JP2005318702A - Motor controller and apparatus employing it - Google Patents
Motor controller and apparatus employing it Download PDFInfo
- Publication number
- JP2005318702A JP2005318702A JP2004132384A JP2004132384A JP2005318702A JP 2005318702 A JP2005318702 A JP 2005318702A JP 2004132384 A JP2004132384 A JP 2004132384A JP 2004132384 A JP2004132384 A JP 2004132384A JP 2005318702 A JP2005318702 A JP 2005318702A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- modulation
- voltage
- motor
- information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005406 washing Methods 0.000 claims description 7
- 230000001360 synchronised effect Effects 0.000 description 34
- 238000006243 chemical reaction Methods 0.000 description 20
- 238000010586 diagram Methods 0.000 description 20
- 238000000034 method Methods 0.000 description 12
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 11
- 230000004913 activation Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000004075 alteration Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/539—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
- H02M7/5395—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
Landscapes
- Control Of Ac Motors In General (AREA)
Abstract
Description
本発明は、モータの制御装置及びこれを用いた機器に関する。 The present invention relates to a motor control device and an apparatus using the same.
モータ駆動装置において、同期モータに正弦波の電流を流すためには、一般的に、三角波のキャリア信号と、各相印加電圧である正弦波を比較し、PWM信号を生成する方式である3相線間変調が用いられている。又、インバータ回路での損失低減のため、モータに印加する3相電圧の中の特定の1相の電圧を一定とし、モータに印加する線間電圧を線間変調前後で一定に保たれるように、残りの2相の線間で変調する線間変調方式である2相線間変調も用いられている。 In a motor drive device, in order to pass a sine wave current to a synchronous motor, a triangular wave carrier signal is generally compared with a sine wave that is an applied voltage of each phase to generate a PWM signal. Interline modulation is used. Also, in order to reduce the loss in the inverter circuit, the specific one-phase voltage among the three-phase voltages applied to the motor is made constant, and the line voltage applied to the motor is kept constant before and after the line modulation. In addition, two-phase line-to-line modulation, which is a line-to-line modulation method that modulates between the remaining two-phase lines, is also used.
一方、2相線間変調と3相線間変調では、インバータでのエネルギー損失、及びモータでのエネルギー損失が異なる。又、インバータでのエネルギー損失、及びモータでのエネルギー損失を総合したエネルギー損失の大きさは、インバータ回路、モータ、電流量の大きさによっても変化し、総合したエネルギー損失の少ない制御、つまり高効率制御にするためには、モータ駆動する条件で、効率良いのが2相線間変調又は3相線間変調であるかを把握し、2相線間変調又は3相線間変調の一方を使用していた。しかし、常に2相線間変調と3相線間変調の一方が効率良いというわけではなく、条件によって効率良い制御がどちらであるかが異なるため、2相線間変調と3相線間変調この二つの両方の効率の良い点を使えていなかった。 On the other hand, the energy loss in the inverter and the energy loss in the motor are different between the two-phase line modulation and the three-phase line modulation. In addition, the amount of energy loss that combines the energy loss in the inverter and the energy loss in the motor also varies depending on the size of the inverter circuit, the motor, and the amount of current. In order to control, it is necessary to grasp whether the two-phase line modulation or the three-phase line modulation is efficient under the motor driving conditions, and use either the two-phase line modulation or the three-phase line modulation. Was. However, one of two-phase line-to-line modulation and three-phase line-to-line modulation is not always efficient, and the effective control differs depending on conditions. Both of the two efficient points could not be used.
従来方式では、2相線間変調と3相線間変調を単独で使用していたため、条件によっては、最適な高効率制御を行なえていなかった。 In the conventional method, since the two-phase line modulation and the three-phase line modulation are used independently, the optimum high-efficiency control cannot be performed depending on the conditions.
本発明は、回転数により2相線間変調と3相線間変調を切換え、どの回転領域においても、最適な高効率制御を行なうことを課題としている。 An object of the present invention is to switch between two-phase line modulation and three-phase line modulation depending on the number of rotations, and to perform optimum high-efficiency control in any rotation region.
本発明のモータ制御装置は、2相線間変調と3相線間変調を回転数によって切換を行う機能を備える。 The motor control device of the present invention has a function of switching between two-phase line modulation and three-phase line modulation depending on the rotation speed.
本発明の特徴によれば、2相線間変調と3相線間変調を回転数により切換を行い、どの回転領域においても、最適な高効率制御を行なうことができる。 According to the characteristics of the present invention, the two-phase line modulation and the three-phase line modulation are switched depending on the rotation speed, and optimum high-efficiency control can be performed in any rotation region.
(実施例1)
以下、本発明の実施例として、永久磁石同期モータを使用したモータ制御装置の実施形態について説明する。
(Example 1)
Hereinafter, an embodiment of a motor control device using a permanent magnet synchronous motor will be described as an example of the present invention.
