JP2005322534A - Test method of polyelectrolyte type fuel cell, and polyelectrolyte type fuel cell - Google Patents
Test method of polyelectrolyte type fuel cell, and polyelectrolyte type fuel cell Download PDFInfo
- Publication number
- JP2005322534A JP2005322534A JP2004140241A JP2004140241A JP2005322534A JP 2005322534 A JP2005322534 A JP 2005322534A JP 2004140241 A JP2004140241 A JP 2004140241A JP 2004140241 A JP2004140241 A JP 2004140241A JP 2005322534 A JP2005322534 A JP 2005322534A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- polymer electrolyte
- electrolyte fuel
- test method
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
本発明は、携帯機器用電源、ポータブル電源、電気自動車用電源、家庭内コージェネシステム等に使用される燃料電池、特に高分子電解質型燃料電池の加速試験方法及びこの試験方法を用いた高分子電解質型燃料電池に関するものである。 The present invention relates to a fuel cell used in a power source for portable devices, a portable power source, a power source for electric vehicles, a domestic cogeneration system, etc., in particular, an accelerated test method for a polymer electrolyte fuel cell, and a polymer electrolyte using this test method. Type fuel cell.
高分子電解質型燃料電池は、水素などの燃料ガスと空気などの酸化剤ガスをガス拡散電極によって電気化学的に反応させ、発電を行うものである。このような高分子電解質型燃料電池の一般的な構成を図1に示した。 A polymer electrolyte fuel cell performs power generation by allowing a fuel gas such as hydrogen and an oxidant gas such as air to react electrochemically with a gas diffusion electrode. A general configuration of such a polymer electrolyte fuel cell is shown in FIG.
図1に於いて、水素イオンを選択的に輸送する高分子電解質膜3の両面には、白金系の金属触媒を担持したカーボン粉末を主成分とする触媒反応層2が密着して配置されている。さらに触媒反応層2の外面には、ガス通気性と導電性を兼ね備えた一対の拡散層1が触媒反応層2に密着して配置されている。この拡散層1と触媒反応層2により電極9が構成されている。
In FIG. 1, a
又、電極9の外側には、電極9と高分子電解質膜3とで形成された電極電解質接合体(以下、MEAとする)10を機械的に固定するとともに、隣接するMEA同士を互いに電気的に直列に接続し、さらに電極に反応ガスを供給しかつ反応により発生したガスや余剰のガスを運び去るためのガス流路5を一方の面に形成した導電性セパレータ板4が配置されている。このガス流路5は、セパレータ板4と別に設けることもできるが、セパレータ板の表面に溝を設けてガス流路とする方式が一般的である。
An electrode electrolyte assembly (hereinafter referred to as MEA) 10 formed of the
又、セパレータ板4の他方の面には、電池温度を一定に保つための冷却水を循環させる冷却流路7が設けられている。このように冷却水を循環させることにより、反応により発生した熱エネルギーは、温水などの形で利用することができる。
On the other surface of the
また、水素や空気が電池外にリークしたり、互いに混合したりしないように、さらには冷却水が電池外にリークしないように、電極9の周囲には高分子電解質膜を挟んでガスシール材13やOリング14が配されている。
Further, a gas seal material is sandwiched around the
周知の如く、燃料電池は長期間運転を行うと経時的に劣化することが知られている。劣化部位としては、電極触媒、高分子電解質膜、ガス拡散層などがある。リン酸型燃料電池では、電極触媒の粒径増大や、電極部の濡れ性の変化が劣化原因として考えられている。 As is well known, it is known that a fuel cell deteriorates with time when operated for a long period of time. Examples of the deteriorated part include an electrode catalyst, a polymer electrolyte membrane, and a gas diffusion layer. In the phosphoric acid fuel cell, an increase in the particle diameter of the electrode catalyst and a change in wettability of the electrode part are considered as causes of deterioration.
また、高分子電解質型燃料電池の場合、高分子電解質膜が劣化することでも電池性能が低下する。高分子電解質膜の劣化メカニズムは十分に解明されていないが、電極触媒反応の副反応で生成する過酸化水素などの過酸化物が、ラジカル化して電解質膜を浸食し劣化を促進すると考えられている。 In the case of a polymer electrolyte fuel cell, the battery performance also deteriorates due to deterioration of the polymer electrolyte membrane. Although the degradation mechanism of polymer electrolyte membranes has not been fully elucidated, it is thought that peroxides such as hydrogen peroxide generated as a side reaction of the electrocatalytic reaction are radicalized to erode the electrolyte membrane and promote degradation. Yes.
高分子電解質としては、通常パーフルオロカーボンスルホン酸膜(例えば、米国デュポン社製、商品名:ナフィオン膜)を用いるのが一般的である。このようなフッ素系電解質膜は耐酸化性に優れた材料と考えられているが、近年このような膜であってもラジカル反応により劣化することが報告されている(例えば、非特許文献1参照。)。また、フッ素系の電解質膜よりも安価な炭化水素系電解質膜も開発されているが、一般的にはフッ素系電解質膜よりも耐酸化性が低くなると考えられている。 As the polymer electrolyte, a perfluorocarbon sulfonic acid membrane (for example, a product name: Nafion membrane manufactured by DuPont, USA) is generally used. Although such a fluorine-based electrolyte membrane is considered to be a material excellent in oxidation resistance, it has recently been reported that even such a membrane is deteriorated by a radical reaction (for example, see Non-Patent Document 1). .) Also, hydrocarbon electrolyte membranes that are less expensive than fluorine-based electrolyte membranes have been developed, but it is generally considered that oxidation resistance is lower than that of fluorine-based electrolyte membranes.
高分子電解質膜に欠陥等があり、このような劣化が加速進行した場合には、短時間で高分子電解質膜が致命的なダメージを受け、電池運転が不能になる危険性がある。燃料電池を長期間作動させる時には、このような電池性能の低下や電解質膜の破損などの危険を、電池運転前に適切に検査しておくことが必要がある。また、高分子電解質の劣化現象を短時間で的確に判断し、燃料電池としての性能を予め保証しておくことは、燃料電池の品質を保証する上で必須である。 If the polymer electrolyte membrane has defects or the like, and such deterioration progresses at an accelerated rate, the polymer electrolyte membrane may be fatally damaged in a short time, and there is a risk that battery operation becomes impossible. When the fuel cell is operated for a long period of time, it is necessary to appropriately inspect such dangers as deterioration of the battery performance and breakage of the electrolyte membrane before the battery operation. In addition, it is indispensable to accurately determine the deterioration phenomenon of the polymer electrolyte in a short time and to guarantee the performance as a fuel cell in advance in order to guarantee the quality of the fuel cell.
これまで高分子電解質型燃料電池の電池性能を保証する方法としては、燃料ガス流路、酸化剤ガス流路等にヘリウムガスを注入して、ガスもれ量を事前に的確に検知する方法があった(例えば、特許文献1参照。)。この方法を用いれば、燃料電池のガスもれ量の把握が出来るため、ガスシール性の良否を事前に判断することが出来る。
上記のように、燃料電池の供給ガス流路にヘリウムガス等を注入して、燃料電池のガス漏れ量を事前に判断することは、品質保証の観点からも重要である。また、この方法は燃料電池に用いれらる各種シール材のガスシール性の評価や、MEAの物理的欠陥等による初期もれ量を判断する方法としては有効である。しかしながら、ガスもれ検知を行うためのヘリウムガスやリークディテクタ等の特別な検査装置が必要である。 As described above, it is important from the viewpoint of quality assurance that helium gas or the like is injected into the supply gas flow path of the fuel cell and the amount of gas leakage from the fuel cell is determined in advance. This method is also effective as a method for evaluating the gas sealability of various sealing materials used in fuel cells and for determining the initial leakage due to physical defects of the MEA. However, a special inspection device such as helium gas or a leak detector for detecting gas leakage is required.
また、発電状態ではない検査方法を用いているため、電池運転時の高分子電解質膜の劣化に関する品質保証を行うことは困難である。 In addition, since an inspection method that is not in the power generation state is used, it is difficult to perform quality assurance regarding the deterioration of the polymer electrolyte membrane during battery operation.
