[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005314531A - ハイブリッドシリカポリマー、その製造方法およびプロトン伝導性材料 - Google Patents

ハイブリッドシリカポリマー、その製造方法およびプロトン伝導性材料 Download PDF

Info

Publication number
JP2005314531A
JP2005314531A JP2004133395A JP2004133395A JP2005314531A JP 2005314531 A JP2005314531 A JP 2005314531A JP 2004133395 A JP2004133395 A JP 2004133395A JP 2004133395 A JP2004133395 A JP 2004133395A JP 2005314531 A JP2005314531 A JP 2005314531A
Authority
JP
Japan
Prior art keywords
hybrid
silica polymer
thiol
proton
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004133395A
Other languages
English (en)
Inventor
Nawal Kishor Mal
キショウル マル ナワル
Koichiro Hikuma
弘一郎 日隈
Kazuhiro Noda
和宏 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004133395A priority Critical patent/JP2005314531A/ja
Priority to PCT/JP2005/007273 priority patent/WO2006008860A1/ja
Priority to US11/568,368 priority patent/US7524916B2/en
Publication of JP2005314531A publication Critical patent/JP2005314531A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/28Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen sulfur-containing groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1037Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having silicon, e.g. sulfonated crosslinked polydimethylsiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Silicon Polymers (AREA)

Abstract

【課題】 電気化学素子への応用に好適な、熱安定性、機械的安定性、耐溶媒性が良好で、低湿度においてもプロトン伝導性の優れた経済的に安価なハイブリッドシリカポリマーとその製造方法を提供する。
【解決手段】 3−メルカプトプロピルトリアルコキシシシランと、界面活性剤と、水と、塩基または酸の混合物を25〜180℃で反応させてハイブリッド−チオール含有シリカポリマーを製造し、次いで必要に応じてハイブリッド−チオール含有シリカポリマーを過酸化物で酸化して、ハイブリッド−(チオールおよび/またはスルホン酸含有)シリカポリマーとする。得られたポリマーをプロトン伝導性材料として、燃料電池、キャパシター、電解セルなどの電気化学素子に応用する。
【選択図】 図2

