[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005315550A - Refrigerant flow control device - Google Patents

Refrigerant flow control device Download PDF

Info

Publication number
JP2005315550A
JP2005315550A JP2004162577A JP2004162577A JP2005315550A JP 2005315550 A JP2005315550 A JP 2005315550A JP 2004162577 A JP2004162577 A JP 2004162577A JP 2004162577 A JP2004162577 A JP 2004162577A JP 2005315550 A JP2005315550 A JP 2005315550A
Authority
JP
Japan
Prior art keywords
refrigerant
connection port
control unit
control
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004162577A
Other languages
Japanese (ja)
Inventor
Itsuro Sakai
逸朗 酒井
Masao Yoshida
征夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YSD KK
Original Assignee
YSD KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YSD KK filed Critical YSD KK
Priority to JP2004162577A priority Critical patent/JP2005315550A/en
Publication of JP2005315550A publication Critical patent/JP2005315550A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simplify a device by integrally constructing and incorporating all structural elements for basic control of an electronic expansion valve in a same housing while solving the problems that the energy saving control of a refrigerator or an air-conditioner depends on a degree of superheating refrigerant, the structural elements required for controlling the degree of superheating the refrigerant currently use combination of products made by different manufacturers to preclude complete control with control parameters different each time, and piping and wiring work is complicated at an installation site for the refrigerator/air-conditioner. <P>SOLUTION: The device executes the control of the degree of superheating of the refrigerant with the control of a closed loop in the housing. An electronic control part is wired with simple conductors of a power line and a serial line. Thus, communication can be carried out between the electronic control part and an external device through the power line and the serial line. Operation in coordination with an external refrigerator/air-conditioner can also be performed through a serial communication line. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

発明の詳細な説明Detailed Description of the Invention

発明に属する技術分野Technical field belonging to the invention

本発明は、冷凍・空調システムに組み込まれる膨張弁制御駆動を行う冷媒流量制御装置に関する。大型ビルの中心部では冷房を必要とする期間が拡大していることから、本発明は空調用冷凍機にも適用可能分野である。  The present invention relates to a refrigerant flow rate control device that performs expansion valve control drive incorporated in a refrigeration / air conditioning system. Since the period for which cooling is required is expanding in the center of a large building, the present invention is applicable to air-conditioning refrigerators.

最近は、世界的な省エネルギーが叫ばれ、CO排出量の減量の実現が大きな社会問題となっている。このような環境の中では、稼動数の多い冷凍・空調機の省エネルギー運転は重要な課題となっている。
外気温の朝昼の変化、季節の変化に対応して、省エネルギーの基準を示す成績係数の最大化をはかる冷凍空調機の最適な制御、すなわち最小の消費電力で冷凍機を駆動することが求められている。
Recently, global energy conservation has been screamed, and the reduction of CO 2 emissions has become a major social problem. In such an environment, energy-saving operation of refrigeration / air conditioners with a large number of operations is an important issue.
In response to changes in the outside air temperature in the morning and noon and seasonal changes, optimum control of the refrigeration air conditioner that maximizes the coefficient of performance indicating the energy saving standard, that is, driving the refrigerator with minimum power consumption is required. It has been.

近年、冷凍機の消費電力の低減を図るため、圧縮機の液冷媒の吸入を防止して、最小の冷媒過熱度で運転することが重要視されつつある。
具体的な手段として、センサの信号から過熱度を正確に検知し、冷却の負荷変動が生じても要求の過熱度を保持する方法として、膨張弁の弁開度をステッピングモータ等の電動機で駆動するタイプのリニア電動式膨張弁が実用化されつつある。
In recent years, in order to reduce the power consumption of a refrigerator, it has been emphasized that the refrigerant is prevented from being sucked and is operated at a minimum refrigerant superheat degree.
As a specific means, the degree of superheat is accurately detected from the sensor signal and the required degree of superheat is maintained even if the cooling load fluctuates, and the valve opening of the expansion valve is driven by an electric motor such as a stepping motor. This type of linear electric expansion valve is being put into practical use.

しかし現在、実用化されている冷凍・空調システムでは、電動式弁と制御部は物理的に分離され、なおかつ過熱度を検知するための冷媒温度、冷媒圧力はそれぞれセンサを経由して電気信号に変換されて別々に制御部に接続されている。これらはいずれも冷凍空調機の設置現場で、異なったメーカ間の製品を用いて複雑な配管、配線の工事を必要とするため、多大な工事費と誤配線・断線等による信頼性の低下を生じている。  However, in the refrigeration and air conditioning systems that are currently in practical use, the motorized valve and the control unit are physically separated, and the refrigerant temperature and refrigerant pressure for detecting the degree of superheat are converted into electrical signals via sensors. It is converted and connected to the control unit separately. All of these require installation of complicated piping and wiring using products from different manufacturers at the refrigeration and air-conditioning installation site, reducing reliability due to significant construction costs and incorrect wiring and disconnection. Has occurred.