本発明は、上記従来の課題を考慮して、燃料電池運転時の高分子電解質の劣化を加速によって模擬すること、又は高分子電解質の劣化を事前に把握して性能を保証することが可能な高分子電解質型燃料電池の試験方法、及びこの試験方法を用いた高分子電解質型燃料電池を提供することを目的とする。 In consideration of the above-described conventional problems, the present invention can simulate degradation of the polymer electrolyte during fuel cell operation by acceleration, or can grasp the degradation of the polymer electrolyte in advance to guarantee the performance. It is an object of the present invention to provide a test method for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell using the test method.
上記目的を達成するために、第1の本発明は、
燃料ガスと酸化剤ガスを供給し、電気化学反応により電力を発生させる高分子電解質型燃料電池の試験方法であって、
前記高分子電解質型燃料電池の運転温度が定格運転時よりも高い状態で運転を行う加速運転工程と、
前記加速運転の結果によって、前記高分子電解質型燃料電池が、合格、若しくは不合格かの判定を行う判定工程とを備えた、高分子電解質型燃料電池の試験方法である。
In order to achieve the above object, the first present invention provides:
A test method for a polymer electrolyte fuel cell in which fuel gas and oxidant gas are supplied and electric power is generated by an electrochemical reaction,
An accelerating operation step of operating in a state where the operating temperature of the polymer electrolyte fuel cell is higher than that during rated operation;
A test method for a polymer electrolyte fuel cell, comprising: a determination step of determining whether the polymer electrolyte fuel cell is acceptable or unacceptable based on a result of the acceleration operation.
又、第2の本発明は、
燃料ガスと酸化剤ガスを供給し、電気化学反応により電力を発生させる高分子電解質型燃料電池の試験方法であって、
前記高分子電解質型燃料電池に供給する前記燃料ガス及び/又は前記酸化剤ガスの露点が定格運転時よりも低い状態で運転を行う加速運転工程と、
前記加速運転の結果によって、前記高分子電解質型燃料電池が、合格、若しくは不合格かの判定を行う判定工程を備えた、高分子電解質型燃料電池の試験方法である。
The second aspect of the present invention is
A test method for a polymer electrolyte fuel cell in which fuel gas and oxidant gas are supplied and electric power is generated by an electrochemical reaction,
An acceleration operation step of operating in a state where the dew point of the fuel gas and / or the oxidant gas supplied to the polymer electrolyte fuel cell is lower than that during rated operation;
It is a test method for a polymer electrolyte fuel cell, comprising a determination step for determining whether the polymer electrolyte fuel cell is acceptable or not based on a result of the acceleration operation.
又、第3の本発明は、
前記判定工程は、前記加速運転時の前記高分子電解質型燃料電池の電圧低下率が、基準となる高分子電解質型燃料電池の前記定格運転時の電圧低下率に比べて式(1)で示されるY倍であれば、前記高分子電解質型燃料電池を合格と判定する、第1又は2の本発明の高分子電解質型燃料電池の試験方法である。
The third aspect of the present invention
In the determination step, the voltage drop rate of the polymer electrolyte fuel cell at the time of the acceleration operation is expressed by the formula (1) as compared with the voltage drop rate at the rated operation of the reference polymer electrolyte fuel cell. If it is Y times, it is the test method for the polymer electrolyte fuel cell of the first or second aspect of the present invention in which the polymer electrolyte fuel cell is determined to be acceptable.
又、第4の本発明は、
前記判定工程は、前記加速運転時の前記高分子電解質型燃料電池の電圧低下率が、前記加速運転と同一条件における加速運転時の、基準となる高分子電解質型燃料電池の電圧低下率の1.5倍未満である場合に、前記高分子電解質型燃料電池を合格と判定する、第1又は2の本発明の高分子電解質型燃料電池の試験方法である。
The fourth aspect of the present invention is
In the determination step, the voltage drop rate of the polymer electrolyte fuel cell during the acceleration operation is 1 of the voltage drop rate of the reference polymer electrolyte fuel cell during the acceleration operation under the same conditions as the acceleration operation. The test method for the polymer electrolyte fuel cell according to the first or second aspect of the present invention, in which the polymer electrolyte fuel cell is determined to be acceptable when the ratio is less than 5 times.
又、第5の本発明は、
前記基準となる高分子電解質型燃料電池の定格運転時又は加速運転時の前記電圧低下率とは、複数の高分子電解質型燃料電池の電圧低下率の平均値である、第3又は4の本発明の高分子電解質型燃料電池の試験方法である。
The fifth aspect of the present invention is
The voltage drop rate during rated operation or acceleration operation of the reference polymer electrolyte fuel cell is an average value of voltage drop rates of a plurality of polymer electrolyte fuel cells. It is a test method for a polymer electrolyte fuel cell of the invention.
又、第6の本発明は、
前記基準となる高分子電解質型燃料電池の定格運転時又は加速運転時の前記電圧低下率とは、複数の高分子電解質型燃料電池の電圧低下率の最も小さい値である、第3又は4の本発明の高分子電解質型燃料電池の試験方法である。
The sixth aspect of the present invention
The voltage drop rate during rated operation or accelerated operation of the reference polymer electrolyte fuel cell is the smallest value of the voltage drop rates of the plurality of polymer electrolyte fuel cells. It is a test method for a polymer electrolyte fuel cell of the present invention.
又、第7の本発明は、
前記基準となる高分子電解質型燃料電池は、前記加速運転時の電圧低下率が、前記定格運転時の電圧低下率の実質上式(2)に示すZ倍である、第3又は第4の本発明の高分子電解質型燃料電池の試験方法である。
The seventh aspect of the present invention
In the polymer electrolyte fuel cell serving as the reference, the voltage drop rate during the acceleration operation is substantially Z times the voltage drop rate during the rated operation shown in the equation (2). It is a test method for a polymer electrolyte fuel cell of the present invention.
又、第8の本発明は、前記判定工程は、前記加速運転時の前記高分子電解質型燃料電池から排出される排出ガス中に含まれる高分子電解質の分解生成物量が、基準となる高分子電解質型燃料電池の前記定格運転時の分解生成物量の、式(1)で示されるY倍であれば、前記高分子電解質型燃料電池を合格と判定する、第1又は2の本発明の高分子電解質型燃料電池の試験方法である。 According to an eighth aspect of the present invention, in the determination step, the amount of decomposition product of the polymer electrolyte contained in the exhaust gas discharged from the polymer electrolyte fuel cell during the acceleration operation is a reference polymer. If the amount of decomposition product during the rated operation of the electrolyte fuel cell is Y times represented by the formula (1), the polymer electrolyte fuel cell is determined to be acceptable. This is a test method for a molecular electrolyte fuel cell.
又、第9の本発明は、
前記判定工程は、前記加速運転時の前記高分子電解質型燃料電池から排出される排出ガスに含まれる高分子電解質の分解生成物量が、前記加速運転と同一条件での加速運転時に、基準となる高分子電解質型燃料電池から排出される排出ガスに含まれる高分子電解質の分解生成物量の1.5倍未満である場合に、前記高分子電解質型燃料電池を合格とする、第1又は2の本発明の高分子電解質型燃料電池の試験方法である。
The ninth aspect of the present invention provides
In the determination step, a decomposition product amount of the polymer electrolyte contained in the exhaust gas discharged from the polymer electrolyte fuel cell at the time of the acceleration operation becomes a reference when the acceleration operation is performed under the same conditions as the acceleration operation. In the first or second embodiment, when the amount of decomposition product of the polymer electrolyte contained in the exhaust gas discharged from the polymer electrolyte fuel cell is less than 1.5 times, the polymer electrolyte fuel cell is passed. It is a test method for a polymer electrolyte fuel cell of the present invention.
又、第10の本発明は、
前記基準となる高分子電解質型燃料電池の定格運転時又は加速運転時の前記分解生成物量は、複数の高分子電解質型燃料電池型の分解生成物量の平均値である、第8又は9の本発明の高分子電解質型燃料電池の試験方法である。
The tenth aspect of the present invention is
The eighth or ninth book, wherein the amount of decomposition products during rated operation or acceleration operation of the reference polymer electrolyte fuel cell is an average value of the amount of decomposition products of a plurality of polymer electrolyte fuel cell types It is a test method for a polymer electrolyte fuel cell of the invention.
