor portion that converts the acoustic signal into the electric signal is capacitive, the output circuit is a high impedance circuit. This is excellent for transmitting output with a small amount of power, but is also susceptible to other effects such as external noise.

このため、例えば、ECMを構成するプリント基板の、実装部品のランド部とその周辺の電気絶縁部を除いた残りの全面にアースパターンを形成して、外来ノイズなどから保護する方法が提案されている(例えば、特許文献1)。
また、コンデンサ部分の出力をインピーダンス変換する電界効果型トランジスタのソース端子(グラウンド側)を総幅がプリント基板の周縁長の1/3以上の導体で接続したり、ドレイン端子(インピーダンス変換後の出力)とソース端子との間に容量素子を接続したり、この両方を同時に行ったりすることで、外来ノイズを減衰させる方法が提案されている(例えば、特許文献2)。
For this reason, for example, a method has been proposed in which a ground pattern is formed on the entire remaining surface of the printed circuit board constituting the ECM, excluding the land portion of the mounted component and the surrounding electrical insulating portion, to protect it from external noise and the like. (For example, Patent Document 1).
In addition, the source terminal (ground side) of the field effect transistor for impedance conversion of the output of the capacitor portion is connected by a conductor whose total width is 1/3 or more of the peripheral length of the printed circuit board, or the drain terminal (output after impedance conversion) ) And the source terminal, or a method of attenuating external noise by simultaneously performing both of these is proposed (for example, Patent Document 2).

登録実用新案第3011048号公報(第2図、0021〜0027段落)Registered Utility Model No. 3011048 (FIG. 2, paragraphs 0021 to 0027) 特開2001−16676号公報(0004〜0007段落)JP 2001-16676 (paragraphs 0004 to 0007)

上記は、ECMに対する外来ノイズの影響を防止又は軽減するためのものであり、一定のノイズ減衰効果を見込めるものである。しかし、ECMには、ECM内部にデジタル変調回路を有してデジタル変調された信号を出力するように構成された、いわゆるデジタルマイクロホンもある。このようなデジタルマイクロホンでは、マイクロホン自身にノイズ源と成り得るデジタル信号を有するため、外来ノイズ以上に内部の信号に対する影響が顕著に現れる。すなわち、ハイインピーダンスでノイズの影響を受け易いコンデンサ部の出力信号と、高速で出力レベルが変化するデジタル信号とが、非常に近接して存在するためにコンデンサ部分の出力信号のノイズレベルが上昇してしまう。   The above is for preventing or reducing the influence of external noise on the ECM, and is expected to have a certain noise attenuation effect. However, the ECM also includes a so-called digital microphone that has a digital modulation circuit inside the ECM and is configured to output a digitally modulated signal. In such a digital microphone, since the microphone itself has a digital signal that can be a noise source, the influence on the internal signal is more prominent than external noise. That is, the noise level of the output signal of the capacitor rises because the output signal of the capacitor part, which is easily affected by noise with high impedance, and the digital signal whose output level changes at high speeds are in close proximity. End up.

本発明は、上記課題に鑑みてなされたもので、容量検出型の音響検出信号が、デジタル変調された音響信号から受けるノイズを軽減するデジタルマイクロホンを提供することを目的としている。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a digital microphone that reduces noise received by a capacitance detection type acoustic detection signal from a digitally modulated acoustic signal.

上記目的を達成するための本発明に係るデジタルマイクロホンの特徴構成は、電極として機能する振動膜と、この振動膜に所定の間隔をもって対向配置した固定電極とを備え、前記振動膜と前記固定電極との間の静電容量の変化を音響検出信号として出力する音響検出部と、前記音響検出信号をデジタル変調してデジタル音響信号として出力する変調回路部と、両面に導体パターンを有し、前記音響検出部と前記変調回路部とを前記導体パターンによって接続する基板とを備えるものであって、前記基板の一方の面に設ける前記音響検出信号の導体パターンと、他方の面に設ける前記デジタル音響信号の導体パターンとが、前記基板の面に垂直な方向で重なり合わないように形成される点にある。   In order to achieve the above object, the digital microphone according to the present invention includes a vibrating membrane functioning as an electrode, and a fixed electrode disposed opposite to the vibrating membrane at a predetermined interval. The vibrating membrane and the fixed electrode An acoustic detection unit that outputs a change in electrostatic capacitance as an acoustic detection signal, a modulation circuit unit that digitally modulates the acoustic detection signal and outputs it as a digital acoustic signal, and a conductor pattern on both sides, A board for connecting an acoustic detection unit and the modulation circuit unit by the conductor pattern, the conductor pattern of the acoustic detection signal provided on one surface of the board, and the digital sound provided on the other surface The signal conductor pattern is formed so as not to overlap in the direction perpendicular to the surface of the substrate.

この特徴構成によれば、前記音響検出信号の導体パターンと、前記デジタル音響信号の導体パターンとが、前記基板の面に垂直な方向で重なり合わないので、これら二つの導体パターン間に生じるストレーキャパシタンス(浮遊容量)を小さくすることができる。そして、このストレーキャパシタンスによって生じる静電誘導を減じることができる。静電誘導は、被害を受ける側のインピーダンスが高い場合に特に影響が大きいので、音響検出信号に対するノイズを軽減する効果が得られる。静電誘導を防ぐには、導体パターンにガード電極を設けるという方法を用いることもでき、これは例えば基板の内層にガード電極を形成することで実現できるが、基板の構造が複雑となりコストも上昇する。この特徴構成によれば、静電誘導の原因となるストレーキャパシタンスを小さくして、静電誘導を減じるのでコスト上昇を伴わずにノイズを軽減できる。   According to this characteristic configuration, the conductor pattern of the acoustic detection signal and the conductor pattern of the digital acoustic signal do not overlap in a direction perpendicular to the surface of the substrate, so that the stray capacitance generated between the two conductor patterns. (Stray capacitance) can be reduced. And electrostatic induction caused by this stray capacitance can be reduced. Since electrostatic induction is particularly affected when the impedance on the damaged side is high, an effect of reducing noise with respect to the acoustic detection signal can be obtained. In order to prevent electrostatic induction, a method of providing a guard electrode on the conductor pattern can be used. This can be realized by forming a guard electrode on the inner layer of the substrate, for example, but the structure of the substrate is complicated and the cost is increased. To do. According to this characteristic configuration, the stray capacitance that causes electrostatic induction is reduced and the electrostatic induction is reduced. Therefore, noise can be reduced without increasing the cost.

