[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005322592A - Charging method of secondary battery - Google Patents

Charging method of secondary battery Download PDF

Info

Publication number
JP2005322592A
JP2005322592A JP2004141385A JP2004141385A JP2005322592A JP 2005322592 A JP2005322592 A JP 2005322592A JP 2004141385 A JP2004141385 A JP 2004141385A JP 2004141385 A JP2004141385 A JP 2004141385A JP 2005322592 A JP2005322592 A JP 2005322592A
Authority
JP
Japan
Prior art keywords
voltage
secondary battery
charging
constant current
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004141385A
Other languages
Japanese (ja)
Inventor
Tomonori Tsuchiyama
智令 土山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004141385A priority Critical patent/JP2005322592A/en
Publication of JP2005322592A publication Critical patent/JP2005322592A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To shorten the charging time of a secondary battery. <P>SOLUTION: A resistance value r of the internal resistance of a secondary battery 4 being charged is measured, and then the secondary battery 4 is charged at constant current I, and charge is finished when voltage V between terminals of the secondary battery 4 reaches voltage Vf+r×I obtained by adding voltage r×I obtained by multiplying the resistance value r by the constant current I to full charge voltage Vf. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、携帯機器等に使用されるリチウムイオン電池、リチウムポリマー電池等の二次電池を充電するのに適用して好適な二次電池の充電方法に関する。   The present invention relates to a charging method for a secondary battery suitable for charging a secondary battery such as a lithium ion battery or a lithium polymer battery used in a portable device or the like.

従来、携帯電話、ノートパソコン等の携帯機器に使用されるリチウムイオン電池、リチウムポリマー電池等の二次電池の充電は、この二次電池の劣化や安全性を考慮して図4A及びBに示す如く、この二次電池の端子間電圧Vが満充電電圧(規定電圧)Vfになるまで一定電流Iで定電流充電し、その後規定電圧Vfの一定電圧で定電圧充電するようにした所謂、定電流定電圧充電方式(特許文献1参照)が用いられている。   Conventional charging of secondary batteries such as lithium ion batteries and lithium polymer batteries used in portable devices such as mobile phones and laptop computers is shown in FIGS. 4A and 4B in consideration of deterioration and safety of the secondary batteries. Thus, the so-called constant voltage charging is performed at a constant current I until the voltage V between the terminals of the secondary battery reaches the full charge voltage (specified voltage) Vf, and then at a constant voltage of the specified voltage Vf. A current constant voltage charging method (see Patent Document 1) is used.

これは、一定電流Iで定電流充電しているときの二次電池の端子間電圧Vは、この二次電池の本来の電圧(内部電圧)Voに一定電流Iとこの二次電池の内部抵抗の抵抗値rとによる電圧降下r・Iが加算されたものとなる。   This is because the voltage V between the terminals of the secondary battery when the constant current is charged with the constant current I is equal to the original voltage (internal voltage) Vo of the secondary battery and the internal resistance of the secondary battery. The voltage drop r · I due to the resistance value r is added.

この為、定電流充電時に二次電池の端子間電圧Vが満充電電圧(規定電圧)Vfとなっても、この二次電池の本来の電圧(内部電圧)Voは
Vo=Vf−r・I
であり、満充電の電圧Vfよりこの内部抵抗の抵抗値rによる電圧降下r・I分だけ低い電圧であり、これを満充電電圧とするため規定電圧Vfで定電圧充電し、この二次電池を満充電する如くしていた。
特開平6−325794号公報
For this reason, even if the voltage V between the terminals of the secondary battery becomes the full charge voltage (specified voltage) Vf during constant current charging, the original voltage (internal voltage) Vo of the secondary battery is Vo = Vf−r · I
The secondary battery is a voltage lower than the fully charged voltage Vf by a voltage drop r · I due to the resistance value r of the internal resistance, and is charged at a constant voltage with the specified voltage Vf to make this a fully charged voltage. Was fully charged.
JP-A-6-325794

ところで、リチウムイオン電池、リチウムポリマー電池等の二次電池は、高いエネルギー密度を持つ電池であり、その特性を十分に生かすために非常に高精度に満充電電圧Vfまで定電圧充電を行なっている。   By the way, secondary batteries such as lithium ion batteries and lithium polymer batteries are batteries having a high energy density, and are charged at a constant voltage up to a full charge voltage Vf with a very high accuracy in order to make full use of their characteristics. .