又、第11の本発明は、
前記基準となる高分子電解質型燃料電池の定格運転時又は加速運転時の前記分解生成物量は、複数の高分子電解質型年慮電池の分解生成物量の最も小さい値である、第8又は第9の本発明の高分子電解質型燃料電池の試験方法である。
The eleventh aspect of the present invention is
The amount of the decomposition product during rated operation or acceleration operation of the reference polymer electrolyte fuel cell is the smallest value of the amount of decomposition products of the plurality of polymer electrolyte type annual cells. This is a test method for a polymer electrolyte fuel cell of the present invention.
又、第12の本発明は、
前記基準となる高分子電解質型燃料電池は、前記加速運転時の分解生成物量が、前記定格運転時の分解生成物量の実質上式(2)に示すZ倍である、第8又は9の本発明の高分子電解質型燃料電池の試験方法である。
The twelfth aspect of the present invention is
In the reference polymer electrolyte fuel cell, the eighth or ninth book is such that the amount of decomposition products during the accelerated operation is substantially Z times the amount of decomposition products during the rated operation shown in the equation (2). It is a test method for a polymer electrolyte fuel cell of the invention.
又、第13の本発明は、
前記分解生成物量は、フッ素イオン量である、第8〜12のいずれかの本発明の高分子電解質型燃料電池の試験方法である。
The thirteenth aspect of the present invention is
The decomposition product amount is the amount of fluorine ions, the test method for a polymer electrolyte fuel cell according to any one of the eighth to twelfth aspects of the present invention.
又、第14の本発明は、
前記基準となる高分子電解質型燃料電池は、前記定格運転時の前記排ガス中のフッ素イオン量が、1.0μg/時間以下である、第13の本発明の高分子電解質型燃料電池の試験方法である。
The fourteenth aspect of the present invention is
In the polymer electrolyte fuel cell serving as the reference, the polymer electrolyte fuel cell test method of the thirteenth aspect of the present invention is such that the amount of fluorine ions in the exhaust gas during the rated operation is 1.0 μg / hour or less. It is.
又、第15の本発明は、
第1〜14のいずれかの本発明の高分子電解質型燃料電池の試験方法を用いて、合格と判定された高分子電解質型燃料電池である。
The fifteenth aspect of the present invention is
It is a polymer electrolyte fuel cell determined to be acceptable using any one of the first to fourteenth polymer electrolyte fuel cell test methods of the present invention.
本発明によれば、燃料電池運転時の高分子電解質の劣化を加速によって模擬すること、又は高分子電解質の劣化を事前に把握して性能を保証することが可能な高分子電解質型燃料電池の試験方法、及びこの試験方法を用いた高分子電解質型燃料電池を提供することが出来る。 According to the present invention, there is provided a polymer electrolyte fuel cell capable of simulating deterioration of a polymer electrolyte during operation of the fuel cell by acceleration, or grasping deterioration of the polymer electrolyte in advance and guaranteeing performance. A test method and a polymer electrolyte fuel cell using the test method can be provided.
以下、本願発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(実施の形態1)
まず初めに、図1に示した高分子電解質型燃料電池を用いて、定格運転時の電池温度(Tcell(1))に対して運転温度を高くした条件(B〜D)で電池運転を行った。なお、本実施の形態において用いられる燃料電池は、(背景技術)において説明した燃料電池と同様の構成である。又、本発明の高分子電解質型燃料電池温度とは、通常、燃料電池を冷却する冷却水配管の燃料電池スタックへの流入口近傍の温度に相当する。
(Embodiment 1)
First, using the polymer electrolyte fuel cell shown in FIG. 1, the battery is operated under the conditions (BD) where the operating temperature is higher than the battery temperature during rated operation (Tcell (1)). It was. The fuel cell used in the present embodiment has the same configuration as the fuel cell described in (Background Art). The temperature of the polymer electrolyte fuel cell of the present invention usually corresponds to the temperature in the vicinity of the inlet of the cooling water pipe for cooling the fuel cell to the fuel cell stack.
ここで、各値を以下のように示す。
Tcell(1):定格運転時の電池温度
Tcell(2):加速試験時の電池温度
ΔTa(1):定格運転時の電池温度(Tcell(1))と燃料ガス露点(Tad(1))の差
ΔTa(2):加速試験時の電池温度(Tcell(2))と燃料ガス露点(Tad(2))の差
ΔTc(1):定格運転時の電池温度(Tcell(1))と酸化剤ガス露点(Tcd(1))の差
ΔTc(2):加速試験時の電池温度(Tcell(2))と酸化剤ガス露点(Tcd(2))の差
定格運転は、10セル積層の燃料電池を用い、電池温度を60℃、燃料極に水素ガス(燃料利用率80%)、空気極に空気(空気利用率40%)を流して行った。
Here, each value is shown as follows.
Tcell (1): Battery temperature during rated operation Tcell (2): Battery temperature during acceleration test ΔTa (1): Battery temperature during rated operation (Tcell (1)) and fuel gas dew point (Tad (1)) Difference ΔTa (2): Battery temperature during acceleration test (Tcell (2)) and fuel gas dew point (Tad (2)) ΔTc (1): Battery temperature during rated operation (Tcell (1)) and oxidizing agent Difference of gas dew point (Tcd (1)) ΔTc (2): Difference between battery temperature (Tcell (2)) and oxidant gas dew point (Tcd (2)) during acceleration test The battery temperature was 60 ° C., hydrogen gas (fuel utilization rate 80%) was passed through the fuel electrode, and air (air utilization rate 40%) was passed through the air electrode.
この時の各運転条件における電池温度と供給ガス露点の差および定格運転温度との差を(表1)に示した。尚、定格運転(A)時は電池温度と各供給ガスの露点が同じになる条件とし、又、電池温度を高くした時のB〜D条件時も、各供給ガスの露点と電池温度は同じになる様にした。B条件では、電池温度を定格条件より5℃高く設定し、C条件では電池温度を定格条件より10℃高く設定し、D条件では電池温度を定格条件より15℃高く設定した。 Table 1 shows the difference between the battery temperature, the supply gas dew point, and the rated operating temperature under each operating condition. In rated operation (A), the battery temperature and the dew point of each supply gas are the same. In addition, the dew point of each supply gas and the battery temperature are the same under the BD conditions when the battery temperature is increased. I tried to become. In the B condition, the battery temperature was set 5 ° C. higher than the rated condition, in the C condition, the battery temperature was set 10 ° C. higher than the rated condition, and in the D condition, the battery temperature was set 15 ° C. higher than the rated condition.
この時の電池電圧と運転時間との関係を図2に示した。図2では、電池温度を上げるに従って電池電圧の低下が大きくなることがわかる。例えば、2000時間経過後の定格運転Aでの電池電圧の低下分は、試験条件Cでの500時間経過後の電池電圧の低下分に相当する。これは、条件Cで500時間試験が、定格運転Aでの2000時間分の加速試験に相当することを示している。 The relationship between the battery voltage and the operation time at this time is shown in FIG. In FIG. 2, it can be seen that the decrease in battery voltage increases as the battery temperature increases. For example, a decrease in battery voltage in rated operation A after lapse of 2000 hours corresponds to a decrease in battery voltage after lapse of 500 hours in test condition C. This indicates that the 500 hour test under the condition C corresponds to an accelerated test for 2000 hours in the rated operation A.