図1は、本発明になる同期モータ制御装置の一実施形態を示すブロック図である。この同期モータ制御装置は、直流電源1の電圧を、パルス幅変調された交流電圧に変換して同期モータ3のU相、V相、W相の3相固定子巻線に供給することにより該同期モータ3を回転させるインバータ回路2と、速度指令信号に応じて前記同期モータ3の制御処理を行う制御回路(ワンチップマイクロコンピュータまたはこれを利用したハイブリットIC)4と、この制御回路4からの信号に従ってインバータ回路2を駆動するドライバ5と、直流電圧1からインバータ回路2に入力されるモータ電流が検出可能なセンサ6を備えている。上記インバータ回路2は、同図に示す通り、直列接続された2つのスイッチング素子対の3組が、それぞれ直流電源の正端子と負端子間に接続されたインバータであり、正端子側の上アーム側がU+、V+、W+、また負端子側の下アーム側がU-、V-、W-として表している。
FIG. 1 is a block diagram showing an embodiment of a synchronous motor control device according to the present invention. This synchronous motor control device converts the voltage of the
制御回路4は、キャリア周期情報19aを基に、前記モータ電流センサ6の出力信号6aを、アナログ値からディジタル値に変換するA/D変換ユニットを備えたA/D変換部7と、A/D変換値7aをモータ電流情報8aとして出力するモータ電流情報部8と、モータ電流情報8aを入力してd軸q軸電流9aに変換する3φ/dq座標変換部9と、3φ/dq座標変換部9により3相電流から変換されたd軸q軸電流9aとモータ定数18aと速度指令、d軸電流指令、q軸電流指令から演算したd軸q軸電圧指令情報10aを出力するモータ印加電圧生成部10と、d軸q軸電圧指令情報10aを電圧の大きさV1に変換し、モータ印加電圧の大きさV1情報11aを出力するdq/大きさV1変換部11と、モータ印加電圧の大きさV1情報11aから、電源電圧1に対する変調率KHV1情報12aを電圧大きさV1/変調率KHV1変換部12と、電源電圧1に対する変調率KHV1情報12aから電源電圧1に対するd軸q軸電圧指令のd軸電圧変調率KHVdとq軸電圧変調率KHVq情報13aを出力する変調率KHV1/変調率Vd、Vq変換部13と、d軸電圧変調率KHVdとq軸電圧変調率KHVq情報13aから線間変調前の3相それぞれのモータ印加電圧情報14aを出力するdq/3φ電圧逆変換部14と、線間変調前の3相モータ印加電圧情報14aから電源電圧1に対する変調率KHV1と60度期間変調率情報20aと2相3相線間変調判定情報21aから線間変調後の3相モータ印加電圧情報15aを出力する線間変調部15と、線間変調後の3相モータ印加電圧情報15aとキャリア周期情報19aからPWM信号を生成するためのPWM信号生成タイマ情報16aを出力するPWM信号生成タイマ情報部16と、PWM信号生成タイマ情報16aからインバータ2をドライブするために必要なPWM信号17aを出力するPWM信号生成部17と、キャリア周期情報19aを出力するキャリア周期情報生成部19と、60度期間変調率情報20aを決定する60度期間変調率生成部20と、速度指令から2相線間変調と3相線間変調を判定し、2相3相判定情報21aを出力する2相3相判定部21を備えている。
The
以下それぞれの主要部及び動作について説明する。
<PWM信号の作成(原理説明)>
図2は、相電圧が正弦波の場合の各相印加電圧と、キャリア信号(搬送波信号)とPWM信号の関係を模式的に表した図の一例である。一般に同期モータに正弦波の電流を流す場合、インバータの出力電圧を正弦波とする。このために、一般には同図に示すように、三角波で示したキャリア信号と、各相印加電圧である正弦波で示した信号波Vu、Vv、Vwの交差する点において、スイッチングをオン・オフする信号いわゆるPWM信号をPWM信号生成部にて生成し、この信号に応じてインバータ回路を構成する6個のスイッチング素子をスイッチングさせてモータに電圧を印加する。ここで、図中PWM信号のレベルがHiの時はインバータ回路の上アームがオン、Lowの時は下アームがオンすることを表している。つまり、一般的な正弦波電圧を印加する場合、相電圧を正弦波とし、図1での動作に当てはめると、線間変調部15から出力される線間変調信号15aを正弦波とすることで、PWM信号生成タイマ情報部16では、キャリア周期情報19a及びモータ印加電圧情報15aの相電圧Vu、Vv、Vwを実現するように、各相の電圧を表す時間データとキャリア周期を表す時間データの4種類のタイマ情報16aを決定する。
Each main part and operation will be described below.