従来の方式の一例として、図2に電動弁の例を示す。
蒸発器23の出口の低圧冷媒蒸気温度をサーミスタ24で検知し、設定値と比較して電動膨張弁22をON/OFFし、PWM制御によって低圧液冷媒の流量を制御するものである。
電動膨張弁22が電磁弁によるON/OFF動作のため、弁座等の寿命の問題がある。また、低圧冷媒蒸気圧を検知していないため、正確な過熱度を知ることが困難という欠点がある。
As an example of a conventional system, FIG. 2 shows an example of a motor operated valve.
The low-pressure refrigerant vapor temperature at the outlet of the evaporator 23 is detected by the thermistor 24, and the electric expansion valve 22 is turned on / off in comparison with the set value, and the flow rate of the low-pressure liquid refrigerant is controlled by PWM control.
Since the electric expansion valve 22 is turned on and off by a solenoid valve, there is a problem of the life of the valve seat and the like. Moreover, since the low-pressure refrigerant vapor pressure is not detected, there is a drawback that it is difficult to know the exact degree of superheat.

従来の膨張弁の2番目の例として、図3に感温式膨張弁の例を示し、図4には感温式膨張弁本体の構造を示す。本体は凝縮器と蒸発器32を結合する冷媒配管の途中に設置され、感温部33は蒸発器出口配管の冷媒温度を検出し、特に蒸発器内部の冷媒圧力損失が大きい場合には、外部均圧として配管で冷媒圧力を膨張弁31に導いている。
感温部33では、蒸発温度を−5.6℃で、過熱度を5.6℃にすることで圧縮機の吸入口の冷媒ガス温度が0℃で膨張弁31が作動することを示している。
As a second example of a conventional expansion valve, FIG. 3 shows an example of a temperature-sensitive expansion valve, and FIG. 4 shows the structure of a temperature-sensitive expansion valve body. The main body is installed in the middle of the refrigerant pipe connecting the condenser and the evaporator 32, and the temperature sensing unit 33 detects the refrigerant temperature in the evaporator outlet pipe, and particularly when the refrigerant pressure loss inside the evaporator is large, The refrigerant pressure is led to the expansion valve 31 by piping as a pressure equalization.
The temperature sensing unit 33 indicates that the expansion valve 31 is operated when the refrigerant gas temperature at the suction port of the compressor is 0 ° C. by setting the evaporation temperature to −5.6 ° C. and the superheat degree to 5.6 ° C. Yes.

なお最近では、冷蔵冷凍用の冷凍機は年間を通して運転されることから、少しでも駆動エネルギーの最小化を図るためには、蒸発器出口の過熱度の最小化を図る必要がある。すなわち、蒸発器の伝熱効率と圧縮機駆動動力の低減を図るために、電動弁とその電子制御を組み合わせにして効果を上げる方向にある。  Recently, since refrigerators for refrigeration are operated throughout the year, it is necessary to minimize the degree of superheat at the evaporator outlet in order to minimize the drive energy. That is, in order to reduce the heat transfer efficiency of the evaporator and the compressor driving power, the motor valve and its electronic control are combined to increase the effect.

発明が解決しようとする課題Problems to be solved by the invention

本発明が解決しようとする課題は以下のようなものである。
1.電動弁の配線、配管の簡素化
冷凍・空調機の設置現場における従来の異なったメーカ間の製品を用いた複雑な配管、配線の工事を省略することで、工事の簡素化による工事コストの低下、誤配線などをなくすことによる信頼性の向上が期待できる。
Problems to be solved by the present invention are as follows.
1. Simplification of wiring and piping for motorized valves By omitting complicated piping and wiring work using products from different manufacturers on the refrigeration / air conditioner installation site, construction costs are reduced by simplifying the work. Improvement of reliability can be expected by eliminating miswiring.

2.冷凍・空調システムにおける高度な省エネルギー制御の実現
省エネルギーは冷媒過熱度に依存し、その冷媒過熱度は蒸発器出口の低圧冷媒の温度と圧力をパラメータとする関数として計算できる。
冷媒過熱度制御のために必要な構成要素は、現状では異なったメーカ間の製品を組み合わせて用いており、制御パラメータがそのつど異なる等、完全な制御を行うには問題がある。
2. Realization of advanced energy-saving control in refrigeration and air-conditioning systems Energy-saving depends on the degree of refrigerant superheat, which can be calculated as a function of the temperature and pressure of the low-pressure refrigerant at the outlet of the evaporator.
The components necessary for controlling the degree of superheating of the refrigerant are currently used in combination with products from different manufacturers, and there are problems in performing complete control, such as different control parameters.