又、本実施の形態1の高分子電解質型燃料電池の高分子電解質膜がフッ素系の電解質膜である場合には、ヒドロキシラジカルの攻撃を受け高分子電解質膜が劣化すると、膜を構成する主要成分のフッ素がオフガス中のドレイン水に溶出する。このため、この析出するフッ素イオン量を高分子電解質膜の劣化の指標として用いることが出来る。
In the case where the polymer electrolyte membrane of the polymer electrolyte fuel cell of
図3は、燃料電池の劣化時に析出するフッ素イオン量を測定するための装置の構成図である。図3に示す様に、この装置は、高分子電解質型燃料電池15のアノードガスの排ガスをアノードドレインタンク16で採取し、カソードガスの排ガスをカソードドレインタンク17で採取し、アノードドレインタンク16中のアノードドレイン水をカソードドレインタンク17にポンプ18で送り、採取した合計のドレイン水中のフッ素イオン量の測定を経時的に行う。これより時間当たりのフッ素イオン量を算出した。
FIG. 3 is a configuration diagram of an apparatus for measuring the amount of fluorine ions deposited when the fuel cell is deteriorated. As shown in FIG. 3, this apparatus collects the exhaust gas of the anode gas of the polymer
定格条件Aでの1000時間当たりの電圧低下率とフッ素イオン量を各々1と規格化した場合のB〜Dの条件での電圧低下率とフッ素イオン量を(表2)に示した。尚、本発明の電圧低下率とは、例えば、本実施の形態1では初期電圧をV0とし、所定時間t時間当たりの電圧低下量をVtとすると、((Vt―V。)/t)×100で表される値である。 Table 2 shows the voltage drop rate and the fluorine ion amount under the conditions BD when the voltage drop rate per 1000 hours and the fluorine ion amount under the rated condition A are normalized to 1, respectively. The voltage drop rate of the present invention is, for example, ((Vt−V.) / T) in the first embodiment, where the initial voltage is V 0 and the voltage drop amount per predetermined time t is Vt. It is a value represented by x100.
これより定格条件に対して、酸化剤ガス露点よりも電池温度を高くしたB、C、D条件では電圧低下率、フッ素イオン量ともに増加することが分かった。これは電池温度を高めて運転したことで、高分子電解質の劣化が促進されたためと考えられる。また、各々の値は、各条件での電池温度(Tcell(2))と定格条件の電池温度(Tcell(1))との差をΔTcellとすると、ほぼ定格運転時の2(ΔTcell/10)倍になることが分かった。 From this, it was found that both the voltage drop rate and the amount of fluorine ions increased under the B, C, and D conditions where the battery temperature was higher than the oxidizing gas dew point with respect to the rated conditions. This is considered to be because the deterioration of the polymer electrolyte was promoted by increasing the battery temperature. Each value is approximately 2 (ΔTcell / 10) at rated operation, where ΔTcell is the difference between the battery temperature under each condition (Tcell (2)) and the rated battery temperature (Tcell (1) ). It turns out that it doubles.
次に、電池温度を高くした場合に酸化剤ガスの露点を定格条件のままにした表3に示すような条件(E〜G)で電池運転を行った。条件Eでは、電池温度、燃料ガス露点ともに定格条件Aよりも5℃高く設定し、条件Fでは、電池温度、燃料ガス露点ともに定格条件Aよりも10℃高く設定し、条件Gでは電池温度、燃料ガス露点ともに定格条件Aよりも15℃高く設定した。 Next, battery operation was performed under conditions (EG) as shown in Table 3 in which the dew point of the oxidant gas was kept at the rated condition when the battery temperature was increased. In condition E, the battery temperature and the fuel gas dew point are both set to 5 ° C. higher than the rated condition A. In condition F, both the battery temperature and the fuel gas dew point are set to 10 ° C. higher than the rated condition A. The fuel gas dew point was set 15 ° C. higher than the rated condition A.
この時の電池電圧と運転時間との関係を図4に示した。図4のグラフでは、図2のグラフと比較して、温度上昇に伴う電池電圧の低下が大きい事がわかる。 The relationship between the battery voltage and the operation time at this time is shown in FIG. In the graph of FIG. 4, it can be seen that the decrease in the battery voltage accompanying the temperature rise is larger than that in the graph of FIG. 2.
また、定格条件での1000時間当たりの電圧低下率とフッ素イオン量を各々1と規格化した場合の各条件での電圧低下率とフッ素イオン量を表4に示した。 Table 4 shows the voltage drop rate and the fluorine ion amount under each condition when the voltage drop rate per 1000 hours and the fluorine ion amount under the rated conditions are normalized to 1 respectively.
この時Zを、電圧低下率又はフッ素イオン量の、定格運転時に対する加速運転時の比をすると、各々の値は下記の式(3)で表される値にほぼ合致することが分かった。 At this time, when Z is a ratio of the voltage drop rate or the amount of fluorine ions at the time of accelerated operation to the rated operation, it has been found that each value substantially matches the value represented by the following formula (3).
例えば、条件Fでこの式にあてはめてみると、以下のようになる。
Z=(2(10/10)×2((0-0)/10)×2((10-0)/10))=4
これより、式(3)を用いた場合に電圧低下率、フッ素イオン量ともによく一致する結果となった。
For example, when this condition is applied to the condition F, it becomes as follows.
Z = (2 (10/10) × 2 ((0-0) / 10) × 2 ((10-0) / 10) ) = 4
From this, when the formula (3) was used, the voltage drop rate and the amount of fluorine ions were in good agreement.
次に、前述とは逆に電池温度を高くした条件で、酸化剤ガス露点は電池温度と同様に高くして、燃料極ガス露点のみを定格条件と同じにした場合についても調べた。この結果、定格条件での1000時間当たりの電圧低下率とフッ素イオン量を各々1と規格化した場合の他条件での電圧低下率とフッ素イオン量は、先程の式(3)から計算される値とよく一致する結果となった。 Next, the case where the battery temperature was increased contrary to the above and the oxidant gas dew point was increased similarly to the battery temperature and only the fuel electrode gas dew point was made the same as the rated condition was also examined. As a result, the voltage drop rate and fluorine ion amount under other conditions when the voltage drop rate per 1000 hours under rated conditions and the fluorine ion amount are each normalized to 1 are calculated from the previous equation (3). The result was in good agreement with the value.
次に、定格条件Aの電池温度はそのままにして、各供給ガスの露点が電池温度よりも10℃低い条件(定格条件A´)にした場合について調べた。 Next, the case where the battery temperature of rated condition A was left as it was and the dew point of each supply gas was 10 ° C. lower than the battery temperature (rated condition A ′) was examined.
又、(表5)に示す様に、定格条件A´よりも、電池温度及び燃料ガス露点を5℃高く設定したH条件で電池試験を行った。 Further, as shown in Table 5, the battery test was performed under the H condition in which the battery temperature and the fuel gas dew point were set 5 ° C. higher than the rated condition A ′.
この結果、定格条件A´の1000時間当たりの電圧低下率とフッ素イオン溶出量を各々1と規格化した場合のH条件での電圧低下率とフッ素イオン溶出量は、各々1.9、2.0となった。 As a result, the voltage drop rate and the fluorine ion elution amount under the H condition when the voltage drop rate per 1000 hours and the fluorine ion elution amount are normalized to 1 for the rated condition A ′ are 1.9, 2. 0.
ここで、条件Hを式(3)に当てはめると、以下のようになる。
Z=(2(5/10)×2((10-10)/10)×2((15-10)/10))=2
これより、式(3)を用いた場合に電圧低下率、フッ素イオン量ともに良く一致する結果となった。
Here, when the condition H is applied to the expression (3), the following is obtained.
Z = (2 (5/10) × 2 ((10-10) / 10) × 2 ((15-10) / 10) ) = 2
From this, when the formula (3) was used, the voltage drop rate and the amount of fluorine ions were in good agreement.
この方法を用いればどんな運転条件を定格運転としている場合でも、電池温度を高くするあるいは相対湿度を下げるような条件を設定することにより、短時間で電池の耐久性を判断できる試験方法を提供できる。例えば、加速試験を条件Cで行った場合には、定格運転2000時間に相当する試験を500時間で行うことが可能となる。又、加速試験を条件Gで行った場合には、定格運転2000時間に相当する試験を約100時間で行うことが可能となる。
This method can provide a test method that can determine the durability of a battery in a short time by setting conditions that increase the battery temperature or lower the relative humidity, regardless of what operating conditions are rated operation. . For example, when the acceleration test is performed under condition C, a test corresponding to 2000 hours of rated operation can be performed in 500 hours. When the acceleration test is performed under the condition G, the test corresponding to the rated
燃料ガスと酸化剤ガスの相対湿度を低くする方法としては、各定格試験条件により様々な設定をすることが可能であり、電池温度を高くする以外にも、電池温度はそのままで各供給ガス露点を定格条件よりも低く設定することもできる。定格運転時の電池温度と各供給ガス露点の差を、定格運転時よりも大きくすることが出来ればどのような条件でも選択することが出来る。 As a method of lowering the relative humidity of the fuel gas and oxidant gas, various settings can be made according to each rated test condition. In addition to increasing the battery temperature, each supply gas dew point can be kept at the same battery temperature. Can be set lower than the rated condition. Any difference can be selected as long as the difference between the battery temperature during rated operation and the dew point of each supply gas can be made larger than during rated operation.