<Create PWM signal (Principle explanation)>
FIG. 2 is an example of a diagram schematically illustrating the relationship between each phase applied voltage, the carrier signal (carrier wave signal), and the PWM signal when the phase voltage is a sine wave. Generally, when a sine wave current is passed through a synchronous motor, the output voltage of the inverter is a sine wave. For this purpose, as shown in the figure, switching is generally turned on / off at the point where the carrier signal indicated by a triangular wave and the signal waves Vu, Vv, and Vw indicated by sine waves that are applied to each phase intersect. A so-called PWM signal is generated by a PWM signal generator, and the six switching elements constituting the inverter circuit are switched in accordance with this signal to apply a voltage to the motor. Here, when the level of the PWM signal is Hi in the figure, the upper arm of the inverter circuit is turned on, and when the level is Low, the lower arm is turned on. That is, when a general sine wave voltage is applied, the phase voltage is a sine wave, and when applied to the operation in FIG. 1, the line modulation signal 15a output from the
そして、PWM信号生成部17では、タイマ情報16aに従って、アップダウン型のタイマを動作させて、各相の電圧を表す時間データとタイマ値が一致した時点でオン・オフする信号を作ることで、PWM信号17aを実現する。
<2相線間変調の概要>
しかしながら、上記方法では、図2からも判るようにPWM周期毎に常に3相(6素子)がスイッチングする。また、スイッチングに伴い、各素子においてスイッチング損失が発生する。
Then, the PWM
<Outline of two-phase line modulation>
However, in the above method, as can be seen from FIG. 2, three phases (six elements) are always switched every PWM period. Further, switching loss occurs in each element with switching.
本実施例では、これを回避し、スイッチング損失を低減するために、設定した回転数領域において2相線間変調を行う。2相線間変調とは、特定の1相の電圧を一定とし、モータに印加する線間電圧を線間変調前後で一定に保たれるように、残りの2相の線間で変調する線間変調方式である。 In the present embodiment, in order to avoid this and reduce the switching loss, the two-phase line modulation is performed in the set rotation speed region. Two-phase line-to-line modulation is a line that modulates between the remaining two-phase lines so that a specific one-phase voltage is constant and the line voltage applied to the motor is kept constant before and after line-to-line modulation. Intermodulation method.
図3は、線間変調後の3相のモータ印加電圧情報15aとキャリア信号とPWM信号の関係を模式的に表した図の一例である。比較のために、線間変調する前の正弦波電圧(以下、基本波と記す)とキャリア信号も合わせて記載している。なお前述同様、PWM信号のレベルがHiの時はインバータ回路2の上アームがオン、Lowの時は下アームがオンすることを表している。
FIG. 3 is an example of a diagram schematically showing the relationship between the three-phase motor applied voltage information 15a after line modulation, the carrier signal, and the PWM signal. For comparison, a sinusoidal voltage (hereinafter referred to as a fundamental wave) before line modulation and a carrier signal are also shown. As described above, when the level of the PWM signal is Hi, the upper arm of the
2相線間変調では、任意時刻において基本波における最小電圧或いは最大電圧となる相の電気角60度期間の電圧をインバータ最小出力電圧或いは最大出力電圧に固定することで、キャリア信号と交差する点を無くし、スイッチングしない期間を創出する。ここで、モータに印加される線間電圧を線間変調前後で一定に保つために、スイッチングしない相において、スイッチングしない電気角60度期間でのインバータ最小出力電圧或いは最大出力電圧と、基本波との差を他相に加える。これにより、図3に示すように、2相線間変調後の各相の印加電圧は、一見、正弦波から大きく歪む形となるが、モータの線間電圧は、線間変調前後に関係なく正弦波が保たれる。
<起動時の処理必要性説明>
一方、モータ停止状態から運転を行う場合、回転子の位置を規定するために回転子位置決め処理後、オープンループによる同期運転を行い、その後位置センサレス運転に切替えるいわゆる低周波同期起動方法を用いる。前述の位置決め時において、相印加電圧が最大領域で上アームのみオンする場合、下アームがオンしないため、ブートストラップ回路に電荷が充電されない。その場合、上アーム動作用の電源がない状態となるため、インバータは正常に動作しない。
In the two-phase line-to-line modulation, the voltage that crosses the carrier signal by fixing the voltage at the electrical angle 60 degree period of the phase that is the minimum voltage or maximum voltage in the fundamental wave at any time to the inverter minimum output voltage or maximum output voltage. And create a period of no switching. Here, in order to keep the line voltage applied to the motor constant before and after the line modulation, in the non-switching phase, the inverter minimum output voltage or maximum output voltage in the non-switching electrical angle 60 degree period, and the fundamental wave Add the difference to other phases. As a result, as shown in FIG. 3, the applied voltage of each phase after two-phase line modulation appears to be greatly distorted from a sine wave, but the line voltage of the motor is not related to before and after the line modulation. A sine wave is maintained.
<Necessary processing at startup>
On the other hand, when the operation is performed from the motor stop state, a so-called low-frequency synchronous activation method is used in which synchronous operation by an open loop is performed after the rotor positioning process in order to define the position of the rotor, and then the operation is switched to the position sensorless operation. In the positioning described above, when only the upper arm is turned on in the maximum phase application voltage, the lower arm is not turned on, so that the bootstrap circuit is not charged. In that case, since there is no power supply for operating the upper arm, the inverter does not operate normally.
また、前述したように上アームのみがオンする場合でなくとも、起動時の極低速時には、ブートストラップ回路の充電が不充分、もしくは、放電してしまうことで、インバータが正常動作しない場合がある。 Even if only the upper arm is turned on as described above, the bootstrap circuit may not be fully charged or discharged at an extremely low speed during startup, and the inverter may not operate normally. .