3.冷凍・空調機の初期起動
冷凍機が最初に起動するとき、または長い期間停止した後に起動する場合は、庫内は常温である。そのため、冷凍機駆動電動機負荷は過大となり、通常は圧縮機の吸入配管に冷媒流れを一時的に絞り、過負荷を避けて定常運転にいたるようにしている。具体的な低負荷起動手段が望まれる。
3. Initial start-up of the refrigerator / air conditioner When the refrigerator is started for the first time or after it has been stopped for a long period of time, the inside of the refrigerator is at room temperature. For this reason, the load on the refrigerator driving motor is excessive, and normally the refrigerant flow is temporarily restricted in the intake pipe of the compressor so as to avoid the overload and reach the steady operation. Specific low load starting means is desired.

課題を解決するための手段Means for solving the problem

上記の課題に対して、本発明では以下の工夫、手段によってその解決を合理的に図るものである。
また、従来は、別々の構成要素を組み合わせて電子膨張弁システムを構成していたが、本発明によれば、これらを一体化したマクロなシステム・コンポーネントとして扱うことが可能となる。
In the present invention, the above-described problems are rationally solved by the following devices and means.
Conventionally, an electronic expansion valve system is configured by combining separate components. However, according to the present invention, these components can be handled as an integrated macro system component.

1.構成要素の一体化による簡素化
(1)構成要素の一体化による簡素化
従来、冷凍・空調機の設置現場で、別々の構成要素を用いて複雑な配管、配線の工事を行っていたために問題が多かった。本発明では、図1に示すように、同一ハウジング内に基本的な電子膨張弁制御を行うための構成要素をすべて一体構造化、内臓化することによって著しく装置の簡素化を図ることができる。
1. Simplification by integration of components (1) Simplification by integration of components Previously, complicated piping and wiring work was performed using separate components at the refrigeration / air conditioner installation site. There were many. In the present invention, as shown in FIG. 1, all the components for performing basic electronic expansion valve control are integrated and built in the same housing, so that the apparatus can be greatly simplified.

(2)制御部の簡素化
最近は集積回路の対環境性が向上し、−40℃における作動も可能なICが使用されていることから、冷媒流量制御装置の制御部を弁駆動部と同一の温度環境に設置することが可能となっている。
このため、高度な省エネルギー制御の実現するためのマイクロプロセッサ、FPGA、ASIC等の電子コントローラを内臓化することができる。
(2) Simplification of control unit Recently, the integrated circuit is improved in environmental friendliness, and an IC capable of operating at -40 ° C is used. Therefore, the control unit of the refrigerant flow control device is the same as the valve drive unit. It is possible to install in the temperature environment.
For this reason, electronic controllers, such as a microprocessor, FPGA, and ASIC, for realizing advanced energy saving control can be incorporated.

(3)配線の簡素化、情報通信化
従来は、構成要素が別々のため、各構成要素間の配線に問題があったが、本発明の請求項2により、電子制御部の配線は電源線とシリアルラインという簡単な導線である。この電力線とシリアル配線を通して電子制御部と外部装置間との通信を行うことができる。このシリアル通信回線を通して外部の冷凍・空調機との協調運転も可能となる。
さらに、蒸発器入口部と出口部を装置内に組み込んだことで、過熱度の信号を取得するためのセンサ配線を省略することが出来ている。
(3) Simplification of wiring and information communication Conventionally, since the components are separate, there is a problem in the wiring between the components. However, according to claim 2 of the present invention, the wiring of the electronic control unit is a power line. And a simple conductor called a serial line. Communication between the electronic control unit and the external device can be performed through the power line and the serial wiring. Through this serial communication line, cooperative operation with an external refrigeration / air conditioner is also possible.
Furthermore, the sensor wiring for acquiring the superheat degree signal can be omitted by incorporating the evaporator inlet and outlet in the apparatus.

2.高度な省エネルギー制御の実現
冷媒過熱度制御のために必要なすべての構成要素:温度センサと圧力センサ、電子制御部、電動弁を、同一ハウジング内に収納し、制御システムを構成する。これらの構成要素を用いて省エネルギーを実現する冷媒過熱度制御を、ハウジング内の閉ループ制御で実行することが可能となる。
また、構成要素の特性はすべて最適なパラメータにすることができ、完全な冷媒過熱度制御を行うことができる。
2. Realization of advanced energy-saving control All components necessary for refrigerant superheat control: temperature sensor, pressure sensor, electronic control unit, and motor-operated valve are housed in the same housing to constitute a control system. Refrigerant superheat degree control that realizes energy saving using these components can be executed by closed loop control in the housing.
Further, all the characteristics of the constituent elements can be set to optimum parameters, and complete control of the refrigerant superheat can be performed.