上記構成において、前記デジタル音響信号の導体パターンは、扇形に形成され、前記音響検出信号の導体パターンは、この扇形の中心角に対応する部分を切り欠いた円弧形状に形成されると好ましい。   In the above configuration, the conductor pattern of the digital acoustic signal is preferably formed in a sector shape, and the conductor pattern of the acoustic detection signal is preferably formed in an arc shape in which a portion corresponding to the central angle of the sector shape is cut out.

すなわち、前記音響検出信号の導体パターンは、前記デジタル音響信号の導体パターンが前記基板の反対側の面に形成されている部分を除いて、環状(円弧形状)に形成されるので、前記デジタル音響信号の導体パターンとは重なり合わないように形成できる。そして、前記音響検出部との接触を充分に保った状態で、ストレーキャパシタンスを小さくすることができるので、前記音響検出信号の導通に大きな影響を与えず、ノイズを軽減する効果が得られる。   That is, the conductor pattern of the acoustic detection signal is formed in an annular shape (arc shape) except for a portion where the conductor pattern of the digital acoustic signal is formed on the opposite surface of the substrate. It can be formed so as not to overlap with the conductor pattern of the signal. And since a stray capacitance can be made small in the state which maintained the contact with the said acoustic detection part enough, the effect which reduces noise is acquired, without having a big influence on conduction | electrical_connection of the said acoustic detection signal.

また、本発明に係るデジタルマイクロホンにおいては、前記デジタル音響信号の導体パターンは、扇型に形成され、前記音響検出信号の導体パターンは、この扇型の導体パターンの径よりも大きな内径を有して、環状に形成されると好ましい。   In the digital microphone according to the present invention, the conductor pattern of the digital acoustic signal is formed in a fan shape, and the conductor pattern of the acoustic detection signal has an inner diameter larger than the diameter of the fan-shaped conductor pattern. Thus, it is preferable to form a ring.

すなわち、前記音響検出信号の導体パターンは、前記デジタル音響信号の扇形の導体パターンの径よりも大きな内径を有する環状に形成されるので、前記デジタル音響信号の導体パターンとは重なり合わないように形成できる。また、前記音響検出部との接触はほぼ全周に亘って充分に確保できる。これにより、前記音響検出信号の導通に影響を与えず、ストレーキャパシタンスを小さくすることができるので、ノイズを軽減する効果が得られる。尚、前記デジタル音響信号の扇形の導体パターンは、前記音響検出信号の環状の導体パターンの内径よりも径が小さくなるが、出力信号線(コネクタも含む)との接触(半田付けを含む)には充分な面積が確保できるので問題はない。   That is, the conductor pattern of the acoustic detection signal is formed in an annular shape having an inner diameter larger than the diameter of the fan-shaped conductor pattern of the digital acoustic signal, so that it does not overlap with the conductor pattern of the digital acoustic signal. it can. Further, the contact with the sound detection unit can be sufficiently ensured over the entire circumference. As a result, the stray capacitance can be reduced without affecting the conduction of the acoustic detection signal, so that an effect of reducing noise can be obtained. The fan-shaped conductor pattern of the digital acoustic signal has a diameter smaller than the inner diameter of the annular conductor pattern of the acoustic detection signal, but is in contact with the output signal line (including the connector) (including soldering). There is no problem because a sufficient area can be secured.

また、本発明に係るデジタルマイクロホンにおいては、前記デジタル音響信号の導体パターンは、扇形に形成され、前記音響検出信号の導体パターンは、この扇形の中心角に対応する部分を切り欠いた円弧形状の導体パターンと、この円弧形状に連続し、前記扇型の径よりも大きな内径を有する環状の導体パターンとで形成されると好ましい。   In the digital microphone according to the present invention, the conductor pattern of the digital acoustic signal is formed in a fan shape, and the conductor pattern of the acoustic detection signal has an arc shape in which a portion corresponding to the central angle of the fan shape is cut out. It is preferable to form the conductor pattern and an annular conductor pattern that is continuous with the arc shape and has an inner diameter larger than the fan-shaped diameter.

すなわち、前記音響検出信号の導体パターンは、前記デジタル音響信号の導体パターンが前記基板の反対側の面に形成されている部分を除いて、環状に形成されるので、前記デジタル音響信号の導体パターンとは重なり合わないように形成できる。前記音響検出部との接触はほぼ全周に亘って充分に確保できる。全周に亘って接触しない場合であっても、前記音響検出信号の導体パターンが全周に亘って導通するので、配線抵抗を下げて良好に前記音響検出信号を伝達できる。また、前記デジタル音響信号の扇形の導体パターンも、出力信号線(コネクタも含む)との接触(半田付けを含む)に余裕のある面積が確保できる。このように、前記音響検出信号の導通や前記デジタル音響信号の外部への配線に影響を与えず、ストレーキャパシタンスを小さくすることができるので、良好にノイズを軽減する効果が得られる。   That is, since the conductor pattern of the acoustic detection signal is formed in an annular shape except for a portion where the conductor pattern of the digital acoustic signal is formed on the opposite surface of the substrate, the conductor pattern of the digital acoustic signal Can be formed so as not to overlap. The contact with the acoustic detector can be sufficiently ensured over almost the entire circumference. Even when the contact is not made over the entire circumference, since the conductor pattern of the acoustic detection signal is conducted over the entire circumference, the acoustic detection signal can be transmitted well by reducing the wiring resistance. In addition, the fan-shaped conductor pattern of the digital acoustic signal can secure a sufficient area for contact (including soldering) with the output signal line (including the connector). In this way, since the stray capacitance can be reduced without affecting the conduction of the acoustic detection signal and the wiring of the digital acoustic signal to the outside, an effect of reducing noise can be obtained.