そこで、本実施例では、図1中の基準変調率生成部20を設けると共に、基準変調率20aとモータ印加電圧V1における変調率KHV1とから大きい方を選択して線間変調後の相電圧、つまり、線間変調情報15aを決定する機能を線間変調部15に設ける。起動時及び極低速時には、インバータ素子のチョッピング動作を行い、ブートストラップ回路の充電不良を防止すると共に、通常運転時、かつ設定した回転数領域において、スイッチング損失を低減した2相線間変調による高効率運転を実現する。
Therefore, in the present embodiment, the reference modulation
図4は、位置決め、同期運転を含めた2相線間変調になるまでの動作波形の一例である。図に示すように、基本波の3相の内で、最も小さな相印加電圧或いは最も大きな相印加電圧となる60度期間の電圧が、インバータ回路の最大出力電圧以下となる。また、この時の電圧レベルは、60度期間変調率を基に決定する。そして、60度期間電圧と基本波との差を2相線間変調時同様に、他の相に加算して、3相の印加電圧を決定し、線間変調情報15aとして出力する。 FIG. 4 is an example of operation waveforms until two-phase line modulation including positioning and synchronous operation is performed. As shown in the figure, the voltage in the 60-degree period, which is the smallest phase applied voltage or the largest phase applied voltage among the three phases of the fundamental wave, is less than or equal to the maximum output voltage of the inverter circuit. The voltage level at this time is determined based on the 60-degree period modulation rate. Then, the difference between the 60-degree period voltage and the fundamental wave is added to the other phases in the same manner as in the two-phase line-to-line modulation, the three-phase applied voltage is determined, and is output as the line modulation information 15a.
図5は、線間変調部15における変調率選択の処理と、60度期間一定電圧となる相の60度期間変調率を決定する処理の流れを例示したものである。また、図中に示すように、60度期間変調率決定後に、この値を基準変調率20aとすることで、次回の同処理を行う際の基準変調率とした。また、本実施例では、基準変調率20aの初期値をゼロとした。また、変調率増加量は、あらかじめ決められた定数であるが、回転速度に依存した変数と考えても良い。
FIG. 5 exemplifies the flow of the modulation rate selection process in the
図6は、位置決め、同期運転、センサレス運転の各動作における変調率の変化を例示したものである。図6に示すように、基準変調率20aの初期値をゼロにすることで、位置決め、同期運転中は、モータ印加電圧V1に従って、変調率KHV1が選択される。そしてこの時、変調率の最大値よりも変調率が小さいことから、上下アームが確実にスイッチング動作するため、ブートストラップ回路の充電不良の防止を実現できる。
<起動及び極低速時と通常運転時の切替えショックレス>
一方、起動を完了し、通常運転に動作が移行した場合、地球環境を踏まえてエネルギーの有効活用の観点から、高効率で運転することが望ましい。
FIG. 6 exemplifies changes in the modulation rate in each of the positioning, synchronous operation, and sensorless operation. As shown in FIG. 6, by setting the initial value of the reference modulation factor 20a to zero, the modulation factor KHV1 is selected according to the motor applied voltage V1 during positioning and synchronous operation. At this time, since the modulation rate is smaller than the maximum value of the modulation rate, the upper and lower arms reliably perform the switching operation, so that it is possible to prevent charging failure of the bootstrap circuit.
<Startup and switching shockless at extremely low speed and normal operation>
On the other hand, when the startup is completed and the operation shifts to the normal operation, it is desirable to operate with high efficiency from the viewpoint of effective use of energy based on the global environment.
このため、通常運転時かつ設定した回転数領域において、スイッチング損失を低減する2相線間変調へ移行する。具体的には、図6に示すように、センサレス運転においては、60度期間変調率が時間と共に増加して最大電圧値まで達する。最大値に達した時点で、60度期間に1相チョッピング動作しない状態(2相線間変調)での運転へと移行する。 For this reason, during the normal operation and in the set rotation speed range, the process shifts to the two-phase line modulation that reduces the switching loss. Specifically, as shown in FIG. 6, in the sensorless operation, the 60-degree period modulation rate increases with time and reaches the maximum voltage value. When the maximum value is reached, the operation shifts to a state in which one-phase chopping operation is not performed in the 60-degree period (modulation between two-phase lines).
