[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005320843A - Heat insulation structure body and its execution method - Google Patents

Heat insulation structure body and its execution method Download PDF

Info

Publication number
JP2005320843A
JP2005320843A JP2004289842A JP2004289842A JP2005320843A JP 2005320843 A JP2005320843 A JP 2005320843A JP 2004289842 A JP2004289842 A JP 2004289842A JP 2004289842 A JP2004289842 A JP 2004289842A JP 2005320843 A JP2005320843 A JP 2005320843A
Authority
JP
Japan
Prior art keywords
heat
insulating material
weight
heat insulating
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004289842A
Other languages
Japanese (ja)
Other versions
JP4776201B2 (en
JP2005320843A5 (en
Inventor
Hideto Karuga
英人 軽賀
Masaki Yamada
正樹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Kaken Co Ltd
Original Assignee
SK Kaken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK Kaken Co Ltd filed Critical SK Kaken Co Ltd
Priority to JP2004289842A priority Critical patent/JP4776201B2/en
Publication of JP2005320843A publication Critical patent/JP2005320843A/en
Publication of JP2005320843A5 publication Critical patent/JP2005320843A5/ja
Application granted granted Critical
Publication of JP4776201B2 publication Critical patent/JP4776201B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat insulation structure body which has an excellent heat-insulating and heat-resistance properties, and also even a part receiving a direct sunlight whose temperature rises remarkably exerts a stable heat-insulation effect for a long period of time. <P>SOLUTION: The heat insulation structure body has a structure where at least a heat-resistance/insulating material layer and an organic heat-insulating material layer are laminated over a base material successively. (1) The heat-resistance/insulating material layer contains cement, inorganic lightweight aggregate and organic binder while it is composed of heat-resistance/insulation composition containing below 5 weight% of foam organic resin component, and (2) the organic heat-insulating material layer is composed of organic heat-insulation composition containing 5 weight% or more of foam organic resin component. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、建築物の断熱構造体に関するものである。   The present invention relates to a heat insulating structure for a building.

建築物を構成する外壁、屋根等の基材においては、その断熱性能を高めるため、屋内側に断熱材が施工されている。このような断熱材としては、ウレタンフォーム、フェノールフォーム、セルロースファイバー等の有機材料が用いられている。この中でも、ウレタンフォームは、その熱伝導率が約0.02W/(m・K)であり、断熱性に優れていること、比較的低コストで施工することができること等の特徴を有することから頻繁に用いられている。(例えば、特許文献1等)
特開平7−259274号公報
In a base material such as an outer wall or a roof constituting a building, a heat insulating material is constructed on the indoor side in order to enhance the heat insulating performance. As such a heat insulating material, organic materials such as urethane foam, phenol foam, and cellulose fiber are used. Among these, urethane foam has a thermal conductivity of about 0.02 W / (m · K), excellent heat insulation, and features such as being able to be constructed at a relatively low cost. Used frequently. (For example, Patent Document 1 etc.)
JP 7-259274 A

しかしながら、ウレタンフォームのような有機断熱材は熱に弱い。このため、いったん有機断熱材に熱が加わると変質してしまうという問題がある。   However, organic heat insulating materials such as urethane foam are vulnerable to heat. For this reason, there is a problem that once the heat is applied to the organic heat insulating material, the organic heat insulating material is altered.

例えば、太陽光の直射を受ける部位においては、基材の温度が著しく上昇する。このような基材の屋内側に形成されたウレタンフォームは、基材との界面付近で熱によって劣化してしまい、密着性不良、脱落等が生じる場合がある。   For example, in the part which receives direct sunlight, the temperature of a base material rises remarkably. The urethane foam formed on the indoor side of such a base material may be deteriorated by heat near the interface with the base material, resulting in poor adhesion, dropping off, and the like.

本発明は、このような問題点に鑑みてなされたものであり、優れた断熱性、耐熱性を有し、太陽光の直射を受けて温度が著しく上昇する部位であっても、長期にわたり安定した断熱効果が発揮できる断熱構造体を提供することを主な目的とする。   The present invention has been made in view of such problems, and has excellent heat insulation and heat resistance, and is stable over a long period of time even at a site where the temperature rises significantly due to direct sunlight. It is a main object to provide a heat insulating structure that can exhibit the heat insulating effect.

本発明者は、かかる従来技術の問題点を解決するために鋭意検討した結果、建築物を構成する基材に対して特定の耐熱断熱材層と有機断熱材層とを順に積層する構造体によって上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the problems of the prior art, the inventor of the present invention has a structure in which a specific heat-resistant and heat-insulating material layer and an organic heat-insulating material layer are sequentially laminated on a base material constituting a building. The inventors have found that the above object can be achieved and have completed the present invention.

すなわち、本発明は、下記の断熱構造体及びその施工方法に係るものである。

<請求項の内容が確定した後、その内容をここに記載します。>
That is, this invention concerns on the following heat insulation structure and its construction method.

<After the content of the claim is confirmed, it will be described here. >

本発明の断熱構造体は、優れた断熱性、耐熱性を有することから、太陽光の直射を受けて温度が著しく上昇する部位であっても、長期にわたり安定した断熱効果を発揮することができる。   Since the heat insulating structure of the present invention has excellent heat insulating properties and heat resistance, it can exhibit a stable heat insulating effect over a long period of time even at a site where the temperature rises significantly due to direct sunlight. .

本発明の断熱構造体は、基材に対し、少なくとも耐熱断熱材層及び有機断熱材層が順に積層された構造を有する断熱構造体であって、
(1)前記耐熱断熱材層が、セメント、無機質軽量骨材及び有機バインダーを含有し、かつ、発泡有機樹脂成分を0重量%以上5重量%未満含む耐熱断熱材組成物から形成されたものであり、
(2)前記有機断熱材層が、発泡有機樹脂成分を5重量%以上含む有機断熱材組成物から形成されたものである、
ことを特徴とする。
The heat insulating structure of the present invention is a heat insulating structure having a structure in which at least a heat resistant heat insulating material layer and an organic heat insulating material layer are sequentially laminated with respect to a base material,
(1) The heat-resistant heat insulating material layer is formed from a heat-resistant heat insulating material composition containing cement, an inorganic lightweight aggregate and an organic binder and containing 0% by weight or more and less than 5% by weight of a foamed organic resin component. Yes,
(2) The organic heat insulating material layer is formed from an organic heat insulating material composition containing 5% by weight or more of a foamed organic resin component.
It is characterized by that.

基材
本発明の基材としては、建築物の屋外と屋内とを隔てる役割を有するものであれば限定されない。一般的には、建築物を構成する基材であって、少なくとも一部が屋外の外気に露出しているものが該当する。このような基材としては、例えば、外壁、屋根等が挙げられる。
Base Material The base material of the present invention is not limited as long as it has a role of separating the outdoors and indoors of buildings. Generally, it is a base material constituting a building and at least a part of which is exposed to the outside air. Examples of such a base material include an outer wall and a roof.

基材の材質は特に限定されず、例えば金属材料、無機材料、木質材料等の1種又は2種以上が挙げられる。これらは、本発明が適用される部位により異なる。例えば、外壁では、コンクリート、モルタル、軽量モルタル、軽量コンクリート、ケイ酸カルシウム板、ALC板、石膏ボード、スレート板、押出し成形板、窯業系サイディング材、金属系サイディング材、プラスチック系サイディング材、各種合板等が例示される。例えば、屋根では、粘土瓦、スレート瓦、プレスセメント瓦、コンクリート瓦、金属系屋根材等が例示される。また、これらの材料を2種以上組み合わせてなる複合型の基材としては、例えば複数の板材の間にグラスウール等の断熱材、空気層等を介在させてなる基材等が挙げられる。   The material of the substrate is not particularly limited, and examples thereof include one or more of metal materials, inorganic materials, wood materials and the like. These differ depending on the site to which the present invention is applied. For example, on the outer wall, concrete, mortar, lightweight mortar, lightweight concrete, calcium silicate board, ALC board, gypsum board, slate board, extruded board, ceramic siding material, metal siding material, plastic siding material, various plywood Etc. are exemplified. For example, for roofs, clay tiles, slate tiles, press cement tiles, concrete tiles, metal roofing materials, etc. are exemplified. Moreover, as a composite type | mold base material which combines 2 or more types of these materials, the base material etc. which interpose a heat insulating material, such as glass wool, an air layer, etc., for example among several board | plate materials are mentioned.

基材の熱貫流率は特に限定されないが、通常1W/(m2・K)以上、好ましくは3〜8W/(m2・K)程度である。本発明の断熱構造は、このような熱貫流率を有する基材に対して好適に適用できるほか、熱貫流率7W/(m2・K)以上という高い熱貫流率を有する基材に対しても適用できる。 Thermal transmittance of the base material is not particularly limited, normally 1W / (m 2 · K) or more, preferably from 3~8W / (m 2 · K) or so. The heat insulating structure of the present invention can be suitably applied to a base material having such a heat transmissivity, and also to a base material having a high heat transmissivity of 7 W / (m 2 · K) or more. Is also applicable.