[基本構造の説明]
以下、本発明の実施例を図面に基づいて説明するが、それに先立ってデジタルマイクロホンの基本構造について説明する。図1は、本発明に係るデジタルマイクロホンの断面図である。図1に示すように、このデジタルマイクロホンは、筒状の底部に音孔11が形成され、この底部とは対向する側が開放した開口部12であるカプセル10の内部に各機能部を格納して構成されている。各機能部とは、音響信号を検出する音響検出部、検出された音響信号をデジタル変調する変調回路部、これらを接続する基板などである。
[Description of basic structure]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Prior to that, a basic structure of a digital microphone will be described. FIG. 1 is a cross-sectional view of a digital microphone according to the present invention. As shown in FIG. 1, in this digital microphone, a sound hole 11 is formed in a cylindrical bottom part, and each functional part is stored in a capsule 10 which is an opening part 12 opened on the side opposite to the bottom part. It is configured. Each functional unit includes an acoustic detection unit that detects an acoustic signal, a modulation circuit unit that digitally modulates the detected acoustic signal, and a substrate that connects them.

音響検出部は、カプセル10の底部に振動膜リング16を設けて、電極として機能する振動膜13を配置し、この振動膜13を振動膜リング16とスペーサ14とで狭持すると共に、スペーサ14の厚みで規定される所定の間隔をもって、背極として機能する固定電極15を配置し、振動膜13と固定電極15との間の静電容量の変化を音響検出信号として出力するように構成されている。そして、この音響検出部に対向し、開口部12の内側に、ホルダー18と、かしめたカプセル10の端部とによって基板1が支持される。この基板1は、音響検出信号をデジタル変調してデジタル音響信号として出力する集積回路7(変調回路部)を備えている。尚、音響検出部と基板1とは、ゲートリング17によって導通され、このゲートリング17によって、音響検出信号は変調回路部に入力される。変調回路部は、一つの集積回路と、必要に応じてその電源安定化のバイパスコンデンサや信号のノイズ除去用のフィルタとしての抵抗やコンデンサなどの受動部品とから構成され、基板1上に実装される。本例では、説明を容易にするために、図5(a)に示すように、一つの集積回路7で変調回路部を構成している。   The acoustic detector is provided with a diaphragm ring 16 at the bottom of the capsule 10 and a diaphragm 13 that functions as an electrode is disposed. The diaphragm 13 is sandwiched between the diaphragm ring 16 and the spacer 14, and the spacer 14 is provided. The fixed electrode 15 functioning as a back electrode is disposed at a predetermined interval defined by the thickness of the electrode, and a change in capacitance between the vibrating membrane 13 and the fixed electrode 15 is output as an acoustic detection signal. ing. Then, the substrate 1 is supported by the holder 18 and the end of the crimped capsule 10 inside the opening 12 so as to face the acoustic detection unit. The substrate 1 includes an integrated circuit 7 (modulation circuit unit) that digitally modulates an acoustic detection signal and outputs it as a digital acoustic signal. The acoustic detection unit and the substrate 1 are electrically connected by the gate ring 17, and the acoustic detection signal is input to the modulation circuit unit by the gate ring 17. The modulation circuit section is composed of one integrated circuit and, if necessary, a bypass capacitor for stabilizing the power supply and passive components such as a resistor and a capacitor as a filter for removing signal noise, and is mounted on the substrate 1. The In this example, for ease of explanation, as shown in FIG. 5A, a single integrated circuit 7 forms a modulation circuit section.

図5は、デジタルマイクロホンの回路構成を説明するための基板の導電パターンの一例を示す図である。図5(a)は、集積回路7が実装される基板1の一方の面で、いわゆる部品実装面と称される側の面を示している。図5(b)は、基板1の他方の面で、いわゆる半田面と称される面の導電パターンを、部品実装面からの透視図で示している。図1及び図5には、示していないが、半田面のパターンから、コネクタやケーブルや接触子を介して、デジタルマイクロホンの外部と、信号や電源の伝達が行われる。本例では、集積回路7は五つの端子を有し、それぞれ、端子75は電源端子、端子76はグラウンド(以下、「GND」と称す)端子、端子72は音響検出部からの入力端子、端子74はデジタル変調の基準クロックを供給する入力端子、端子73は変調後のデジタル音響信号の出力端子である。集積回路7はその内部にインピーダンス変換回路や増幅器や変調回路などを備えている。そして、容量型の検出素子である音響検出回路から入力されるハイインピーダンスの音響検出信号をインピーダンス変換し、必要なレベルに増幅すると共に入力される基準クロックを用いてデジタル変調して、高速且つ高出力で出力レベルが変化するデジタル音響信号を出力する。   FIG. 5 is a diagram illustrating an example of a conductive pattern of a substrate for explaining a circuit configuration of the digital microphone. FIG. 5A shows one side of the substrate 1 on which the integrated circuit 7 is mounted, that is, a side called a component mounting surface. FIG. 5B shows a conductive pattern of a surface called a solder surface on the other surface of the substrate 1 in a perspective view from the component mounting surface. Although not shown in FIGS. 1 and 5, signals and power are transmitted from the pattern of the solder surface to the outside of the digital microphone via connectors, cables, and contacts. In this example, the integrated circuit 7 has five terminals. Each of the terminals 75 is a power supply terminal, the terminal 76 is a ground (hereinafter referred to as “GND”) terminal, the terminal 72 is an input terminal from the acoustic detection unit, and a terminal. Reference numeral 74 is an input terminal for supplying a digital modulation reference clock, and terminal 73 is an output terminal for the modulated digital acoustic signal. The integrated circuit 7 includes an impedance conversion circuit, an amplifier, a modulation circuit, and the like. The high impedance acoustic detection signal input from the acoustic detection circuit, which is a capacitive detection element, is impedance-converted, amplified to the required level, and digitally modulated using the input reference clock to achieve high speed and high speed. A digital audio signal whose output level changes with output is output.