(実施の形態2)
次に実施の形態1で示した試験方法を用いた燃料電池について述べる。条件Fを用いて、作製ロットの異なる10種類のMEA(a〜j)を試験評価した。また、10種類のMEAの各々について定格運転の条件についても試験を行った。
(Embodiment 2)
Next, a fuel cell using the test method shown in
この時の定格条件Aと条件Fの電池の電圧低下率の関係を図5に、フッ素イオン溶出量の関係を図6に示した。各々定格条件で作製ロットaの電圧低下率とフッ素イオン量を1と規格化して示した。尚、作製ロットaは、実施の形態1の条件を満たすロットであり、定格条件ではフッ素イオン析出量の絶対値が1.0μg/以下を満たすロットである。 The relationship between the rated voltage A and the voltage drop rate of the battery under the condition F at this time is shown in FIG. 5, and the relationship between the fluorine ion elution amounts is shown in FIG. The voltage drop rate and the fluorine ion content of production lot a were normalized to 1 under the rated conditions. The production lot a is a lot that satisfies the conditions of the first embodiment, and is a lot that satisfies the absolute value of the fluorine ion deposition amount of 1.0 μg / less under the rated conditions.
図5及び図6に示す様に、条件Fでの電圧低下率が6以上の場合に、定格条件である条件Aの電圧低下率も大きくなることが分かった。また、条件Fでのフッ素イオン量が6以上の場合に、定格条件でのフッ素イオン量も増加することが分かった。 As shown in FIGS. 5 and 6, it was found that when the voltage drop rate under condition F is 6 or more, the voltage drop rate under condition A, which is the rated condition, also increases. It was also found that when the amount of fluorine ions under condition F was 6 or more, the amount of fluorine ions under rated conditions also increased.
前記式(3)のZは、基準ロットaでの、電圧低下率又はフッ素イオン析出量の定格運転に対する加速運転の比を表している。そのため、電圧低下率を例に挙げると、基準ロットaでの条件A(定格)での電圧低下率をaAv、条件Fでの加速条件での電圧低下率をaFvとすると、実質上aFv=4・aAvが成立する。 Z in the formula (3) represents the ratio of the accelerated operation to the rated operation of the voltage drop rate or the amount of deposited fluorine ions in the reference lot a. Therefore, taking the voltage drop rate as an example, if the voltage drop rate under the condition A (rated) in the reference lot a is aAv, and the voltage drop rate under the acceleration condition under the condition F is aFv, substantially aFv = 4 -AAv is established.
ここで、ロット間における補正係数をαとすると、例えば、ロットbの条件Fでの電圧低下率をbFvとすると、bFv=α・aFvと表すことが出来き、更にbFv=4・α・aAvと表すことが出来る。条件Fでの基準ロットaの電圧低下率を1とし規格化したときのロットbの電圧低下率をbYFとすると、bYF=bFv/aAv=4・αとなる。 Here, if the correction coefficient between lots is α, for example, if the voltage drop rate under the condition F of lot b is bFv, it can be expressed as bFv = α · aFv, and bFv = 4 · α · aAv. Can be expressed as Assuming that the voltage reduction rate of lot b when standardizing the voltage reduction rate of reference lot a under condition F as 1 is bYF, bYF = bFv / aAv = 4 · α.
上記ではロットbについて述べたが、これを他のロットにも拡張すると、他のロットの条件Fでの電圧低下率をFvとし、基準ロットの電圧低下率を1としたときの他のロットの電圧低下率をYFとすると、YF=Fv/aAv=4・αとなる。 Although lot b has been described above, when this is extended to other lots, the voltage drop rate under the condition F of other lots is set to Fv, and the voltage drop rate of the reference lot is set to 1. If the voltage drop rate is YF, YF = Fv / aAv = 4 · α.
更に、加速試験を条件Fとしたため、式(3)から4という定数が導かれたが、加速条件によって変化する式(3)を用いて、他の条件にも拡張すると下記式(4)が成立する。 Furthermore, since the acceleration test was performed under the condition F, a constant of 4 was derived from the expression (3). However, when the expression (3) that changes depending on the acceleration condition is used to expand to other conditions, the following expression (4) is obtained. To establish.
上述した様に、図5のグラフでは条件Fでの電圧低下率(Y)が6以上の場合に、条件Aでの電圧低下率も低くなるため、αの値が1.5以上の場合に定格運転時の特性である電圧低下率が悪くなることがわかった。 As described above, in the graph of FIG. 5, when the voltage drop rate (Y) under the condition F is 6 or more, the voltage drop rate under the condition A is also low. Therefore, when the value of α is 1.5 or more. It was found that the voltage drop rate, which is a characteristic during rated operation, deteriorates.
尚、上記電圧低下率の場合と同様に、フッ素イオン量についても上記式(4)が成立し、図6に示す様に、フッ素イオン量についてもαの値が1.5以上の場合に悪くなることがわかった。 As in the case of the voltage drop rate, the above equation (4) is also established for the fluorine ion amount, and as shown in FIG. 6, the fluorine ion amount is bad when the value of α is 1.5 or more. I found out that
これより、条件Fでの電圧低下率、フッ素イオン量が、α<1.5となるようなMEAを使用することが、品質保証の観点から最適であることが分かった。 From this, it was found that it is optimal from the viewpoint of quality assurance to use an MEA in which the voltage drop rate and the fluorine ion amount under condition F are α <1.5.
同様に、実施の形態1で行った条件E、Gについても同様に作製ロットの異なる10種類のロットのMEAについて評価したところ、概ねα≧1.5の場合に電圧低下率、フッ素イオン量の場合に、定格条件での電圧低下率が上昇しフッ素イオン量が増大した。 Similarly, the conditions E and G performed in the first embodiment were similarly evaluated for 10 types of MEAs with different production lots. When α ≧ 1.5, the voltage drop rate and the amount of fluorine ions were In this case, the voltage drop rate under rated conditions increased and the amount of fluorine ions increased.
ここでは、高分子電解質の分解生成物としてフッ素イオンに着目したが、フッ素系以外の高分子膜を用いた場合にはこの限りではなく、使用する材料にあわせて変更することもできる。 Here, attention is focused on fluorine ions as a decomposition product of the polymer electrolyte. However, when a polymer film other than a fluorine-based polymer film is used, the present invention is not limited to this and can be changed according to the material to be used.
すなわち、複数のロットの各々から抜き出したMEAについて、所定の条件(電池温度、燃料ガス露点、及び酸化剤ガス露点)で加速試験を行い、その加速試験による電圧低下率又はフッ素イオン析出量が、加速試験時の基準ロットに対して、1.5倍より小さいロットを合格とすることにより、ロット毎に品質を満たしているか、否かの判別を行うことが可能となる。本発明の燃料電池の検査方法では、実際に動作させることにより品質を満たしているかの検査を行うため、より正確であり、又、加速条件により試験を行っているため、より短時間で検査を行うことが出来る。 That is, for the MEA extracted from each of a plurality of lots, an accelerated test is performed under predetermined conditions (battery temperature, fuel gas dew point, and oxidant gas dew point). By accepting a lot smaller than 1.5 times the reference lot at the time of the acceleration test, it becomes possible to determine whether or not the quality is satisfied for each lot. In the fuel cell inspection method of the present invention, since it is inspected whether the quality is satisfied by actually operating it, it is more accurate, and since the test is performed under acceleration conditions, the inspection is performed in a shorter time. Can be done.