なお、本明細書における熱貫流率は、住宅金融公庫監修「木造住宅工事共通仕様書(解説付)」の付録4「熱貫流率の計算方法」に基づくものである。具体的には、熱貫流率は、以下の手順に従って算出される。
1)式1より、基材の熱伝導率及び厚さから熱抵抗を算出する。
2)式2より、基材の熱抵抗及び空気の熱伝達抵抗から熱貫流抵抗を算出する。
3)式3より、熱貫流抵抗から熱貫流率を算出する。
*式1:熱抵抗(m2・K/W)=厚さ(m)/熱伝導率(W/(m・K))
*式2:熱貫流抵抗(m2・K/W)=屋内側空気の熱伝達抵抗(m2・K/W)+基材の熱抵抗(m2・K/W)+屋外側空気の熱伝達抵抗(m2・K/W)
*式3:熱貫流率(W/(m2・K))=1/熱貫流抵抗(m2・K/W)
(但し、屋内側空気の熱伝達抵抗を0.09m2・K/Wとし、屋外側空気の熱伝達抵抗を0.04m2・K/Wとする)。
In addition, the heat transmissibility in this specification is based on Appendix 4 “Calculation method of heat transmissibility” of “Financial Housing Construction Common Specification (with commentary)” supervised by the Housing Finance Corporation. Specifically, the heat transmissibility is calculated according to the following procedure.
1) From Equation 1, the thermal resistance is calculated from the thermal conductivity and thickness of the substrate.
2) From Equation 2, the heat flow resistance is calculated from the heat resistance of the substrate and the heat transfer resistance of air.
3) From Equation 3, the heat flow rate is calculated from the heat flow resistance.
* Formula 1: Thermal resistance (m 2 · K / W) = Thickness (m) / Thermal conductivity (W / (m · K))
* Formula 2: Heat flow resistance (m 2 · K / W) = Indoor air heat transfer resistance (m 2 · K / W) + Base material heat resistance (m 2 · K / W) + Outdoor air Heat transfer resistance (m 2 · K / W)
* Formula 3: Heat flow rate (W / (m 2 · K)) = 1 / Heat flow resistance (m 2 · K / W)
(However, the heat transfer resistance of the indoor-side air and 0.09m 2 · K / W, and 0.04m 2 · K / W the heat transfer resistance of the outdoor side air).

耐熱断熱材層
耐熱断熱材層は、セメント、無機質軽量骨材及び有機バインダーを含有し、かつ、発泡有機樹脂成分を0重量%以上5重量%未満含む耐熱断熱材組成物から形成されたものである。耐熱断熱材層を積層することにより、有機断熱材層の熱による劣化を防ぎ、長期にわたり安定した断熱効果を得ることができる。
Heat-resistant and heat-insulating material layer The heat-resistant and heat-insulating material layer is formed from a heat-resistant and heat-insulating material composition containing cement, an inorganic lightweight aggregate and an organic binder, and containing 0 to 5% by weight of a foamed organic resin component. is there. By laminating the heat-resistant heat insulating material layer, deterioration of the organic heat insulating material layer due to heat can be prevented, and a stable heat insulating effect can be obtained over a long period of time.

本発明の耐熱断熱材層は、特に、熱伝導率が0.08W/(m・K)以下、さらには0.07W/(m・K)以下、さらには0.06W/(m・K)以下のものが好ましい。上記熱伝導率に規定することによって、より優れた耐熱性、断熱性等が得られ、有機断熱材層の熱による劣化を防ぐとともに、長期にわたり優れた断熱効果を得ることができる。   In particular, the heat-resistant heat insulating material layer of the present invention has a thermal conductivity of 0.08 W / (m · K) or less, further 0.07 W / (m · K) or less, and further 0.06 W / (m · K). The following are preferred. By prescribing the above thermal conductivity, more excellent heat resistance, heat insulation and the like can be obtained, and deterioration of the organic heat insulating material layer due to heat can be prevented, and an excellent heat insulation effect can be obtained over a long period of time.

耐熱断熱材組成物は、セメント、無機質軽量骨材及び有機バインダーを含有し、かつ、発泡有機樹脂成分を0重量%以上5重量%未満含む。以下、各成分についてそれぞれ説明する。   The heat-resistant heat insulating material composition contains cement, an inorganic lightweight aggregate, and an organic binder, and contains 0% by weight or more and less than 5% by weight of a foamed organic resin component. Hereinafter, each component will be described.

(セメント)
セメントは特に限定されず、公知のもの又は市販品を使用できる。例えば、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、白色ポルトランドセメント等のポルトランドセメントのほか、アルミナセメント、超速硬セメント、膨張セメント、酸性リン酸塩セメント、シリカセメント、高炉セメント、フライアッシュセメント、キーンスセメント、メーソンリーセメント等が挙げられる。これらは1種又は2種以上を混合して使用できる。これらの中でも、ポルトランドセメントが好ましい。特に、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、耐硫酸塩ポルトランドセメント及び白色ポルトランドセメントの少なくとも1種が好ましい。
(cement)
A cement is not specifically limited, A well-known thing or a commercial item can be used. For example, Portland cement such as ordinary Portland cement, early-strength Portland cement, ultra-high-strength Portland cement, moderately hot Portland cement, sulfate-resistant Portland cement, white Portland cement, alumina cement, super-hard cement, expanded cement, acidic phosphorus Examples thereof include acid salt cement, silica cement, blast furnace cement, fly ash cement, keens cement, and masonry cement. These can be used alone or in combination of two or more. Among these, Portland cement is preferable. In particular, at least one of ordinary Portland cement, early-strength Portland cement, ultra-high-strength Portland cement, moderately hot Portland cement, sulfate-resistant Portland cement, and white Portland cement is preferable.

(無機質軽量骨材)
無機質軽量骨材としては特に限定されず、例えばパーライト、膨張頁岩、膨張バーミキュライト、軽石、シラスバルーン、ガラスバルーン、ALC粉砕物、アルミノシリケート発泡体等が挙げられる。
(Inorganic lightweight aggregate)
The inorganic lightweight aggregate is not particularly limited, and examples thereof include perlite, expanded shale, expanded vermiculite, pumice, shirasu balloon, glass balloon, ALC pulverized product, aluminosilicate foam and the like.

無機質軽量骨材は、かさ比重が0.05〜0.15であることが好ましい。かさ比重を上記範囲に規定することによって、より効果的に高軽量化、高断熱化を図ることができる。かさ比重が0.05未満の場合には、吹付けた材料が垂れやすく厚付けが困難となるおそれがある。また、形成された耐熱断熱材層にクラックが生じやすくなる。かさ比重が0.15を超える場合は、取り扱い時の潰れに対しては強いものの、混練時点で大幅な軽量化を図ることが困難な場合がある。   The inorganic lightweight aggregate preferably has a bulk specific gravity of 0.05 to 0.15. By defining the bulk specific gravity within the above range, it is possible to more effectively reduce the weight and increase the heat insulation. If the bulk specific gravity is less than 0.05, the sprayed material tends to sag and it may be difficult to thicken. Moreover, it becomes easy to produce a crack in the formed heat-resistant heat insulating material layer. When the bulk specific gravity exceeds 0.15, although it is strong against crushing during handling, it may be difficult to achieve significant weight reduction at the time of kneading.

無機質軽量骨材の平均粒径は、所望の断熱性、強度等に応じて適宜決定できる。通常は平均粒子径0.05〜5mm、好ましくは0.1〜3mm程度である。   The average particle diameter of the inorganic lightweight aggregate can be appropriately determined according to desired heat insulating properties, strength, and the like. Usually, the average particle diameter is 0.05 to 5 mm, preferably about 0.1 to 3 mm.

無機質軽量骨材の含有量は、セメント100重量部に対して、5〜300重量部(さらには10〜200重量部、さらには30〜150重量部)であることが好ましい。セメント100重量部に対して5重量部より少ない場合には、断熱効果・軽量効果とともに不十分なものになってしまう。また、300重量部を超える場合には、形成される断熱材の強度が極端に弱いものとなってしまう。   The content of the inorganic lightweight aggregate is preferably 5 to 300 parts by weight (more preferably 10 to 200 parts by weight, and further 30 to 150 parts by weight) with respect to 100 parts by weight of cement. When the amount is less than 5 parts by weight with respect to 100 parts by weight of cement, the heat insulation effect and the light weight effect are insufficient. Moreover, when it exceeds 300 weight part, the intensity | strength of the heat insulating material formed will become an extremely weak thing.

(有機バインダー)
有機バインダーとしては、公知の樹脂類、ゴム類等を含むものが使用できる。樹脂類としては、例えばアクリル樹脂、ビニル樹脂、酢酸ビニル樹脂、プロピオン酸ビニル樹脂、バーサチック酸ビニル樹脂、アクリル酢酸ビニル樹脂、エチレン酢酸ビニル樹脂、塩化ビニル樹脂、エポキシ樹脂、バイオガム、ガラクトマンナン誘導体、アルギン酸及びその誘導体、ゼラチン、カゼイン及びアルブミン並びにこれらの誘導体、セルロース及びセルロース誘導体等が挙げられる。ゴム類としては、例えばクロロプレンゴム、スチレン−ブタジエンゴム、ブタジエンゴム等が挙げられる。これらは1種又は2種以上を混合して使用できる。
(Organic binder)
As the organic binder, those containing known resins and rubbers can be used. Examples of the resins include acrylic resin, vinyl resin, vinyl acetate resin, vinyl propionate resin, vinyl versatate resin, vinyl acrylate resin, ethylene vinyl acetate resin, vinyl chloride resin, epoxy resin, bio gum, galactomannan derivative, alginic acid And derivatives thereof, gelatin, casein and albumin, and derivatives thereof, cellulose and cellulose derivatives. Examples of rubbers include chloroprene rubber, styrene-butadiene rubber, and butadiene rubber. These can be used alone or in combination of two or more.

有機バインダーは、いずれの形態でも使用できる。例えば、粉末状のほか、水溶液、エマルジョン等の状態でも使用できる。いずれの形態でも、公知のもの又は市販品が使用できる。粉末状の有機バインダーでは、現場で水と混合する形態の方が現場での作業効率が良いことから、再乳化型粉末タイプが好ましい。   The organic binder can be used in any form. For example, it can be used in the form of an aqueous solution or emulsion in addition to powder. In any form, a known product or a commercially available product can be used. In the case of a powdery organic binder, a re-emulsification type powder type is preferable because the work efficiency in the field is better when mixed with water at the field.

有機バインダーの含有量は、セメント100重量部に対して固形分で0.5〜50重量部である。この中でも、1〜30重量部とすることが好ましい。かかる範囲内に規定することにより、十分な断熱性、強度等が得られる。   Content of an organic binder is 0.5-50 weight part by solid content with respect to 100 weight part of cement. Among these, it is preferable to set it as 1-30 weight part. By defining it within such a range, sufficient heat insulation, strength and the like can be obtained.