それゆえ、この二次電池の本来の電圧(内部電圧)Voを満充電電圧(規定電圧)Vfに限りなく近づける(r・Iを限りなく“0”にする)必要があり、この定電圧充電領域に非常に多くの時間を費やし(充電電流が減少すれば、それに伴って本来の電圧(内部電圧)Voの上昇(充電)も緩やかになる)、充電時間が長い不都合があった。   Therefore, it is necessary to make the original voltage (internal voltage) Vo of the secondary battery as close as possible to the fully charged voltage (specified voltage) Vf (r · I is set to “0” as much as possible). A very large amount of time is spent in the region (if the charging current decreases, the increase (charging) of the original voltage (internal voltage) Vo also slows down accordingly), and the charging time is long.

また、この二次電池の充電時間が長いと、満充電になっていない状態での使用を余儀なくされることが多くなり、その携帯機器の使用可能時間が短くなってしまうと共に、充放電をそれだけ頻繁に行なう必要があり、この二次電池の劣化を促すという不都合があった。   In addition, if the charging time of the secondary battery is long, it is often forced to use in a state where it is not fully charged, the usable time of the portable device is shortened, and charging / discharging is only that much. There is a disadvantage that the secondary battery needs to be frequently operated and the deterioration of the secondary battery is promoted.

本発明は斯る点に鑑み、二次電池の充電時間を短縮できるようにすることを目的とする。   In view of this point, an object of the present invention is to shorten the charging time of a secondary battery.

本発明二次電池の充電方法は、充電しようとする二次電池の内部抵抗の抵抗値を測定し、その後この二次電池を定電流Iで充電し、この二次電池の端子間電圧がこの二次電池の満充電電圧Vfにこの内部抵抗の抵抗値rにこの定電流Iを乗算した電圧r・Iを加算した電圧Vf+r・Iとなったときに充電を終了するようにしたものである。   The secondary battery charging method of the present invention measures the resistance value of the internal resistance of the secondary battery to be charged, and then charges the secondary battery with a constant current I. The charging is terminated when the voltage Vf + r · I is obtained by adding the voltage r · I obtained by multiplying the constant current I by the resistance value r of the internal resistance to the full charge voltage Vf of the secondary battery. .

本発明によれば、二次電池を定電流Iで充電し、この二次電池の端子間電圧がこの二次電池の満充電電圧Vfに内部抵抗の抵抗値rにこの定電流Iを乗算した電圧r・Iを加算した電圧Vf+r・Iとなったときに充電を終了するので、この充電終了時はこの二次電池の本来の電圧(内部電圧)Voは満充電電圧Vfとなる。   According to the present invention, the secondary battery is charged with the constant current I, and the voltage across the secondary battery is obtained by multiplying the full charge voltage Vf of the secondary battery by the resistance r of the internal resistance and the constant current I. Since charging ends when the voltage Vf + r · I is obtained by adding the voltage r · I, the original voltage (internal voltage) Vo of the secondary battery becomes the fully charged voltage Vf at the end of the charging.

また本発明においては、比較的大きな定電流Iによる定電流充電だけで定電圧充電を行なわないので、充電時間を短縮することができる。   In the present invention, since constant voltage charging is not performed only by constant current charging with a relatively large constant current I, the charging time can be shortened.

以下図面を参照して、本発明二次電池の充電方法を実施するための最良の形態の例につき説明する。   Hereinafter, an example of the best mode for carrying out the method for charging a secondary battery of the present invention will be described with reference to the drawings.

図1は、本例による充電装置を示し、図1において、1はこの充電装置の充電を制御するマイクロコンピュータより成る充電制御回路を示す。また2は充電用の直流電源を示し、この直流電源2の正極を定電流回路3の入力側に接続する。   FIG. 1 shows a charging apparatus according to the present embodiment. In FIG. 1, reference numeral 1 denotes a charging control circuit composed of a microcomputer for controlling charging of the charging apparatus. Reference numeral 2 denotes a DC power supply for charging. The positive electrode of the DC power supply 2 is connected to the input side of the constant current circuit 3.

この定電流回路3の出力側を充電しようとする二次電池4の正極に接続し、この二次電池4の負極を直流電源2の負極に接続する如くする。   The output side of the constant current circuit 3 is connected to the positive electrode of the secondary battery 4 to be charged, and the negative electrode of the secondary battery 4 is connected to the negative electrode of the DC power source 2.