これらの処理により、位置決め、同期運転を含めた起動時には、確実に上下アームスイッチング動作を行い、センサレス切替え後に徐々に60度期間変調率を増加し、そして、変調率の最大値まで、徐々に変調率を増加させて2相線間変調へと移行する。線間変調後の波形生成法を変えることなく、60度期間電圧が徐々に大きくなり最大電圧になるまで変化するだけなので、切替え時のショック等なく、3相線間変調から2相線間変調へと円滑な推移を実現し、その後の通常運転時かつ設定した回転領域において、2相線間変調で動作してスイッチング損失を低減する。
<2相線間変調、3相線間変調切換の概要>
図7は、2相線間変調と3相線間変調の、回転数に対する効率を示した一例である。2相線間変調はスイッチング損失を低減することができるが、インバータでのエネルギー損失とモータでのエネルギー損失を総合した総合効率については、回転領域によって、2相線間変調よりも3相線間変調の方が高効率である場合がある。そのため、実験により2相線間変調と3相線間変調のどちらの制御がどの回転領域において効率が良いかを求め、回転領域によって効率の良い制御に切り替える。これにより、どの回転領域においても、最適な高効率制御を行なうことを実現できる。
With these processes, when starting up including positioning and synchronous operation, the upper and lower arm switching operations are performed reliably, the modulation rate is gradually increased by 60 degrees after sensorless switching, and the modulation rate is gradually increased to the maximum value of the modulation rate. The rate is increased to shift to two-phase line modulation. Without changing the waveform generation method after line modulation, the voltage only gradually changes until the voltage increases gradually until it reaches the maximum voltage, so there is no shock when switching, etc. Smooth transitions are realized, and during the subsequent normal operation and in the set rotation region, operation is performed with two-phase line modulation to reduce switching loss.
<Outline of 2-phase line modulation and 3-phase line modulation switching>
FIG. 7 is an example showing the efficiency with respect to the rotational speed of the two-phase line modulation and the three-phase line modulation. Two-phase line-to-line modulation can reduce switching loss, but the overall efficiency of the total energy loss in the inverter and the motor in the motor can be reduced between the three-phase lines rather than the two-phase line-to-line modulation depending on the rotation region. Modulation may be more efficient. Therefore, by experiment, it is determined in which rotation region the control between the two-phase line modulation and the three-phase line modulation is efficient, and the control is switched to the efficient control depending on the rotation region. Thereby, it is possible to realize optimal high-efficiency control in any rotation region.
図8は、2相線間変調と3相線間変調の切換処理の流れを例示したものである。 FIG. 8 illustrates the flow of the switching process between the two-phase line modulation and the three-phase line modulation.
2相3相判定部21で、モータ回転数が切換回転数設定値より大きい場合3相切換フラグを有効にし、モータ回転数が切換回転数設定値より小さい場合、3相切換フラグを無効とする。線間変調部15で上記3相切換フラグが有効の場合3相線間変調を行い、3相切換フラグが無効の場合2相線間変調を行う。
<運転結果の説明>
図9及び図10は、本実施例における動作波形である。
In the two-phase / three-
<Explanation of operation results>
9 and 10 show operation waveforms in this embodiment.
図9は、位置決め、同期運転時の動作波形で、図中には、1相分の印加電圧の内部演算値と、端子電圧(インバータの負端子側とモータ端子間の電圧)を入力とした時のローパスフィルタ(抵抗とコンデンサにて構成)の出力値とを例示している。図10は、通常運転時の動作波形で、端子電圧(インバータの負端子側とモータ端子間の電圧)とモータの相電流を例示している。また、図10において、端子電圧が最大或いは最小(ゼロ)となっている期間がスイッチングしていない期間であることから、通常運転時には、電気角60度の期間毎にスイッチング動作を止めてモータ駆動していることが確認できる。これらの動作波形から、モータ制御が良好に行われていることが確認できる。 FIG. 9 is an operation waveform at the time of positioning and synchronous operation. In the figure, an internal calculation value of applied voltage for one phase and a terminal voltage (voltage between the negative terminal side of the inverter and the motor terminal) are input. The output value of the low-pass filter (consisting of a resistor and a capacitor) is shown as an example. FIG. 10 is an operation waveform during normal operation, and illustrates the terminal voltage (voltage between the negative terminal side of the inverter and the motor terminal) and the motor phase current. Further, in FIG. 10, the period in which the terminal voltage is maximum or minimum (zero) is a period in which switching is not performed. Therefore, during normal operation, the switching operation is stopped for each period of 60 electrical degrees and the motor is driven. You can confirm that From these operation waveforms, it can be confirmed that the motor control is performed well.
これまで示した実施例では、モータ電流情報の検出にモータ電流センサ6を用いたが、直流シャント抵抗に流れる直流電流からモータ電流情報を抽出する構成やインバータ回路の下アームにシャント抵抗を設けて、そこに流れる電流情報からモータ電流情報を抽出する構成においても同様の効果が得られる。また、これまでの実施例では、モータに永久磁石モータを用いたが、永久磁石を有しないシンクロナスリラクタンスモータで知られるようなリラクタンスモータ等のように他の同期モータや、誘導モータにおいても同様の効果が得られる。
In the embodiments shown so far, the motor
(実施例2)
図11は、直流シャント抵抗に流れる直流電流からモータ電流を抽出する構成における本発明の一実施形態を示すブロック図である。
(Example 2)
FIG. 11 is a block diagram showing an embodiment of the present invention in a configuration for extracting a motor current from a direct current flowing in a direct current shunt resistor.