3.冷凍空調機の初期起動
冷凍機が最初に起動するとき、または長い期間停止した後に起動する場合は、圧縮機駆動電動機の消費電力を検知し、過負荷を避けるように電動弁の開度を制御することが可能となる。
3. Initial start-up of refrigeration air conditioner When the refrigeration machine starts up for the first time or after it has been stopped for a long period of time, it detects the power consumption of the compressor drive motor and controls the opening of the motorized valve to avoid overloading It becomes possible to do.

本発明によれば、従来、ばらばらだった冷凍・空調機の省エネルギー制御のための各構成要素を同一ハウジング内に一体構造化することによって、現場での設置工事が大幅に簡素化され、また工事の信頼性を向上させることができる。
さらに、省エネルギー制御の構成要素はすべてハウジング内に一体構造化されており、効率のよい省エネルギーを実現させることができる。このため、システム・コンポーネントとして機能させることが出来、ポータビリティも優れていることから、省エネルギー制御機器として、いたるところに容易に取り付け可能である。
取り付け工事が簡単で、省エネルギー制御に優れた本発明の冷媒流量制御装置は、社会的なCO排出量の減量の実現に大きく貢献するものと期待され、その効果、貢献は計りしれないものがあると予測される。
According to the present invention, by constructing each component for energy saving control of refrigeration and air conditioners, which has been conventionally separated, in an integrated structure in the same housing, installation work on site is greatly simplified. Reliability can be improved.
Further, all the components of the energy saving control are integrated in the housing, and efficient energy saving can be realized. For this reason, since it can function as a system component and has excellent portability, it can be easily installed everywhere as an energy-saving control device.
The refrigerant flow control device of the present invention, which is easy to install and excellent in energy saving control, is expected to greatly contribute to the realization of a reduction in social CO 2 emissions, and its effects and contributions are immeasurable. Expected to be.

本発明の実施の形態を実施例に基づき図面を参照して説明する。
図1に冷凍・空調機に冷媒流量制御装置1を設置した場合の構成を示す。
冷媒流量制御装置1は、レシーバ2からの高圧液冷媒が蒸発器3への低圧液冷媒を流量制御するためのものである。基本的に、図3に示す従来の膨張弁と同様の機能を有する。
An embodiment of the present invention will be described based on an example with reference to the drawings.
FIG. 1 shows a configuration when the refrigerant flow rate control device 1 is installed in a refrigeration / air conditioner.
The refrigerant flow control device 1 is for the high-pressure liquid refrigerant from the receiver 2 to control the flow of the low-pressure liquid refrigerant to the evaporator 3. Basically, it has the same function as the conventional expansion valve shown in FIG.

図1の弁14の機能は、蒸発器3の出口部の過熱度を所定の値を保持するように、低圧液冷媒の流量を制御するためのものである。
正確な過熱度を検知するためには、蒸発器出口部の低圧冷媒の圧力と温度を同時に計測することが必要である。
The function of the valve 14 in FIG. 1 is to control the flow rate of the low-pressure liquid refrigerant so that the degree of superheat at the outlet of the evaporator 3 is maintained at a predetermined value.
In order to detect an accurate degree of superheat, it is necessary to simultaneously measure the pressure and temperature of the low-pressure refrigerant at the evaporator outlet.

本発明では図1において、蒸発器3の出口部の低圧冷媒の圧力、温度を検知するために、それぞれ圧力センサ4、温度センサ5が装備されている。その2つのセンサから検知した冷媒圧力、冷媒温度に対応した信号が冷媒流量制御装置の制御部6に入力される。
冷凍機に使用されている冷媒の種類は予め決まっていることから、そのパラメータと前述のセンサ信号から電子制御部6で過熱度ΔSが計算できる。予め過熱度の目標値ΔSは与えられていることから、現在の過熱度と目標過熱度との差Δ(=ΔS−ΔS)の正負に応じて、冷媒流量制御装置1の弁開度の増減し、フィードバック制御を図る。
従来の電動弁は、弁の外側に設置される制御部とは個別の導線で配線されている。
In the present invention, in FIG. 1, a pressure sensor 4 and a temperature sensor 5 are provided for detecting the pressure and temperature of the low-pressure refrigerant at the outlet of the evaporator 3, respectively. Signals corresponding to the refrigerant pressure and the refrigerant temperature detected from the two sensors are input to the control unit 6 of the refrigerant flow control device.
Since the type of refrigerant used in the refrigerator is determined in advance, the degree of superheat ΔS can be calculated by the electronic control unit 6 from the parameters and the sensor signal described above. Since the target value ΔS 0 of the superheat degree is given in advance, the valve opening of the refrigerant flow control device 1 is opened according to the sign of the difference Δ 2 (= ΔS−ΔS 0 ) between the current superheat degree and the target superheat degree. Increase / decrease the degree of feedback control.
The conventional motor-operated valve is wired with a separate conductor from the control unit installed outside the valve.