集積回路7の端子72は、図5(a)に示すように、音響検出信号の導電パターン2と接続されている。集積回路7の他の端子73〜76は、それぞれバイアホール3v、4v、5v、6vを介して、それぞれ図5(b)に示す半田面の導電パターン3〜6と接続されている。   As shown in FIG. 5A, the terminal 72 of the integrated circuit 7 is connected to the conductive pattern 2 of the acoustic detection signal. The other terminals 73 to 76 of the integrated circuit 7 are respectively connected to the conductive patterns 3 to 6 on the solder surface shown in FIG. 5B through the via holes 3v, 4v, 5v, and 6v, respectively.

音響検出信号は、上述したように図1に示したゲートリング17を介して、音響検出部から基板1へと伝達され、図5(a)に示したように基板1の部品実装面に環状に設けた音響検出信号の導電パターン2から集積回路7へと入力される。GND信号は、図5(b)に示すように、基板1の半田面に環状にも設けられ、開口部12が内側にかしめられたカプセル10の端部と接触するようになっている。   The acoustic detection signal is transmitted from the acoustic detection unit to the substrate 1 via the gate ring 17 shown in FIG. 1 as described above, and is circularly connected to the component mounting surface of the substrate 1 as shown in FIG. Are input from the conductive pattern 2 to the integrated circuit 7. As shown in FIG. 5B, the GND signal is also provided in an annular shape on the solder surface of the substrate 1 so that the opening 12 comes into contact with the end of the capsule 10 that is caulked inside.

以上、音響検出信号の導電パターン2が部品実装面上に環状に設けられる例を用いて説明したが、音響効果を考慮して、例えば、図6に示すように一部が欠けた環状の導電パターン2となることがある。以下、本発明に係るデジタルマイクロホンの実施形態について説明するが、この図6に示す導電パターンを基本として説明する。尚、下記の説明においては、この部品実装面側の導電パターンについては、説明を容易にするために、音響検出信号を集積回路7へ接続する接続経路の導電パターンや、集積回路7の端子の導電パターンや、集積回路7などを除いて、環状部分の導電パターンのみを示して説明する。   In the above, the example in which the conductive pattern 2 of the acoustic detection signal is provided in a ring shape on the component mounting surface has been described. However, in consideration of the acoustic effect, for example, a ring-shaped conductive film with a part missing as shown in FIG. Pattern 2 may occur. Hereinafter, embodiments of the digital microphone according to the present invention will be described, and the description will be based on the conductive pattern shown in FIG. In the following description, the conductive pattern on the component mounting surface side will be described with reference to the conductive pattern of the connection path for connecting the acoustic detection signal to the integrated circuit 7 and the terminal of the integrated circuit 7 for ease of explanation. Except for the conductive pattern and the integrated circuit 7, only the conductive pattern of the annular portion is shown and described.

[第一実施形態]
図2は、第一実施形態に係るデジタルマイクロホンの基板の導電パターンを示す図である。それぞれ、図2(a)は部品実装面の導電パターンを、図2(b)は部品実装面からの透視図で示した半田面の導電パターンを、図2(c)はA−A線での断面図を示している。本第一実施形態においては、図2(a)及び(b)に示すように、デジタル音響信号の導体パターン3は、基板1の半田面に扇形に形成され、音響検出信号の導体パターン2は、基板1の部品実装面にこの扇形の中心角に対応する部分を切り欠いた円弧形状に形成されている。これを、A−A線での断面図である図2(c)でみると、音響検出信号の導体パターン2と、デジタル音響信号の導体パターン3とが、基板1の面に垂直な方向で重なり合わないように形成されていることがわかる。すなわち、図2(a)及び(c)に示す点線部2aが形成されないので、音響検出信号の導体パターン2と、デジタル音響信号の導体パターン3とが、基板1の面に垂直な方向で重なり合わない。
[First embodiment]
FIG. 2 is a diagram showing a conductive pattern of the substrate of the digital microphone according to the first embodiment. 2A shows the conductive pattern on the component mounting surface, FIG. 2B shows the conductive pattern on the solder surface shown in a perspective view from the component mounting surface, and FIG. 2C shows the AA line. FIG. In the first embodiment, as shown in FIGS. 2A and 2B, the conductor pattern 3 of the digital acoustic signal is formed in a fan shape on the solder surface of the substrate 1, and the conductor pattern 2 of the acoustic detection signal is The part mounting surface of the substrate 1 is formed in an arc shape in which a portion corresponding to the central angle of the fan shape is cut out. 2C, which is a cross-sectional view taken along line AA, shows that the conductor pattern 2 of the acoustic detection signal and the conductor pattern 3 of the digital acoustic signal are in a direction perpendicular to the surface of the substrate 1. It turns out that it forms so that it may not overlap. That is, since the dotted line portion 2a shown in FIGS. 2A and 2C is not formed, the conductor pattern 2 of the acoustic detection signal and the conductor pattern 3 of the digital acoustic signal overlap in a direction perpendicular to the surface of the substrate 1. Do not fit.