この定電流回路3は充電制御回路1により出力電流を出力するかしないかが制御されると共に、二次電池4の内部抵抗の測定時は測定用の電流imを出力するようにし、充電時は充電用の所定大きさの定電流Iを出力するように制御される。   The constant current circuit 3 is controlled by the charge control circuit 1 to output or not output current, and at the time of measuring the internal resistance of the secondary battery 4, it outputs a measurement current im. Control is performed to output a constant current I having a predetermined magnitude for charging.

また、図1において、5は二次電池4の端子間電圧Vを検出する電圧検出回路を示し、この電圧検出回路5で検出した検出電圧Vを充電制御回路1に供給と共にメモリー6に供給する。   In FIG. 1, reference numeral 5 denotes a voltage detection circuit for detecting the voltage V between the terminals of the secondary battery 4. The detection voltage V detected by the voltage detection circuit 5 is supplied to the charge control circuit 1 and supplied to the memory 6. .

本例により二次電池4を充電するときの動作につき、図2のフローチャートを参照して説明する。   The operation when charging the secondary battery 4 according to this example will be described with reference to the flowchart of FIG.

先ず、充電しようとする二次電池4が接続されたかどうかを判断する(ステップS1)。二次電池4が接続されたときは、この二次電池4が不良でないかどうかを判断する(ステップS2)。   First, it is determined whether or not the secondary battery 4 to be charged is connected (step S1). When the secondary battery 4 is connected, it is determined whether or not the secondary battery 4 is defective (step S2).

接続された二次電池4が不良でないときには、電圧検出回路5でこの充電しようとする二次電池4の初期電圧V1を検出(測定)し(ステップS3)、この初期電圧V1をメモリー6に記憶する。   When the connected secondary battery 4 is not defective, the voltage detection circuit 5 detects (measures) the initial voltage V1 of the secondary battery 4 to be charged (step S3), and stores the initial voltage V1 in the memory 6 To do.

次に定電流回路3は、この二次電池4の内部抵抗の抵抗値rの測定用電流imを二次電池4に流す(ステップS4)。この測定用電流imを流したときの二次電池4の端子間電圧V2を電圧検出回路5で測定し(ステップS5)、この測定電圧V2をメモリー6に記憶する。   Next, the constant current circuit 3 passes the measurement current im of the resistance value r of the internal resistance of the secondary battery 4 to the secondary battery 4 (step S4). The voltage V2 between the terminals of the secondary battery 4 when the measurement current im is supplied is measured by the voltage detection circuit 5 (step S5), and the measurement voltage V2 is stored in the memory 6.

このとき
V2=im×r+V1
が成立している。この式より充電制御回路1は二次電池4の内部抵抗の抵抗値rを計算する(ステップS6)。
r=(V2−V1)/im
At this time, V2 = im × r + V1
Is established. From this equation, the charging control circuit 1 calculates the resistance value r of the internal resistance of the secondary battery 4 (step S6).
r = (V2-V1) / im

次に、充電終了電圧VSを決定する(ステップS7)。この充電終了電圧VSを二次電池4の満充電電圧Vfに二次電池4の内部抵抗の抵抗値rに定電流充電する時の定電流Iを乗算した内部抵抗による電圧降下r・I分を加算した電圧Vf+r・Iとする。この充電終了電圧VS=Vf+r・Iをメモリー6に記憶する。   Next, the charging end voltage VS is determined (step S7). A voltage drop r · I due to the internal resistance is obtained by multiplying the full charge voltage Vf of the secondary battery 4 by the resistance value r of the internal resistance of the secondary battery 4 and the constant current I when the charge end voltage VS is charged. The added voltage Vf + r · I. This charge end voltage VS = Vf + r · I is stored in the memory 6.

その後、定電流回路3を一定の充電電流Iを出力するように制御し、図3A及びBに示す如く一定電流Iにより定電流充電を行う(ステップS8)。この定電流充電しているときは常に電圧検出回路5により二次電池4の端子間電圧Vを観察し、この端子間電圧Vが充電終了電圧VS=Vf+r・Iになったかどうかを判断する(ステップS9)。   Thereafter, the constant current circuit 3 is controlled to output a constant charging current I, and constant current charging is performed with the constant current I as shown in FIGS. 3A and 3B (step S8). During the constant current charging, the voltage detection circuit 5 always observes the voltage V between the terminals of the secondary battery 4 and determines whether or not the voltage V between the terminals has reached the charging end voltage VS = Vf + r · I ( Step S9).