(発泡有機樹脂成分)
耐熱断熱材層は、発泡有機樹脂成分を0重量%以上5重量%未満含む。発泡有機樹脂成分としては、例えば、発泡ウレタン、発泡イソシアネート、発泡スチロール、発泡フェノール、発泡ポリエチレン、発泡ポリプロピレン、発泡ポリ塩化ビニル等の公知の発泡有機樹脂を使用できる。これらは1種又は2種以上を混合して使用できる。これらの中でも、特に発泡スチロールが好ましい。これらの発泡有機樹脂は、粉粒体の形態で使用することもできる。
(Foamed organic resin component)
The heat-resistant heat insulating material layer contains 0% by weight or more and less than 5% by weight of the foamed organic resin component. Examples of the foamed organic resin component include known foamed organic resins such as foamed urethane, foamed isocyanate, polystyrene foam, foamed phenol, foamed polyethylene, foamed polypropylene, and foamed polyvinyl chloride. These can be used alone or in combination of two or more. Among these, styrene foam is particularly preferable. These foamed organic resins can also be used in the form of particles.

発泡有機樹脂成分の含有量は、耐熱断熱材組成物中0重量%以上5重量%未満、好ましくは0重量%以上4重量%以下、より好ましくは0重量%以上2重量%以下、最も好ましくは0重量%となるように設定する。5重量%未満とすることにより、優れた断熱性及び耐熱性を得ることができる。   The content of the foamed organic resin component is 0% by weight or more and less than 5% by weight, preferably 0% by weight or more and 4% by weight or less, more preferably 0% by weight or more and 2% by weight or less, most preferably in the heat resistant heat insulating material composition. Set to 0% by weight. By setting it to less than 5% by weight, excellent heat insulation and heat resistance can be obtained.

また、発泡有機樹脂成分は、セメント100重量部に対して、0重量部以上23重量部未満、好ましくは0重量部以上18重量部以下、より好ましくは0重量部以上9重量部以下、最も好ましくは0重量部とする。発泡有機樹脂成分を0重量部以上23重量部未満とすることによって、優れた断熱性及び耐熱性が発現される。   The foamed organic resin component is 0 to 23 parts by weight, preferably 0 to 18 parts by weight, more preferably 0 to 9 parts by weight, and most preferably 100 parts by weight of cement. Is 0 part by weight. By setting the foamed organic resin component to 0 part by weight or more and less than 23 parts by weight, excellent heat insulation and heat resistance are exhibited.

(その他の添加剤)
さらに耐熱断熱材組成物には、セメント、無機質軽量骨材、有機バインダー、発泡有機樹脂粉粒体のほかに、必要に応じて、水化度の大きい物質、繊維、粘性調整剤、硬化促進剤、減水剤、界面活性剤、難燃剤、消泡剤、造膜助剤、針状無機化合物粉末等の添加剤を配合できる。
(Other additives)
In addition to cement, inorganic lightweight aggregates, organic binders, and foamed organic resin granules, the heat-resistant and heat-insulating material composition includes substances having a high degree of hydration, fibers, viscosity modifiers, and curing accelerators as necessary. Additives such as water reducing agents, surfactants, flame retardants, antifoaming agents, film-forming aids, and acicular inorganic compound powders can be blended.

(水化度の大きい物質)
本発明の耐熱断熱材層は、水化度の大きい物質を含有することが好ましい。水化度とは、100℃で加熱された物体がそれ以上の温度に加熱されていった場合に、更に多量の水を放出する程度をいい、本発明における水化度の大きい物質とは、100℃の恒温時点を基準とし、600℃加熱により約15重量%以上が脱水し、減量する物質をいう。なお、該物質に含有されている水の形態としては、結晶水の他、吸着水も含み、一般に該物質水和物ともいう。
(Substance with high degree of hydration)
The heat-resistant heat insulating material layer of the present invention preferably contains a substance having a high degree of hydration. The degree of hydration refers to the degree to which a larger amount of water is released when an object heated at 100 ° C. is heated to a temperature higher than that, and the substance having a large degree of hydration in the present invention is This refers to a substance that dehydrates and loses about 15% by weight or more by heating at 600 ° C., based on the constant temperature at 100 ° C. The form of water contained in the substance includes adsorbed water in addition to crystal water, and is generally referred to as the substance hydrate.

水化度の大きい物質としては、例えば水酸化アルミニウム、ギプサイト鉱物、ベーマイト、ダイアスポア等のアルミニウム酸化物の水和物、水酸化マグネシウム、ブルーサイト、アタパルジャイト等のマグネシウム酸化物の水和物、チャバザイト、ビューランダイト、モルデナイト等の沸石系物質、アロフェン、ハロイサイド、未膨張バーミキュライト等のシリカ−アルミナ系物質、サチンホワイト、エトリンジャイト等が挙げられる。これらは1種又は2種以上を混合して使用できる。   Examples of substances having a high degree of hydration include aluminum oxide hydrates such as aluminum hydroxide, gypsite mineral, boehmite and diaspore, magnesium oxide hydrates such as magnesium hydroxide, brucite and attapulgite, chabazite, Examples thereof include zeolite-based materials such as burlandite and mordenite, silica-alumina-based materials such as allophane, halloyside and unexpanded vermiculite, satin white, and ettringite. These can be used alone or in combination of two or more.

これらの中で、アルミニウム酸化物の水和物とマグネシウム酸化物の水和物が耐熱性に優れているので好適に用いられる。これらの物質は、粉状や粒状の他、種々の形態で使用できる。   Among these, aluminum oxide hydrates and magnesium oxide hydrates are preferably used because of their excellent heat resistance. These substances can be used in various forms in addition to powder and granules.

水化度の大きい物質の含有量は、セメント100重量部に対して、通常10〜300重量部である。この中でも、20〜200重量部が好ましい。かかる範囲内に規定することにより、十分な強度が得られる。   The content of the substance having a high degree of hydration is usually 10 to 300 parts by weight with respect to 100 parts by weight of cement. Among these, 20-200 weight part is preferable. By defining it within such a range, sufficient strength can be obtained.

(繊維)
繊維としては、例えばアクリル繊維、アセテート繊維、アラミド繊維、銅アンモニア繊維(キュプラ)、ナイロン繊維、ノボロイド繊維、パルプ繊維、ビスコースレーヨン、ビニリデン繊維、ポリエステル繊維、ポリエチレン繊維、ポリ塩化ビニル繊維、ポリクラール繊維、ボリノジック繊維、ポリプロピレン繊維等の有機繊維、炭素繊維、ロックウール、ガラス繊維、シリカ繊維、シリカ−アルミナ繊維、カーボン繊維、炭化珪素繊維等の無機繊維等が挙げられる。この中でも、パルプ繊維は練りこみ時の粘性改良や吹き付け時のタレ止め効果を高めることができる点で好ましい。
(fiber)
Examples of fibers include acrylic fibers, acetate fibers, aramid fibers, copper ammonia fibers (cupra), nylon fibers, novoloid fibers, pulp fibers, viscose rayon, vinylidene fibers, polyester fibers, polyethylene fibers, polyvinyl chloride fibers, polyclar fibers. And organic fibers such as vorinosic fibers and polypropylene fibers, inorganic fibers such as carbon fibers, rock wool, glass fibers, silica fibers, silica-alumina fibers, carbon fibers and silicon carbide fibers. Among these, pulp fibers are preferable in that they can improve the viscosity at the time of kneading and enhance the sagging prevention effect at the time of spraying.

繊維の含有量は、セメント100重量部に対して、通常1〜50重量部である。この中でも、2〜30重量部が好ましい。かかる範囲内に規定することにより、十分な強度が得られる。   The fiber content is usually 1 to 50 parts by weight per 100 parts by weight of cement. Among these, 2-30 weight part is preferable. By defining it within such a range, sufficient strength can be obtained.

(粘性調整剤)
粘性調整剤としては、例えばアロフェン、ヒシンゲル石、パイロフィライト、タルク、ウンモ、モンモリロン石、バーミキュル石、リョクデイ石、カオリン、パリゴルスカイト、ベントナイト、セリサイト、超微粉シリカ、表面処理炭酸カルシウム、アマイドワックス、水添ヒマシ油ワックス、ベンリジデンソルビトール、金属石鹸、酸化ポリエチレン、硫酸エステル系アニオン活性剤、ポリビニルアルコール、ポリアルキレンオキサイド等が挙げられる。
(Viscosity modifier)
As the viscosity modifier, for example, allophane, hysingelite, pyrophyllite, talc, unmo, montmorillonite, vermiculite, ryokdeite, kaolin, palygorskite, bentonite, sericite, ultrafine silica, surface treated calcium carbonate, amide wax, Examples thereof include hydrogenated castor oil wax, benridene sorbitol, metal soap, polyethylene oxide, sulfate ester anion activator, polyvinyl alcohol, and polyalkylene oxide.

これら粘性調整剤は、セメント100重量部に対して、通常0.5〜7重量部、好ましくは1〜5重量部とすれば良い。   These viscosity modifiers are usually 0.5 to 7 parts by weight, preferably 1 to 5 parts by weight with respect to 100 parts by weight of cement.

(硬化促進剤)
硬化促進剤としては、例えばアルミン酸リチウム、アルミン酸ナトリウム、アルミン酸カリウム等のアルカリ金属アルミン酸塩;炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属炭酸塩;水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物;硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸アルミニウム等の硫酸塩;その他、消石灰、石膏、カルシウムアルミネート等が挙げられる。硬化促進剤の配合により、耐熱断熱材層の硬化が促進できる。
(Curing accelerator)
Examples of the curing accelerator include alkali metal aluminates such as lithium aluminate, sodium aluminate, and potassium aluminate; alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, sodium bicarbonate, and potassium bicarbonate; water Examples include alkali metal hydroxides such as lithium oxide, sodium hydroxide, and potassium hydroxide; sulfates such as sodium sulfate, potassium sulfate, magnesium sulfate, and aluminum sulfate; and slaked lime, gypsum, and calcium aluminate. Curing of the heat-resistant heat insulating material layer can be promoted by blending the curing accelerator.