冷媒流量制御装置1においては、電子制御部6、ステッピングモータ13、圧力センサ4、および温度センサ5が弁とともに一体として搭載されている。 このため、現地での配線工事は不要となり、誤配線、断線等による不具合をなくすことができ、装置の信頼性を大幅に向上させることができる。
その他に、高圧液冷媒の接続口8、減圧後の低圧冷媒蒸気の接続口9、蒸発器出口部に接続される冷媒配管との接続口10および、冷媒圧縮機の冷媒吸入口への接続口11は一体的に構成されている。このため、前述の現地における導線の省略と同時に、冷媒配管も容易となる。
In the refrigerant flow control device 1, an electronic control unit 6, a stepping motor 13, a pressure sensor 4, and a temperature sensor 5 are mounted together with a valve. This eliminates the need for on-site wiring work, eliminates problems such as erroneous wiring and disconnection, and greatly improves the reliability of the apparatus.
In addition, the connection port 8 for the high-pressure liquid refrigerant, the connection port 9 for the low-pressure refrigerant vapor after decompression, the connection port 10 with the refrigerant pipe connected to the evaporator outlet, and the connection port to the refrigerant suction port of the refrigerant compressor 11 is integrally formed. For this reason, simultaneously with omission of the above-mentioned conducting wire in the field, refrigerant piping becomes easy.

制御部6には、電源線2本ならびにシリアルラインという簡単な導線が用意されている。弁開度、センサ情報、各種アラーム信号、モニタリングおよび制御に必要な各種定数を、電子制御部6と外部装置間とでシリアル配線を通して通信できる。さらに、このシリアル配線を通して電子制御部と外部装置間との通信を行うことができ、外部の冷凍・空調機との協調運転も可能となる。  The control unit 6 is provided with two power lines and a simple conductive line called a serial line. Valve opening, sensor information, various alarm signals, and various constants necessary for monitoring and control can be communicated between the electronic control unit 6 and an external device through serial wiring. Furthermore, communication between the electronic control unit and the external device can be performed through the serial wiring, and cooperative operation with an external refrigeration / air conditioner is also possible.

次に冷凍機の起動から定常運転に至るまでの冷媒流量制御装置1の作動内容について説明する。最初に圧縮機が起動した結果、作動直前までは閉状態になっていた機械部の絞り弁開度は、所定の開度になる。当開度は過熱度を大きめに設定させる。この値は、圧縮機の液冷媒の吸入を防止する開度に対応している。
さらに、冷凍機が最初に起動するとき、または長い期間停止した後に起動する場合は、圧縮機駆動電動機の消費電力を検知し、過負荷を避けるように電子膨張弁の開度を制御することが可能となる。なお、駆動電動機の消費電力の情報は通常の回転式電力積算計の回転速度を検知することで、瞬間瞬間の圧縮機駆動電動機負荷を把握することが出来る。
Next, the operation content of the refrigerant flow control device 1 from the start of the refrigerator to the steady operation will be described. As a result of starting the compressor for the first time, the throttle valve opening degree of the machine part which has been closed until immediately before the operation becomes a predetermined opening degree. The opening degree is set to a higher degree of superheat. This value corresponds to the opening degree that prevents the liquid refrigerant of the compressor from being sucked.
Furthermore, when the refrigerator is started for the first time or after it has been stopped for a long period of time, the power consumption of the compressor drive motor can be detected and the opening of the electronic expansion valve can be controlled to avoid overloading. It becomes possible. In addition, the information of the power consumption of a drive motor can grasp | ascertain the compressor drive motor load of the instantaneous moment by detecting the rotational speed of a normal rotary electric power integrator.

次に冷蔵庫内の空気温度の冷却と共に、圧力センサ4、温度センサ5からの情報から現在の過熱度が制御部6で計算され、フィードバック制御により、目標過熱度に対応するように弁開度がコントロールされる。  Next, along with the cooling of the air temperature in the refrigerator, the current superheat degree is calculated by the control unit 6 from the information from the pressure sensor 4 and the temperature sensor 5, and the valve opening degree is adjusted to correspond to the target superheat degree by feedback control. Controlled.