Description

本発明は、プロトン伝導性を有するハイブリッドシリカポリマーに関し、特に、燃料電池、キャパシター、電解セルなどの電気化学素子への応用に好適なハイブリッドシリカポリマーとその製造方法及びプロトン伝導性材料に関するものである。
従来、プロトン伝導体としては、有機化合物から構成されているパーフルオロポリマー、例えば、Nafion(デュポン社製、登録商標)がある。このパーフルオロポリマーは、パーフルオロ化された線状の主鎖と、スルホン酸基を有するパーフルオロ化された側鎖とから形成されており、スルホン酸基がプロトン供給サイト(部位)としての役割を担っている。このNafionの場合、通常、分子量1100当たり、1個のスルホン酸基(プロトン供給部位)を含んでおり、分子量当たりのプロトン供給部位の比率(重量比)は、必ずしも大きくない。また、プロトン伝導性は、湿度によって影響を受け、例えば、低湿度状態(RH<11%)でのプロトン伝導性は、10-6S/cmよりも低いという問題がある。
また、近年、プロトン伝導性材料としてテトラアルコキシシランにリン酸を添加して加水分解によりゲル状とし、これを高温で加熱処理することによってホスホシリケートとしたものが開発されている(例えば、特許文献1参照)。しかしながら、このホスホシリケートもプロトン伝導性の点では十分なものではなかった。
特開2002−80214号公報
本発明は、上記従来技術に鑑みてなされたものであり、経済的に安価に製造でき、かつ熱安定性、機械的安定性、耐溶媒性などが良好で、低湿度においてもプロトン伝導性の優れたハイブリッドシリカポリマーとその製造方法及び各種電気化学素子への応用に好適なプロトン伝導性材料を提供することを目的とする。
本発明者らは鋭意検討した結果、新規なハイブリッドシリカポリマーを新たに見出し、このハイブリッドシリカポリマーを用いることによって優れたプロトン伝導性材料を提供できることを見出し本発明に至った。
すなわち、本発明は、全構成成分の50重量%以上が下記一般式(1):
(HOS-CH-CH-CH-SiO3/2)(HS-CH-CH-CH-SiO3/2)1−n ‥(1)
(式中、n=0〜1である。)
で表されるハイブリッド−(チオールおよび/またはスルホン酸含有)シリカポリマーであることを特徴とするハイブリッドシリカポリマーである。
ここで、前記ハイブリッドシリカポリマーは、非晶質体で、かつ非メソポーラス体であることを好適とする。また、前記一般式(1)におけるnは、0.03〜1であることが好ましい。
上記ハイブリッドシリカポリマーの製造方法は、3−メルカプトプロピルトリアルコキシシランと、界面活性剤と、水と、塩基または酸との混合物を25〜180℃で反応させてハイブリッド−チオール含有シリカポリマーを製造し、次いで必要に応じてハイブリッド−チオール含有シリカポリマーを過酸化物で酸化して、
全構成成分の50重量%以上が下記一般式(1):
(HOS-CH-CH-CH-SiO3/2)(HS-CH-CH-CH-SiO3/2)1−n ‥(1)
(式中、n=0〜1である。)
で表されるハイブリッド−(チオールおよび/またはスルホン酸含有)シリカポリマーを製造することを特徴とする。
ここで、前記塩基または酸としては、水酸化アンモニウムを用いることが好ましい。
さらに本発明によれば、全構成成分の50重量%以上が下記一般式(1):
(HOS-CH-CH-CH-SiO3/2)(HS-CH-CH-CH-SiO3/2)1−n ‥(1)
(式中、n=0〜1である。)
で表されるハイブリッド−(チオールおよび/またはスルホン酸含有)シリカポリマーであるハイブリッドシリカポリマーからなることを特徴とするプロトン伝導性材料が提供される。
本発明のハイブリッドシリカポリマーは、良好な熱的安定性と機械的安定性とを有し、水性あるいは非水性溶媒に対して安定で耐溶媒性に優れ、かつ優れたプロトン伝導性を有するものである。
すなわち、電気化学素子(例えば、燃料電池)の使用環境(約−20〜130℃)に耐えられる熱安定性(150℃以上:TGA測定)と、機械的、化学的安定性を有し、自己保湿性が良好で低湿度下でもプロトン伝導性が優れたハイブリッドシリカポリマーが提供される。そのため、プロトン伝導性材料として、燃料電池、キャパシター、電解セルなどの電気化学素子へ広く応用することが可能である。
また、本発明のハイブリッドシリカポリマーの製造方法によれば、上記の特性を有するハイブリッドシリカポリマーを安価に製造することができる。
本発明のハイブリッドシリカポリマーは、下記一般式(1)に示すように、ポリマー構成成分中に有機成分と無機成分とが複合して結合(ハイブリッド)したものである。