硬化促進剤の配合量は耐熱断熱材層の所望の特性に応じて適宜設定すれば良いが、セメント100重量部に対して、通常1〜30重量部、好ましくは2〜20重量部程度である。   The blending amount of the curing accelerator may be appropriately set according to the desired properties of the heat-resistant heat insulating material layer, but is usually 1 to 30 parts by weight, preferably about 2 to 20 parts by weight with respect to 100 parts by weight of cement. .

(減水剤)
減水剤は特に限定されず、公知又は市販のものを使用することができる。例えば、芳香族スルホン酸系減水剤、ポリカルボン酸系減水剤、リグニンスルホン系減水剤、メラミン系減水剤等が挙げられる。
(Water reducing agent)
A water reducing agent is not specifically limited, A well-known or commercially available thing can be used. For example, aromatic sulfonic acid water reducing agents, polycarboxylic acid water reducing agents, lignin sulfone water reducing agents, melamine water reducing agents and the like can be mentioned.

減水剤の配合量は耐熱断熱材層の所望の特性に応じて適宜設定すれば良いが、セメント100重量部に対して、通常0.05〜5重量部、好ましくは0.1〜4重量部程度である。   The blending amount of the water reducing agent may be appropriately set according to the desired characteristics of the heat resistant heat insulating material layer, but is usually 0.05 to 5 parts by weight, preferably 0.1 to 4 parts by weight with respect to 100 parts by weight of cement. Degree.

(界面活性剤)
界面活性剤は限定的でなく、例えばアニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤等の各種界面活性剤が挙げられる。界面活性剤の添加により、適度な空気連行性が付与され、吹き付け作業性を改善することができる。
(Surfactant)
The surfactant is not limited, and examples thereof include various surfactants such as an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant. By adding the surfactant, moderate air entrainment is imparted, and the spraying workability can be improved.

界面活性剤の配合量は耐熱断熱材層の所望の特性に応じて適宜設定すれば良いが、セメント100重量部に対して、通常0.01〜5重量部、好ましくは0.02〜2重量部程度である。   The blending amount of the surfactant may be appropriately set according to the desired characteristics of the heat-resistant heat insulating material layer, but is usually 0.01 to 5 parts by weight, preferably 0.02 to 2 parts by weight with respect to 100 parts by weight of cement. About a part.

(難燃剤)
難燃剤は公知又は市販のものを用いることができる。例えば、ハロゲン系難燃剤、リン系難燃剤、無機系難燃剤等が使用できる。ハロゲン難燃剤としては、具体的にはテトラブロモビスフェノールA、2,2−ビス(4−ヒドロキシ−3,5−ジブロモフェニル)プロパン、ヘキサブロモベンゼン、デカブロモジフェニルオキサイド等が挙げられる。リン系難燃剤としては、具体的にはリン酸アンモニウム、トリクレジルホスフェート、トリス(β−クロロエチル)ホスフェート、トリスクロロエチルホスフェート、クレジルジフェニルホスフェート等が挙げられる。無機系難燃剤としては、例えば赤リン、酸化スズ、三酸化アンチモン、水酸化ジルコニウム、メタホウ酸バリウム、水酸化アルミニウム、水酸化マグネシウム等が挙げられる。難燃剤の添加により、耐熱断熱材層の難燃化が促進される。
(Flame retardants)
A well-known or commercially available flame retardant can be used. For example, halogen flame retardants, phosphorus flame retardants, inorganic flame retardants and the like can be used. Specific examples of the halogen flame retardant include tetrabromobisphenol A, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane, hexabromobenzene, decabromodiphenyl oxide, and the like. Specific examples of the phosphorus flame retardant include ammonium phosphate, tricresyl phosphate, tris (β-chloroethyl) phosphate, trischloroethyl phosphate, cresyl diphenyl phosphate and the like. Examples of the inorganic flame retardant include red phosphorus, tin oxide, antimony trioxide, zirconium hydroxide, barium metaborate, aluminum hydroxide, and magnesium hydroxide. Addition of the flame retardant promotes the flame resistance of the heat-resistant heat insulating material layer.

難燃剤の配合量は耐熱断熱材層の所望の特性に応じて適宜設定すれば良いが、セメント100重量部に対して、通常0.05〜30重量部、好ましくは0.1〜20重量部程度である。   The blending amount of the flame retardant may be appropriately set according to desired characteristics of the heat-resistant heat insulating material layer, but is usually 0.05 to 30 parts by weight, preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of cement. Degree.

(消泡剤)
消泡剤は特に制限されない。例えば、鉱物油系消泡剤、シリコーン系消泡剤等が挙げられる。消泡剤の添加により、過度の空気連行を抑制し、強度低下等を防止することができる。
(Defoamer)
The antifoaming agent is not particularly limited. Examples thereof include mineral oil-based antifoaming agents and silicone-based antifoaming agents. By adding an antifoaming agent, excessive air entrainment can be suppressed and strength reduction and the like can be prevented.

消泡剤の配合量は耐熱断熱材層の所望の特性に応じて適宜設定すれば良いが、セメント100重量部に対して、通常0.01〜5重量部、好ましくは0.02〜2重量部程度である。   The blending amount of the antifoaming agent may be appropriately set according to the desired properties of the heat-resistant heat insulating material layer, but is usually 0.01 to 5 parts by weight, preferably 0.02 to 2 parts by weight with respect to 100 parts by weight of cement. About a part.

(造膜助剤)
造膜助剤は特に限定されず、例えばアルコール系溶剤、エーテル系溶剤、エステル系溶剤等が挙げられる。造膜助剤の添加により、有機バインダーの造膜性を高め、強度を高めることができる。
(Film forming aid)
The film-forming aid is not particularly limited, and examples thereof include alcohol solvents, ether solvents, ester solvents and the like. By adding a film-forming aid, the film-forming property of the organic binder can be increased and the strength can be increased.

造膜助剤の配合量は耐熱断熱材層の所望の特性に応じて適宜設定すれば良いが、セメント100重量部に対して、通常0.01〜5重量部、好ましくは0.02〜2重量部程度程度である。   The blending amount of the film-forming aid may be appropriately set according to the desired properties of the heat-resistant heat insulating material layer, but is usually 0.01 to 5 parts by weight, preferably 0.02 to 2 parts per 100 parts by weight of cement. It is about the weight part.

(針状無機化合物粉末)
針状無機化合物粉末を配合することにより、より高い強度を付与できる。かかる粉末としては、例えば、針状炭酸カルシウムが好ましい。粉末の添加量は特に限定されないが、セメント100重量部に対して、通常1〜20重量部程度である。
(Acicular inorganic compound powder)
By blending the acicular inorganic compound powder, higher strength can be imparted. As such a powder, for example, acicular calcium carbonate is preferable. Although the addition amount of powder is not specifically limited, It is about 1-20 weight part normally with respect to 100 weight part of cement.

(耐熱断熱材組成物の調製方法)
耐熱断熱材組成物は、上記の成分を混合機、ニーダー等の公知の装置を用いて均一に混合することにより調製できる。この場合には、必要に応じて水を配合しても良い。水の配合量は限定的ではないが、セメント100重量部に対して、通常100〜1500重量部程度とすれば良い。
(Method for preparing heat-resistant heat insulating material composition)
The heat-resistant heat insulating material composition can be prepared by uniformly mixing the above components using a known apparatus such as a mixer or a kneader. In this case, you may mix | blend water as needed. Although the compounding quantity of water is not limited, what is necessary is just to be about 100-1500 weight part normally with respect to 100 weight part of cement.

有機断熱材層
有機断熱材層は、耐熱断熱材層の室内側(すなわち、基材と反対側)に設けられる。有機断熱材層は、発泡有機樹脂成分を5重量%以上含む有機断熱材組成物から形成されたものである。
Organic heat insulating material layer The organic heat insulating material layer is provided on the indoor side (that is, the side opposite to the base material) of the heat resistant heat insulating material layer. An organic heat insulating material layer is formed from the organic heat insulating material composition containing 5 weight% or more of foaming organic resin components.

有機断熱材層は、熱伝導率が0.05(W/(m・K))以下、特に0.04(W/(m・K))以下であることが好ましい。このような熱伝導率であることにより、優れた断熱効果を発揮することができる。   The organic heat insulating material layer preferably has a thermal conductivity of 0.05 (W / (m · K)) or less, particularly 0.04 (W / (m · K)) or less. With such thermal conductivity, an excellent heat insulating effect can be exhibited.

有機断熱材組成物は、発泡有機樹脂成分を5重量%以上含む有機断熱材組成物から形成されている。以下、上記組成物の成分について説明する。   The organic heat insulating material composition is formed from an organic heat insulating material composition containing 5% by weight or more of a foamed organic resin component. Hereinafter, the components of the composition will be described.

(発泡有機樹脂成分)
発泡有機樹脂成分は、前記の耐熱断熱材組成物に含まれる発泡有機樹脂成分と同様のものを使用するこができる。
(Foamed organic resin component)
As the foamed organic resin component, the same foamed organic resin component as that contained in the heat-resistant heat insulating material composition can be used.

発泡有機樹脂成分は、上記組成物中5重量%以上、特に6重量%以上含まれてることが望ましい。なお、発泡有機樹脂成分の含有量の上限は限定的ではないが、一般的には100重量%とすれば良い。   The foamed organic resin component is desirably contained in the composition in an amount of 5% by weight or more, particularly 6% by weight or more. In addition, although the upper limit of content of a foaming organic resin component is not limited, Generally, what is necessary is just to set it as 100 weight%.