なお冷却中には、蒸発器を通過する冷蔵庫内空気中の水分が冷却されて、結露し凝固に至ることがある。このときには、空気の流れの抵抗が増大することで蒸発器の性能劣化が生ずる。この蒸発器フィン表面の氷を溶かし、除くことを、デフロストと呼ぶ。当デフロスト中は通常の冷却運転は停止することから、デフロストの信号に対応して、デフロストが終了するまで弁開度は所定の値を保持することとなる。なお、デフロスト方式には電気ヒータ方式とか圧縮機からの高圧高温冷媒ガスを直接蒸発器に流すホットガス方式があるが、その方式に対応してデフロスト中の弁開度は制御される。  During cooling, moisture in the air in the refrigerator passing through the evaporator is cooled, which may cause condensation and solidification. At this time, the performance of the evaporator is deteriorated by increasing the resistance of the air flow. Melting and removing the ice on the evaporator fin surface is called defrosting. Since the normal cooling operation stops during the defrosting, the valve opening degree is maintained at a predetermined value until the defrosting is completed in response to the defrost signal. The defrost method includes an electric heater method and a hot gas method in which a high-pressure and high-temperature refrigerant gas from a compressor is directly supplied to an evaporator. The valve opening degree in the defrost is controlled according to the method.

冷媒流量制御装置の冷凍・空調機システムに組み込まれた構成を示す図である。It is a figure which shows the structure integrated in the refrigerating / air-conditioner system of the refrigerant | coolant flow control apparatus. 現状の電動式膨張弁の構成を示す図である。It is a figure which shows the structure of the present electric expansion valve. 従来の感温式膨張弁が冷凍機に組み込まれた構成を示す図である。It is a figure which shows the structure by which the conventional temperature-sensitive type expansion valve was integrated in the refrigerator. 従来の感温式膨張弁本体の構造を示す図である。It is a figure which shows the structure of the conventional temperature-sensitive type expansion valve main body.

符号の説明Explanation of symbols

1 冷媒流量制御装置
2 レシーバ
3 蒸発器
4 圧力センサ
5 温度センサ
6 電子制御部
7 ハウジング
8 接続口
9 接続口
10 接続口
11 接続口
12 導線
13 ステッピングモータ
14 弁
21 トランス
22 電動膨張弁
23 蒸発器
24 サーミスタ
25 凝縮器
26 吐出管
27 圧縮機
28 吸入管
31 膨張弁
32 蒸発器
33 感温部
41 温度駆動部
42 球弁
43 冷媒入口
44 冷媒出口
45 過熱度調整用スプリング
46 スプリング固定部品
47 ケーシング
48 調整キャップ
49 調整ネジ
50 感温部
DESCRIPTION OF SYMBOLS 1 Refrigerant flow control apparatus 2 Receiver 3 Evaporator 4 Pressure sensor 5 Temperature sensor 6 Electronic control part 7 Housing 8 Connection port 9 Connection port 10 Connection port 11 Connection port 12 Conductor 13 Stepping motor 14 Valve 21 Transformer 22 Electric expansion valve 23 Evaporator 24 Thermistor 25 Condenser 26 Discharge Pipe 27 Compressor 28 Suction Pipe 31 Expansion Valve 32 Evaporator 33 Temperature Sensing Part 41 Temperature Drive Part 42 Ball Valve 43 Refrigerant Inlet 44 Refrigerant Outlet 45 Superheat Adjusting Spring 46 Spring Fixing Parts 47 Casing 48 Adjustment cap 49 Adjustment screw 50 Temperature sensor

Claims (4)