すなわち、全構成成分の50重量%以上が前記一般式(1)で表されるハイブリッド−(チオールおよび/またはスルホン酸含有)シリカポリマーであり、一般式(1)中に含有されるチオールおよび/またはスルホン酸によってプロトン伝導性が発現する。
(HOS-CH-CH-CH-SiO3/2)(HS-CH-CH-CH-SiO3/2)1−n ‥(1)
(式中、n=0〜1である。)
式中nは0.03〜1であることが好ましい。この範囲で熱安定性、機械的安定性、耐溶媒性などの諸特性がさらに良好で、プロトン伝導性の優れたものとなる。高いプロトン伝導性を得るためにはnは大きいほうが好ましい。
前記一般式(1)で表されるハイブリッド−(チオールおよび/またはスルホン酸含有)シリカポリマーは全構成成分の50重量%以上、好ましくは90重量%以上であり、より好ましくは全構成成分が一般式(1)で表されるハイブリッド−(チオールおよび/またはスルホン酸含有)シリカポリマーである。ハイブリッド−(チオールおよび/またはスルホン酸含有)シリカポリマー以外の構成成分としては、SiO2単位が挙げられる。
また本発明のハイブリッドシリカポリマーは、非晶質体で、かつ非メソポーラス体からなるハイブリッドシリカポリマーである。
前記一般式で表される本発明のハイブリッド−(チオールおよび/またはスルホン酸含有)シリカポリマーは、3−メルカプトプロピルトリアルコキシシランと、界面活性剤と、水と、塩基または酸の混合物を25〜180℃で反応させてハイブリッド−チオール含有シリカポリマーを製造し、次いで必要に応じてハイブリッド−チオール含有シリカポリマーを過酸化物で酸化することによって製造することができる。
すなわち、3−メルカプトプロピルトリアルコキシシランと、界面活性剤と、水と、塩基または酸の混合物を加熱反応させてハイブリッド−チオール含有シリカポリマーを含むゲルとし、このゲルから界面活性剤等を除去した後、必要に応じて酸化反応処理してチオールをスルホン酸基に変化させることにより本発明のハイブリッドシリカポリマーが得られる。
上記反応において用いられる3−メルカプトプロピルトリアルコキシシランとしては、限定するものではないが、例えば、3−メルカプトプロピルトリメトキシシラン(略、3−MPTMS)、3−メルカプトプロピルトリエトキシシラン(略、3−MPTES)などが挙げられる。
反応に用いられる界面活性剤としては、例えばRN+(CH33・X-(Rは炭素数6〜18のアルキル基を示し、Xは臭素原子、塩素原子または水酸基を示す。)が挙げられる。ここで、Rの具体例としては、ヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基などが挙げられる。界面活性剤の配合量は、3−メルカプトプロピルトリアルコキシシラン1モルに対して0.005〜0.8モルが適当である。
反応に用いられる塩基または酸としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、水酸化アンモニウム、あるいは塩化水素、臭化水素等が例示される。塩基または酸の配合量は、3−メルカプトプロピルトリアルコキシシラン1モルに対して0.2〜3モルが適当である。
塩基または酸として水酸化アンモニウムを用いた場合には、均一で球状の非晶質体で、表面積が大きく、かつ非メソポーラス体のハイブリッドシリカポリマーが得られ、プロトン伝導性に優れており、より好ましいものである。
塩基または酸として水酸化ナトリウムを用いた場合には、大きな粒子サイズで凝集形状を呈した非晶質体で、かつ非メソポーラス体のハイブリッドシリカポリマーが得られ、このポリマーは、高温での安定性(信頼性)を有する。
反応に用いられる水の配合量は、3−メルカプトプロピルトリアルコキシシラン1モルに対して30〜120モルが適当である。
ハイブリッド−チオール含有シリカポリマーの製造にあたっては、上記の3−メルカプトプロピルトリアルコキシシランと、界面活性剤と、水と、塩基または酸の混合物を25〜180℃で反応させる。このことにより、ハイブリッド−チオール含有シリカポリマーがゲルとして得られる。
次に、必要に応じてハイブリッド−チオール含有シリカポリマーを過酸化物で酸化するが、ゲルを酸化反応処理する前に、ゲル中の界面活性剤を除去することが好ましい。例えば、界面活性剤としてヘキサデシルトリメチルアンモニウムブロマイドを用いる場合には、エタノールと希塩酸を用い、加熱処理してこれを除去することができる。