尚、本実施の形態2では、基準ロットとして実施の形態1の式(3)を満たし、且つ定格運転でのフッ素イオン析出量の絶対値が1.0μg/以下を満たす条件のロットaを用いて、他のロットの判別を行うことが出来ることを示したが、下記の様に行っても良い。以下に他の判別方法を示す。 In the second embodiment, a lot a satisfying the formula (3) of the first embodiment and satisfying the absolute value of the amount of deposited fluorine ions in the rated operation of 1.0 μg / below is used as the reference lot. Although it has been shown that other lots can be discriminated, the following may be performed. Other discrimination methods are shown below.
例えば、定格運転条件における電圧低下量が、10μV/時間以下のロットを基準ロットとして用い、上記と同様に、ロットa〜jを条件Fにおいて加速試験を行い、基準ロットの条件Fにおける電圧低下率の1.5倍以上の電圧低下率のロットを不良品として判別を行う。 For example, a lot whose voltage drop amount under rated operating conditions is 10 μV / hour or less is used as a reference lot, and an acceleration test is performed on lots a to j under condition F in the same manner as described above. A lot having a voltage drop rate of 1.5 times or more is determined as a defective product.
又、ロットa〜jを条件Fにおいて加速試験を行い、電圧低下の最も小さいロットを基準にする。その基準ロットの条件Fにおける電圧低下率の1.5倍以上の電圧低下率のロットを不良品として判別を行う。 Also, the lots a to j are subjected to an acceleration test under the condition F, and the lot with the smallest voltage drop is used as a reference. A lot having a voltage drop rate of 1.5 times or more of the voltage drop rate in the condition F of the reference lot is determined as a defective product.
又、ロットa〜jを条件Fにおいて加速試験を行い、フッ素イオン析出量の最も小さいロットを基準にする、そしてその基準ロットの1.5倍以上のフッ素イオンが析出したロットを不良品として判別する。ここで、基準ロットを決める際に、定格運転でのフッ素イオン量が1.0μg/時間以下であるという閾値を設けても良い。 Also, lots a to j are subjected to an acceleration test under condition F, and the lot having the smallest fluorine ion deposition amount is used as a reference, and a lot having 1.5 times or more fluorine ions deposited as a reference lot is identified as a defective product. To do. Here, when determining the reference lot, a threshold value that the amount of fluorine ions in the rated operation is 1.0 μg / hour or less may be provided.
更に、実施の形態1の条件と、電圧低下が最も小さいという条件と、フッ素イオン析出量が最も小さいという条件の3つの条件を任意の組み合わせて、基準ロットを決定してもよい。 Furthermore, the reference lot may be determined by arbitrarily combining the three conditions of the first embodiment, the condition that the voltage drop is the smallest, and the condition that the fluorine ion deposition amount is the smallest.
尚、本実施の形態2では、条件Fで加速試験を行い判別を行っているが、定格運転時の電池温度と各供給ガス露点の差を、定格運転時よりも大きくすることが出来れば、どのような加速試験の条件でも上記判別は成立する。上記bFv=α・aFvの式は、加速試験の条件が前述した条件B〜E(条件Bでは、bBv=α・aBvとなる。)のいずれにおいても成立する。すなわち、基準ロットと他のロットを同じ加速試験の条件で電圧低下率又はフッ素イオン析出量を測定し、基準ロットの1.5倍より小さい電圧低下率又はフッ素イオン析出量のロットについては品質を満たしていると判定することが出来る。 In the second embodiment, an acceleration test is performed under the condition F for discrimination. However, if the difference between the battery temperature during rated operation and each supply gas dew point can be made larger than during rated operation, The above determination is valid under any acceleration test conditions. The above equation of bFv = α · aFv is satisfied when the acceleration test condition is any of the above-described conditions B to E (bBv = α · aBv under condition B). That is, measure the voltage drop rate or fluoride ion deposition amount of the reference lot and other lots under the same accelerated test conditions, and improve the quality for lots with a voltage drop rate or fluoride ion deposition amount less than 1.5 times the reference lot. It can be determined that it is satisfied.
又、本実施の形態2では、基準ロットaについても他のロットb〜jと同じ条件で加速試験を行い、基準ロットの1.5倍を閾値として判別を行っているが、予め測定しておいた基準ロットの定格運転での電圧低下率又はフッ素イオン析出量を基準にしても良い。 Further, in the second embodiment, the reference lot a is also subjected to an acceleration test under the same conditions as the other lots b to j and is determined with 1.5 times the reference lot as a threshold value. It may be based on the voltage drop rate or the amount of deposited fluorine ions in the rated operation of the set standard lot.
具体的に述べると、条件Fによってロットb〜jの加速試験を行う。そして、上述したFv=4・α・aAvから、α<1.5(本実施の形態2で求めた判別の閾値)を当てはめると、Fv<6・aAvとなる。これより、条件Fでのロットb〜jの電圧低下率又はフッ素イオン析出量が、基準ロットaの定格運転時の電圧低下率又はフッ素イオン析出量の6倍より小さいロットについては品質を満たしていると判定することが出来る。尚、いうまでもなく他の加速試験の条件においても式(4)に当てはめることで、基準ロットの定格運転時の電圧低下率又はフッ素イオン量を基準とした判別の閾値を決めることが出来る。 Specifically, an acceleration test of lots b to j is performed according to the condition F. When α <1.5 (the determination threshold obtained in the second embodiment) is applied from Fv = 4 · α · aAv described above, Fv <6 · aAv. Thus, the lots b to j under the condition F have a voltage drop rate or fluorine ion deposition amount that is less than 6 times the voltage drop rate or fluoride ion deposition amount during rated operation of the reference lot a. Can be determined. Needless to say, the threshold value for discrimination based on the voltage drop rate or the fluorine ion amount at the rated operation of the reference lot can be determined by applying the formula (4) to other acceleration test conditions.
尚、実施の形態1で示した式(3)が、本発明の式(2)に相当し、実施の形態2で示した式(4)において、α<1.5の場合が本発明の式(1)に相当する。 The formula (3) shown in the first embodiment corresponds to the formula (2) of the present invention. In the formula (4) shown in the second embodiment, the case where α <1.5 It corresponds to the formula (1).
本発明の実施の形態について、より具体的に実施例として説明する。 The embodiment of the present invention will be described more specifically as an example.
(実施例1)
まず、高分子電解質膜(デュポン製、ナフィオン膜、厚み50μm)にガス拡散層を備えた触媒層付き電極を取り付けMEAを作製した。
(Example 1)
First, an electrode with a catalyst layer provided with a gas diffusion layer was attached to a polymer electrolyte membrane (manufactured by DuPont, Nafion membrane, thickness 50 μm) to prepare an MEA.
このMEAを、その両面から気密性を有するカーボン製のセパレータ板とシリコンゴム性のガスシール材で挟み込み、単電池を構成した。以上の単電池を2セル積層し電池構成単位を得て、図1に示すような構成で燃料電池の積層体を作成した。積層した単電池は全部で10セルで、両端部に金メッキを行った銅製の集電板と電気絶縁材料でできた絶縁板、さらにエンドプレートを順に配して積層電池を作製した。 The MEA was sandwiched between a carbon separator plate having airtightness from both sides and a silicon rubber gas sealing material to constitute a single cell. Two cells of the above unit cell were stacked to obtain a battery structural unit, and a fuel cell stack was prepared with the configuration shown in FIG. The laminated unit cells consisted of 10 cells in total, and a laminated battery was prepared by arranging a copper current collector plate plated with gold at both ends, an insulating plate made of an electrically insulating material, and an end plate in order.
作製した燃料電池の積層体に、燃料極には水素ガスを空気極に酸化剤ガスとして空気を流し、冷却水入口温度(電池温度)を75℃、燃料利用率を80%、空気利用率を40%、ガス加湿は水素ガスを75℃、空気を75℃の露点になるように調整して、燃料電池を運転した。この条件を定格条件とした。 In the fuel cell stack, hydrogen gas is flowed to the fuel electrode as oxidant gas to the fuel electrode, the cooling water inlet temperature (cell temperature) is 75 ° C., the fuel utilization rate is 80%, and the air utilization rate is The fuel cell was operated by adjusting the gas humidification so that the dew point was 75 ° C. for hydrogen gas and 75 ° C. for air. This condition was set as the rated condition.