この同期モータ制御装置は、直流電源1の電圧を、パルス幅変調された交流電圧に変換して同期モータ3のU相、V相、W相の3相固定子巻線に供給することにより該同期モータ3を回転させるインバータ回路2と、速度指令信号に応じて前記同期モータ3の制御処理を行う制御回路(ワンチップマイクロコンピュータまたはこれを利用したハイブリットIC)4と、この制御回路4からの信号に従ってインバータ回路2を駆動するドライバ5と、直流電圧1からインバータ回路2に入力される直流電流IDCが検出可能な抵抗器96を備えている。上記インバータ回路2は、同図に示す通り、直列接続された2つのスイッチング素子対の3組が、それぞれ直流電源の正端子と負端子間に接続されたインバータであり、正端子側の上アーム側がU+、V+、W+、また負端子側の下アーム側がU−、V−、W−として表している。
This synchronous motor control device converts the voltage of the
制御回路4は、前記抵抗器96と一緒に直流電流検出回路を構成して、抵抗器96の電圧である直流電流検出電圧96aを増幅する増幅器97と、増幅器97の出力電圧97aを、A/D起動時間決定部911から出力されるA/D起動時間911aに従い、サンプリングしてアナログ値をディジタル値に変換するA/D変換ユニットを備えたA/D変換部98と、A/D変換値98aを、通電モード情報923aを基にゼロ電流情報99aとモータ電流情報99bに分けて出力する選択器99と、通電モード情報923aとA/D起動間隔設定部912から出力されるA/D起動間隔TwとA/D変換器サンプリング時間設定器922にて設定されるA/Dサンプリング時間922aからA/D起動時間911aを決定するA/D起動時間決定部911と、通電モード情報923aとゼロ電流情報99aとモータ電流情報99bと3相モータ電流推定値916aを基に、モータ電流を再現してモータ電流再現値913aを出力するモータ電流再現部913と、モータ電流再現値913aを入力してd軸q軸電流値914aに変換する3φ/dq座標変換部914と、d軸q軸電流914aを入力して平均値915aを出力するフィルタ915とその平均されたd軸電流とq軸電流915aを入力して3相モータ電流推定値916aを出力するdq/3φ逆変換部916とd軸q軸電流914a、モータ定数926a、速度指令、d軸電流指令、及びq軸電流指令から、モータへ印加するd軸q軸電圧指令情報917aを生成するモータ印加電圧生成部917と、d軸q軸電圧指令情報917aを電圧の大きさV1に変換し、モータ印加電圧の大きさV1情報918aを出力するdq/大きさV1変換部918と、モータ印加電圧の大きさV1情報918aから、電源電圧1に対する変調率KHV1情報919aを出力する大きさV1/変調率KHV1変換部919と、電源電圧1に対する変調率KHV1情報919aからd軸q軸電圧指令の電源電圧1に対するd軸電圧変調率KHVdとq軸電圧変調率KHVq情報920aを出力する変調率KHV1/変調率VdVq変換部920と、d軸電圧変調率KHVdとq軸電圧変調率KHVq情報920aからキャリア周期情報と線間変調前の3相それぞれのモータ印加電圧を合わせた4つの情報921aを出力するdq/3φ電圧座標逆変換部921と、線間変調前の3相モータ印加電圧情報921aから電源電圧1に対する変調率KHV1と基準変調率情報925aと2相3相判定情報927aから線間変調後の3相モータ印加電圧情報928aを出力する線間変調部928と、キャリア周期情報と線間変調後の3相モータ印加電圧情報を合わせた4つの情報928aからPWM信号を生成するためのタイマ情報923b、及びA/D変換起動時間911aの決定とモータ電流再現に必要な通電モード情報923aを出力するPWM信号生成タイマ情報部923と、PWM信号を生成するためのタイマ情報923bからインバータ2をドライブするために必要なPWM信号924aを出力するPWM信号生成部924と、 基準変調率情報925aを決定する基準変調率生成部925と、速度指令から2相線間変調と3相線間変調を判定する2相3相判定部927を備えている。
The
図12は、相印加電圧とPWM信号と直流電流の関係を拡大して例示した模式図である。尚、比較のために基準変調率を用いない場合について同様の信号を図13に例示する。 FIG. 12 is an enlarged schematic view illustrating the relationship among the phase application voltage, the PWM signal, and the direct current. For comparison, a similar signal is illustrated in FIG. 13 when the reference modulation rate is not used.
前述の構成により、直流シャント抵抗に流れる直流電流情報96aからモータ電流913aを再現する。この時、実施例1同様、基準変調率の処理を行うことで、図13と比べ、図12に示すように、図中bとcの時間間隔を広くとることができる(Twbcn>Twbc)ため、bでのA/D変換終了前に、cにおけるA/D変換が始まることを防止でき、直流電流からモータ電流情報を確実に得ることができる。 With the above-described configuration, the motor current 913a is reproduced from the DC current information 96a flowing through the DC shunt resistor. At this time, as in the first embodiment, by processing the reference modulation rate, as shown in FIG. 12, the time interval between b and c in the figure can be widened (Twbcn> Twbc) as compared with FIG. , B can be prevented from starting A / D conversion before the end of A / D conversion at b, and motor current information can be reliably obtained from the direct current.