すでに説明したように、ECMでは、音響信号を電気信号に変換するコンデンサ部分、すなわち音響検出部の出力が容量性であることから、その出力回路がハイインピーダンス回路となっている。従って、音響検出信号の伝達を小さな電力且つ非常に小さな減衰で行うことができる反面、外部のノイズなど他の影響を受け易い状態でもある。そして、ECM方式のデジタルマイクロホンでは、音響検出信号へのノイズ源となり易い高速且つ高出力で出力レベルが変化するデジタル信号をその内部に有している。すなわち、音響検出信号をデジタル変調して得られるデジタル音響信号が、ノイズ源として働き易い環境にある。   As described above, in the ECM, since the output of the capacitor portion that converts an acoustic signal into an electrical signal, that is, the output of the acoustic detection unit is capacitive, the output circuit is a high impedance circuit. Therefore, the transmission of the acoustic detection signal can be performed with a small amount of power and a very small attenuation, but it is also susceptible to other influences such as external noise. The ECM type digital microphone has a digital signal whose output level changes at high speed and high output, which is likely to be a noise source for the sound detection signal. That is, the digital acoustic signal obtained by digitally modulating the acoustic detection signal is in an environment where it can easily work as a noise source.

基板1はその厚みが0.2〜0.3mm程度の基材である。従って、例えば、ノイズを受け易い信号である音響検出信号の導電パターン2と、ノイズ源となり易いデジタル音響信号の導電パターン3とが、基板1の面に垂直な方向で重なって設けられていると、両導電パターンの間に大きなストレーキャパシタンスが生成される。そして、このストレーキャパシタンスを介した静電誘導などによって音響検出信号にノイズが乗り易くなる。   The substrate 1 is a base material having a thickness of about 0.2 to 0.3 mm. Therefore, for example, when the conductive pattern 2 of the acoustic detection signal, which is a signal susceptible to noise, and the conductive pattern 3 of the digital acoustic signal, which is likely to be a noise source, are provided so as to overlap in a direction perpendicular to the surface of the substrate 1. A large stray capacitance is generated between the two conductive patterns. Then, noise is easily applied to the acoustic detection signal by electrostatic induction via the stray capacitance.

しかし、本第一実施形態のように音響検出信号の導体パターン2と、デジタル音響信号の導体パターン3とが、基板1の面に垂直な方向で重なり合わないようにすると、これら二つの導体パターン間に生じるストレーキャパシタンス(浮遊容量)を小さくすることができる。そして、このストレーキャパシタンスによって生じる静電誘導を減じることができる。静電誘導は、被害を受ける側のインピーダンスが高い場合に特に影響が大きいので、音響検出信号に対するノイズを軽減する効果が得られる。静電誘導を防ぐには、導体パターンにガード電極を設けるという方法を用いることもでき、これは例えば基板の内層にガード電極を形成することで実現できるが、基板の構造が複雑となりコストも上昇する。この第一実施形態によれば、静電誘導の原因となるストレーキャパシタンスを小さくして、静電誘導を減じるのでコスト上昇を伴わずにノイズを軽減できる。   However, if the conductor pattern 2 of the acoustic detection signal and the conductor pattern 3 of the digital acoustic signal are not overlapped in the direction perpendicular to the surface of the substrate 1 as in the first embodiment, these two conductor patterns The stray capacitance generated between them can be reduced. And electrostatic induction caused by this stray capacitance can be reduced. Since electrostatic induction is particularly affected when the impedance on the damaged side is high, an effect of reducing noise with respect to the acoustic detection signal can be obtained. In order to prevent electrostatic induction, a method of providing a guard electrode on the conductor pattern can be used. This can be realized by forming a guard electrode on the inner layer of the substrate, for example, but the structure of the substrate is complicated and the cost is increased. To do. According to the first embodiment, the stray capacitance that causes electrostatic induction is reduced to reduce electrostatic induction, so noise can be reduced without increasing costs.

第一実施形態の構成では、音響検出信号の導体パターン2は、デジタル音響信号の導体パターン3が基板1の反対側の面に形成されている部分を除いて、環状(円弧形状)に形成されるので、デジタル音響信号の導体パターン3とは重なり合わないように形成できる。そして、音響検出部からの出力を伝達するゲートリング17との接触を充分に保った状態で、ストレーキャパシタンスを小さくすることができるので、音響検出信号の導通に大きな影響を与えず、ノイズを軽減する効果が得られる。   In the configuration of the first embodiment, the conductor pattern 2 of the acoustic detection signal is formed in an annular shape (arc shape) except for a portion where the conductor pattern 3 of the digital acoustic signal is formed on the opposite surface of the substrate 1. Therefore, it can be formed so as not to overlap with the conductor pattern 3 of the digital acoustic signal. In addition, the stray capacitance can be reduced while maintaining sufficient contact with the gate ring 17 that transmits the output from the sound detection unit, so that noise is not greatly affected and the conduction of the sound detection signal is not greatly affected. Effect is obtained.

尚、集積回路7のデジタル変調の基準クロックを供給する入力端子74は、導体パターン4に接続されており、この導体パターン4と音響検出信号の導体パターン2とは、基板1の面に垂直な方向で重なりを有しているが、これは下記の理由により問題はない。基準クロックはもちろんデジタル信号であり、高速で出力レベルが変動する。しかし、変調回路を有する集積回路7は一般に入力インピーダンスが高く、そのため、大きな入力電流は必要としない。このため、導体パターン4上を流れる基準クロック信号は、低電流の信号となり、電気的エネルギーも低いので、ノイズ源とはなりにくい。   The input terminal 74 for supplying the digital modulation reference clock of the integrated circuit 7 is connected to the conductor pattern 4, and the conductor pattern 4 and the conductor pattern 2 of the acoustic detection signal are perpendicular to the surface of the substrate 1. Although there is an overlap in the direction, this is not a problem for the following reasons. The reference clock is of course a digital signal, and the output level fluctuates at high speed. However, the integrated circuit 7 having a modulation circuit generally has a high input impedance, so that a large input current is not required. For this reason, the reference clock signal that flows on the conductor pattern 4 is a low-current signal and has low electrical energy, so that it is difficult to be a noise source.