必要に応じて酸化反応する場合に用いられる過酸化物としては、例えば、過酸化水素、ターシャリブチルハイドロパーオキシド[(CH33C−O−O−H]、キュメンハイドロパーオキシド[C65−C(CH32−O−O−H]などが挙げられる。なお、用いられる過酸化物はこれらに限定されるものではない。上記一般式(1)のnの値は、過酸化物との反応時間によって適宜所望のものを得ることが可能である。
反応溶媒としては、例えば、過酸化水素を用いる場合には水、ターシャリブチルハイドロパーオキシドの場合には水やブタノール、n−デカンなど、キュメンハイドロパーオキシドの場合にはブタノール、n−デカンなどが用いられる。すなわち、用いる過酸化物の性質に応じて好適な溶媒を選択して酸化反応処理を行う。
上記製造方法によって得られた本発明のハイブリッドシリカポリマーは非晶質体で、かつ非メソポーラス体からなり、チオールおよび/またはスルホン酸を含有し、分子量300当たり1個のプロトン供給部位を含んでおり、分子量当たりのプロトン供給部位の比率(重量比)が大きく、良好なプロトン伝導性を発現する。
また熱安定性も優れ、例えば、TG−DTAによる測定で、およそ150℃まで安定であり、更に、機械的安定性や、水性あるいは非水性溶媒に対する高い安定性(耐溶媒性)、あるいは化学安定性などを示す。低湿度におけるプロトン伝導性も優れている。このため燃料電池の応用環境(80〜130℃程度)において十分実用寿命を超えて用いることができる。
また、従来のパーフルオロポリマーなどの有機ポリマーよりも安価で容易に製造することができる。
以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はその趣旨を逸脱しない限り下記実施例に限定されるものではない。
実施例1[ハイブリッドシリカポリマーの合成]
(1)ゲルの合成:
出発原料として、3−メルカプトプロピルトリエトキシシラン(3−MPTES)、界面活性剤、水(HO)、NaOHを用い、出発原料の各成分を下記モル組成に振ってゲルを合成した。
出発各成分のモル組成:
3−MPTES:1.0、
界面活性剤 :0.1〜0.8、
O :30〜120、
NaOH :0.2〜2
上記各出発原料の各モル成分を振って合成したが代表的な合成例を以下に記載する。
(代表的な合成方法)
水40g中のヘキサデシルトリメチルアンモニウムブロマイド0.42gと、水15gに溶解したNaOH1.30gとを混合した後、連続的に攪拌しながら、11.95gの3−メルカプトプロピルトリエトキシシラン(3−MPTES)を添加して、透明な溶液を得た。90分攪拌の後、得られた均一なゲルを4つに分割(A、B、CおよびD)(pH=12.66)し、それぞれ下記条件に保管、あるいは加熱して水分を除去した。
分割A:ペトリ皿中で、解放状態で室温にて7日間保管した。
分割B:ペトリ皿中で、解放状態で60℃にて7日間保管した。
分割C:テフロン(登録商標)裏打ちのステンレススチール製オートクレーブ中に移し、均一な温度(100℃)で3日間加熱した後、得られた乳白色の生成物を濾過、洗浄し、100℃で1日乾燥した。
分割D:テフロン(登録商標)裏打ちのステンレススチール製オートクレーブ中に移し、均一な温度(160℃)で3日間加熱した後、得られた乳白色の生成物を濾過、洗浄し、100℃で1日乾燥した。なお、オートクレーブの圧力は、1MPa(約10気圧)とした。
上記いずれの分割部においても、本発明におけるメルカプト基(チオール:HS−)含有試料を含むゲルが乾燥状態で得られた。
また、上記各出発原料の各モル成分を振って合成した最終的な合成ゲルのモル組成は以下のようであった。
最終的な合成ゲルのモル組成:
3−MPTES:1.0、
界面活性剤 :0.1〜0.57、
O :60、
NaOH :0.67
(2)ゲル中の界面活性剤の除去:
上記で得られたゲルをエタノール(チオール含有試料1g当り、100gのエタノール使用)と希塩酸(チオール含有試料1g当り、1mlの4M・HCl使用)により、60℃で6時間処理してゲル中の界面活性剤を除去した。その後、濾過し、エタノールで洗浄後、60℃で1日乾燥した。得られた生成物の収率は、いずれの場合も90%(6.03g)以上であった。
(3)チオール基含有試料の酸化反応:
上記界面活性剤を除去した生成物(チオール含有試料)をH水溶液(30%水溶液)を用いて下記条件で酸化反応させ、チオール基をスルホン酸基に酸化させた。
すなわち、50mlの反応容器中で、0.86gの界面活性剤を除去したチオール含有試料を52gの 過酸化水素(H:30%水溶液)により、室温で4時間15分酸化反応処理した。生成物を遠心分離し、脱イオン水で洗浄して室温(RT)で乾燥した。試料のすべてをHO中で8日間保存した後、洗浄し、60℃で1日乾燥した。このHを用いた酸化により、SH基のほとんどがスルホン酸基に酸化された。