このような有機断熱材層としては、例えば、ウレタンフォーム、イソシアヌレートフォーム、フェノールフォーム、ポリスチレンフォーム、ポリエチレンフォーム、ポリプロピレンフォーム、ポリ塩化ビニルフォーム、セルロースファイバー等の発泡有機樹脂から形成されたものや、または、発泡有機樹脂粉粒体を含む有機断熱材組成物から形成されたもの等が挙げられる。   Examples of such an organic heat insulating material layer include those formed from foamed organic resins such as urethane foam, isocyanurate foam, phenol foam, polystyrene foam, polyethylene foam, polypropylene foam, polyvinyl chloride foam, and cellulose fiber. Or the thing formed from the organic heat insulating material composition containing a foamed organic resin granular material is mentioned.

発泡有機樹脂粉粒体を含む有機断熱材組成物には、発泡有機樹脂粉粒体のほか、上述したセメント、無機質軽量骨材、有機バインダー、界面活性剤、難燃剤、減水剤、消泡剤、造膜助剤、粘性調整剤、針状無機化合物粉末、粘土鉱物粉粒体、硬化促進剤、減水剤等の添加剤を必要に応じて配合することができる。   In addition to foamed organic resin granules, the organic heat insulating material composition containing foamed organic resin granules includes the above-mentioned cement, inorganic lightweight aggregate, organic binder, surfactant, flame retardant, water reducing agent, antifoaming agent Additives such as film-forming aids, viscosity modifiers, acicular inorganic compound powders, clay mineral powders, curing accelerators and water reducing agents can be blended as necessary.

(耐熱断熱材層及び有機断熱材層の形成方法)
耐熱断熱材層及び有機断熱材層の形成方法は、特に限定されない。例えば、1)基材に対し、耐熱断熱材組成物を吹き付けにより塗付した後に乾燥させ、さらに断熱材組成物を吹き付け、塗付することによる湿式工法、また、2)予め作製しておいたシート状耐熱断熱材層及びシート状有機断熱材層を、基材の屋内側に積層して設置する乾式工法等で形成することができる。あるいは、3)基材に対し、耐熱断熱材組成物を吹き付けにより塗付した後に乾燥させ、次いで予め作製しておいたシート状有機断熱材層を積層して設置する方法、4)基材に対し、予め作製しておいたシート状耐熱断熱材層を設けた後、断熱材組成物を吹き付け、塗付する工法(すなわち、湿式工法と乾式工法を組み合わせることにより、各層を形成する方法)等もある。
(Method for forming heat-resistant heat insulating material layer and organic heat insulating material layer)
The formation method of a heat-resistant heat insulating material layer and an organic heat insulating material layer is not specifically limited. For example, 1) a wet construction method by applying a heat-resistant heat insulating material composition to a base material by spraying and then drying, and further spraying and applying the heat insulating material composition, or 2) prepared in advance The sheet-like heat-insulating material layer and the sheet-like organic heat-insulating material layer can be formed by a dry construction method or the like in which the sheet-like heat-insulating material layer and the sheet-like organic heat insulating material layer are stacked and installed on the indoor side of the substrate. Alternatively, 3) a method in which a heat-resistant heat insulating material composition is applied to the base material by spraying and then dried, and then a sheet-like organic heat insulating material layer prepared in advance is laminated and installed. On the other hand, after providing a heat-resistant heat insulating material layer prepared in advance, a method of spraying and applying a heat insulating material composition (that is, a method of forming each layer by combining a wet method and a dry method), etc. There is also.

また、基材に耐熱断熱材層を形成する場合、耐熱断熱材層に有機断熱材層を形成する場合等には、公知のシーラー、プライマー、接着剤、粘着剤等を用いて施工することができる。本発明では、特に、これらの材料が耐熱性を有するものであることが好ましい。   Moreover, when forming a heat-resistant heat insulating material layer on a base material, when forming an organic heat insulating material layer on a heat-resistant heat insulating material layer, etc., it can be applied using a known sealer, primer, adhesive, adhesive, etc. it can. In the present invention, it is particularly preferable that these materials have heat resistance.

耐熱断熱材層又は有機断熱材層は、通常、基材の屋内側に接触させて設けるが、建築物の構造等を考慮して、必要に応じて、空間を介して設けても良い。   The heat-resistant heat insulating material layer or the organic heat insulating material layer is usually provided in contact with the indoor side of the base material, but may be provided through a space as necessary in consideration of the structure of the building.

吹き付けにより施工する場合には、例えば、スネーク式圧送ポンプ等で断熱材組成物又は耐熱断熱材組成物をポンプ圧送し、吹き付けガンを通じて所望部位に被着させれば良い。耐熱断熱材層又は有機断熱材層の形成方法としては、吹き付け以外の方法を採用することもできる。   In the case of construction by spraying, for example, the heat insulating material composition or the heat resistant heat insulating material composition may be pumped by a snake-type pump or the like, and applied to a desired site through a spray gun. As a method for forming the heat-resistant heat insulating material layer or the organic heat insulating material layer, a method other than spraying may be employed.

耐熱断熱材層又は有機断熱材層の厚みは特に限定されず、所望の断熱性に応じて適宜設定できるが、通常10〜50mm、好ましくは20〜40mm程度である。両層の厚みの比は特に限定されないが、特に耐熱断熱材層:有機断熱材層が1:0.5〜20程度、特に1:0.8〜10程度とすることが好ましい。   Although the thickness of a heat-resistant heat insulating material layer or an organic heat insulating material layer is not specifically limited, Although it can set suitably according to desired heat insulation, it is 10-50 mm normally, Preferably it is about 20-40 mm. The ratio of the thicknesses of the two layers is not particularly limited, but it is particularly preferable that the heat resistant heat insulating material layer: organic heat insulating material layer is about 1: 0.5 to 20, particularly about 1: 0.8 to 10.

耐熱断熱材層又は有機断熱材層の比重も特に限定されず、所望の断熱性に応じて適宜設定できるが、通常0.3g/cm3以下であり、好ましくは0.2g/cm3以下、より好ましくは0.1g/cm3以下である。かかる耐熱断熱材層、有機断熱材層の比重は、例えば発泡有機樹脂成分の種類、含有量等により制御できる。 The specific gravity of the heat-resistant heat insulating material layer or the organic heat insulating material layer is not particularly limited, and can be appropriately set according to desired heat insulating properties, but is usually 0.3 g / cm 3 or less, preferably 0.2 g / cm 3 or less, More preferably, it is 0.1 g / cm 3 or less. The specific gravity of the heat resistant heat insulating material layer and the organic heat insulating material layer can be controlled by, for example, the type and content of the foamed organic resin component.

また、耐熱断熱材層又は有機断熱材層は、ISO5660に規定される発熱性試験において、加熱強度50kW/m2、加熱時間5分の条件下における総発熱量が8MJ/m2以下であることが望ましい。特に、有機断熱材層は、ISO5660に規定される発熱性試験において、加熱強度50kW/m2、加熱時間10分の条件下における総発熱量が8MJ/m2以下であることがより望ましい。すなわち、有機断熱材層は、平成12年建設省告示第1402号の難燃材料としての性能、更には平成12年建設省告示第1401号の準不燃材料としての性能を満足することが望ましい。 In addition, the heat-resistant heat insulating material layer or the organic heat insulating material layer has a total heat generation amount of 8 MJ / m 2 or less under the conditions of heating strength 50 kW / m 2 and heating time 5 minutes in the exothermic test specified in ISO 5660. Is desirable. In particular, the organic heat insulating material layer desirably has a total calorific value of 8 MJ / m 2 or less under the conditions of a heating intensity of 50 kW / m 2 and a heating time of 10 minutes in an exothermic test specified by ISO5660. That is, it is desirable that the organic heat insulating material layer satisfies the performance as a flame retardant material of the Ministry of Construction Notification No. 1402 in 2000 and the performance as a quasi-incombustible material of the Notification of Ministry of Construction No. 1401 in 2000.

本発明では、さらに基材の屋外側に、赤外線反射性を有する塗膜を設けることが好ましい。塗膜の赤外線反射率は、具体的に20%以上が好ましく、さらには40%以上、さらには50%以上がより好ましい。赤外線反射率20%の塗膜を有することにより、基材と温度上昇を抑制でき、有機断熱材層の密着性低下、脱落等をより防止又は抑制できる。本明細書における赤外線反射率は、波長800〜2100nmの光の分光反射率を測定し、その平均値を算出することにより求められる値である。   In this invention, it is preferable to provide the coating film which has infrared reflectivity in the outdoor side of a base material further. Specifically, the infrared reflectance of the coating film is preferably 20% or more, more preferably 40% or more, and even more preferably 50% or more. By having a coating film with an infrared reflectance of 20%, it is possible to suppress an increase in temperature with respect to the base material, and it is possible to further prevent or suppress a decrease in adhesion, dropout, etc. of the organic heat insulating material layer. The infrared reflectance in this specification is a value obtained by measuring the spectral reflectance of light having a wavelength of 800 to 2100 nm and calculating the average value.

このような塗膜は、例えば、合成樹脂と赤外線反射性を有する顔料とを含む塗料(以下「赤外線反射塗料」とも言う)から形成できる。赤外線反射率は、赤外線反射性を有する顔料の量により適宜調整できる。   Such a coating film can be formed from, for example, a paint containing a synthetic resin and a pigment having infrared reflectivity (hereinafter also referred to as “infrared reflective paint”). The infrared reflectance can be appropriately adjusted depending on the amount of the pigment having infrared reflectivity.

合成樹脂は限定されず、一般的な樹脂から選択することができる。より具体的には、例えば酢酸ビニル樹脂、塩化ビニル樹脂、エポキシ樹脂、アルキド樹脂、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、アクリルシリコン樹脂、フッ素樹脂等が挙げられる。これらの樹脂は、1種又は2種以上を混合して使用できる。またこれらの樹脂の複合系、架橋反応性を有するもの等も使用できる。   The synthetic resin is not limited and can be selected from common resins. More specifically, for example, a vinyl acetate resin, a vinyl chloride resin, an epoxy resin, an alkyd resin, a polyester resin, an acrylic resin, a urethane resin, an acrylic silicon resin, a fluorine resin, and the like can be given. These resins can be used alone or in combination of two or more. Also, composite systems of these resins, those having crosslinking reactivity, and the like can be used.