[第二実施形態]
図3は、第二実施形態に係るデジタルマイクロホンの基板の導電パターンを示す図である。それぞれ、図3(a)は部品実装面の導電パターンを、図3(b)は部品実装面からの透視図で示した半田面の導電パターンを、図3(c)はA−A線での断面図を示している。本第二実施形態においては、図3(a)及び(b)に示すように、デジタル音響信号の導体パターン3は、基板1の半田面に扇型に形成され、音響検出信号の導体パターン2は、この扇型の導体パターンの径よりも大きな内径を有して、基板1の部品実装面に環状に形成されている。図3(b)及びA−A線での断面図である図3(c)からは、点線部3aが形成されないので、音響検出信号の導体パターン2と、デジタル音響信号の導体パターン3とが、基板1の面に垂直な方向で重なり合わないように形成されていることがわかる。
[Second Embodiment]
FIG. 3 is a diagram showing a conductive pattern of the substrate of the digital microphone according to the second embodiment. 3A shows the conductive pattern on the component mounting surface, FIG. 3B shows the conductive pattern on the solder surface shown in a perspective view from the component mounting surface, and FIG. 3C shows the AA line. FIG. In the second embodiment, as shown in FIGS. 3A and 3B, the conductor pattern 3 of the digital acoustic signal is formed in a fan shape on the solder surface of the substrate 1, and the conductor pattern 2 of the acoustic detection signal. Has an inner diameter larger than the diameter of the fan-shaped conductor pattern, and is formed in an annular shape on the component mounting surface of the substrate 1. From FIG. 3 (b) and FIG. 3 (c), which is a cross-sectional view taken along the line AA, since the dotted line portion 3a is not formed, the conductor pattern 2 of the acoustic detection signal and the conductor pattern 3 of the digital acoustic signal are It can be seen that they are formed so as not to overlap in the direction perpendicular to the surface of the substrate 1.

また、音響検出信号の導体パターン2は、ほぼ全周に亘って形成されるので、ゲートリング17を介した音響検出部と基板1との接触はほぼ全周に亘って充分に確保できる。これにより、音響検出信号の導通に影響を与えず、ストレーキャパシタンスを小さくすることができるので、ノイズを軽減する効果が得られる。尚、デジタル音響信号の扇形の導体パターンは、音響検出信号の環状の導体パターンの内径よりも小径とすることで、面積は減少するが、出力信号線(コネクタも含む)との接触(半田付けを含む)には充分な面積が確保できており、問題はない。   Moreover, since the conductor pattern 2 of the acoustic detection signal is formed over substantially the entire circumference, the contact between the acoustic detection unit and the substrate 1 via the gate ring 17 can be sufficiently ensured over the entire circumference. Thereby, since the stray capacitance can be reduced without affecting the conduction of the acoustic detection signal, an effect of reducing noise can be obtained. In addition, although the area of the fan-shaped conductor pattern of the digital acoustic signal is smaller than the inner diameter of the annular conductor pattern of the acoustic detection signal, the area is reduced, but contact with the output signal line (including the connector) (soldering) A sufficient area can be secured, and there is no problem.

[第三実施形態]
図4は、第三実施形態に係るデジタルマイクロホンの基板の導電パターンを示す図である。それぞれ、図4(a)は部品実装面の導電パターンを、図4(b)は部品実装面からの透視図で示した半田面の導電パターンを、図4(c)はA−A線での断面図を示している。本第三実施形態においては、図4(a)及び(b)に示すように、デジタル音響信号の導体パターン3は、基板1の半田面に扇形に形成され、音響検出信号の導体パターン2は、基板1の部品実装面にこの扇形の中心角に対応する部分を切り欠いた円弧形状の導体パターン21と、この円弧形状の導体パターン21に連続し、デジタル音響信号の導体パターン3の扇型の径よりも大きな内径を有する環状の導体パターン22とで形成されている。これを、A−A線での断面図である図4(c)でみると、音響検出信号の導体パターン2と、デジタル音響信号の導体パターン3とが、基板1の面に垂直な方向で重なり合わないように形成されていることがよくわかる。
[Third embodiment]
FIG. 4 is a diagram showing a conductive pattern of the substrate of the digital microphone according to the third embodiment. 4A shows the conductive pattern on the component mounting surface, FIG. 4B shows the conductive pattern on the solder surface shown in a perspective view from the component mounting surface, and FIG. 4C shows the AA line. FIG. In the third embodiment, as shown in FIGS. 4A and 4B, the conductor pattern 3 of the digital acoustic signal is formed in a fan shape on the solder surface of the substrate 1, and the conductor pattern 2 of the acoustic detection signal is An arc-shaped conductor pattern 21 in which a part corresponding to the central angle of the fan shape is cut out on the component mounting surface of the substrate 1, and a fan shape of the conductor pattern 3 of the digital acoustic signal that is continuous with the arc-shaped conductor pattern 21. And an annular conductor pattern 22 having an inner diameter larger than the inner diameter. 4C, which is a cross-sectional view taken along the line AA, shows that the conductor pattern 2 of the acoustic detection signal and the conductor pattern 3 of the digital acoustic signal are in a direction perpendicular to the surface of the substrate 1. It can be seen that they are formed so as not to overlap.