一方、前記実施例1同様、位置決め、同期運転を含めた起動時には、確実に上下アームスイッチング動作を行い、センサレス切替後に徐々に変調率を増加し、通常運転時には、2相線間変調で動作してスイッチング損失を低減する。この際、前述したように2相線間変調時と同様に、3相の内で、最も小さな相印加電圧或いは最も大きな相印加電圧となる60度期間の電圧が、その相の最小或いは最大ピーク電圧と等しく、その電圧と線間変調前の正弦波電圧との差を他の相に加算して、3相の印加電圧が決定する。その後、変調率の限界まで、徐々に変調率を増加させて2相線間変調へと移行することにより、切替え時のショック等なく、3相線間変調から2相線間変調へと円滑な推移を実現する。 On the other hand, as in the first embodiment, the upper / lower arm switching operation is surely performed at the start including positioning and synchronous operation, and the modulation rate is gradually increased after the sensorless switching, and the operation is performed by the two-phase line modulation during the normal operation. Reducing switching loss. At this time, as described above, as in the case of the modulation between the two-phase lines, among the three phases, the voltage of the 60-degree period that is the smallest phase application voltage or the largest phase application voltage is the minimum or maximum peak of the phase. It is equal to the voltage, and the difference between the voltage and the sinusoidal voltage before the interline modulation is added to the other phases to determine the three-phase applied voltage. After that, by gradually increasing the modulation rate to the limit of the modulation rate and shifting to the two-phase line modulation, there is no shock when switching, etc. Realize the transition.
(実施例3)
図14は、本発明を適用した同期モータ制御装置のインバータ回路2と制御回路4を1つのパッケージ内に内蔵したモジュール100の模式図の一例である。本発明の同期モータ制御装置の制御回路を使用すると、高効率運転可能でかつ小型で良好なモータ制御モジュールが実現できる。
Example 3
FIG. 14 is an example of a schematic diagram of a
図15は、本発明を適用した制御回路4を含む同期モータ制御装置110aを圧縮機の駆動源として備えた空調機110の模式図の一例である。本発明の同期モータ制御装置を圧縮機の駆動源として使用すると、高効率運転可能でかつ良好な空調機が実現できる。
FIG. 15 is an example of a schematic diagram of an
同様に、図16は、本発明を適用した制御回路4を含む同期モータ制御装置120aを冷蔵庫用の圧縮機の駆動源として備えた冷蔵庫120の模式図の一例である。本発明のモータ制御装置を冷蔵庫用の圧縮機の駆動源として使用すると、高効率運転可能でかつ良好な冷蔵庫が実現できる。
Similarly, FIG. 16 is an example of a schematic diagram of a
また、図17は、本発明を適用したモータ制御装置を洗濯機の駆動源として備えた洗濯機130の模式図である。本発明のモータ制御装置を洗濯機の駆動源として使用すると、高効率運転可能でかつ良好な洗濯機の一例を実現できる。
FIG. 17 is a schematic diagram of a
また、図18は、本発明を適用したモータ制御装置140aを掃除機の駆動源として備えた掃除機140の模式図の一例である。本発明を適用した同期モータの制御装置を掃除機の駆動源として使用すると、高効率運転可能でかつ良好な掃除機が実現できる。
FIG. 18 is an example of a schematic view of a cleaner 140 provided with a
また、本発明を適用したモータ制御装置を駆動源とすると、高効率運転可能でかつ良好な機器を実現できる。 Further, when the motor control device to which the present invention is applied is used as a drive source, it is possible to realize a high-efficiency operation and good equipment.
本発明によれば、2相線間変調又は3相線間変調を回転数によって切り替えることにより、どの回転領域においても、高効率なモータ駆動を実現できる。 According to the present invention, high-efficiency motor driving can be realized in any rotation region by switching between two-phase line modulation or three-phase line modulation depending on the number of rotations.
そして、このモータ制御装置を動力源として使用することにより、高効率で高品質な空調機、冷蔵庫、洗濯機、掃除機、その他機器を実現することができる。 And by using this motor control device as a power source, a highly efficient and high quality air conditioner, refrigerator, washing machine, vacuum cleaner, and other devices can be realized.
1…直流電源、2…インバータ回路、3…同期モータ、4…制御回路、5…ドライバ、6…モータ電流センサ、 6a…モータ電流センサの出力信号、7…A/D変換器、7a…A/D変換値、8…モータ電流情報部、8a…モータ電流情報、9…3φ/dq座標変換部、9a…d軸q軸電流、10…モータ印加電圧生成部、10a…d軸q軸電圧指令情報、11…d軸q軸電圧/電圧大きさV1変換部、11a…モータ印加電圧大きさV1情報、12…電圧大きさV1/変調率KHV1変換部、12a…変調率KHV1情報、13…変調率KHV1/変調率VdVq変換部、13a…変調率VdVq情報、14…dq/3φ逆変換部、14a…3相モータ印加電圧情報、15…線間変調部、15a…線間変調後の3相モータ印加電圧情報、16…PWM信号生成タイマ情報部、16a…PWM信号生成タイマ情報、17…PWM信号生成部、17a…PWM信号、18…モータ定数部、18a…モータ定数情報、19…キャリア周期情報生成部、19a…キャリア周期情報、20…基準変調率生成部、20a…基準変調率情報、21…2相3相判定部、21a…2相3相判定情報。
DESCRIPTION OF
Claims (6)
3相印加電圧が電気角60度期間に、何れかの相で前記スイッチング素子がスイッチングを行なうか行わないかを、回転数によって切り替えることを特徴とするモータ制御装置。 Motor control having a drive circuit that drives a switching element of a three-phase PWM inverter that converts direct current into alternating current, and a control unit that outputs a three-phase PWM signal obtained by comparing the three-phase applied voltage and a carrier wave to the drive circuit In the device
A motor control device characterized by switching whether or not the switching element performs switching in any phase during a period in which a three-phase applied voltage is at an electrical angle of 60 degrees.