図1冷凍・空調機システムに組み込まれた冷媒流量制御装置1において、電子制御部6からの電気信号により冷媒液の流量を可変制御できるステッピングモータ13によって駆動される弁14と、請求範囲外のレシーバ2に接続される接続口8と、圧縮機吸入口に接続される接続口11と、請求範囲外の蒸発器3の入口への接続口9とその出口に接続される接続口10、および接続口10と接続口11の間に配置される圧力センサ4と温度センサ5をハウジング7内の配管を通して電子制御部6に配線する構成とを、それぞれハウジング7内に収納一体化したことを特徴とする冷媒流量制御装置。  In the refrigerant flow control device 1 incorporated in the refrigeration / air conditioner system in FIG. 1, a valve 14 driven by a stepping motor 13 that can variably control the flow rate of the refrigerant liquid by an electric signal from the electronic control unit 6, A connection port 8 connected to the receiver 2, a connection port 11 connected to the compressor suction port, a connection port 9 to the inlet of the evaporator 3 outside the claims and a connection port 10 connected to the outlet, and A structure in which the pressure sensor 4 and the temperature sensor 5 arranged between the connection port 10 and the connection port 11 are wired to the electronic control unit 6 through the piping in the housing 7 is housed and integrated in the housing 7 respectively. A refrigerant flow rate control device. 請求項1で示される電子制御部6には、電力を供給する電源線と外部装置と通信を行うシリアル配線から成る導線12用のコネクタを持ち、膨張弁開度、センサ情報、各種アラーム信号および制御に必要な各種定数を、電子制御部6と外部装置間とでシリアル配線を通して通信できることを特徴とする請求項1に記載する冷媒流量制御装置。  The electronic control unit 6 shown in claim 1 has a connector for a lead wire 12 composed of a power supply line for supplying power and a serial wiring for communicating with an external device, and the expansion valve opening, sensor information, various alarm signals, 2. The refrigerant flow rate control device according to claim 1, wherein various constants necessary for control can be communicated between the electronic control unit 6 and an external device through serial wiring. 冷凍空調機システムの省エネルギーは冷媒過熱度に依存し、その冷媒過熱度は接続口10の冷媒の温度と圧力の関数として計算できる。蒸発器3の出口部の温度センサ5と圧力センサ4の信号を電気信号に変換して、電子制御部6に送り、省エネルギーを実現するための最小の冷媒過熱度を保持する膨張弁14の開度を最適に決定し、ステッピングモータ13を駆動・制御することを、同一ハウジング7内に組み込まれた構成要素によって閉ループで実行できることを特徴とする請求項1に記載する冷媒流量制御装置。  The energy saving of the refrigeration air conditioner system depends on the refrigerant superheat degree, and the refrigerant superheat degree can be calculated as a function of the temperature and pressure of the refrigerant at the connection port 10. The signals of the temperature sensor 5 and the pressure sensor 4 at the outlet of the evaporator 3 are converted into electric signals and sent to the electronic control unit 6 to open the expansion valve 14 that maintains the minimum refrigerant superheat degree for realizing energy saving. The refrigerant flow rate control device according to claim 1, wherein determining the degree optimally and driving and controlling the stepping motor 13 can be executed in a closed loop by components incorporated in the same housing 7. 電源投入開始時の運転では、冷蔵庫内は常温から冷凍機の運転が開始されるため、圧縮機への冷媒入口圧力は過大となり、圧縮機駆動電動機は過負荷となる。それを避ける方法として、電動機の消費電力を電気信号に変換し、導線12を通して電子制御部6に入力し、適度な初期設定に対応する膨張弁開度を与えることを特徴とする請求項1に記載する冷媒流量制御装置。  In the operation at the start of turning on the power, since the operation of the refrigerator is started from room temperature in the refrigerator, the refrigerant inlet pressure to the compressor becomes excessive, and the compressor drive motor becomes overloaded. As a method for avoiding this, the electric power consumption of the motor is converted into an electric signal, which is input to the electronic control unit 6 through the conducting wire 12 to give an expansion valve opening corresponding to an appropriate initial setting. A refrigerant flow control device to be described.
JP2004162577A 2004-04-29 2004-04-29 Refrigerant flow control device Pending JP2005315550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004162577A JP2005315550A (en) 2004-04-29 2004-04-29 Refrigerant flow control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004162577A JP2005315550A (en) 2004-04-29 2004-04-29 Refrigerant flow control device

Publications (1)

Publication Number Publication Date
JP2005315550A true JP2005315550A (en) 2005-11-10

Family

ID=35443156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004162577A Pending JP2005315550A (en) 2004-04-29 2004-04-29 Refrigerant flow control device

Country Status (1)

Country Link
JP (1) JP2005315550A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007130769A3 (en) * 2006-03-31 2008-03-06 Parker Hannifin Corp Electronic block valve
WO2008078370A1 (en) * 2006-12-25 2008-07-03 Orion Machinery Company Limited Method of detecting liquid back for refrigeration cycle and apparatus therefor
JP2015520355A (en) * 2012-06-14 2015-07-16 アルファ−ラヴァル・コーポレート・アーベー System and method for dynamic control of an evaporator
WO2016143347A1 (en) * 2015-03-11 2016-09-15 株式会社デンソー Expansion valve device
EP3249322A1 (en) * 2016-05-25 2017-11-29 Fujikoki Corporation Electric expansion valve
WO2019235038A1 (en) * 2018-06-07 2019-12-12 株式会社デンソー Valve device
JP2020519824A (en) * 2017-05-09 2020-07-02 ジャージャン サンフア オートモーティヴ コンポーネンツ カンパニー リミテッド Electronic expansion valve, thermal management unit, cooling system, and method of manufacturing electronic expansion valve
CN114857809A (en) * 2022-04-24 2022-08-05 深圳市亿凌捷科技有限公司 Control system and control method of electronic expansion valve