すなわち、図4(a)及び(c)に示す点線部2aが形成されないので、音響検出信号の導体パターン2は、デジタル音響信号の導体パターン3が基板1の反対側の面に形成されている部分を除いて、デジタル音響信号の導体パターン3とは重なり合わないように環状に形成できる。また、ゲートリング17を介した音響検出部との接触はほぼ全周に亘って充分に確保できる。仮にゲートリング17と接触する部分が導体パターン21側であって、全周に亘って接触しない場合であっても、導体パターン22によって音響検出信号の導体パターン2が全周に亘って導通するので、配線抵抗を下げて良好に音響検出信号を伝達できる。また、デジタル音響信号の扇形の導体パターン3も、出力信号線(コネクタも含む)との接触(半田付けを含む)に余裕のある面積が確保できる。このように、音響検出信号の導通やデジタル音響信号の外部への配線に影響を与えず、ストレーキャパシタンスを小さくすることができるので、静電誘導などを軽減できて、良好にノイズを軽減する効果が得られる。   That is, since the dotted line portion 2a shown in FIGS. 4A and 4C is not formed, the conductor pattern 2 of the acoustic detection signal is formed on the surface opposite to the substrate 1 of the conductor pattern 3 of the digital acoustic signal. Except for the portion, it can be formed in an annular shape so as not to overlap with the conductor pattern 3 of the digital acoustic signal. Further, the contact with the acoustic detection unit via the gate ring 17 can be sufficiently ensured over the entire circumference. Even if the portion that contacts the gate ring 17 is on the conductor pattern 21 side and does not contact the entire circumference, the conductor pattern 2 of the acoustic detection signal is conducted by the conductor pattern 22 over the entire circumference. The sound detection signal can be satisfactorily transmitted by lowering the wiring resistance. In addition, the fan-shaped conductor pattern 3 for the digital audio signal can secure a sufficient area for contact (including soldering) with the output signal line (including the connector). In this way, since the stray capacitance can be reduced without affecting the conduction of the acoustic detection signal and the wiring of the digital acoustic signal to the outside, the effect of reducing noise can be reduced by reducing electrostatic induction and the like. Is obtained.

本発明に係るデジタルマイクロホンの断面図Sectional drawing of the digital microphone according to the present invention 第一実施形態に係るデジタルマイクロホンの基板の導電パターンを示す図The figure which shows the conductive pattern of the board | substrate of the digital microphone which concerns on 1st embodiment. 第二実施形態に係るデジタルマイクロホンの基板の導電パターンを示す図The figure which shows the conductive pattern of the board | substrate of the digital microphone which concerns on 2nd embodiment. 第三実施形態に係るデジタルマイクロホンの基板の導電パターンを示す図The figure which shows the conductive pattern of the board | substrate of the digital microphone which concerns on 3rd embodiment. デジタルマイクロホンの回路構成を説明するための基板の導電パターンの一例を示す図The figure which shows an example of the conductive pattern of the board | substrate for demonstrating the circuit structure of a digital microphone デジタルマイクロホンの基板の導電パターンの他の例を示す図The figure which shows the other example of the electroconductive pattern of the board | substrate of a digital microphone

符号の説明Explanation of symbols

1 基板
2 音響検出信号の導電パターン
3 デジタル音響信号の導電パターン
4 デジタル変調の基準クロックの導電パターン
5 電源の導電パターン
6 GNDの導電パターン
7 集積回路
DESCRIPTION OF SYMBOLS 1 Substrate 2 Conductive pattern of acoustic detection signal 3 Conductive pattern of digital acoustic signal 4 Conductive pattern of reference clock for digital modulation 5 Conductive pattern of power supply 6 Conductive pattern of GND 7 Integrated circuit

Claims (4)

電極として機能する振動膜と、この振動膜に所定の間隔をもって対向配置した固定電極とを備え、前記振動膜と前記固定電極との間の静電容量の変化を音響検出信号として出力する音響検出部と、
前記音響検出信号をデジタル変調してデジタル音響信号として出力する変調回路部と、
両面に導体パターンを有し、前記音響検出部と前記変調回路部とを前記導体パターンによって接続する基板と、
を備えるデジタルマイクロホンであって、
前記基板の一方の面に設ける前記音響検出信号の導体パターンと、他方の面に設ける前記デジタル音響信号の導体パターンとが、前記基板の面に垂直な方向で重なり合わないように形成されるデジタルマイクロホン。
Acoustic detection including a vibration film functioning as an electrode and a fixed electrode disposed opposite to the vibration film at a predetermined interval, and outputting a change in capacitance between the vibration film and the fixed electrode as an acoustic detection signal And
A modulation circuit unit that digitally modulates the acoustic detection signal and outputs it as a digital acoustic signal;
A substrate having a conductor pattern on both sides, and connecting the acoustic detection unit and the modulation circuit unit by the conductor pattern;
A digital microphone comprising:
The digital formed so that the conductor pattern of the acoustic detection signal provided on one surface of the substrate and the conductor pattern of the digital acoustic signal provided on the other surface do not overlap in a direction perpendicular to the surface of the substrate. Microphone.
前記デジタル音響信号の導体パターンは、扇形に形成され、
前記音響検出信号の導体パターンは、この扇形の中心角に対応する部分を切り欠いた円弧形状に形成される請求項1に記載のデジタルマイクロホン。
The conductor pattern of the digital acoustic signal is formed in a fan shape,
The digital microphone according to claim 1, wherein the conductor pattern of the acoustic detection signal is formed in an arc shape in which a portion corresponding to the central angle of the fan shape is cut out.
前記デジタル音響信号の導体パターンは、扇型に形成され、
前記音響検出信号の導体パターンは、この扇型の導体パターンの径よりも大きな内径を有して、環状に形成される請求項1に記載のデジタルマイクロホン。
The digital acoustic signal conductor pattern is formed in a fan shape,
The digital microphone according to claim 1, wherein the conductor pattern of the acoustic detection signal has an inner diameter larger than the diameter of the fan-shaped conductor pattern and is formed in an annular shape.
前記デジタル音響信号の導体パターンは、扇形に形成され、
前記音響検出信号の導体パターンは、この扇形の中心角に対応する部分を切り欠いた円弧形状の導体パターンと、この円弧形状に連続し、前記扇型の径よりも大きな内径を有する環状の導体パターンとで形成される請求項1に記載のデジタルマイクロホン。
The conductor pattern of the digital acoustic signal is formed in a fan shape,
The conductor pattern of the acoustic detection signal includes an arc-shaped conductor pattern in which a portion corresponding to the central angle of the fan shape is cut out, and an annular conductor that is continuous with the arc shape and has an inner diameter larger than the fan-shaped diameter. The digital microphone according to claim 1, wherein the digital microphone is formed of a pattern.
JP2004141403A 2004-05-11 2004-05-11 Digital microphone Pending JP2005323288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004141403A JP2005323288A (en) 2004-05-11 2004-05-11 Digital microphone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004141403A JP2005323288A (en) 2004-05-11 2004-05-11 Digital microphone