上記実施例1により得られた生成物(ハイブリッドシリカポリマー)の走査型電子顕微鏡(SEM)写真を図1に示す。生成物は非晶質で非メソポーラス体であり、比較的大きな粒子サイズで、全ての粒子が凝集した状態であり、表面積は5m−1程度であった。
実施例2[ハイブリッドシリカポリマーの合成]
(1)ゲルの合成
出発原料として、3−メルカプトプロピルトリエトキシシラン(3−MPTES)、界面活性剤、水、アンモニア水(水酸化アンモニウム)を用い、出発原料の各成分を下記モル組成に振ってゲルを合成した。
(出発各成分のモル組成)
3−MPTES:1.0、
界面活性剤 :0.005〜0.6、
O :30〜120、
NH4OH :2.82
上記各出発原料の各モル成分を振って合成したが、代表的な合成例を以下に記載する。
(代表的な合成方法)
7.58gのヘキサデシルトリメチルアンモニウムブロマイドを攪拌下5分で100gの水に加えた。次に、25.1gの3−メルカプトプロピルトリエトキシシラン(3−MPTES)を攪拌下10分で加え、続いて、15.5mlの水酸化アンモニウム(アンモニア30%水溶液)を撹拌下30分で添加した。得られた乳白色の溶液をテフロン(登録商標)裏打ちのステンレススチール製オートクレーブ中に移し、均一な温度(100℃)で3日間加熱した。生成物を遠心分離し、脱イオン水で洗浄し、100℃1日乾燥した。なお、オートクレーブの圧力は、1MPa(約10気圧)とした。
(2)ゲル中の界面活性剤の除去:
上記で得られたゲルをエタノール(チオール含有試料1g当り、100gのエタノール使用)と希塩酸(チオール含有試料1g当り、1mlの4M・HCl使用)により、60℃で6時間処理してゲル中の界面活性剤を除去した。その後、濾過し、エタノールで洗浄後、60℃で1日乾燥した。得られた生成物の収率は、86%(5.93g)以上であった。元素分析値は次の通りであった。
元素分析値 Si:22.05wt%、S:25.2wt%、C:28.5wt%
(3)チオール基含有試料の酸化反応:
上記界面活性剤を除去した生成物(チオール含有試料)を過酸化水素水溶液を用いて下記条件で酸化反応させ、チオールをスルホン酸に酸化させた。
すなわち、0.89gの界面活性剤を除去したチオール含有試料を12gの過酸化水素水溶液(H:30%水溶液)により、室温で1時間酸化反応処理した。生成物を遠心分離し、脱イオン水で洗浄して室温(RT)で乾燥した。この酸化反応処理により、チオール(HS−)の一部は、高プロトン伝導性の元となるスルホン酸基に酸化された。
過酸化水素水溶液による処理時間を10分〜4時間の間で変化させることで、次の表1に示す組成を有するハイブリッドシリカポリマーを得た。表1にその元素分析値を併せて示す。
Figure 2005314531
上記により得られたハイブリッドシリカポリマーの走査型電子顕微鏡(SEM)写真を図2に示す。生成物は非晶質で非メソポーラス体であり、均一で球状(平均粒子サイズはおよそ100nm)の形態であり、表面積は、20m−1程度であった。
[評価]
次に、種々のハイブリッドシリカポリマーを、めのう乳鉢でかき混ぜて微粉末化させ、錠剤成型器を用いて、直径13mm、厚さ0.4mmの円柱状ペレットに加圧成形した。作製した円柱状ペレットを金電極に挟持し、導電率を交流法により測定評価した。低湿度(20%未満、25℃)におけるプロトン伝導度、および高湿度(90%以上、25℃)におけるプロトン伝導度を表2に示す。
表中、[HS-(CH2)3-SiO1.5 ]0.60 [SiO2]0.40および[HO3S-(CH2)3-SiO1.5 ]0.58 [SiO2]0.42については、実施例1における3−メルカプトプロピルトリエトキシシラン(3−MPTES)の一部をテトラエトキシシランに代えて用いた他は実施例1と同様にして製造した。
Figure 2005314531
次に、ハイブリッドシリカポリマーとして(HOS-CH-CH-CH-SiO3/2)0.57(HS-CH-CH-CH-SiO3/2)0.43を用い、相対湿度(RH)および温度を種々変化させてプロトン伝導度を測定した。その結果をそれぞれ表3および表4に示す。なお、表3は25℃での測定であり、表4は高温度においては相対湿度5%未満である。
Figure 2005314531
Figure 2005314531
本発明のハイブリッドシリカポリマーの一例のSEM写真である。 本発明のハイブリッドシリカポリマーの他の一例のSEM写真である。