この電圧検出回路5に得られる二次電池4の端子間電圧Vがこの充電終了電圧VS=Vf+r・Iとなったときに、充電制御回路1より定電流回路3に充電終了信号を送り、定電流回路3は定電流Iの出力を停止し、充電を終了する。   When the inter-terminal voltage V of the secondary battery 4 obtained in the voltage detection circuit 5 becomes the charge end voltage VS = Vf + r · I, the charge control circuit 1 sends a charge end signal to the constant current circuit 3 to The current circuit 3 stops the output of the constant current I and ends the charging.

本例によれば、二次電池4を定電流Iで充電し、この二次電池4の端子間電圧Vがこの二次電池4の満充電電圧Vfに内部抵抗の抵抗値rにこの定電流Iを乗算した電圧r・Iを加算した電圧Vf+r・Iとなったときに充電を終了するので、この充電終了時はこの二次電池4の本来の電圧(内部電圧)Voは満充電電圧Vfとなる。   According to this example, the secondary battery 4 is charged with a constant current I, and the voltage V between the terminals of the secondary battery 4 is changed to the full charge voltage Vf of the secondary battery 4 to the resistance value r of the internal resistance. Since charging ends when the voltage Vf + r · I obtained by adding the voltage r · I multiplied by I is reached, the original voltage (internal voltage) Vo of the secondary battery 4 is the fully charged voltage Vf at the end of the charging. It becomes.

また本例においては、比較的大きな定電流Iによる定電流充電だけで定電圧充電を行なわないので、充電時間を短縮することができる。   In this example, since constant voltage charging is not performed only by constant current charging with a relatively large constant current I, the charging time can be shortened.

本例によれば充電時間が比較的短いので、常に満充電して使用することができ、その携帯機器の使用可能時間が長くなり、その分充放電の回数を少なくでき、この二次電池4の寿命を長くできる利益がある。   According to this example, since the charging time is relatively short, the battery can be always fully charged and used, the usable time of the portable device becomes longer, and the number of times of charging / discharging can be reduced accordingly. There is a benefit that can extend the life of the.

尚、本発明は上述例に限ることなく、本発明の要旨を逸脱することなくその他種々の構成が採り得ることは勿論である。   Of course, the present invention is not limited to the above-described examples, and various other configurations can be adopted without departing from the gist of the present invention.

充電装置の例を示す構成図である。It is a block diagram which shows the example of a charging device. 本発明二次電池の充電方法を実施するための最良の形態の例の説明に供するフローチャートである。It is a flowchart with which description of the example of the best form for implementing the charging method of the secondary battery of this invention is provided. 本発明の説明に供する線図である。It is a diagram with which it uses for description of this invention. 従来の説明に供する線図である。It is a diagram with which it uses for conventional description.

符号の説明Explanation of symbols

1‥‥充電制御回路、2‥‥直流電源、3‥‥定電流回路、4‥‥二次電池、5‥‥電圧検出回路、6‥‥メモリー DESCRIPTION OF SYMBOLS 1 ... Charge control circuit, 2 ... DC power supply, 3 ... Constant current circuit, 4 ... Secondary battery, 5 ... Voltage detection circuit, 6 ... Memory

Claims (1)

充電しようとする二次電池の内部抵抗の抵抗値rを測定し、その後前記二次電池を定電流Iで充電し、
前記二次電池の端子間電圧が前記二次電池の満充電電圧Vfに前記内部抵抗の抵抗値rに前記定電流Iを乗算した電圧r・Iを加算した電圧Vf+r・Iとなったときに充電を終了するようにしたことを特徴とする二次電池の充電方法。
The resistance value r of the internal resistance of the secondary battery to be charged is measured, and then the secondary battery is charged with a constant current I.
When the inter-terminal voltage of the secondary battery becomes a voltage Vf + r · I obtained by adding the voltage r · I obtained by multiplying the resistance r of the internal resistance to the constant current I to the full charge voltage Vf of the secondary battery. A method for charging a secondary battery, characterized in that charging is terminated.
JP2004141385A 2004-05-11 2004-05-11 Charging method of secondary battery Pending JP2005322592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004141385A JP2005322592A (en) 2004-05-11 2004-05-11 Charging method of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004141385A JP2005322592A (en) 2004-05-11 2004-05-11 Charging method of secondary battery