この時、アノードおよびカソード排ガスを図3に示すような構成のドレインタンクに流通させドレイン水を採取した。フッ素イオン濃度の測定には、イオンクロマトグラム(ICS−90、日本ダイオネクス社製)を用い、このドレイン水中のフッ素イオン濃度から溶出速度を算出した。 At this time, the anode and cathode exhaust gas was circulated through a drain tank configured as shown in FIG. 3 to collect drain water. For the measurement of the fluorine ion concentration, an ion chromatogram (ICS-90, manufactured by Nippon Dionex) was used, and the elution rate was calculated from the fluorine ion concentration in the drain water.
次に定格条件よりも電池温度を高くした(表6)に示す条件で試験を行った。(表6)に示した以外の条件は定格条件と同じにして試験を行った。(表6)に示した条件として、条件Iでは、電池温度を85℃、燃料ガスの露点を85℃、酸化剤ガスの露点を85℃に設定した。又、条件Jでは電池温度を95℃、燃料ガスの露点を95℃、酸化剤ガスの露点を95℃に設定した。 Next, the test was conducted under the conditions shown in Table 6 where the battery temperature was higher than the rated conditions. The test was performed under the same conditions as the rated conditions except for those shown in (Table 6). As conditions shown in Table 6, in condition I, the battery temperature was set to 85 ° C., the dew point of the fuel gas was set to 85 ° C., and the dew point of the oxidant gas was set to 85 ° C. In condition J, the battery temperature was set to 95 ° C., the fuel gas dew point was set to 95 ° C., and the oxidant gas dew point was set to 95 ° C.
このときの電池電圧と耐久時間の関係を定格条件と合わせて図7に示した。また、図8に各条件でのフッ素イオン溶出速度を比較して示した。 The relationship between the battery voltage and the durability time at this time is shown in FIG. 7 together with the rated conditions. FIG. 8 shows a comparison of fluorine ion elution rates under various conditions.
図7、図8の結果より電圧低下率およびフッ素イオン量ともに、ほぼ2(ΔTcell/10)倍になることが分かった。 From the results of FIGS. 7 and 8, it was found that both the voltage drop rate and the amount of fluorine ions were approximately 2 (ΔTcell / 10) times.
また、燃料ガス露点および酸化剤ガス露点を定格条件に対して低くした(表7)に示す条件についても試験を行った。(表7)に示した条件として、条件Kでは、電池温度を75℃、燃料ガスの露点を75℃酸化剤ガスの露点を60℃と設定した。又、条件Lでは、電池温度を75℃、燃料ガスの露点を60℃、酸化剤ガスの露点を60℃と設定した。 The test was also conducted on the conditions shown in Table 7 where the fuel gas dew point and the oxidant gas dew point were lowered relative to the rated conditions. As the conditions shown in Table 7, under the condition K, the battery temperature was set to 75 ° C., the fuel gas dew point was set to 75 ° C., and the oxidant gas dew point was set to 60 ° C. In condition L, the battery temperature was set to 75 ° C., the fuel gas dew point was set to 60 ° C., and the oxidant gas dew point was set to 60 ° C.
これについても、電圧低下率およびフッ素イオン量ともに、ほぼ2.8倍、8倍になることが分かり、式(3)から導いた値とほぼ合致することがわかった。 Also about this, it turned out that both a voltage fall rate and the amount of fluorine ions become about 2.8 times and 8 times, and it turned out that it corresponds with the value derived | led-out from Formula (3) substantially.
これより定格条件に対して電池温度を高くした条件I、Jおよび各供給ガス露点を低くした条件K、Lで上述のように劣化が加速されることが分かった。 From this, it was found that deterioration was accelerated as described above under conditions I and J where the battery temperature was increased with respect to the rated conditions and conditions K and L where the supply gas dew points were lowered.
ここでは、定格条件を電池温度と各供給ガス露点が同じフル加湿状態としたが、定格条件はこれに限るものではなく、各供給ガス露点が電池温度よりも低い場合についても適応できる。この他の試験条件についても、本実施例に限るものではなく、本発明が適用できるのであればどんな方法を用いても構わない。 Here, the rated condition is a fully humidified state in which the battery temperature and each supply gas dew point are the same, but the rating condition is not limited to this, and the case where each supply gas dew point is lower than the battery temperature is also applicable. Other test conditions are not limited to the present embodiment, and any method may be used as long as the present invention is applicable.
(実施例2)
次に、実施例1で用いた加速試験条件J(電池温度を95℃、燃料ガスの露点を95℃、酸化剤ガスの露点を95℃)を用いて、作製条件等は同じであるが、製造ロットの異なるMEA(1〜5)の試験を行った。実施例1と同様に各MEAを組み込み燃料電池を構成して電池試験を行った。電池温度や燃料ガス露点以外の試験条件は、実施例1の定格条件と同じにした。又、MEA1は実施例1で使用したものと同じロットとし、このMEA1を基準ロットとした。
(Example 2)
Next, using the accelerated test condition J used in Example 1 (cell temperature is 95 ° C., fuel gas dew point is 95 ° C., oxidant gas dew point is 95 ° C.), the production conditions are the same. Tests of MEAs (1-5) with different production lots were performed. In the same manner as in Example 1, each MEA was incorporated to constitute a fuel cell, and a battery test was conducted. Test conditions other than the battery temperature and the fuel gas dew point were the same as the rated conditions of Example 1. In addition, MEA1 was the same lot used in Example 1, and this MEA1 was used as a reference lot.
図9にこれらの電池電圧の経時変化を示した。図中の点線は、条件Jでの加速試験にによるMEA1の電圧低下率の1.5倍の電圧曲線を示している。言い換えると、この点線は、式(4)に当てはめると、MEA1の定格運転での電圧低下率の6倍の電圧低下率の電圧曲線を示している。この点線で示された電圧低下曲線が、品質を満たしているか否かの判定ラインとなる。
FIG. 9 shows changes with time in these battery voltages. The dotted line in the figure shows a voltage curve that is 1.5 times the voltage drop rate of
図9より、MEAの中でもMEA4の電圧低下が一番大きく、点線の電圧曲線よりも低くなっていることが分かった。そこで、このMEA4について定格条件での試験を行ったところ、MEA1に比べて電圧低下率が大きくなることが分かった。
From FIG. 9, it was found that the voltage drop of
また、この他のMEAについても定格条件での試験を行ったが電圧低下率はMEA1とほぼ同じになった。これより試験条件Jの電圧低下率から式(4)を用いることにより、定格条件での特性低下を判断できることが分かった。 Further, other MEAs were also tested under rated conditions, but the voltage drop rate was almost the same as MEA1. From this, it was found that by using the equation (4) from the voltage drop rate of the test condition J, it is possible to determine the characteristic drop under the rated condition.
同様に試験中のフッ素イオン量も計測し、各MEAについて調べた。この結果を図10に示す。図中の点線は、条件Jでの加速試験によるMEA1の1時間あたりのフッ素イオン析出量の1.5倍の値を示している。上記と同様に言い換えると、この点線はMEA1の定格条件時のフッ素イオン量の6倍の値を示している。
Similarly, the amount of fluorine ions during the test was also measured and examined for each MEA. The result is shown in FIG. The dotted line in the figure indicates a value that is 1.5 times the fluorine ion deposition amount per hour of
上記点線を越えていたのはMEA4であった。このMEA4の定格条件でのフッ素イオン量も、MEA1に比較して増加していることが分かった。これによりフッ素イオン量についても、試験条件Jで特性劣化を判断出来ることが分かった。
The
本実施例では、加速試験条件として電池温度を20℃高くした条件で行ったが、これ以外の条件であってもよく、電池温度はそのままで各供給ガスの露点を下げることで対応することもできる。また、定格条件も本実施例に限るものではなく、定格試験時に比べて、電圧低下率やフッ素イオン量が式(4)でα<1.5以下であれば良い。本実施例ではフッ素系高分子電解質膜を用いたためフッ素イオン量を指標としたが、例えば炭化水素系の膜を用いた場合にはフッ素イオンの代わりに、これらの分解生成物を指標とすることが出来る。酸化剤ガスや燃料ガス組成、電池温度、加湿条件なども本実施例に限るものではない。 In this embodiment, the acceleration test was performed under the condition that the battery temperature was increased by 20 ° C. However, other conditions may be used, and the battery temperature may be left as it is to reduce the dew point of each supply gas. it can. Also, the rated condition is not limited to the present embodiment, and the voltage drop rate and the fluorine ion amount may be α <1.5 or less in the equation (4) as compared to the rating test. In this example, since the fluorine-based polymer electrolyte membrane was used, the amount of fluorine ions was used as an index. However, for example, when a hydrocarbon-based membrane is used, these decomposition products should be used as an index instead of fluorine ions. I can do it. Oxidant gas and fuel gas composition, battery temperature, humidification conditions, etc. are not limited to the present embodiment.