Claims (6)

  1. 全構成成分の50重量%以上が下記一般式(1):
    (HOS-CH-CH-CH-SiO3/2)(HS-CH-CH-CH-SiO3/2)1−n ‥(1)
    (式中、n=0〜1である。)
    で表されるハイブリッド−(チオールおよび/またはスルホン酸含有)シリカポリマーであることを特徴とするハイブリッドシリカポリマー。
  2. 前記ハイブリッドシリカポリマーが非晶質体で、かつ非メソポーラス体であることを特徴とする請求項1に記載のハイブリッドシリカポリマー。
  3. 前記一般式(1)におけるnが、0.03〜1であることを特徴とする請求項1に記載のハイブリッドシリカポリマー。
  4. 3−メルカプトプロピルトリアルコキシシランと、界面活性剤と、水と、塩基または酸との混合物を25〜180℃で反応させてハイブリッド−チオール含有シリカポリマーを製造し、次いで必要に応じてハイブリッド−チオール含有シリカポリマーを過酸化物で酸化して、
    全構成成分の50重量%以上が下記一般式(1):
    (HOS-CH-CH-CH-SiO3/2)(HS-CH-CH-CH-SiO3/2)1−n ‥(1)
    (式中、n=0〜1である。)
    で表されるハイブリッド−(チオールおよび/またはスルホン酸含有)シリカポリマーを製造することを特徴とするハイブリッドシリカポリマーの製造方法。
  5. 前記塩基または酸として水酸化アンモニウムを用いることを特徴とする請求項4に記載のハイブリッドシリカポリマーの製造方法。
  6. 全構成成分の50重量%以上が下記一般式(1):
    (HOS-CH-CH-CH-SiO3/2)(HS-CH-CH-CH-SiO3/2)1−n ‥(1)
    (式中、n=0〜1である。)
    で表されるハイブリッド−(チオールおよび/またはスルホン酸含有)シリカポリマーであるハイブリッドシリカポリマーからなることを特徴とするプロトン伝導性材料。