赤外線反射性を有する顔料としては限定されず、例えば、アルミニウムフレーク、酸化チタン、硫酸バリウム、酸化亜鉛、酸化鉄、酸化マグネシウム、アルミナ、酸化アンチモン、酸化ジルコニウム、酸化イットリウム、酸化インジウム、シリカ、珪酸マグネシウム、炭酸カルシウム等が挙げられる。この中でも、特にアルミニウムフレーク、酸化チタン、硫酸バリウム、酸化亜鉛、酸化鉄、酸化マグネシウム及びアルミナの少なくとも1種が好ましい。   The pigment having infrared reflectivity is not limited. For example, aluminum flakes, titanium oxide, barium sulfate, zinc oxide, iron oxide, magnesium oxide, alumina, antimony oxide, zirconium oxide, yttrium oxide, indium oxide, silica, magnesium silicate And calcium carbonate. Among these, at least one of aluminum flake, titanium oxide, barium sulfate, zinc oxide, iron oxide, magnesium oxide and alumina is particularly preferable.

赤外線反射塗料には、必要に応じて、塗膜に様々な色彩を付与するための顔料を配合できる。このような顔料は、赤外線透過性を有する顔料でも良いが、赤外線反射性を有する顔料であることが好ましい。本発明における塗膜には、赤外線反射率20%以上の塗膜が含まれるため、塗膜に白色以外の色相を付与した場合でも、十分な赤外線反射効果を発揮できる。   In the infrared reflective paint, pigments for imparting various colors to the coating film can be blended as required. Such a pigment may be a pigment having infrared transparency, but is preferably a pigment having infrared reflectance. Since the coating film in the present invention includes a coating film having an infrared reflectance of 20% or more, even when a hue other than white is imparted to the coating film, a sufficient infrared reflection effect can be exhibited.

赤外線透過性を有する顔料としては限定されない。例えば、ペリレン顔料、アゾ顔料、黄鉛、弁柄、朱、チタニウムレッド、カドミウムレッド、キナクリドンレッド、イソインドリノン、ベンズイミダゾロン、フタロシアニングリーン、フタロシアニンブルー、コバルトブルー、インダスレンブルー、群青、紺青等が挙げられる。これらの顔料も、1種又は2種以上を混合して使用できる。   The pigment having infrared transparency is not limited. For example, perylene pigment, azo pigment, yellow lead, petal, vermilion, titanium red, cadmium red, quinacridone red, isoindolinone, benzimidazolone, phthalocyanine green, phthalocyanine blue, cobalt blue, indanthrene blue, ultramarine blue, bitumen blue, etc. Is mentioned. These pigments can also be used alone or in combination.

赤外線反射塗料中の顔料(用いる全ての顔料)の含有量は、通常、顔料容積濃度2〜60%の範囲内で所定の赤外線反射率を満たすように調整できる。なお、厳密には、赤外線反射率は、顔料の種類により変化するため、必ずしも上記範囲内に限定されるものではない。   The content of the pigment (all the pigments used) in the infrared reflective coating can be adjusted so as to satisfy a predetermined infrared reflectance within a range of 2-60% of the pigment volume concentration. Strictly speaking, since the infrared reflectance varies depending on the type of pigment, it is not necessarily limited to the above range.

赤外線反射塗料には、上記成分のほか、一般塗料に含まれ得る添加剤を配合しても良い。例えば、骨材、繊維、増粘剤、造膜助剤、レベリング剤、湿潤剤、可塑剤、凍結防止剤、pH調整剤、防腐剤、防徽剤、防藻剤、抗菌剤、分散剤、消泡剤、紫外線吸収剤、酸化防止剤、触媒、架橋剤等が挙げられる。これら添加剤の配合量は、赤外線反射率を所定範囲に制御できる限り、適宜設定できる。   In addition to the above components, the infrared reflective paint may contain additives that can be contained in general paints. For example, aggregates, fibers, thickeners, film-forming aids, leveling agents, wetting agents, plasticizers, antifreeze agents, pH adjusters, antiseptics, antifungal agents, antialgae agents, antibacterial agents, dispersants, Examples include antifoaming agents, ultraviolet absorbers, antioxidants, catalysts, and crosslinking agents. The amount of these additives can be appropriately set as long as the infrared reflectance can be controlled within a predetermined range.

赤外線反射塗料は、通常、上記合成樹脂、顔料、添加剤等を混合することにより調製できる。調製時には、必要に応じて、水、溶剤等を混合しても良い。例えば、合成樹脂として水系樹脂を用いた場合には、水、親水性有機溶剤等を混合できる。合成樹脂として非水系樹脂を用いた場合には、芳香族炭化水素系溶剤、脂肪族炭化水素系溶剤等の非水系溶剤を混合できる。   Infrared reflective paints can usually be prepared by mixing the above synthetic resins, pigments, additives and the like. At the time of preparation, water, a solvent and the like may be mixed as necessary. For example, when a water-based resin is used as the synthetic resin, water, a hydrophilic organic solvent, or the like can be mixed. When a non-aqueous resin is used as the synthetic resin, a non-aqueous solvent such as an aromatic hydrocarbon solvent or an aliphatic hydrocarbon solvent can be mixed.

塗膜は、例えば基材上に赤外線反射塗料を塗装することにより形成できる。塗装方法は特に限定されず、例えば、スプレーガン、ローラー、刷毛等の塗装器具を用いて行えば良い。必要に応じて、塗装前に、基材表面に下塗り塗料、下地調整塗材、断熱性塗料(中空バルーンを配合した塗料等)を塗付しても良い。これらは本発明における塗膜層の一部として含まれる。塗膜の厚みも特に限定されないが、通常10〜500μm、好ましくは20〜200μm程度である。   The coating film can be formed, for example, by applying an infrared reflective paint on a substrate. The coating method is not particularly limited, and may be performed using a coating tool such as a spray gun, a roller, or a brush. If necessary, before coating, an undercoat paint, a base preparation coating material, or a heat insulating paint (such as a paint containing a hollow balloon) may be applied to the surface of the substrate. These are included as part of the coating layer in the present invention. The thickness of the coating film is not particularly limited, but is usually 10 to 500 μm, preferably about 20 to 200 μm.

なお、必要に応じて、赤外線反射塗料を塗り重ねることもできる。また赤外線反射塗料の塗膜上に、さらに透明塗料、着色塗料等を塗装しても良い。但し、この場合には、透明塗料、着色塗料等としては、赤外線透過性を有するものでも良いが、赤外線反射性を有するものが好ましい。これらの塗膜も本発明における塗膜の一部として含まれる。   In addition, an infrared reflective paint can also be reapplied as needed. Further, a transparent paint, a colored paint or the like may be further coated on the infrared reflective paint film. However, in this case, the transparent paint, the colored paint, etc. may be those having infrared transparency, but those having infrared reflectivity are preferred. These coating films are also included as part of the coating film in the present invention.

以下に実施例及び比較例を示し、本発明をより具体的に説明する。但し、本発明は実施例に限定されるものではない。
(有機断熱材層サンプル、及び耐熱断熱材層サンプルの作製)
下記表1に示す配合に従って原料を均一に混合し、耐熱断熱材組成物(配合例1、2)を調製した。表1に示す各原料(水を除く)の配合量は、固形分量を示す。
なお、表1に示す原料としては、次のものを用いた。
・セメント:普通ポルトランドセメント
・無機質軽量骨材1:パーライト(平均粒径0.1mm、かさ比重0.055)
・無機質軽量骨材2:ALC粉砕物(平均粒径0.5mm、かさ比重0.10)
・有機バインダー1:酢酸ビニル・アクリル酸エステル共重合エマルジョン(固形分50重量%)
・有機バインダー2:メチルセルロース(2%溶解粘度15000mPa・s(20℃))
・有機発泡樹脂粉粒体:再生発泡スチロール破砕品(平均粒径約3mm、かさ密度0.011g/cm3
・繊維:パルプ繊維(平均繊維長約2mm)
・水化度の大きい物質:水酸化アルミニウム
配合例1、2における耐熱断熱材組成物を、それぞれ石膏ボード(厚さ12.5mm)に吹き付け後、乾燥させ、2種類の耐熱断熱材層(厚さ30mm)を作製した。各断熱材層を99mm×99mm×42.5mmの大きさに切り出して、耐熱断熱材層サンプルとした。また、石膏ボード(厚さ12.5mm)に、ウレタンフォーム(厚さ30mm)を積層し、99mm×99mm×42.5mmのウレタンフォームサンプル(有機断熱材層サンプル)を作製した。
Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. However, the present invention is not limited to the examples.
(Preparation of organic heat insulating material layer sample and heat resistant heat insulating material layer sample)
According to the formulation shown in Table 1 below, the raw materials were uniformly mixed to prepare a heat resistant heat insulating material composition (Formulation Examples 1 and 2). The amount of each raw material (excluding water) shown in Table 1 indicates the solid content.
In addition, the following were used as a raw material shown in Table 1.
・ Cement: Ordinary Portland cement ・ Inorganic lightweight aggregate 1: Pearlite (average particle size 0.1 mm, bulk specific gravity 0.055)
・ Inorganic lightweight aggregate 2: ALC pulverized product (average particle size 0.5 mm, bulk specific gravity 0.10)
Organic binder 1: vinyl acetate / acrylic acid ester copolymer emulsion (solid content 50% by weight)
Organic binder 2: methylcellulose (2% solution viscosity 15000 mPa · s (20 ° C.))
・ Organic foamed resin powder: Recycled foam polystyrene (average particle size of about 3 mm, bulk density of 0.011 g / cm 3 )
・ Fiber: Pulp fiber (average fiber length of about 2 mm)
-Substance having a high degree of hydration: Aluminum hydroxide The heat-resistant and heat-insulating material compositions in Formulation Examples 1 and 2 were each sprayed on gypsum board (thickness 12.5 mm) and then dried, and two types of heat-resistant and heat-insulating material layers (thickness 30 mm). Each heat insulating material layer was cut out to a size of 99 mm × 99 mm × 42.5 mm to obtain a heat resistant heat insulating material layer sample. Further, urethane foam (thickness 30 mm) was laminated on a gypsum board (thickness 12.5 mm) to prepare a 99 mm × 99 mm × 42.5 mm urethane foam sample (organic heat insulating material layer sample).