本発明を用いることにより、例えば製造ロット毎に数個のMEAを抜き取り、このような加速試験を行うことで燃料電池の信頼性を事前に評価出来るとともに、加速試験をクリアできなかったMEAを排除することで信頼性の高い燃料電池を構成することが出来る。 By using the present invention, for example, several MEAs are extracted for each production lot, and by performing such an acceleration test, the reliability of the fuel cell can be evaluated in advance, and MEAs that have not cleared the acceleration test are eliminated. By doing so, a highly reliable fuel cell can be constructed.
本発明にかかる高分子電解質型燃料電池の検査方法及びこの試験方法を用いた高分子電解質型燃料電池は、燃料電池運転時の高分子電解質の劣化を加速によって模擬すること、又は高分子電解質の劣化を事前に把握して性能を保証することが可能な効果を有し、携帯機器用の電源、ポータブル機器用電源、燃料電池自動車用あるいは家庭用燃料電池コージェネレーションシステム等の燃料電池の試験方法にも適用可能である。 A method for inspecting a polymer electrolyte fuel cell according to the present invention and a polymer electrolyte fuel cell using this test method can simulate deterioration of a polymer electrolyte during operation of the fuel cell by acceleration, or Test method for fuel cells such as power supplies for portable devices, power supplies for portable devices, fuel cell automobiles or household fuel cell cogeneration systems, etc. It is also applicable to.
1 拡散層
2 触媒反応層
3 高分子電解質膜
4 セパレータ板
5 ガス流路
7 冷却水流路
9 電極
10 MEA
13 ガスシール材
14 Oリング
15 高分子電解質型燃料電池
16 アノードドレインタンク
17 カソードドレインタンク
18 ポンプ
DESCRIPTION OF
13 Gas Seal Material 14 O-
Claims (15)
前記高分子電解質型燃料電池の運転温度が定格運転時よりも高い状態で運転を行う加速運転工程と、
前記加速運転の結果によって、前記高分子電解質型燃料電池が、合格、若しくは不合格かの判定を行う判定工程とを備えた、高分子電解質型燃料電池の試験方法。 A test method for a polymer electrolyte fuel cell in which fuel gas and oxidant gas are supplied and electric power is generated by an electrochemical reaction,
An accelerating operation step of operating in a state where the operating temperature of the polymer electrolyte fuel cell is higher than that during rated operation;
A test method for a polymer electrolyte fuel cell, comprising: a determination step for determining whether the polymer electrolyte fuel cell is acceptable or unacceptable based on a result of the acceleration operation.
前記高分子電解質型燃料電池に供給する前記燃料ガス及び/又は前記酸化剤ガスの露点が定格運転時よりも低い状態で運転を行う加速運転工程と、
前記加速運転の結果によって、前記高分子電解質型燃料電池が、合格、若しくは不合格かの判定を行う判定工程を備えた、高分子電解質型燃料電池の試験方法。 A test method for a polymer electrolyte fuel cell in which fuel gas and oxidant gas are supplied and electric power is generated by an electrochemical reaction,
An acceleration operation step of operating in a state where the dew point of the fuel gas and / or the oxidant gas supplied to the polymer electrolyte fuel cell is lower than that during rated operation;
A test method for a polymer electrolyte fuel cell, comprising: a determination step for determining whether the polymer electrolyte fuel cell is acceptable or unacceptable based on a result of the acceleration operation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004140241A JP2005322534A (en) | 2004-05-10 | 2004-05-10 | Test method of polyelectrolyte type fuel cell, and polyelectrolyte type fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004140241A JP2005322534A (en) | 2004-05-10 | 2004-05-10 | Test method of polyelectrolyte type fuel cell, and polyelectrolyte type fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005322534A true JP2005322534A (en) | 2005-11-17 |
Family
ID=35469636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004140241A Pending JP2005322534A (en) | 2004-05-10 | 2004-05-10 | Test method of polyelectrolyte type fuel cell, and polyelectrolyte type fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005322534A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007103114A (en) * | 2005-10-03 | 2007-04-19 | Nissan Motor Co Ltd | Operation method of fuel cell system |
JP2011204517A (en) * | 2010-03-26 | 2011-10-13 | Toshiba Fuel Cell Power Systems Corp | Fuel cell power generation system, and operation method thereof |
CN110190305A (en) * | 2018-02-23 | 2019-08-30 | 通用电气公司 | Deterioration detecting device, fuel cell system and its management method of fuel cell pack |
-
2004
- 2004-05-10 JP JP2004140241A patent/JP2005322534A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007103114A (en) * | 2005-10-03 | 2007-04-19 | Nissan Motor Co Ltd | Operation method of fuel cell system |
JP2011204517A (en) * | 2010-03-26 | 2011-10-13 | Toshiba Fuel Cell Power Systems Corp | Fuel cell power generation system, and operation method thereof |
CN110190305A (en) * | 2018-02-23 | 2019-08-30 | 通用电气公司 | Deterioration detecting device, fuel cell system and its management method of fuel cell pack |
CN110190305B (en) * | 2018-02-23 | 2021-11-16 | 通用电气公司 | Degradation detection device for fuel cell stack, fuel cell system, and management method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140239962A1 (en) | Fuel cell inspection method and inspection device | |
US10020525B2 (en) | Method and system for diagnosing state of fuel cell stack | |
US9368818B2 (en) | Humidification control method for fuel cell | |
US20050064252A1 (en) | Method for operating polymer electrolyte fuel cell | |
JP2005142062A (en) | Inspection device and inspection method of fuel cell | |
US9513243B2 (en) | Crack detection in ceramics using electrical conductors | |
US10971744B2 (en) | Method for inspecting current leak of fuel cell | |
US20200328439A1 (en) | Methods and apparatus for detecting electrical short circuits in fuel cell stacks | |
JP4953219B2 (en) | Fuel cell life prediction apparatus and fuel cell system | |
JP2005276729A (en) | Performance test method of solid polymer fuel cell | |
JP2005322534A (en) | Test method of polyelectrolyte type fuel cell, and polyelectrolyte type fuel cell | |
KR101405374B1 (en) | Fuel cell | |
KR101033888B1 (en) | System and method for testing electrolyte membrane of fuel cell | |
JP2015069948A (en) | Fuel cell | |
JP2005310509A (en) | Polyelectrolyte fuel cell and testing method thereof | |
JP2005302320A (en) | Inspection method of fuel cell | |
JP4889282B2 (en) | Fuel cell separator | |
KR101113642B1 (en) | Device and method for inspecting defective MEA of fuel cell | |
JP2005228664A (en) | Testing method of polymer electrolyte type fuel cell | |
KR102673722B1 (en) | Fuel cell cooling performance measurement test apparatus and method | |
JP2014049266A (en) | Method and device for measuring electrolyte membrane of fuel cell | |
JP6127946B2 (en) | Inspection method of fuel cell | |
US10897053B2 (en) | Aging device for fuel cell stack | |
Alizadeh et al. | Electrochemical impedance spectroscopy for investigation of different losses in 4-cells short stack with integrated humidifier and water separator | |
Schulze et al. | Diagnostic tools for in-situ and ex-situ investigations of fuel cells and components at the German aerospace center |