Publications (1)

Publication Number Publication Date
JP2005323288A true JP2005323288A (en) 2005-11-17

Family

ID=35470202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004141403A Pending JP2005323288A (en) 2004-05-11 2004-05-11 Digital microphone

Country Status (1)

Country Link
JP (1) JP2005323288A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100936169B1 (en) * 2007-11-21 2010-01-12 주식회사 씨에스티 Microphone assembly
CN102378092A (en) * 2010-08-18 2012-03-14 Nxp股份有限公司 Mems microphone
CN103957497A (en) * 2014-04-23 2014-07-30 昆山达功电子有限公司 Electret microphone
JP2015204380A (en) * 2014-04-14 2015-11-16 日本メクトロン株式会社 Printed wiring board and method of manufacturing printed circuit

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63136596A (en) * 1986-11-27 1988-06-08 イビデン株式会社 Multilayer printed interconnection board
JPS64795A (en) * 1987-01-20 1989-01-05 Ibiden Co Ltd Multilayer printed-interconnection board
JPH0493006A (en) * 1990-08-09 1992-03-25 Tdk Corp Laminated beads inductor
JP3011048U (en) * 1994-11-10 1995-05-16 株式会社オーディオテクニカ Condenser microphone unit
JPH10203066A (en) * 1997-01-28 1998-08-04 Hitachi Ltd Non-contact ic card
JPH11150402A (en) * 1997-11-19 1999-06-02 Tdk Corp Stacked-type filter
JPH11307389A (en) * 1998-04-24 1999-11-05 Mitsubishi Electric Corp Pattern capacitor
JP2001016676A (en) * 1999-06-29 2001-01-19 Hitachi Metals Ltd Electret capacitor microphone device
JP2001217651A (en) * 2000-02-03 2001-08-10 Citizen Watch Co Ltd Voltage-controlled oscillator
JP2003032797A (en) * 2001-04-18 2003-01-31 Sonionmicrotronic Nederland Bv Cylindrical microphone having electret assembly in end cover
JP2003309021A (en) * 2002-04-17 2003-10-31 Murata Mfg Co Ltd Surface-mount element

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63136596A (en) * 1986-11-27 1988-06-08 イビデン株式会社 Multilayer printed interconnection board
JPS64795A (en) * 1987-01-20 1989-01-05 Ibiden Co Ltd Multilayer printed-interconnection board
JPH0493006A (en) * 1990-08-09 1992-03-25 Tdk Corp Laminated beads inductor
JP3011048U (en) * 1994-11-10 1995-05-16 株式会社オーディオテクニカ Condenser microphone unit
JPH10203066A (en) * 1997-01-28 1998-08-04 Hitachi Ltd Non-contact ic card
JPH11150402A (en) * 1997-11-19 1999-06-02 Tdk Corp Stacked-type filter
JPH11307389A (en) * 1998-04-24 1999-11-05 Mitsubishi Electric Corp Pattern capacitor
JP2001016676A (en) * 1999-06-29 2001-01-19 Hitachi Metals Ltd Electret capacitor microphone device
JP2001217651A (en) * 2000-02-03 2001-08-10 Citizen Watch Co Ltd Voltage-controlled oscillator
JP2003032797A (en) * 2001-04-18 2003-01-31 Sonionmicrotronic Nederland Bv Cylindrical microphone having electret assembly in end cover
JP2003309021A (en) * 2002-04-17 2003-10-31 Murata Mfg Co Ltd Surface-mount element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100936169B1 (en) * 2007-11-21 2010-01-12 주식회사 씨에스티 Microphone assembly
CN102378092A (en) * 2010-08-18 2012-03-14 Nxp股份有限公司 Mems microphone
CN102378092B (en) * 2010-08-18 2014-04-16 Nxp股份有限公司 Mems microphone
US9061889B2 (en) 2010-08-18 2015-06-23 Nxp, B.V. MEMS microphone
JP2015204380A (en) * 2014-04-14 2015-11-16 日本メクトロン株式会社 Printed wiring board and method of manufacturing printed circuit
CN103957497A (en) * 2014-04-23 2014-07-30 昆山达功电子有限公司 Electret microphone

Similar Documents

Publication Publication Date Title
JP4150407B2 (en) Electroacoustic transducer
EP2352311B1 (en) Microphone
KR20030067498A (en) Electret condenser microphone
JP3921210B2 (en) Condenser microphone for SMD
JP4800276B2 (en) Square tube-shaped electret condenser microphone
JP4944760B2 (en) Electret condenser microphone
JP4514565B2 (en) Condenser microphone unit
JP2005323288A (en) Digital microphone
JP5430462B2 (en) Output connector for condenser microphone and condenser microphone
KR100427698B1 (en) Directional capacitor microphone
US6845167B2 (en) Contacting arrangement for an electroacoustic microphone transducer
US20080310665A1 (en) Headphone and headset
KR200438928Y1 (en) Dual Microphone Module
JP2006238203A (en) Microphone
WO2007123038A1 (en) Electret capacitor microphone
KR200216291Y1 (en) Condenser microphone
JP6452455B2 (en) Condenser microphone unit and condenser microphone
KR100797441B1 (en) Electret Condenser Microphone Including Integrated Circuit
KR200220630Y1 (en) A condencer microphone
JP2005341390A (en) Electrostatic type microphone
KR100673848B1 (en) Condenser microphone for insertion packaging and mother board including the same
US10939192B2 (en) Electret condenser microphone and manufacturing method thereof
JP2009005253A (en) Condenser microphone
CN1961610B (en) Parallelepiped type directional capacitance microphone
JPH1098790A (en) Microphone structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090507