JP2004133395A 2004-04-28 2004-04-28 ハイブリッドシリカポリマー、その製造方法およびプロトン伝導性材料 Pending JP2005314531A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004133395A JP2005314531A (ja) 2004-04-28 2004-04-28 ハイブリッドシリカポリマー、その製造方法およびプロトン伝導性材料
PCT/JP2005/007273 WO2006008860A1 (ja) 2004-04-28 2005-04-08 ハイブリッドシリカポリマー、その製造方法およびプロトン伝導性材料
US11/568,368 US7524916B2 (en) 2004-04-28 2005-04-08 Hybrid silica polymer, method for production thereof, and proton-conducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004133395A JP2005314531A (ja) 2004-04-28 2004-04-28 ハイブリッドシリカポリマー、その製造方法およびプロトン伝導性材料

Publications (1)

Publication Number Publication Date
JP2005314531A true JP2005314531A (ja) 2005-11-10

Family

ID=35442293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004133395A Pending JP2005314531A (ja) 2004-04-28 2004-04-28 ハイブリッドシリカポリマー、その製造方法およびプロトン伝導性材料

Country Status (3)

Country Link
US (1) US7524916B2 (ja)
JP (1) JP2005314531A (ja)
WO (1) WO2006008860A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11121379B2 (en) * 2015-01-15 2021-09-14 GM Global Technology Operations LLC Caged nanoparticle electrocatalyst with high stability and gas transport property
FR3106505B1 (fr) 2020-01-23 2022-01-28 Faurecia Systemes Dechappement Membrane d’echange protonique hybride

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003041091A1 (en) * 2001-10-30 2003-05-15 Sekisui Chemical Co., Ltd. Proton conducting membrane, process for its production, and fuel cells made by using the same
JP2003331644A (ja) * 2002-05-09 2003-11-21 Sekisui Chem Co Ltd プロトン伝導性膜、その製造方法及びそれを用いた燃料電池
JP2003335818A (ja) * 2002-05-17 2003-11-28 Toyota Motor Corp プロトン伝導材料
JP2004346316A (ja) * 2003-04-30 2004-12-09 Mitsubishi Chemicals Corp スルホン酸基含有シロキサン類、プロトン伝導材料およびそれを用いた燃料電池
JP2005050700A (ja) * 2003-07-29 2005-02-24 Sekisui Chem Co Ltd プロトン伝導性膜、その製造方法およびこれを用いた燃料電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19536363A1 (de) * 1995-09-29 1997-04-03 Degussa Sulfonat- und mercaptogruppenhaltige Organopolysiloxane, Verfahren zu ihrer Herstellung und Verwendung
TWI269478B (en) * 2003-02-06 2006-12-21 Sekisui Chemical Co Ltd Proton conducting membrane, method for producing the same and fuel cell using the same
US20060219981A1 (en) * 2003-04-25 2006-10-05 Toshihito Miyama Proton conductive film, process for producing the same, and fuel cell employing the proton-conductive film
US7829237B2 (en) * 2003-06-13 2010-11-09 Sekisui Chemical Co., Ltd. Proton conductive film, method for producing the same, and fuel cell using same
KR20060119959A (ko) * 2003-09-12 2006-11-24 로무 가부시키가이샤 프로톤 전도성막, 그 제조 방법 및 이것을 이용한 연료전지
JP4574146B2 (ja) * 2003-09-12 2010-11-04 ローム株式会社 燃料電池およびその製造方法
US6949460B2 (en) 2003-11-12 2005-09-27 Lam Research Corporation Line edge roughness reduction for trench etch
CN1761007B (zh) * 2004-10-15 2010-05-05 三洋电机株式会社 固体电解电容器及其制造方法
US20060083962A1 (en) * 2004-10-20 2006-04-20 Nissan Motor Co., Ltd. Proton-conductive composite electrolyte membrane and producing method thereof
JP4958395B2 (ja) * 2005-01-13 2012-06-20 国立大学法人大阪大学 プロトン伝導性膜、これを用いた燃料電池およびその製造方法
KR101193164B1 (ko) * 2006-02-21 2012-10-19 삼성에스디아이 주식회사 술폰산기 함유 유기 고분자 실록산 화합물 및 이를포함하는 연료전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003041091A1 (en) * 2001-10-30 2003-05-15 Sekisui Chemical Co., Ltd. Proton conducting membrane, process for its production, and fuel cells made by using the same
JP2003331644A (ja) * 2002-05-09 2003-11-21 Sekisui Chem Co Ltd プロトン伝導性膜、その製造方法及びそれを用いた燃料電池
JP2003335818A (ja) * 2002-05-17 2003-11-28 Toyota Motor Corp プロトン伝導材料
JP2004346316A (ja) * 2003-04-30 2004-12-09 Mitsubishi Chemicals Corp スルホン酸基含有シロキサン類、プロトン伝導材料およびそれを用いた燃料電池
JP2005050700A (ja) * 2003-07-29 2005-02-24 Sekisui Chem Co Ltd プロトン伝導性膜、その製造方法およびこれを用いた燃料電池