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007130769A3 (en) * 2006-03-31 2008-03-06 Parker Hannifin Corp Electronic block valve
US20100031681A1 (en) * 2006-03-31 2010-02-11 Parker-Hannifin Corporation Electronic block valve
US8281607B2 (en) 2006-03-31 2012-10-09 Parker-Hannifin Corporation Electronic block valve
WO2008078370A1 (en) * 2006-12-25 2008-07-03 Orion Machinery Company Limited Method of detecting liquid back for refrigeration cycle and apparatus therefor
JPWO2008078370A1 (en) * 2006-12-25 2010-04-15 オリオン機械株式会社 Liquid bag detection method and apparatus for refrigeration cycle
JP2015520355A (en) * 2012-06-14 2015-07-16 アルファ−ラヴァル・コーポレート・アーベー System and method for dynamic control of an evaporator
US9903624B2 (en) 2012-06-14 2018-02-27 Alfa Laval Corporate Ab System and method for dynamic control of an evaporator
WO2016143347A1 (en) * 2015-03-11 2016-09-15 株式会社デンソー Expansion valve device
JP2016169893A (en) * 2015-03-11 2016-09-23 株式会社デンソー Expansion valve device
CN107435755A (en) * 2016-05-25 2017-12-05 株式会社不二工机 Electric expansion valve
JP2017211137A (en) * 2016-05-25 2017-11-30 株式会社不二工機 Electric expansion valve
EP3249322A1 (en) * 2016-05-25 2017-11-29 Fujikoki Corporation Electric expansion valve
CN107435755B (en) * 2016-05-25 2021-04-02 株式会社不二工机 Electric expansion valve
JP2020519824A (en) * 2017-05-09 2020-07-02 ジャージャン サンフア オートモーティヴ コンポーネンツ カンパニー リミテッド Electronic expansion valve, thermal management unit, cooling system, and method of manufacturing electronic expansion valve
JP7049367B2 (en) 2017-05-09 2022-04-06 ジャージャン サンフア オートモーティヴ コンポーネンツ カンパニー リミテッド Manufacturing method of electronic expansion valve, heat management unit, cooling system and electronic expansion valve
US11698146B2 (en) 2017-05-09 2023-07-11 Zhejiang Sanhua Automotive Components Co., Ltd. Electronic expansion valve, thermal management assembly, cooling system, and method for manufacturing electronic expansion valve
WO2019235038A1 (en) * 2018-06-07 2019-12-12 株式会社デンソー Valve device
JP2019211180A (en) * 2018-06-07 2019-12-12 株式会社デンソー Valve gear
CN112219073A (en) * 2018-06-07 2021-01-12 株式会社电装 Valve device
CN112219073B (en) * 2018-06-07 2022-06-03 株式会社电装 Valve device
CN114857809A (en) * 2022-04-24 2022-08-05 深圳市亿凌捷科技有限公司 Control system and control method of electronic expansion valve

Similar Documents

Publication Publication Date Title
US8151583B2 (en) Expansion valve control system and method for air conditioning apparatus
CN107421177B (en) Air conditioner with three-superheat-degree adjusting electronic expansion valve and control method thereof
US8037700B2 (en) Air conditioning system for low ambient cooling
WO2009119023A1 (en) Freezing apparatus
JPH04257676A (en) Detection and correction of malfunction of reversivle valve in heat pump
US9410715B2 (en) Air conditioning apparatus
US11927358B2 (en) HVAC unit fan control systems and methods
JP2005315550A (en) Refrigerant flow control device
JPH06201176A (en) Air-conditioner
WO2017138167A1 (en) Cooler and air conditioner
US20190264937A1 (en) Control of hvac unit based on sensor status
KR101253572B1 (en) Apparatus for controlling fan motor of air conditioner and method thereof
WO2023207222A1 (en) Air conditioner and control method therefor
JP2003106615A (en) Air conditioner
US10704797B2 (en) Sensor management systems for HVAC systems
JP2002147819A (en) Refrigeration unit
JP2003240363A (en) Method for controlling multi-chamber type air conditioner
CN201488138U (en) Air conditioner suitable for refrigeration under low-temperature environment
KR100565995B1 (en) Method for Operating of Multi Type Air-conditioner by Install Position of Indoor-unit
JPH08178438A (en) Engine heat pump
JP2001141323A (en) Air conditioner
JPH08159567A (en) Air conditioner
JP2017120141A (en) Air conditioner and defrost auxiliary device
JP2003042585A (en) Air conditioner
JP2016156569A (en) Freezer