A vacuum cleaner comprising the motor control device according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004132384A JP2005318702A (en) | 2004-04-28 | 2004-04-28 | Motor controller and apparatus employing it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004132384A JP2005318702A (en) | 2004-04-28 | 2004-04-28 | Motor controller and apparatus employing it |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005318702A true JP2005318702A (en) | 2005-11-10 |
Family
ID=35445533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004132384A Pending JP2005318702A (en) | 2004-04-28 | 2004-04-28 | Motor controller and apparatus employing it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005318702A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008104327A (en) * | 2006-10-20 | 2008-05-01 | Denso Corp | Controller of three-phase rotary machine |
JP2010508536A (en) * | 2006-11-07 | 2010-03-18 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Current measuring method and current measuring apparatus |
CN102761308A (en) * | 2012-07-24 | 2012-10-31 | 平江县三湘电子电器科技开发有限公司 | AC-DC multi-type single-phase motor of molecular integrated circuit |
EP2536019A1 (en) * | 2011-06-17 | 2012-12-19 | Diehl AKO Stiftung & Co. KG | Method for controlling an inverter |
US9124195B2 (en) | 2011-06-17 | 2015-09-01 | Diehl Ako Stiftung & Co. Kg | Method for controlling a converter |
JP2018125913A (en) * | 2017-01-30 | 2018-08-09 | 三菱重工サーマルシステムズ株式会社 | Motor control device, rotary compressor system and motor control method |
-
2004
- 2004-04-28 JP JP2004132384A patent/JP2005318702A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008104327A (en) * | 2006-10-20 | 2008-05-01 | Denso Corp | Controller of three-phase rotary machine |
JP4715715B2 (en) * | 2006-10-20 | 2011-07-06 | 株式会社デンソー | Control device for three-phase rotating machine |
JP2010508536A (en) * | 2006-11-07 | 2010-03-18 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Current measuring method and current measuring apparatus |
JP2013068639A (en) * | 2006-11-07 | 2013-04-18 | Robert Bosch Gmbh | Method and device for measuring current |
EP2536019A1 (en) * | 2011-06-17 | 2012-12-19 | Diehl AKO Stiftung & Co. KG | Method for controlling an inverter |
US9124195B2 (en) | 2011-06-17 | 2015-09-01 | Diehl Ako Stiftung & Co. Kg | Method for controlling a converter |
CN102761308A (en) * | 2012-07-24 | 2012-10-31 | 平江县三湘电子电器科技开发有限公司 | AC-DC multi-type single-phase motor of molecular integrated circuit |
JP2018125913A (en) * | 2017-01-30 | 2018-08-09 | 三菱重工サーマルシステムズ株式会社 | Motor control device, rotary compressor system and motor control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7839113B2 (en) | Apparatus and method for driving synchronous motor | |
JP5853097B2 (en) | Three-phase synchronous motor drive device, integrated three-phase synchronous motor, positioning device and pump device | |
JP3681318B2 (en) | Synchronous motor control device and vehicle using the same | |
Niasar et al. | A novel position sensorless control of a four-switch, brushless DC motor drive without phase shifter | |
US20140077738A1 (en) | Driving System For Synchronous Motor | |
JP2004282969A (en) | Control apparatus and method for ac motor | |
JP2007028724A (en) | Motor driving unit | |
JP5505042B2 (en) | Neutral point boost DC-three-phase converter | |
Sundeep et al. | Robust position sensorless technique for a PMBLDC motor | |
JP2004064909A (en) | Motor control device | |
JP5375715B2 (en) | Neutral point boost DC-three-phase converter | |
JP2008220117A (en) | Ac motor controller | |
JP4349890B2 (en) | Motor control device and equipment using the same | |
JP2011109797A (en) | Motor drive device for compressor | |
JP5223280B2 (en) | Turbocharger control system with electric motor | |
JP4542797B2 (en) | Control device for synchronous machine | |
JP2005318702A (en) | Motor controller and apparatus employing it | |
JP4826550B2 (en) | Turbocharger control system with electric motor | |
JP2007215369A (en) | Motor driving controller | |
Ebadpour et al. | A cost-effective position sensorless control for four-switch three-phase brushless DC motor drives using single current sensor | |
JP2012090429A (en) | Motor drive device | |
Fernandes et al. | Speed sensorless PMSM motor drive system based on four-switch three-phase converter | |
JP4147883B2 (en) | Motor control device | |
JP2003209999A (en) | Motor controller | |
JP2007312447A (en) | Motor drive device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060509 |