Also Published As

Publication number Publication date
US20070213494A1 (en) 2007-09-13
WO2006008860A1 (ja) 2006-01-26
US7524916B2 (en) 2009-04-28

Similar Documents

Publication Publication Date Title
Shaari et al. Carbon and graphene quantum dots in fuel cell application: An overview
Nabid et al. Polyaniline/TiO2 nanocomposite: enzymatic synthesis and electrochemical properties
TWI286854B (en) Proton conducting mediums for electrochemical devices and electrochemical devices comprising the same
EP0581296A2 (en) Ionically conductive organosiloxane polymer compositions
JP2000188013A (ja) 高耐熱性高分子電解質
CN110711590B (zh) 一种一维钴硫化合物/硫化亚铜复合物纳米阵列@泡沫铜材料及其制备方法和应用
CN107017093A (zh) 一种磺化石墨烯/Ni(OH)2复合材料的制备方法及用途
Shi et al. Controlling conduction environments of anion exchange membrane by functionalized SiO2 for enhanced hydroxide conductivity
JP2010100705A (ja) 高分子電解質合成方法、高分子電解質膜、及び固体高分子型燃料電池
BRPI0807555A2 (pt) Catalisador para redução eletroquímica de oxigênio
Fang et al. Hexagonal CoSe2 nanosheets stabilized by nitrogen-doped reduced graphene oxide for efficient hydrogen evolution reaction
Vengadesan et al. Electrochemical fabrication of nano-structured poly (dimethoxyaniline)-platinum hybrid materials: An efficient anode electrocatalyst for oxidation of methanol
Zhou et al. Boosting oxygen evolution reaction activity and durability of phosphate doped Ni (OH) 2/FeOOH hierarchical microtubes by morphology engineering and reconstruction strategy
US10260155B2 (en) Calcium silicate hydrate anion exchange membrane useful for water electrolysis and fuel cells and a process for the preparation thereof
CN112642434A (zh) 用于电化学还原CO2的Cu2O负载ZnO催化剂
JP2005314531A (ja) ハイブリッドシリカポリマー、その製造方法およびプロトン伝導性材料
JP2000256007A (ja) プロトン伝導性材料の製造方法
CN104091936B (zh) 一种MoS2纳米瓦/石墨烯复合纳米材料及其制备方法
CN111229318A (zh) 一种超疏水性铜基原位复合催化剂及其制备方法与应用
JP5182279B2 (ja) ラメラ多孔体電解質
JP2004146164A (ja) プロトン伝導膜及びその製造方法
JP4826082B2 (ja) プロトン伝導性材料の製造方法
JP2006117873A (ja) メソポーラスシリカポリマー、その製造方法およびプロトン伝導性材料
JP2005251523A (ja) プロトン伝導性電解質及び燃料電池
JP2004265638A (ja) 混合伝導カーボンおよび電極

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090916

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090916

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023