次いで、得られたサンプルを試験体として、熱伝導率計(商標名「KemthrmQTM−D3」京都電子工業製)により熱伝導率(W/(m・K))を測定した。測定結果は表2に示す。   Next, using the obtained sample as a test body, the thermal conductivity (W / (m · K)) was measured by a thermal conductivity meter (trade name “KemthrmQTM-D3” manufactured by Kyoto Electronics Industry Co., Ltd.). The measurement results are shown in Table 2.

(実施例1)
配合例1で得た耐熱断熱材組成物を金属板(厚さ0.6mm、熱貫流率7.7W/(m2・K))の片面に吹き付け、23℃で7日間乾燥することにより耐熱断熱材層(厚さ30mm)を形成した。次いで、耐熱断熱材層の上に、ウレタンフォーム(厚さ30mm)を接着剤を介して貼着した。このようにして得られた試験体について、下記の赤外線ランプ試験を実施した。試験結果は表3に示す。
Example 1
The heat-resistant heat insulating material composition obtained in Formulation Example 1 was sprayed onto one side of a metal plate (thickness 0.6 mm, thermal conductivity 7.7 W / (m 2 · K)) and dried at 23 ° C. for 7 days. A heat insulating material layer (thickness 30 mm) was formed. Subsequently, urethane foam (thickness 30 mm) was stuck on the heat-resistant heat insulating material layer via an adhesive. The test piece thus obtained was subjected to the following infrared lamp test. The test results are shown in Table 3.

(赤外線ランプ試験)
試験体の金属板側から200mmの距離に赤外線ランプ(250W)を設置し、赤外線ランプを24時間連続照射した。
(Infrared lamp test)
An infrared lamp (250 W) was installed at a distance of 200 mm from the metal plate side of the test specimen, and the infrared lamp was continuously irradiated for 24 hours.

照射後、試験体の耐熱断熱材層と金属板、及び、有機断熱材層と耐熱断熱材層との界面の状態を確認した。
赤外線ランプ試験の評価基準は、以下の通りである。
◎:両者とも異常なし
○:両者ともほとんど異常なし
△:どちらか一方に、わずかに脆化が認められる
×:どちらか一方に、明らかに脆化が認められる
(実施例2)
実施例1で得られた試験体の金属板面に、下記の塗料1を吹き付け塗装し、塗膜層(厚さ60μm)を形成した。このようにして得られた試験体について、実施例1と同様の試験を実施した。試験結果は表3に示す。
・塗料1:非水分散形アクリルポリオール樹脂(Tg:40℃、水酸基価:50KOHmg/g、溶剤:ミネラルスピリット)とその硬化剤(ヘキサメチレンジイソシアネート、NCO含有量12重量%、溶剤:ミネラルスピリット)との合計樹脂固形分100重量部に対して、酸化チタン15重量部、黄色酸化鉄1.3重量部、弁柄2.4重量部、フタロシアニンブルー0.5重量部を含有するグレー色の塗料。
After the irradiation, the state of the interface between the heat-resistant heat insulating material layer and the metal plate of the test body and the organic heat insulating material layer and the heat-resistant heat insulating material layer was confirmed.
The evaluation criteria of the infrared lamp test are as follows.
◎: Both have no abnormality ○: Both have almost no abnormality △: Slight embrittlement is observed in either one ×: Ebrittleness is clearly observed in either one (Example 2)
The following paint 1 was sprayed onto the metal plate surface of the test body obtained in Example 1 to form a coating layer (thickness: 60 μm). The test body thus obtained was subjected to the same test as in Example 1. The test results are shown in Table 3.
-Paint 1: Non-water-dispersed acrylic polyol resin (Tg: 40 ° C., hydroxyl value: 50 KOH mg / g, solvent: mineral spirit) and its curing agent (hexamethylene diisocyanate, NCO content 12% by weight, solvent: mineral spirit) A gray paint containing 15 parts by weight of titanium oxide, 1.3 parts by weight of yellow iron oxide, 2.4 parts by weight of petrol, and 0.5 parts by weight of phthalocyanine blue with respect to 100 parts by weight of the total resin solid content .

赤外線反射率を分光光度計(商標名「UV−3100」島津製作所製)にて測定したところ66%であった。赤外線反射率測定に供した試験板は、アルミ板に黒色塗料(アクリル樹脂の固形分100重量部にカーボンブラックを11重量部含むもの)を乾燥膜厚が60μmとなるように塗布後、塗料1を乾燥膜厚が60μmとなるように塗付して作製したものである。   The infrared reflectance was measured with a spectrophotometer (trade name “UV-3100”, manufactured by Shimadzu Corporation) and found to be 66%. The test plate used for infrared reflectance measurement was coated with a black paint (containing 11 parts by weight of carbon black in 100 parts by weight of the solid content of the acrylic resin) on an aluminum plate so that the dry film thickness was 60 μm, and then paint 1 Was applied so that the dry film thickness was 60 μm.

(実施例3)
配合例1で得た耐熱断熱材組成物の代わりに、配合例2で得た耐熱断熱材組成物を用いた以外は、実施例1と同様の方法で試験体を作製した。このようにして得られた試験体について、実施例1と同様の試験を実施した。試験結果は表3に示す。
(Example 3)
A specimen was prepared in the same manner as in Example 1 except that the heat-resistant heat insulating material composition obtained in Formulation Example 2 was used instead of the heat-resistant heat insulating material composition obtained in Formulation Example 1. The test body thus obtained was subjected to the same test as in Example 1. The test results are shown in Table 3.

(比較例1)
ウレタンフォーム(厚さ30mm)を、金属板(厚さ0.6mm、熱貫流率7.7W/(m2・K))の片面に接着剤を介して貼着し、試験体を得た。このようにして得られた試験体について、下記の赤外線ランプ試験を実施した。試験結果は表3に示す。
(Comparative Example 1)
Urethane foam (thickness 30 mm) was attached to one side of a metal plate (thickness 0.6 mm, thermal conductivity 7.7 W / (m 2 · K)) via an adhesive to obtain a specimen. The test piece thus obtained was subjected to the following infrared lamp test. The test results are shown in Table 3.

Figure 2005320843
Figure 2005320843

Figure 2005320843
Figure 2005320843

Figure 2005320843
Figure 2005320843


Claims (6)

基材に対し、少なくとも耐熱断熱材層及び有機断熱材層が順に積層された構造を有する断熱構造体であって、
(1)前記耐熱断熱材層が、セメント、無機質軽量骨材及び有機バインダーを含有し、かつ、発泡有機樹脂成分を0重量%以上5重量%未満含む耐熱断熱材組成物から形成されたものであり、
(2)前記有機断熱材層が、発泡有機樹脂成分を5重量%以上含む有機断熱材組成物から形成されたものである、
ことを特徴とする断熱構造体。
A heat-insulating structure having a structure in which at least a heat-resistant heat insulating material layer and an organic heat insulating material layer are sequentially laminated with respect to the base material,
(1) The heat-resistant heat insulating material layer is formed from a heat-resistant heat insulating material composition containing cement, an inorganic lightweight aggregate and an organic binder and containing 0% by weight or more and less than 5% by weight of a foamed organic resin component. Yes,
(2) The organic heat insulating material layer is formed from an organic heat insulating material composition containing 5% by weight or more of a foamed organic resin component.
A heat insulating structure characterized by that.
前記耐熱断熱材組成物が、セメント100重量部に対し、無機質軽量骨材5重量部以上300重量部以下、有機バインダー0.5重量部以上50重量部以下、発泡有機樹脂成分0重量部以上23重量部未満を含む、請求項1に記載の断熱構造体。 The heat-resistant insulation composition is 5 to 300 parts by weight of an inorganic lightweight aggregate, 0.5 to 50 parts by weight of an organic binder, and 0 to 23 parts by weight of a foamed organic resin component with respect to 100 parts by weight of cement. The heat insulation structure of Claim 1 containing less than a weight part. 有機断熱材層の熱伝導率が、0.05W/(m・K)以下である、請求項1又は2に記載の断熱構造体。 The heat insulation structure of Claim 1 or 2 whose heat conductivity of an organic heat insulating material layer is 0.05 W / (m * K) or less. 耐熱断熱材層の熱伝導率が、0.08W/(m・K)以下である、請求項1〜3のいずれかに記載の断熱構造体。 The heat insulation structure in any one of Claims 1-3 whose heat conductivity of a heat-resistant heat insulating material layer is 0.08 W / (m * K) or less. 基材に対し、セメント、無機質軽量骨材及び有機バインダーを含有し、かつ、発泡有機樹脂成分を0重量%以上5重量%未満含む耐熱断熱材組成物を用いて耐熱断熱材層を形成し、次いで発泡有機樹脂成分を5重量%以上含む有機断熱材組成物を用いて前記耐熱断熱層の上に有機断熱材層を形成する工程を有することを特徴とする断熱構造体の施工方法。 A heat-resistant and heat-insulating material layer is formed using a heat-resistant and heat-insulating material composition containing cement, an inorganic lightweight aggregate and an organic binder and containing a foamed organic resin component in an amount of 0 to 5% by weight, Then, the construction method of the heat insulation structure characterized by having the process of forming an organic heat insulating material layer on the said heat resistant heat insulating layer using the organic heat insulating material composition containing 5 weight% or more of foaming organic resin components. 請求項5に記載の施工方法によって得られる断熱構造体。

The heat insulation structure obtained by the construction method of Claim 5.