Publications (1)

Publication Number Publication Date
JP2005322592A true JP2005322592A (en) 2005-11-17

Family

ID=35469687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004141385A Pending JP2005322592A (en) 2004-05-11 2004-05-11 Charging method of secondary battery

Country Status (1)

Country Link
JP (1) JP2005322592A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108102A1 (en) * 2007-03-07 2008-09-12 Panasonic Corporation Quick charging method of lithium based secondary battery and electronic apparatus employing it
JP2011108372A (en) * 2009-11-12 2011-06-02 Asahi Kasei Corp Module for power supply device and automobile equipped with this
JP2014138525A (en) * 2013-01-18 2014-07-28 Toyota Motor Corp Power storage system
CN105743159A (en) * 2014-12-24 2016-07-06 丰田自动车株式会社 Voltage control method for secondary battery
KR20170086876A (en) * 2016-01-19 2017-07-27 주식회사 엘지화학 Charging and discharging method for lithium secondary battery
WO2021077813A1 (en) * 2019-10-22 2021-04-29 华为技术有限公司 Electronic device, charging method, and charging system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0919073A (en) * 1995-06-30 1997-01-17 Matsushita Electric Ind Co Ltd Method of boosting charge for secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0919073A (en) * 1995-06-30 1997-01-17 Matsushita Electric Ind Co Ltd Method of boosting charge for secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108102A1 (en) * 2007-03-07 2008-09-12 Panasonic Corporation Quick charging method of lithium based secondary battery and electronic apparatus employing it
JP2008253129A (en) * 2007-03-07 2008-10-16 Matsushita Electric Ind Co Ltd Method for quick charging lithium-based secondary battery and electronic equipment using same
JP2011108372A (en) * 2009-11-12 2011-06-02 Asahi Kasei Corp Module for power supply device and automobile equipped with this
JP2014138525A (en) * 2013-01-18 2014-07-28 Toyota Motor Corp Power storage system
CN105743159A (en) * 2014-12-24 2016-07-06 丰田自动车株式会社 Voltage control method for secondary battery
JP2016122531A (en) * 2014-12-24 2016-07-07 トヨタ自動車株式会社 Voltage adjusting method for secondary battery
KR20170086876A (en) * 2016-01-19 2017-07-27 주식회사 엘지화학 Charging and discharging method for lithium secondary battery
KR102071589B1 (en) 2016-01-19 2020-01-30 주식회사 엘지화학 Charging and discharging method for lithium secondary battery
WO2021077813A1 (en) * 2019-10-22 2021-04-29 华为技术有限公司 Electronic device, charging method, and charging system
CN113937842A (en) * 2019-10-22 2022-01-14 华为技术有限公司 Electronic equipment, charging method and charging system

Similar Documents

Publication Publication Date Title
US10553913B2 (en) Battery apparatus, charging control apparatus, and charging control method
JP2008228408A (en) Battery pack, charger and charging method
JP2007288982A (en) Charging circuit and charging method for the same
JP2008206259A (en) Charging system, charger, and battery pack
US9515505B2 (en) Charging method and charging device using the same
JP2007311107A (en) Method for charging secondary cell
JP2010183829A (en) Electronic device, controlling method for charging and discharging secondary battery, and secondary battery
JP2009033843A (en) Apparatus and method for charging
KR101683603B1 (en) apparatus for balancing cell of battery pack and method thereof
JP2019504451A (en) Effective battery cell balancing method and system using duty control
JP2005269708A (en) Battery device and method of controlling charge of battery device
JP2010252474A (en) Method of charging secondary battery
JP2007024541A (en) Battery life determination device
KR20200101754A (en) Battery control appratus and battery control method
JP2015109237A (en) Battery control system and battery control method
JP2005322592A (en) Charging method of secondary battery
JP2014192966A (en) Power supply unit
JP2005108491A (en) Electronic apparatus
JP2011040198A (en) Battery deterioration determination device, and battery deterioration determination method
JP2018129896A (en) Battery Management Unit
KR102005398B1 (en) Apparatus and method for setting full charging capacity
JP2010088203A (en) Method of charging battery pack, and battery charging device
JP3917046B2 (en) Charging circuit, charging method, and portable terminal equipped with the charging circuit
JP6559463B2 (en) Charge control device, charge control method, and battery pack
JPH08182215A (en) Charging method and charging apparatus for secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101221