JP2004289842A 2004-04-09 2004-10-01 Thermal insulation structure and construction method thereof Expired - Fee Related JP4776201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004289842A JP4776201B2 (en) 2004-04-09 2004-10-01 Thermal insulation structure and construction method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004116104 2004-04-09
JP2004116104 2004-04-09
JP2004289842A JP4776201B2 (en) 2004-04-09 2004-10-01 Thermal insulation structure and construction method thereof

Publications (3)

Publication Number Publication Date
JP2005320843A true JP2005320843A (en) 2005-11-17
JP2005320843A5 JP2005320843A5 (en) 2007-09-13
JP4776201B2 JP4776201B2 (en) 2011-09-21

Family

ID=35468307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004289842A Expired - Fee Related JP4776201B2 (en) 2004-04-09 2004-10-01 Thermal insulation structure and construction method thereof

Country Status (1)

Country Link
JP (1) JP4776201B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006035719A (en) * 2004-07-29 2006-02-09 Sk Kaken Co Ltd Fireproof heat insulation structure and its construction method
JP2009234261A (en) * 2008-03-07 2009-10-15 Kaneka Corp Foamed laminate excellent in heat insulation efficiency
JP2014087961A (en) * 2012-10-30 2014-05-15 Kikusui Chemical Industries Co Ltd Composite thermal insulation material, and material for mortar composition used in composite thermal insulation material
CN106400987A (en) * 2016-08-31 2017-02-15 安徽成睿光伏科技有限公司 Construction method of heat insulation material of external solar photovoltaic heat insulation wall
CN106401096A (en) * 2016-08-31 2017-02-15 安徽成睿光伏科技有限公司 Construction method of heat insulation material of external solar photovoltaic heat insulation wall
JP2018058277A (en) * 2016-10-06 2018-04-12 株式会社エフコンサルタント Lamination method
KR20220011384A (en) * 2020-07-21 2022-01-28 주식회사 무한에너지 Non-combustible coating agent for insulation materials and its manufacturing methods
US11597859B2 (en) 2020-01-24 2023-03-07 Oatey Co. Solvent cement formulations having extended shelf life
CN117003541A (en) * 2023-08-15 2023-11-07 辽宁洪海节能科技有限公司 Fireproof heat-insulating hydrophobic rock wool board and preparation method thereof
CN118082341A (en) * 2024-04-22 2024-05-28 山东宏图新材料科技股份有限公司 Preparation method of strong crossed membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101738121B1 (en) 2016-07-21 2017-06-08 (주)영서물산 Cushion assembly

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522998A (en) * 1979-07-26 1980-02-19 Takashi Ishikawa Thermal insulator
JPS574785B2 (en) * 1977-12-01 1982-01-27
JPS6157737A (en) * 1984-08-29 1986-03-24 菊水化学工業株式会社 Composite heat insulating panel
JPH0119339B2 (en) * 1984-09-17 1989-04-11 Kikusui Kagaku Kogyo Kk
JPH0129698B2 (en) * 1981-09-03 1989-06-13 Dau Kako Kk
JPH0247006Y2 (en) * 1984-05-13 1990-12-11
JPH046182A (en) * 1990-04-25 1992-01-10 Takenaka Komuten Co Ltd Heat insulating material and structure formed by using this heat insulating material
JPH04222845A (en) * 1990-12-26 1992-08-12 Asahi Chem Ind Co Ltd Heat insulating material of vinylidene chloride based resin
JPH1193289A (en) * 1997-09-16 1999-04-06 Daicel Chem Ind Ltd Heat insulation panel structure of external wall, and panel material
JPH11117432A (en) * 1997-10-15 1999-04-27 Daicel Chem Ind Ltd External wall heat insulating panel structure and panel material
JPH11241428A (en) * 1998-02-23 1999-09-07 Mitsubishi Heavy Ind Ltd Heat retaining panel
JP2002226250A (en) * 2001-01-30 2002-08-14 Ohbayashi Corp Heat insulation material composition
JP2003306981A (en) * 2002-02-13 2003-10-31 Masanori Takao Building material
JP2003327464A (en) * 2002-05-14 2003-11-19 Ohbayashi Corp Heat insulating material composition

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574785B2 (en) * 1977-12-01 1982-01-27
JPS5522998A (en) * 1979-07-26 1980-02-19 Takashi Ishikawa Thermal insulator
JPH0129698B2 (en) * 1981-09-03 1989-06-13 Dau Kako Kk
JPH0247006Y2 (en) * 1984-05-13 1990-12-11
JPS6157737A (en) * 1984-08-29 1986-03-24 菊水化学工業株式会社 Composite heat insulating panel
JPH0119339B2 (en) * 1984-09-17 1989-04-11 Kikusui Kagaku Kogyo Kk
JPH046182A (en) * 1990-04-25 1992-01-10 Takenaka Komuten Co Ltd Heat insulating material and structure formed by using this heat insulating material
JPH04222845A (en) * 1990-12-26 1992-08-12 Asahi Chem Ind Co Ltd Heat insulating material of vinylidene chloride based resin
JPH1193289A (en) * 1997-09-16 1999-04-06 Daicel Chem Ind Ltd Heat insulation panel structure of external wall, and panel material
JPH11117432A (en) * 1997-10-15 1999-04-27 Daicel Chem Ind Ltd External wall heat insulating panel structure and panel material
JPH11241428A (en) * 1998-02-23 1999-09-07 Mitsubishi Heavy Ind Ltd Heat retaining panel
JP2002226250A (en) * 2001-01-30 2002-08-14 Ohbayashi Corp Heat insulation material composition
JP2003306981A (en) * 2002-02-13 2003-10-31 Masanori Takao Building material
JP2003327464A (en) * 2002-05-14 2003-11-19 Ohbayashi Corp Heat insulating material composition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006035719A (en) * 2004-07-29 2006-02-09 Sk Kaken Co Ltd Fireproof heat insulation structure and its construction method
JP4502739B2 (en) * 2004-07-29 2010-07-14 エスケー化研株式会社 Fireproof and heat insulating structure and construction method thereof
JP2009234261A (en) * 2008-03-07 2009-10-15 Kaneka Corp Foamed laminate excellent in heat insulation efficiency
JP2014087961A (en) * 2012-10-30 2014-05-15 Kikusui Chemical Industries Co Ltd Composite thermal insulation material, and material for mortar composition used in composite thermal insulation material
CN106400987A (en) * 2016-08-31 2017-02-15 安徽成睿光伏科技有限公司 Construction method of heat insulation material of external solar photovoltaic heat insulation wall
CN106401096A (en) * 2016-08-31 2017-02-15 安徽成睿光伏科技有限公司 Construction method of heat insulation material of external solar photovoltaic heat insulation wall
JP2018058277A (en) * 2016-10-06 2018-04-12 株式会社エフコンサルタント Lamination method
US11597859B2 (en) 2020-01-24 2023-03-07 Oatey Co. Solvent cement formulations having extended shelf life
US11976222B2 (en) 2020-01-24 2024-05-07 Oatey Co. Solvent cement formulations having extended shelf life
KR20220011384A (en) * 2020-07-21 2022-01-28 주식회사 무한에너지 Non-combustible coating agent for insulation materials and its manufacturing methods
KR102501829B1 (en) * 2020-07-21 2023-02-21 주식회사 무한에너지 Non-combustible coating agent for insulation materials and its manufacturing methods
CN117003541A (en) * 2023-08-15 2023-11-07 辽宁洪海节能科技有限公司 Fireproof heat-insulating hydrophobic rock wool board and preparation method thereof
CN117003541B (en) * 2023-08-15 2024-02-20 辽宁洪海节能科技有限公司 Fireproof heat-insulating hydrophobic rock wool board and preparation method thereof
CN118082341A (en) * 2024-04-22 2024-05-28 山东宏图新材料科技股份有限公司 Preparation method of strong crossed membrane

Also Published As

Publication number Publication date
JP4776201B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
US8172938B2 (en) Heat resistant and fire retardant materials and methods for preparing same
CN104017413B (en) A kind of interior wall heat preservation putty and using method thereof
CN102352160B (en) Water-based thermal-insulation paint for cement encaustic tiles and roofs and preparation method thereof
JP6216397B2 (en) Redispersible dry compositions of polymer finishing materials or other products for construction
JP4776201B2 (en) Thermal insulation structure and construction method thereof
WO2020063205A1 (en) Light-weight high-strength high-toughness foamed ceramic decorative integrated board and preparation method therefor
WO2007140676A1 (en) Fireproofing powder coating for steel structures and the preparing method thereof
CN102826824B (en) Sound-proof, heat-insulated and flame-retardant lightweight aggregate magnesite coagulating composite material and composite plate thereof
JP6093148B2 (en) Composite heat insulating material and mortar composition material used for composite heat insulating material
CN104177965A (en) Organic-inorganic composite nanometer heat-insulating fire-retardant coating and preparation method thereof
CN109836941A (en) A kind of Organic-inorganic composite nano heat-insulating fireproof coating and preparation method thereof
CN104710893B (en) Heat-insulated painting material, constructional heat-insulating and building dressing method
CN102531465B (en) High-performance microscopic microfiber building heat insulation and heat preservation slurry and using method thereof
EP3724149B1 (en) Geopolymeric coating system for fiber cement products
JP5430097B2 (en) Thermal insulation structure
JP4502739B2 (en) Fireproof and heat insulating structure and construction method thereof
CN104761993A (en) Polyurethane anticorrosive thermal-insulation paint and preparation method thereof
KR101163725B1 (en) New composition and method in coating technique for fire resistive coatings
JP2014210867A (en) Coating composition and sheet-like mounting material for building
JP4947869B2 (en) Insulation composition
CN206396922U (en) Building insulating layer and heat-insulation system
JP2000169853A (en) Refractory covering material composition
KR100983559B1 (en) Adiabatic painting material for constructure and method of manufacturing thereof
KR101590305B1 (en) Non-Flammable Composition and thereof Bid Form and It&#39;s Manufacturing Methods
JP4123370B2 (en) Thermal insulation structure and construction method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110628

R150 Certificate of patent or registration of utility model

Ref document number: 4776201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees